Quantifying selection in immune receptor repertoires
The efficient recognition of pathogens by the adaptive immune system relies on the diversity of receptors displayed at the surface of immune cells. T-cell receptor diversity results from an initial random DNA editing process, called VDJ recombination, followed by functional selection of cells accord...
Saved in:
| Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 27; p. 9875 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
08.07.2014
|
| Subjects: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The efficient recognition of pathogens by the adaptive immune system relies on the diversity of receptors displayed at the surface of immune cells. T-cell receptor diversity results from an initial random DNA editing process, called VDJ recombination, followed by functional selection of cells according to the interaction of their surface receptors with self and foreign antigenic peptides. Using high-throughput sequence data from the β-chain of human T-cell receptors, we infer factors that quantify the overall effect of selection on the elements of receptor sequence composition: the V and J gene choice and the length and amino acid composition of the variable region. We find a significant correlation between biases induced by VDJ recombination and our inferred selection factors together with a reduction of diversity during selection. Both effects suggest that natural selection acting on the recombination process has anticipated the selection pressures experienced during somatic evolution. The inferred selection factors differ little between donors or between naive and memory repertoires. The number of sequences shared between donors is well-predicted by our model, indicating a stochastic origin of such public sequences. Our approach is based on a probabilistic maximum likelihood method, which is necessary to disentangle the effects of selection from biases inherent in the recombination process. |
|---|---|
| AbstractList | The efficient recognition of pathogens by the adaptive immune system relies on the diversity of receptors displayed at the surface of immune cells. T-cell receptor diversity results from an initial random DNA editing process, called VDJ recombination, followed by functional selection of cells according to the interaction of their surface receptors with self and foreign antigenic peptides. Using high-throughput sequence data from the β-chain of human T-cell receptors, we infer factors that quantify the overall effect of selection on the elements of receptor sequence composition: the V and J gene choice and the length and amino acid composition of the variable region. We find a significant correlation between biases induced by VDJ recombination and our inferred selection factors together with a reduction of diversity during selection. Both effects suggest that natural selection acting on the recombination process has anticipated the selection pressures experienced during somatic evolution. The inferred selection factors differ little between donors or between naive and memory repertoires. The number of sequences shared between donors is well-predicted by our model, indicating a stochastic origin of such public sequences. Our approach is based on a probabilistic maximum likelihood method, which is necessary to disentangle the effects of selection from biases inherent in the recombination process. The efficient recognition of pathogens by the adaptive immune system relies on the diversity of receptors displayed at the surface of immune cells. T-cell receptor diversity results from an initial random DNA editing process, called VDJ recombination, followed by functional selection of cells according to the interaction of their surface receptors with self and foreign antigenic peptides. Using high-throughput sequence data from the β-chain of human T-cell receptors, we infer factors that quantify the overall effect of selection on the elements of receptor sequence composition: the V and J gene choice and the length and amino acid composition of the variable region. We find a significant correlation between biases induced by VDJ recombination and our inferred selection factors together with a reduction of diversity during selection. Both effects suggest that natural selection acting on the recombination process has anticipated the selection pressures experienced during somatic evolution. The inferred selection factors differ little between donors or between naive and memory repertoires. The number of sequences shared between donors is well-predicted by our model, indicating a stochastic origin of such public sequences. Our approach is based on a probabilistic maximum likelihood method, which is necessary to disentangle the effects of selection from biases inherent in the recombination process.The efficient recognition of pathogens by the adaptive immune system relies on the diversity of receptors displayed at the surface of immune cells. T-cell receptor diversity results from an initial random DNA editing process, called VDJ recombination, followed by functional selection of cells according to the interaction of their surface receptors with self and foreign antigenic peptides. Using high-throughput sequence data from the β-chain of human T-cell receptors, we infer factors that quantify the overall effect of selection on the elements of receptor sequence composition: the V and J gene choice and the length and amino acid composition of the variable region. We find a significant correlation between biases induced by VDJ recombination and our inferred selection factors together with a reduction of diversity during selection. Both effects suggest that natural selection acting on the recombination process has anticipated the selection pressures experienced during somatic evolution. The inferred selection factors differ little between donors or between naive and memory repertoires. The number of sequences shared between donors is well-predicted by our model, indicating a stochastic origin of such public sequences. Our approach is based on a probabilistic maximum likelihood method, which is necessary to disentangle the effects of selection from biases inherent in the recombination process. |
| Author | Walczak, Aleksandra M Mora, Thierry Murugan, Anand Elhanati, Yuval Callan, Jr, Curtis G |
| Author_xml | – sequence: 1 givenname: Yuval surname: Elhanati fullname: Elhanati, Yuval organization: Laboratoire de Physique Théorique, Unité Mixte de Recherche 8549 and – sequence: 2 givenname: Anand surname: Murugan fullname: Murugan, Anand organization: Department of Applied Physics, Stanford University, Stanford, CA 94305; and – sequence: 3 givenname: Curtis G surname: Callan, Jr fullname: Callan, Jr, Curtis G email: ccallan@princeton.edu organization: Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 ccallan@princeton.edu – sequence: 4 givenname: Thierry surname: Mora fullname: Mora, Thierry organization: Laboratoire de Physique Statistique, Unité Mixte de Recherche 8550, Centre National de la Recherche Scientifique and École Normale Supérieure, 75005 Paris, France – sequence: 5 givenname: Aleksandra M surname: Walczak fullname: Walczak, Aleksandra M organization: Laboratoire de Physique Théorique, Unité Mixte de Recherche 8549 and |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24941953$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA9du5NZuumYm9y0zVIGXzAggq5Lmt5IpE1r0i7m31twBOHAOYuPD86aLUIfiLFr4Dvghbwbgkk7QK5VIQDgjK2Aa8hy1Hzxby_ZOqUvzmeu5BdsKVAjaCVXDN8mE0bvjj58bhO1ZEffh62f03VToG0kS8PYx3kMFMfeR0qX7NyZNtHVqTfs4_Hhff-cHV6fXvb3h8zmQo6ZME1OErVR0LhSSHJ5zQkUWtQ5B8CGCpcT1g0qEGSlM6JxpCSWlkrkYsNuf71D7L8nSmPV-WSpbU2gfkrVrEIppBLljN6c0KnuqKmG6DsTj9XfU_ED7AJXqQ |
| CitedBy_id | crossref_primary_10_1016_j_cell_2024_03_037 crossref_primary_10_1073_pnas_1700241114 crossref_primary_10_3390_e21101009 crossref_primary_10_1093_bib_bbad038 crossref_primary_10_3389_fimmu_2021_778559 crossref_primary_10_1051_jbio_2017033 crossref_primary_10_3389_fimmu_2019_02533 crossref_primary_10_1016_j_coisb_2018_09_005 crossref_primary_10_1103_z2qq_t55b crossref_primary_10_1103_PhysRevResearch_3_013222 crossref_primary_10_1016_j_cels_2024_12_006 crossref_primary_10_1038_s42256_025_01085_9 crossref_primary_10_4049_jimmunol_1600005 crossref_primary_10_1186_s12865_019_0300_5 crossref_primary_10_3389_fimmu_2024_1321603 crossref_primary_10_1038_nature24462 crossref_primary_10_1007_s10875_021_01178_1 crossref_primary_10_1016_j_coisb_2016_12_014 crossref_primary_10_7554_eLife_49900 crossref_primary_10_1371_journal_pbio_3000314 crossref_primary_10_1146_annurev_immunol_042718_041757 crossref_primary_10_1038_s41467_018_02832_w crossref_primary_10_3389_fimmu_2022_797640 crossref_primary_10_7554_eLife_33050 crossref_primary_10_1016_j_coisb_2019_10_007 crossref_primary_10_1073_pnas_2318599121 crossref_primary_10_1371_journal_pntd_0008896 crossref_primary_10_1073_pnas_2023141118 crossref_primary_10_3389_fncom_2022_917786 crossref_primary_10_4049_jimmunol_1700594 crossref_primary_10_1093_bib_bbw138 crossref_primary_10_3389_fimmu_2022_858057 crossref_primary_10_1038_s41598_018_24367_2 crossref_primary_10_1038_s41587_021_00989_2 crossref_primary_10_1007_s00251_020_01164_8 crossref_primary_10_1016_j_clim_2018_04_009 crossref_primary_10_4049_jimmunol_1500215 crossref_primary_10_1111_imr_12685 crossref_primary_10_1016_j_str_2016_06_014 crossref_primary_10_1371_journal_pcbi_1009297 crossref_primary_10_3390_pathogens9080650 crossref_primary_10_1371_journal_pone_0160853 crossref_primary_10_3389_fimmu_2021_735135 crossref_primary_10_1088_1478_3975_aa7366 crossref_primary_10_3389_fimmu_2024_1380971 crossref_primary_10_3389_fimmu_2016_00681 crossref_primary_10_1371_journal_pgen_1010652 crossref_primary_10_1111_imr_12670 crossref_primary_10_1111_brv_12355 crossref_primary_10_3389_fimmu_2017_00430 crossref_primary_10_1016_j_bbih_2021_100312 crossref_primary_10_1111_all_16580 crossref_primary_10_3389_fimmu_2018_01307 crossref_primary_10_1016_j_physrep_2020_01_001 crossref_primary_10_1039_C9ME00071B crossref_primary_10_3389_fimmu_2021_634489 crossref_primary_10_1111_imr_12664 crossref_primary_10_3389_fimmu_2018_02115 crossref_primary_10_1111_imr_12665 crossref_primary_10_7554_eLife_85126 crossref_primary_10_1016_j_cels_2024_11_006 crossref_primary_10_3389_fimmu_2017_01210 crossref_primary_10_1093_rheumatology_kex517 crossref_primary_10_1038_s43586_023_00284_1 crossref_primary_10_1016_j_crhy_2015_09_004 crossref_primary_10_3390_v15061334 crossref_primary_10_3389_fimmu_2021_686127 crossref_primary_10_1371_journal_pcbi_1006874 crossref_primary_10_1186_s12979_020_00195_9 crossref_primary_10_1111_imr_12654 crossref_primary_10_3389_fimmu_2017_01500 crossref_primary_10_1038_s41467_017_01925_2 crossref_primary_10_7554_eLife_86181 crossref_primary_10_1038_s41598_017_18137_9 crossref_primary_10_7554_eLife_81622 crossref_primary_10_1146_annurev_immunol_041015_055325 crossref_primary_10_3389_fimmu_2015_00644 crossref_primary_10_7554_eLife_22057 crossref_primary_10_3389_fimmu_2022_798300 crossref_primary_10_1371_journal_pcbi_1005572 crossref_primary_10_1103_14j1_wrh5 crossref_primary_10_1186_s13073_015_0169_8 crossref_primary_10_1038_ncomms11112 crossref_primary_10_1103_PhysRevResearch_3_033216 crossref_primary_10_1007_s11538_023_01190_z crossref_primary_10_4049_jimmunol_1800091 crossref_primary_10_1016_j_it_2015_09_006 crossref_primary_10_1146_annurev_biodatasci_072018_021339 crossref_primary_10_7554_eLife_23156 crossref_primary_10_3389_fimmu_2025_1605170 crossref_primary_10_3389_fcimb_2020_00254 crossref_primary_10_3390_e23040437 crossref_primary_10_7554_eLife_46935 crossref_primary_10_1073_pnas_1601012113 crossref_primary_10_2337_db20_0896 crossref_primary_10_3389_fimmu_2018_00224 crossref_primary_10_1111_imm_12857 crossref_primary_10_1371_journal_pcbi_1004870 crossref_primary_10_1016_j_coi_2021_07_006 crossref_primary_10_1371_journal_pcbi_1008394 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1409572111 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 24941953 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Research Council grantid: 306312 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 |
| ID | FETCH-LOGICAL-c623t-2ad6e349a51df823ef6b0e154c4960114de7f6e4bd4512ec3fa2dfe5348ce8402 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338514800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 11:00:02 EDT 2025 Sat May 31 02:13:11 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 27 |
| Keywords | public repertoire thymic selection statistical inference T cell |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c623t-2ad6e349a51df823ef6b0e154c4960114de7f6e4bd4512ec3fa2dfe5348ce8402 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/111/27/9875.full.pdf |
| PMID | 24941953 |
| PQID | 1544323528 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1544323528 pubmed_primary_24941953 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-07-08 |
| PublicationDateYYYYMMDD | 2014-07-08 |
| PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-08 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2014 |
| SSID | ssj0009580 |
| Score | 2.49928 |
| Snippet | The efficient recognition of pathogens by the adaptive immune system relies on the diversity of receptors displayed at the surface of immune cells. T-cell... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 9875 |
| SubjectTerms | CD4-Positive T-Lymphocytes - immunology Humans Receptors, Antigen, T-Cell, alpha-beta - genetics Selection, Genetic |
| Title | Quantifying selection in immune receptor repertoires |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24941953 https://www.proquest.com/docview/1544323528 |
| Volume | 111 |
| WOSCitedRecordID | wos000338514800045&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qevCirs_1RQUPeoi2adokJxFx8eKygsLeljwmsJe2bnf9_U7aLnoRBKGU5lAIk8nk-zLJN4RcIcZIjfWKxp4pyjlk1DBsOuGdy4VJuHNNsQkxGsnJRI27Dbe6O1a5iolNoHalDXvkd0E1JmVBi-S--qChalTIrnYlNNZJL0UoE7xaTOQP0V3ZqhGohOZcxStpH5HeVYWub4PYUxYoUPI7vmzWmeHOf3u4S7Y7hBk9tC7RJ2tQ7JF-N4fr6LoTmr7ZJ_x1qcNZoXDTKaqbgjg4StEMn3BrBCKMhlAhKcePCuaLEsNjfUDeh09vj8-0q6JALUKbBWXa5ZBypbPEeclS8LmJATtrObIXpEMOhM-BG8dx8Qebes2chyzl0gLSP3ZINoqygGMSydxY7YySTBjukEgl1sY61kJ5E1R6BuRyZZkpemlIPegCymU9_bbNgBy15p1WrZzGFAkgD8m8kz_8fUq2ELHw5rysPCM9j3MUzsmm_VzM6vlFM_z4Ho1fvgDE37qP |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+selection+in+immune+receptor+repertoires&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Elhanati%2C+Yuval&rft.au=Murugan%2C+Anand&rft.au=Callan%2C+Jr%2C+Curtis+G&rft.au=Mora%2C+Thierry&rft.date=2014-07-08&rft.eissn=1091-6490&rft.volume=111&rft.issue=27&rft.spage=9875&rft_id=info:doi/10.1073%2Fpnas.1409572111&rft_id=info%3Apmid%2F24941953&rft_id=info%3Apmid%2F24941953&rft.externalDocID=24941953 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |