Sequential selection procedures and false discovery rate control
We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequent...
Saved in:
| Published in: | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 78; no. 2; pp. 423 - 444 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Royal Statistical Society
01.03.2016
Blackwell Publishing Ltd John Wiley & Sons Ltd Oxford University Press |
| Subjects: | |
| ISSN: | 1369-7412, 1467-9868 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p‐values in sequential model selection settings. |
|---|---|
| AbstractList | We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p-values in sequential model selection settings. Summary We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p‐values in sequential model selection settings. We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,..., Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypothese up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p-values in sequential model selection settings. Summary We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H 1 ,...,H k of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p-values in sequential model selection settings. |
| Author | Wager, Stefan Tibshirani, Robert Chouldechova, Alexandra G'Sell, Max Grazier |
| Author_xml | – sequence: 1 fullname: G'Sell, Max Grazier – sequence: 2 fullname: Wager, Stefan – sequence: 3 fullname: Chouldechova, Alexandra – sequence: 4 fullname: Tibshirani, Robert |
| BookMark | eNp9kUtP3TAQha0KpPLadF8RiU2FFOpX7GQHXJ4V0KopYmk5zgT5NsTU9gXuv8chLQtUMRtbOt-ZOR6vo5XBDYDQJ4L3SKqvPoRmj1BC6Qe0RriQeVWKciXdmahyyQn9iNZDmONUQrI1tF_DnwUM0eo-C9CDidYN2b13BtqFh5Dpoc063QfIWhuMewC_zLyOkBk3RO_6TbT6Im_9PTfQ9cnxr9lZfvH99Hx2cJEbQRnNOTdMtwBgjCSGFMBJ1WiGJetYpcsCZFu0hndUF7RoSmiMqHAnDWta0WgObAN9mfqmbClxiOou5YG-1wO4RVCkxGO3qpQJ3XmDzt3CDymdIlJgKrioWKLwRBnvQvDQKWOjHp8fvba9IliNK1XjStXLSpNl943l3ts77Zf_h8kEP9oelu-Q6mddH_7zfJ488xCdf_VQLmXBeJH0fNJtiPD0qmv_W6XflIW6uTpVs8u6_HEkv6mbxG9PfKed0rfeBnVdU0wExuM4KdgzjyCrzQ |
| CitedBy_id | crossref_primary_10_1007_s13571_019_00219_5 crossref_primary_10_1080_03610926_2018_1549253 crossref_primary_10_1111_gean_12411 crossref_primary_10_3390_math7050406 crossref_primary_10_1038_s41598_019_42485_3 crossref_primary_10_1111_biom_12665 crossref_primary_10_1007_s10614_024_10592_7 crossref_primary_10_1007_s11222_016_9697_3 crossref_primary_10_1007_s40304_020_00233_4 crossref_primary_10_1080_03610926_2017_1300279 crossref_primary_10_1038_s41562_019_0533_6 crossref_primary_10_1080_01621459_2020_1844720 crossref_primary_10_2174_1574893615666200203104214 crossref_primary_10_3390_ijerph19137677 crossref_primary_10_1080_00330124_2024_2326916 crossref_primary_10_3390_agriculture11100982 crossref_primary_10_1016_j_jbankfin_2022_106735 crossref_primary_10_1007_s10463_020_00752_5 crossref_primary_10_1016_j_csda_2022_107557 crossref_primary_10_1016_j_spl_2016_06_007 crossref_primary_10_1177_15741699251318146 crossref_primary_10_1080_02331888_2020_1720019 crossref_primary_10_1038_s41562_022_01489_2 crossref_primary_10_1093_biostatistics_kxy004 crossref_primary_10_1080_10543406_2017_1397009 crossref_primary_10_1002_ecy_3336 crossref_primary_10_1016_j_jeconom_2022_07_008 crossref_primary_10_1002_sim_9678 crossref_primary_10_1111_sjos_12608 crossref_primary_10_1214_17_AOS1559 crossref_primary_10_1111_rssb_12298 crossref_primary_10_1007_s00477_020_01789_x crossref_primary_10_1080_01621459_2016_1182788 crossref_primary_10_1093_biomet_asaa064 crossref_primary_10_1111_rssb_12258 crossref_primary_10_1016_j_jmva_2018_12_006 crossref_primary_10_3390_sym16030365 crossref_primary_10_1002_sta4_70087 crossref_primary_10_1080_01621459_2015_1108848 crossref_primary_10_1016_j_oceaneng_2023_113862 crossref_primary_10_1016_j_cnsns_2020_105350 crossref_primary_10_1016_j_spasta_2024_100855 crossref_primary_10_15446_rce_v42n2_70271 crossref_primary_10_1002_sim_8955 crossref_primary_10_1109_ACCESS_2019_2938466 crossref_primary_10_1093_biomet_asy032 crossref_primary_10_1214_19_AOS1900 crossref_primary_10_3390_jrfm15040172 crossref_primary_10_3389_fpsyg_2024_1350631 crossref_primary_10_3390_hydrology10080172 crossref_primary_10_1080_00949655_2021_1971668 crossref_primary_10_1002_bimj_201800138 crossref_primary_10_1109_TKDE_2022_3208626 crossref_primary_10_1093_biomtc_ujae142 crossref_primary_10_1016_j_isci_2024_109175 crossref_primary_10_1073_pnas_1910704117 crossref_primary_10_3389_fpubh_2025_1547575 crossref_primary_10_1093_biomet_asaf007 crossref_primary_10_1093_jrsssc_qlad080 crossref_primary_10_1080_01621459_2016_1180989 crossref_primary_10_1093_biomet_asy066 crossref_primary_10_1016_j_jmva_2018_01_003 crossref_primary_10_1029_2022WR033470 crossref_primary_10_1214_18_AOS1755 crossref_primary_10_3982_ECTA16273 crossref_primary_10_1016_j_csda_2023_107906 crossref_primary_10_1111_rssb_12274 crossref_primary_10_1214_19_AOS1938 crossref_primary_10_1029_2019WR026545 crossref_primary_10_1136_oemed_2016_104231 crossref_primary_10_1002_bimj_201600256 crossref_primary_10_1002_hbm_24944 crossref_primary_10_1093_biostatistics_kxac001 crossref_primary_10_1214_21_AOS2128 crossref_primary_10_3389_fclim_2021_684834 |
| Cites_doi | 10.1214/aos/1013699998 10.1111/j.1467-9868.2010.00740.x 10.1214/08-EJS180 10.1214/009053604000000067 10.1073/pnas.0607274103 10.1038/nature11632 10.1214/009053606000000461 10.1093/biomet/63.3.655 10.2202/1544-6115.1023 10.1214/08-AOAS194 10.1111/j.2517-6161.1995.tb02031.x 10.1007/BF02127580 10.2307/2529336 10.1111/j.2517-6161.1996.tb02080.x 10.1093/biomet/73.3.751 10.1111/rssb.12048 10.1109/TAC.1974.1100705 10.1214/10-AOS829 10.1093/genetics/138.3.963 10.1198/016214501753382129 10.1111/j.1467-9868.2011.01034.x 10.1198/016214506000000843 10.1111/j.1467-9868.2007.00643.x 10.1086/431601 10.1198/jasa.2011.tm10113 10.1214/aos/1176344136 10.1111/j.1467-9868.2004.00439.x |
| ContentType | Journal Article |
| Copyright | Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd. 2015 Royal Statistical Society Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd |
| Copyright_xml | – notice: Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd. – notice: 2015 Royal Statistical Society – notice: Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd |
| DBID | FBQ BSCLL AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1111/rssb.12122 |
| DatabaseName | AGRIS Istex CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics |
| EISSN | 1467-9868 |
| EndPage | 444 |
| ExternalDocumentID | 3933759681 10_1111_rssb_12122 RSSB12122 24775345 ark_67375_WNG_CMS8PD7J_W US201600122376 |
| Genre | article Feature |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1OC 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAONW AAPXW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEHJ ABEML ABFAN ABHUG ABIVO ABLJU ABPFR ABPTD ABPVW ABWST ABYAD ABYWD ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIYS ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVGU AFVYC AFXHP AFXKK AFZJQ AGJLS AIHXQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ANFBD ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EFSUC EJD EMK F00 F5P FBQ FEDTE FVMVE G-S G.N GODZA H.T H.X HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NHB O66 O9- OJZSN OWPYF P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZGI ZL0 ZZTAW ~02 ~IA ~KM ~WT AAHBH AANHP AARHZ AAUAY AAWIL ABAWQ ABDFA ABEJV ABPQH ABPQP ABXSQ ACHJO ACRPL ACYXJ ADNMO ADZMN AGLNM AGQPQ AHQJS AIHAF AJNCP ALRMG AMVHM ATGXG BCRHZ BSCLL H13 IPSME NU- OIG ALUQN AAYXX CITATION O8X 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c6232-44c3adeeecc71c15e419ba3073f39a85e7d5dc4f2a525b8ebc690f7c3bd6ba4e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 93 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369136600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1369-7412 |
| IngestDate | Fri Oct 03 00:09:34 EDT 2025 Mon Nov 10 01:02:56 EST 2025 Sat Nov 29 05:52:02 EST 2025 Tue Nov 18 21:57:48 EST 2025 Sun Sep 21 06:21:08 EDT 2025 Thu Jul 03 22:32:00 EDT 2025 Tue Nov 11 03:34:12 EST 2025 Wed Dec 27 19:12:09 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6232-44c3adeeecc71c15e419ba3073f39a85e7d5dc4f2a525b8ebc690f7c3bd6ba4e3 |
| Notes | http://dx.doi.org/10.1111/rssb.12122 'Supplementary material: Sequential selection procedures and false discovery rate control'. ark:/67375/WNG-CMS8PD7J-W ArticleID:RSSB12122 istex:F59912758FC7E1D8F176C94D70D4D4582CF2415D SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://academic.oup.com/jrsssb/article-pdf/78/2/423/49235028/jrsssb_78_2_423.pdf |
| PQID | 1760264693 |
| PQPubID | 39359 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1803073987 proquest_journals_1760264693 crossref_citationtrail_10_1111_rssb_12122 crossref_primary_10_1111_rssb_12122 wiley_primary_10_1111_rssb_12122_RSSB12122 jstor_primary_24775345 istex_primary_ark_67375_WNG_CMS8PD7J_W fao_agris_US201600122376 |
| PublicationCentury | 2000 |
| PublicationDate | March 2016 |
| PublicationDateYYYYMMDD | 2016-03-01 |
| PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology |
| PublicationTitleAlternate | J. R. Stat. Soc. B |
| PublicationYear | 2016 |
| Publisher | Royal Statistical Society Blackwell Publishing Ltd John Wiley & Sons Ltd Oxford University Press |
| Publisher_xml | – name: Royal Statistical Society – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Oxford University Press |
| References | Efron, B., Tibshirani, R. Storey, J. and Tusher, V. (2001) Empirical Bayes analysis of a microarray experiment. J. Am. Statist. Ass., 96, 1151-1160. Hocking, R. R. (1976) The analysis and selection of variables in linear regression. Biometrics, 32, 1-49. Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57, 289-300. Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics, 138, 963-971. Rényi, A. (1953) On the theory of order statistics. Acta Math. Hung., 4, 191-231. Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Statist., 29, 1165-1188. Marcus, R., Eric, P. and Gabriel, K. R. (1976) On closed testing procedures with special reference to ordered analysis of variance. Biometrika, 63, 655-660. Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288. Benjamini, Y. and Gavrilov, Y. (2009) A simple forward selection procedure based on false discovery rate control. Ann. Appl. Statist., 3, 179-198. Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2014) A significance test for the lasso (with discussion). Ann. Statist., 42, 413-468. Storey, J. D., Taylor, J. E. and Siegmund, D. (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J. R. Statist. Soc. B, 66, 187-205. Via Garca, M. and 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56-65. Wu, Y., Boos, D. and Stefanski, L. (2007) Controlling variable selection by the addition of pseudovariables. J. Am. Statist. Ass., 102, 235-243. Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464. Foster, D. P. and Stine, R. A. (2008) α-investing: a procedure for sequential control of expected false discoveries. J. R. Statist. Soc. B, 70, 429-444. Goeman, J. J. and Solari, A. (2010) The sequential rejection principle of familywise error control. Ann. Statist., 38, 3782-3810. Simes, R. J. (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73, 751-754. Blanchard, G. and Roquain, E. (2008) Two simple sufficient conditions for FDR control. Electron. J. Statist., 2, 963-992. Romano, J. P. and Shaikh, A. M. (2006) Stepup procedures for control of generalizations of the familywise error rate. Ann. Statist., 34, 1850-1873. Rhee, S.-Y., Fessel, W. J., Zolopa, A. R., Hurley, L., Liu, T., Taylor, J., Nguyen, D. P., Slome, S., Klein, D., Horberg, M., Flamm, J., Follansbee, S., Schapiro, J. M. and Shafer, R. W. (2005) HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J. Infect. Dis., 192, 456-465. G'Sell, M. G., Hastie, T. and Tibshirani, R. (2013a) False variable selection rates in regression. Preprint arXiv:1302.2303. Carnegie Mellon University, Pittsburgh Simonsen, K. L. and McIntyre, L. M. (2004) Using alpha wisely: improving power to detect multiple qtl. Statist. Appl. Genet. Molec. Biol., 3. Rhee, S.-Y., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D. L. and Shafer, R. W. (2006) Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc. Natn. Acad. Sci. USA, 103, 17355-17360. Shah, R. and Samworth, R. (2013) Variable selection with error control: another look at stability selection. J. R. Statist. Soc. B, 75, 55-80. Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). J. R. Statist. Soc. B, 72, 417-473. Lin, D., Foster, D. and Ungar, L. (2011) VIF regression: a fast regression algorithm for large data. J. Am. Statist. Ass., 106, 232-247. Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716-723. Aharoni, E. and Rosset, S. (2014) Generalized α-investing: definitions, optimality results and application to public databases. J. R. Statist. Soc. B, 76, 771-794. G'Sell, M. G., Taylor, J. and Tibshirani, R. (2013b) Adaptive testing for the graphical lasso. Preprint arXiv:1307.4765. Carnegie Mellon University, Pittsburgh Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression (with discussion). Ann. Statist., 32, 407-499. Westfall, P. H. and Young, S. S. (1993) Resampling-based Multiple Testing: Examples and Methods for p-value Adjustment. New York: Wiley. 2004; 66 1976; 63 2005; 192 2007; 102 1994; 138 2010; 38 1986; 73 2006; 34 1995; 57 1953; 4 2004; 3 2013b 1993 2013a 2001; 29 1996; 58 2008; 2 2008; 70 1974; 19 1978; 6 2014; 42 2004; 32 1976; 32 2012; 491 2011; 106 2013; 75 2014 2013 2009; 3 2001; 96 2014; 76 2010; 72 2006; 103 Rhee (2023021709304484400_rssb12122-cit-0028) 2006; 103 Loftus (2023021709304484400_rssb12122-cit-0023) 2014 Rhee (2023021709304484400_rssb12122-cit-0027) 2005; 192 Simes (2023021709304484400_rssb12122-cit-0032) 1986; 73 Taylor (2023021709304484400_rssb12122-cit-0036) 2013 Efron (2023021709304484400_rssb12122-cit-0012) 2001; 96 G'Sell (2023021709304484400_rssb12122-cit-0017) 2013 Efron (2023021709304484400_rssb12122-cit-0011) 2004; 32 Bogdan (2023021709304484400_rssb12122-cit-0008) 2014 Meinshausen (2023021709304484400_rssb12122-cit-0025) 2010; 72 Blanchard (2023021709304484400_rssb12122-cit-0007) 2008; 2 Benjamini (2023021709304484400_rssb12122-cit-0004) 2009; 3 Lin (2023021709304484400_rssb12122-cit-0021) 2011; 106 Lee (2023021709304484400_rssb12122-cit-0019) 2013 Lockhart (2023021709304484400_rssb12122-cit-0022) 2014; 42 Foster (2023021709304484400_rssb12122-cit-0014) 2008; 70 Romano (2023021709304484400_rssb12122-cit-0029) 2006; 34 Wu (2023021709304484400_rssb12122-cit-0039) 2007; 102 Simonsen (2023021709304484400_rssb12122-cit-0033) 2004; 3 Marcus (2023021709304484400_rssb12122-cit-0024) 1976; 63 Aharoni (2023021709304484400_rssb12122-cit-0001) 2014; 76 Storey (2023021709304484400_rssb12122-cit-0034) 2004; 66 Barber (2023021709304484400_rssb12122-cit-0003) 2014 Goeman (2023021709304484400_rssb12122-cit-0015) 2010; 38 Tibshirani (2023021709304484400_rssb12122-cit-0037) 1996; 58 Taylor (2023021709304484400_rssb12122-cit-0035) 2014 Lee (2023021709304484400_rssb12122-cit-0020) 2014 Shah (2023021709304484400_rssb12122-cit-0031) 2013; 75 Hocking (2023021709304484400_rssb12122-cit-0018) 1976; 32 Westfall (2023021709304484400_rssb12122-cit-0038) 1993 Fithian (2023021709304484400_rssb12122-cit-0013) 2014 Churchill (2023021709304484400_rssb12122-cit-0009) 1994; 138 Benjamini (2023021709304484400_rssb12122-cit-0005) 1995; 57 Rényi (2023021709304484400_rssb12122-cit-0026) 1953; 4 Akaike (2023021709304484400_rssb12122-cit-0002) 1974; 19 Via Garca (2023021709304484400_rssb12122-cit-0010) 2012; 491 G'Sell (2023021709304484400_rssb12122-cit-0016) 2013 Benjamini (2023021709304484400_rssb12122-cit-0006) 2001; 29 Schwarz (2023021709304484400_rssb12122-cit-0030) 1978; 6 |
| References_xml | – reference: Romano, J. P. and Shaikh, A. M. (2006) Stepup procedures for control of generalizations of the familywise error rate. Ann. Statist., 34, 1850-1873. – reference: Rhee, S.-Y., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D. L. and Shafer, R. W. (2006) Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc. Natn. Acad. Sci. USA, 103, 17355-17360. – reference: Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57, 289-300. – reference: Goeman, J. J. and Solari, A. (2010) The sequential rejection principle of familywise error control. Ann. Statist., 38, 3782-3810. – reference: G'Sell, M. G., Taylor, J. and Tibshirani, R. (2013b) Adaptive testing for the graphical lasso. Preprint arXiv:1307.4765. Carnegie Mellon University, Pittsburgh – reference: G'Sell, M. G., Hastie, T. and Tibshirani, R. (2013a) False variable selection rates in regression. Preprint arXiv:1302.2303. Carnegie Mellon University, Pittsburgh – reference: Foster, D. P. and Stine, R. A. (2008) α-investing: a procedure for sequential control of expected false discoveries. J. R. Statist. Soc. B, 70, 429-444. – reference: Simonsen, K. L. and McIntyre, L. M. (2004) Using alpha wisely: improving power to detect multiple qtl. Statist. Appl. Genet. Molec. Biol., 3. – reference: Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics, 138, 963-971. – reference: Rhee, S.-Y., Fessel, W. J., Zolopa, A. R., Hurley, L., Liu, T., Taylor, J., Nguyen, D. P., Slome, S., Klein, D., Horberg, M., Flamm, J., Follansbee, S., Schapiro, J. M. and Shafer, R. W. (2005) HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J. Infect. Dis., 192, 456-465. – reference: Blanchard, G. and Roquain, E. (2008) Two simple sufficient conditions for FDR control. Electron. J. Statist., 2, 963-992. – reference: Westfall, P. H. and Young, S. S. (1993) Resampling-based Multiple Testing: Examples and Methods for p-value Adjustment. New York: Wiley. – reference: Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Statist., 29, 1165-1188. – reference: Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2014) A significance test for the lasso (with discussion). Ann. Statist., 42, 413-468. – reference: Hocking, R. R. (1976) The analysis and selection of variables in linear regression. Biometrics, 32, 1-49. – reference: Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression (with discussion). Ann. Statist., 32, 407-499. – reference: Marcus, R., Eric, P. and Gabriel, K. R. (1976) On closed testing procedures with special reference to ordered analysis of variance. Biometrika, 63, 655-660. – reference: Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716-723. – reference: Shah, R. and Samworth, R. (2013) Variable selection with error control: another look at stability selection. J. R. Statist. Soc. B, 75, 55-80. – reference: Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). J. R. Statist. Soc. B, 72, 417-473. – reference: Rényi, A. (1953) On the theory of order statistics. Acta Math. Hung., 4, 191-231. – reference: Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464. – reference: Aharoni, E. and Rosset, S. (2014) Generalized α-investing: definitions, optimality results and application to public databases. J. R. Statist. Soc. B, 76, 771-794. – reference: Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288. – reference: Storey, J. D., Taylor, J. E. and Siegmund, D. (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J. R. Statist. Soc. B, 66, 187-205. – reference: Via Garca, M. and 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56-65. – reference: Benjamini, Y. and Gavrilov, Y. (2009) A simple forward selection procedure based on false discovery rate control. Ann. Appl. Statist., 3, 179-198. – reference: Lin, D., Foster, D. and Ungar, L. (2011) VIF regression: a fast regression algorithm for large data. J. Am. Statist. Ass., 106, 232-247. – reference: Simes, R. J. (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73, 751-754. – reference: Efron, B., Tibshirani, R. Storey, J. and Tusher, V. (2001) Empirical Bayes analysis of a microarray experiment. J. Am. Statist. Ass., 96, 1151-1160. – reference: Wu, Y., Boos, D. and Stefanski, L. (2007) Controlling variable selection by the addition of pseudovariables. J. Am. Statist. Ass., 102, 235-243. – volume: 76 start-page: 771 year: 2014 end-page: 794 article-title: Generalized ‐investing: definitions, optimality results and application to public databases publication-title: J. R. Statist. Soc. B – volume: 75 start-page: 55 year: 2013 end-page: 80 article-title: Variable selection with error control: another look at stability selection publication-title: J. R. Statist. Soc. B – volume: 70 start-page: 429 year: 2008 end-page: 444 article-title: ‐investing: a procedure for sequential control of expected false discoveries publication-title: J. R. Statist. Soc. B – volume: 42 start-page: 413 year: 2014 end-page: 468 article-title: A significance test for the lasso (with discussion) publication-title: Ann. Statist. – volume: 491 start-page: 56 year: 2012 end-page: 65 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature – volume: 66 start-page: 187 year: 2004 end-page: 205 article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach publication-title: J. R. Statist. Soc. B – volume: 138 start-page: 963 year: 1994 end-page: 971 article-title: Empirical threshold values for quantitative trait mapping publication-title: Genetics – volume: 32 start-page: 407 year: 2004 end-page: 499 article-title: Least angle regression (with discussion) publication-title: Ann. Statist. – year: 2014 – volume: 38 start-page: 3782 year: 2010 end-page: 3810 article-title: The sequential rejection principle of familywise error control publication-title: Ann. Statist. – volume: 6 start-page: 461 year: 1978 end-page: 464 article-title: Estimating the dimension of a model publication-title: Ann. Statist. – year: 2013b – volume: 2 start-page: 963 year: 2008 end-page: 992 article-title: Two simple sufficient conditions for FDR control publication-title: Electron. J. Statist. – volume: 96 start-page: 1151 year: 2001 end-page: 1160 article-title: Empirical Bayes analysis of a microarray experiment publication-title: J. Am. Statist. Ass. – volume: 29 start-page: 1165 year: 2001 end-page: 1188 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Ann. Statist. – volume: 102 start-page: 235 year: 2007 end-page: 243 article-title: Controlling variable selection by the addition of pseudovariables publication-title: J. Am. Statist. Ass. – volume: 32 start-page: 1 year: 1976 end-page: 49 article-title: The analysis and selection of variables in linear regression publication-title: Biometrics – volume: 3 start-page: 179 year: 2009 end-page: 198 article-title: A simple forward selection procedure based on false discovery rate control publication-title: Ann. Appl. Statist. – volume: 103 start-page: 17355 year: 2006 end-page: 17360 article-title: Genotypic predictors of human immunodeficiency virus type 1 drug resistance publication-title: Proc. Natn. Acad. Sci. USA – volume: 34 start-page: 1850 year: 2006 end-page: 1873 article-title: Stepup procedures for control of generalizations of the familywise error rate publication-title: Ann. Statist. – volume: 72 start-page: 417 year: 2010 end-page: 473 article-title: Stability selection (with discussion) publication-title: J. R. Statist. Soc. B – volume: 4 start-page: 191 year: 1953 end-page: 231 article-title: On the theory of order statistics publication-title: Acta Math. Hung. – volume: 73 start-page: 751 year: 1986 end-page: 754 article-title: An improved Bonferroni procedure for multiple tests of significance publication-title: Biometrika – volume: 192 start-page: 456 year: 2005 end-page: 465 article-title: HIV‐1 protease and reverse‐transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug‐resistance surveillance publication-title: J. Infect. Dis. – volume: 106 start-page: 232 year: 2011 end-page: 247 article-title: VIF regression: a fast regression algorithm for large data publication-title: J. Am. Statist. Ass. – volume: 19 start-page: 716 year: 1974 end-page: 723 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Statist. Soc. B – volume: 3 year: 2004 article-title: Using alpha wisely: improving power to detect multiple qtl publication-title: Statist. Appl. Genet. Molec. Biol. – year: 1993 – volume: 63 start-page: 655 year: 1976 end-page: 660 article-title: On closed testing procedures with special reference to ordered analysis of variance publication-title: Biometrika – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Statist. Soc. B – year: 2013a – year: 2013 – volume: 29 start-page: 1165 year: 2001 ident: 2023021709304484400_rssb12122-cit-0006 article-title: The control of the false discovery rate in multiple testing under dependency publication-title: Ann. Statist. doi: 10.1214/aos/1013699998 – volume: 72 start-page: 417 year: 2010 ident: 2023021709304484400_rssb12122-cit-0025 article-title: Stability selection (with discussion) publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2010.00740.x – volume: 2 start-page: 963 year: 2008 ident: 2023021709304484400_rssb12122-cit-0007 article-title: Two simple sufficient conditions for FDR control publication-title: Electron. J. Statist. doi: 10.1214/08-EJS180 – volume-title: Optimal inference after model selection year: 2014 ident: 2023021709304484400_rssb12122-cit-0013 – volume-title: Post-selection adaptive inference for least angle regression and the lasso year: 2014 ident: 2023021709304484400_rssb12122-cit-0035 – volume-title: Resampling-based Multiple Testing: Examples and Methods for p-value Adjustment year: 1993 ident: 2023021709304484400_rssb12122-cit-0038 – volume: 32 start-page: 407 year: 2004 ident: 2023021709304484400_rssb12122-cit-0011 article-title: Least angle regression (with discussion) publication-title: Ann. Statist. doi: 10.1214/009053604000000067 – volume: 103 start-page: 17355 year: 2006 ident: 2023021709304484400_rssb12122-cit-0028 article-title: Genotypic predictors of human immunodeficiency virus type 1 drug resistance publication-title: Proc. Natn. Acad. Sci. USA doi: 10.1073/pnas.0607274103 – volume-title: Exact post-selection inference with the lasso year: 2013 ident: 2023021709304484400_rssb12122-cit-0019 – volume-title: Tests in adaptive regression via the Kac-Rice formula year: 2013 ident: 2023021709304484400_rssb12122-cit-0036 – volume: 491 start-page: 56 year: 2012 ident: 2023021709304484400_rssb12122-cit-0010 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume-title: False variable selection rates in regression year: 2013 ident: 2023021709304484400_rssb12122-cit-0016 – volume: 34 start-page: 1850 year: 2006 ident: 2023021709304484400_rssb12122-cit-0029 article-title: Stepup procedures for control of generalizations of the familywise error rate publication-title: Ann. Statist. doi: 10.1214/009053606000000461 – volume: 63 start-page: 655 year: 1976 ident: 2023021709304484400_rssb12122-cit-0024 article-title: On closed testing procedures with special reference to ordered analysis of variance publication-title: Biometrika doi: 10.1093/biomet/63.3.655 – volume: 3 year: 2004 ident: 2023021709304484400_rssb12122-cit-0033 article-title: Using alpha wisely: improving power to detect multiple qtl publication-title: Statist. Appl. Genet. Molec. Biol. doi: 10.2202/1544-6115.1023 – volume: 3 start-page: 179 year: 2009 ident: 2023021709304484400_rssb12122-cit-0004 article-title: A simple forward selection procedure based on false discovery rate control publication-title: Ann. Appl. Statist. doi: 10.1214/08-AOAS194 – volume: 57 start-page: 289 year: 1995 ident: 2023021709304484400_rssb12122-cit-0005 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 4 start-page: 191 year: 1953 ident: 2023021709304484400_rssb12122-cit-0026 article-title: On the theory of order statistics publication-title: Acta Math. Hung. doi: 10.1007/BF02127580 – volume: 32 start-page: 1 year: 1976 ident: 2023021709304484400_rssb12122-cit-0018 article-title: The analysis and selection of variables in linear regression publication-title: Biometrics doi: 10.2307/2529336 – volume: 58 start-page: 267 year: 1996 ident: 2023021709304484400_rssb12122-cit-0037 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 73 start-page: 751 year: 1986 ident: 2023021709304484400_rssb12122-cit-0032 article-title: An improved Bonferroni procedure for multiple tests of significance publication-title: Biometrika doi: 10.1093/biomet/73.3.751 – volume: 76 start-page: 771 year: 2014 ident: 2023021709304484400_rssb12122-cit-0001 article-title: Generalized α-investing: definitions, optimality results and application to public databases publication-title: J. R. Statist. Soc. B doi: 10.1111/rssb.12048 – volume: 19 start-page: 716 year: 1974 ident: 2023021709304484400_rssb12122-cit-0002 article-title: A new look at the statistical model identification publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.1974.1100705 – volume-title: SLOPE—adaptive variable selection via convex optimization year: 2014 ident: 2023021709304484400_rssb12122-cit-0008 – volume: 38 start-page: 3782 year: 2010 ident: 2023021709304484400_rssb12122-cit-0015 article-title: The sequential rejection principle of familywise error control publication-title: Ann. Statist. doi: 10.1214/10-AOS829 – volume: 138 start-page: 963 year: 1994 ident: 2023021709304484400_rssb12122-cit-0009 article-title: Empirical threshold values for quantitative trait mapping publication-title: Genetics doi: 10.1093/genetics/138.3.963 – volume: 96 start-page: 1151 year: 2001 ident: 2023021709304484400_rssb12122-cit-0012 article-title: Empirical Bayes analysis of a microarray experiment publication-title: J. Am. Statist. Ass. doi: 10.1198/016214501753382129 – volume: 75 start-page: 55 year: 2013 ident: 2023021709304484400_rssb12122-cit-0031 article-title: Variable selection with error control: another look at stability selection publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2011.01034.x – volume: 102 start-page: 235 year: 2007 ident: 2023021709304484400_rssb12122-cit-0039 article-title: Controlling variable selection by the addition of pseudovariables publication-title: J. Am. Statist. Ass. doi: 10.1198/016214506000000843 – volume-title: Controlling the false discovery rate via knockoffs year: 2014 ident: 2023021709304484400_rssb12122-cit-0003 – volume: 70 start-page: 429 year: 2008 ident: 2023021709304484400_rssb12122-cit-0014 article-title: α-investing: a procedure for sequential control of expected false discoveries publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2007.00643.x – volume: 192 start-page: 456 year: 2005 ident: 2023021709304484400_rssb12122-cit-0027 article-title: HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance publication-title: J. Infect. Dis. doi: 10.1086/431601 – volume-title: Adaptive testing for the graphical lasso year: 2013 ident: 2023021709304484400_rssb12122-cit-0017 – volume: 106 start-page: 232 year: 2011 ident: 2023021709304484400_rssb12122-cit-0021 article-title: VIF regression: a fast regression algorithm for large data publication-title: J. Am. Statist. Ass. doi: 10.1198/jasa.2011.tm10113 – volume-title: Advances in Neural Information Processing Systems year: 2014 ident: 2023021709304484400_rssb12122-cit-0020 – volume: 42 start-page: 413 year: 2014 ident: 2023021709304484400_rssb12122-cit-0022 article-title: A significance test for the lasso (with discussion) publication-title: Ann. Statist. – volume: 6 start-page: 461 year: 1978 ident: 2023021709304484400_rssb12122-cit-0030 article-title: Estimating the dimension of a model publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume-title: A significance test for forward stepwise model selection year: 2014 ident: 2023021709304484400_rssb12122-cit-0023 – volume: 66 start-page: 187 year: 2004 ident: 2023021709304484400_rssb12122-cit-0034 article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2004.00439.x |
| SSID | ssj0000673 |
| Score | 2.509251 |
| Snippet | We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of... We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,..., Hk... Summary We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block... We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of... Summary We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H 1... |
| SourceID | proquest crossref wiley jstor istex fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 423 |
| SubjectTerms | Discovery equations False discovery rate Hypotheses Hypothesis testing Multiple-hypothesis testing Rules Selection procedures Sequential testing Statistical analysis Statistics Stopping rule Studies |
| Title | Sequential selection procedures and false discovery rate control |
| URI | https://api.istex.fr/ark:/67375/WNG-CMS8PD7J-W/fulltext.pdf https://www.jstor.org/stable/24775345 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12122 https://www.proquest.com/docview/1760264693 https://www.proquest.com/docview/1803073987 |
| Volume | 78 |
| WOSCitedRecordID | wos000369136600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1467-9868 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000673 issn: 1369-7412 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q1Ye--F0arRJRBIVAL9lkE_BBbT1F9CiNR_u27MdsHyw5ufSK_vfObD68gghingKZDdn52pns7G8AnktTVPZA2EQeICbCC5OYtPCJca5Ajw5l1jWbkPN5eXZWHW_B6-EsTIcPMf5wY8sI_poNXJt2w8hXbWsYGyElB7ydkuKKCWwfncwWnzc9cdadu6oSWjnTHp6UK3l-j762IN3weklhKnP4x1CheC323IxgwxI0u_1_H38HbvWhZ_y205W7sIXNPdjhaLMDa74Pb-pQWE1GfxG3oUEOSS0Oa5xbU14e68bFnhQWYz7Ny9WfP2PGmoj7ivcHsJi9_3r4MelbLCSW4p40EcJm2iGSIOXUTnMU08potnufVbrMUbrcWeFTnae5KdFYyqa9tJlxhdECs12YNMsG9yAWjPRnMqGt1PRWW6Kjy2OOjnyo1hG8HPisbI8_zm0wLtSQhzBTVGBKBM9G2u8d6sYfqfZIXEqfkztUizplsDzeKSSfGcGLIMNxtF594xI2mavT-Qd1-KUuj4_kJ3UawW4Q8kiYCkkZnMgj2B-krnqzbtVUcscuUVRZBE_Hx2SQvMuiG1yuiaYMfrMqZQSvgg78ZQrqpK7fhbuH_0L8CHZ4tl0t3D5MLldrfAw37RUpzOpJbwa_AHHMC2g |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_0KtgXv0ujVVcUQSHQSzbZ5E1tPatej9L0aN-W_Zj0wZKTu17R_96ZTS5eQQQxT4FMQna-dmZ39jcAr5TNS7crXax2EWNZSxvbJK9j632ONXpUadtsQk0mxdlZedTV5vBZmBYfol9wY8sI_poNnBek16x8vlhYBkdIyANvSNKjbAAb-8ej6XjdFaftwasypqkz6fBJuZTn99vXZqSbtZlRnMos_rEqUbwWfK6HsGEOGt39z7-_B3e64FO8b7XlPtzA5gFscrzZwjU_hHdVKK0ms78Qi9Aih-Qmwiznl5SZC9N4UZPKouDzvFz_-VMw2oToat4fwXT08WTvIO6aLMSOIp8kltKlxiOSKNXQDTOUw9Iatvw6LU2RofKZd7JOTJZktkDrKJ-ulUutz62RmG7BoJk1uA1CMtafTaVxytBXXYGerhoz9ORFjYngzYrR2nUI5NwI40KvMhFmig5MieBlT_u9xd34I9U2yUubc3KIelolDJfHe4XkNSN4HYTYv23m37iITWX6dPJJ7x1WxdG--qJPI9gKUu4JE6koh5NZBDsrsevOsBd6qLhnl8zLNIIX_WMySd5nMQ3OlkRTBM9ZFiqCt0EJ_jIEfVxVH8Ld438hfg63D04Ox3r8efL1CWzyyNvKuB0YXM6X-BRuuStSnvmzziZ-AWs3D1g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB-0FemL9as0WjWiCAqBXrLJJm_9OM-vehyNR_u27MdsHyy5cueJ_vfObHLxCiKIeQpkNmR39jc7k539DcBLaYrK7gubyH3ERHhhEpMWPjHOFejRoczaYhNyPC7Pz6tJl5vDZ2Fafoj-hxsjI9hrBjheOb-G8vliYZgcISULvCnyqiBcbg5PR9OTdVOctQevqoSWzrTjJ-VUnt-tr61IN72ekZ_KQ_xjlaJ4zflcd2HDGjTa_s-vvwt3OuczPmxnyz24gc192GJ_s6VrfgAHdUitJthfxotQIof0FodVzi0pMo9142JPUxZjPs_L-Z8_Y2abiLuc94cwHb39cvw-6YosJJY8nzQRwmbaIZIq5cAOchSDymhGvs8qXeYoXe6s8KnO09yUaCzF017azLjCaIHZDmw0swZ3IRbM9Wcyoa3U9FZboqPLY46OrKjWEbxeDbSyHQM5F8K4VKtIhAdFhUGJ4EUve9XybvxRapf0pfQFGUQ1rVOmy-O9QrKaEbwKSuxb6_lXTmKTuTobv1PHn-tyMpQf1VkEO0HLvWAqJMVwIo9gb6V21QF7oQaSa3aJosoieN4_JkjyPotucLYkmTJYzqqUEbwJk-AvXVCndX0U7h79i_AzuD0ZjtTJh_Gnx7DFHW8T4_Zg49t8iU_glv1Oc2f-tIPEL-EtDtM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+Selection+Procedures+and+False+Discovery+Rate+Control&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=G%27Sell%2C+Max+Grazier&rft.au=Wager%2C+Stefan&rft.au=Chouldechova%2C+Alexandra&rft.au=Tibshirani%2C+Robert&rft.date=2016-03-01&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=78&rft.issue=2&rft.spage=423&rft.epage=444&rft_id=info:doi/10.1111%2Frssb.12122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_rssb_12122 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |