Sequential selection procedures and false discovery rate control

We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 78; číslo 2; s. 423 - 444
Hlavní autori: G'Sell, Max Grazier, Wager, Stefan, Chouldechova, Alexandra, Tibshirani, Robert
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Royal Statistical Society 01.03.2016
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Predmet:
ISSN:1369-7412, 1467-9868
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p‐values in sequential model selection settings.
AbstractList We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p-values in sequential model selection settings.
Summary We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p‐values in sequential model selection settings.
We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,..., Hk of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypothese up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p-values in sequential model selection settings.
Summary We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H 1 ,...,H k of hypotheses. A rejection rule in this setting amounts to a procedure for choosing the stopping point k. This setting is inspired by the sequential nature of many model selection problems, where choosing a stopping point or a model is equivalent to rejecting all hypotheses up to that point and none thereafter. We propose two new testing procedures and prove that they control the false discovery rate in the ordered testing setting. We also show how the methods can be applied to model selection by using recent results on p-values in sequential model selection settings.
Author Wager, Stefan
Tibshirani, Robert
Chouldechova, Alexandra
G'Sell, Max Grazier
Author_xml – sequence: 1
  fullname: G'Sell, Max Grazier
– sequence: 2
  fullname: Wager, Stefan
– sequence: 3
  fullname: Chouldechova, Alexandra
– sequence: 4
  fullname: Tibshirani, Robert
BookMark eNp9kUtP3TAQha0KpPLadF8RiU2FFOpX7GQHXJ4V0KopYmk5zgT5NsTU9gXuv8chLQtUMRtbOt-ZOR6vo5XBDYDQJ4L3SKqvPoRmj1BC6Qe0RriQeVWKciXdmahyyQn9iNZDmONUQrI1tF_DnwUM0eo-C9CDidYN2b13BtqFh5Dpoc063QfIWhuMewC_zLyOkBk3RO_6TbT6Im_9PTfQ9cnxr9lZfvH99Hx2cJEbQRnNOTdMtwBgjCSGFMBJ1WiGJetYpcsCZFu0hndUF7RoSmiMqHAnDWta0WgObAN9mfqmbClxiOou5YG-1wO4RVCkxGO3qpQJ3XmDzt3CDymdIlJgKrioWKLwRBnvQvDQKWOjHp8fvba9IliNK1XjStXLSpNl943l3ts77Zf_h8kEP9oelu-Q6mddH_7zfJ488xCdf_VQLmXBeJH0fNJtiPD0qmv_W6XflIW6uTpVs8u6_HEkv6mbxG9PfKed0rfeBnVdU0wExuM4KdgzjyCrzQ
CitedBy_id crossref_primary_10_1007_s13571_019_00219_5
crossref_primary_10_1080_03610926_2018_1549253
crossref_primary_10_1111_gean_12411
crossref_primary_10_3390_math7050406
crossref_primary_10_1038_s41598_019_42485_3
crossref_primary_10_1111_biom_12665
crossref_primary_10_1007_s10614_024_10592_7
crossref_primary_10_1007_s11222_016_9697_3
crossref_primary_10_1007_s40304_020_00233_4
crossref_primary_10_1080_03610926_2017_1300279
crossref_primary_10_1038_s41562_019_0533_6
crossref_primary_10_1080_01621459_2020_1844720
crossref_primary_10_2174_1574893615666200203104214
crossref_primary_10_3390_ijerph19137677
crossref_primary_10_1080_00330124_2024_2326916
crossref_primary_10_3390_agriculture11100982
crossref_primary_10_1016_j_jbankfin_2022_106735
crossref_primary_10_1007_s10463_020_00752_5
crossref_primary_10_1016_j_csda_2022_107557
crossref_primary_10_1016_j_spl_2016_06_007
crossref_primary_10_1177_15741699251318146
crossref_primary_10_1080_02331888_2020_1720019
crossref_primary_10_1038_s41562_022_01489_2
crossref_primary_10_1093_biostatistics_kxy004
crossref_primary_10_1080_10543406_2017_1397009
crossref_primary_10_1002_ecy_3336
crossref_primary_10_1016_j_jeconom_2022_07_008
crossref_primary_10_1002_sim_9678
crossref_primary_10_1111_sjos_12608
crossref_primary_10_1214_17_AOS1559
crossref_primary_10_1111_rssb_12298
crossref_primary_10_1007_s00477_020_01789_x
crossref_primary_10_1080_01621459_2016_1182788
crossref_primary_10_1093_biomet_asaa064
crossref_primary_10_1111_rssb_12258
crossref_primary_10_1016_j_jmva_2018_12_006
crossref_primary_10_3390_sym16030365
crossref_primary_10_1002_sta4_70087
crossref_primary_10_1080_01621459_2015_1108848
crossref_primary_10_1016_j_oceaneng_2023_113862
crossref_primary_10_1016_j_cnsns_2020_105350
crossref_primary_10_1016_j_spasta_2024_100855
crossref_primary_10_15446_rce_v42n2_70271
crossref_primary_10_1002_sim_8955
crossref_primary_10_1109_ACCESS_2019_2938466
crossref_primary_10_1093_biomet_asy032
crossref_primary_10_1214_19_AOS1900
crossref_primary_10_3390_jrfm15040172
crossref_primary_10_3389_fpsyg_2024_1350631
crossref_primary_10_3390_hydrology10080172
crossref_primary_10_1080_00949655_2021_1971668
crossref_primary_10_1002_bimj_201800138
crossref_primary_10_1109_TKDE_2022_3208626
crossref_primary_10_1093_biomtc_ujae142
crossref_primary_10_1016_j_isci_2024_109175
crossref_primary_10_1073_pnas_1910704117
crossref_primary_10_3389_fpubh_2025_1547575
crossref_primary_10_1093_biomet_asaf007
crossref_primary_10_1093_jrsssc_qlad080
crossref_primary_10_1080_01621459_2016_1180989
crossref_primary_10_1093_biomet_asy066
crossref_primary_10_1016_j_jmva_2018_01_003
crossref_primary_10_1029_2022WR033470
crossref_primary_10_1214_18_AOS1755
crossref_primary_10_3982_ECTA16273
crossref_primary_10_1016_j_csda_2023_107906
crossref_primary_10_1111_rssb_12274
crossref_primary_10_1214_19_AOS1938
crossref_primary_10_1029_2019WR026545
crossref_primary_10_1136_oemed_2016_104231
crossref_primary_10_1002_bimj_201600256
crossref_primary_10_1002_hbm_24944
crossref_primary_10_1093_biostatistics_kxac001
crossref_primary_10_1214_21_AOS2128
crossref_primary_10_3389_fclim_2021_684834
Cites_doi 10.1214/aos/1013699998
10.1111/j.1467-9868.2010.00740.x
10.1214/08-EJS180
10.1214/009053604000000067
10.1073/pnas.0607274103
10.1038/nature11632
10.1214/009053606000000461
10.1093/biomet/63.3.655
10.2202/1544-6115.1023
10.1214/08-AOAS194
10.1111/j.2517-6161.1995.tb02031.x
10.1007/BF02127580
10.2307/2529336
10.1111/j.2517-6161.1996.tb02080.x
10.1093/biomet/73.3.751
10.1111/rssb.12048
10.1109/TAC.1974.1100705
10.1214/10-AOS829
10.1093/genetics/138.3.963
10.1198/016214501753382129
10.1111/j.1467-9868.2011.01034.x
10.1198/016214506000000843
10.1111/j.1467-9868.2007.00643.x
10.1086/431601
10.1198/jasa.2011.tm10113
10.1214/aos/1176344136
10.1111/j.1467-9868.2004.00439.x
ContentType Journal Article
Copyright Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd.
2015 Royal Statistical Society
Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd.
– notice: 2015 Royal Statistical Society
– notice: Copyright © 2016 The Royal Statistical Society and Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12122
DatabaseName AGRIS
Istex
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef


International Bibliography of the Social Sciences (IBSS)

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 444
ExternalDocumentID 3933759681
10_1111_rssb_12122
RSSB12122
24775345
ark_67375_WNG_CMS8PD7J_W
US201600122376
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAPXW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEHJ
ABEML
ABFAN
ABHUG
ABIVO
ABLJU
ABPFR
ABPTD
ABPVW
ABWST
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVGU
AFVYC
AFXHP
AFXKK
AFZJQ
AGJLS
AIHXQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EFSUC
EJD
EMK
F00
F5P
FBQ
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
O66
O9-
OJZSN
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AANHP
AARHZ
AAUAY
AAWIL
ABAWQ
ABDFA
ABEJV
ABPQH
ABPQP
ABXSQ
ACHJO
ACRPL
ACYXJ
ADNMO
ADZMN
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
ATGXG
BCRHZ
BSCLL
H13
IPSME
NU-
OIG
ALUQN
AAYXX
CITATION
O8X
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c6232-44c3adeeecc71c15e419ba3073f39a85e7d5dc4f2a525b8ebc690f7c3bd6ba4e3
IEDL.DBID DRFUL
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369136600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:09:34 EDT 2025
Mon Nov 10 01:02:56 EST 2025
Sat Nov 29 05:52:02 EST 2025
Tue Nov 18 21:57:48 EST 2025
Sun Sep 21 06:21:08 EDT 2025
Thu Jul 03 22:32:00 EDT 2025
Tue Nov 11 03:34:12 EST 2025
Wed Dec 27 19:12:09 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6232-44c3adeeecc71c15e419ba3073f39a85e7d5dc4f2a525b8ebc690f7c3bd6ba4e3
Notes http://dx.doi.org/10.1111/rssb.12122
'Supplementary material: Sequential selection procedures and false discovery rate control'.
ark:/67375/WNG-CMS8PD7J-W
ArticleID:RSSB12122
istex:F59912758FC7E1D8F176C94D70D4D4582CF2415D
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jrsssb/article-pdf/78/2/423/49235028/jrsssb_78_2_423.pdf
PQID 1760264693
PQPubID 39359
PageCount 22
ParticipantIDs proquest_miscellaneous_1803073987
proquest_journals_1760264693
crossref_citationtrail_10_1111_rssb_12122
crossref_primary_10_1111_rssb_12122
wiley_primary_10_1111_rssb_12122_RSSB12122
jstor_primary_24775345
istex_primary_ark_67375_WNG_CMS8PD7J_W
fao_agris_US201600122376
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationTitleAlternate J. R. Stat. Soc. B
PublicationYear 2016
Publisher Royal Statistical Society
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Royal Statistical Society
– name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
References Efron, B., Tibshirani, R. Storey, J. and Tusher, V. (2001) Empirical Bayes analysis of a microarray experiment. J. Am. Statist. Ass., 96, 1151-1160.
Hocking, R. R. (1976) The analysis and selection of variables in linear regression. Biometrics, 32, 1-49.
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57, 289-300.
Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics, 138, 963-971.
Rényi, A. (1953) On the theory of order statistics. Acta Math. Hung., 4, 191-231.
Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Statist., 29, 1165-1188.
Marcus, R., Eric, P. and Gabriel, K. R. (1976) On closed testing procedures with special reference to ordered analysis of variance. Biometrika, 63, 655-660.
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
Benjamini, Y. and Gavrilov, Y. (2009) A simple forward selection procedure based on false discovery rate control. Ann. Appl. Statist., 3, 179-198.
Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2014) A significance test for the lasso (with discussion). Ann. Statist., 42, 413-468.
Storey, J. D., Taylor, J. E. and Siegmund, D. (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J. R. Statist. Soc. B, 66, 187-205.
Via Garca, M. and 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56-65.
Wu, Y., Boos, D. and Stefanski, L. (2007) Controlling variable selection by the addition of pseudovariables. J. Am. Statist. Ass., 102, 235-243.
Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464.
Foster, D. P. and Stine, R. A. (2008) α-investing: a procedure for sequential control of expected false discoveries. J. R. Statist. Soc. B, 70, 429-444.
Goeman, J. J. and Solari, A. (2010) The sequential rejection principle of familywise error control. Ann. Statist., 38, 3782-3810.
Simes, R. J. (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73, 751-754.
Blanchard, G. and Roquain, E. (2008) Two simple sufficient conditions for FDR control. Electron. J. Statist., 2, 963-992.
Romano, J. P. and Shaikh, A. M. (2006) Stepup procedures for control of generalizations of the familywise error rate. Ann. Statist., 34, 1850-1873.
Rhee, S.-Y., Fessel, W. J., Zolopa, A. R., Hurley, L., Liu, T., Taylor, J., Nguyen, D. P., Slome, S., Klein, D., Horberg, M., Flamm, J., Follansbee, S., Schapiro, J. M. and Shafer, R. W. (2005) HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J. Infect. Dis., 192, 456-465.
G'Sell, M. G., Hastie, T. and Tibshirani, R. (2013a) False variable selection rates in regression. Preprint arXiv:1302.2303. Carnegie Mellon University, Pittsburgh
Simonsen, K. L. and McIntyre, L. M. (2004) Using alpha wisely: improving power to detect multiple qtl. Statist. Appl. Genet. Molec. Biol., 3.
Rhee, S.-Y., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D. L. and Shafer, R. W. (2006) Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc. Natn. Acad. Sci. USA, 103, 17355-17360.
Shah, R. and Samworth, R. (2013) Variable selection with error control: another look at stability selection. J. R. Statist. Soc. B, 75, 55-80.
Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). J. R. Statist. Soc. B, 72, 417-473.
Lin, D., Foster, D. and Ungar, L. (2011) VIF regression: a fast regression algorithm for large data. J. Am. Statist. Ass., 106, 232-247.
Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716-723.
Aharoni, E. and Rosset, S. (2014) Generalized α-investing: definitions, optimality results and application to public databases. J. R. Statist. Soc. B, 76, 771-794.
G'Sell, M. G., Taylor, J. and Tibshirani, R. (2013b) Adaptive testing for the graphical lasso. Preprint arXiv:1307.4765. Carnegie Mellon University, Pittsburgh
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression (with discussion). Ann. Statist., 32, 407-499.
Westfall, P. H. and Young, S. S. (1993) Resampling-based Multiple Testing: Examples and Methods for p-value Adjustment. New York: Wiley.
2004; 66
1976; 63
2005; 192
2007; 102
1994; 138
2010; 38
1986; 73
2006; 34
1995; 57
1953; 4
2004; 3
2013b
1993
2013a
2001; 29
1996; 58
2008; 2
2008; 70
1974; 19
1978; 6
2014; 42
2004; 32
1976; 32
2012; 491
2011; 106
2013; 75
2014
2013
2009; 3
2001; 96
2014; 76
2010; 72
2006; 103
Rhee (2023021709304484400_rssb12122-cit-0028) 2006; 103
Loftus (2023021709304484400_rssb12122-cit-0023) 2014
Rhee (2023021709304484400_rssb12122-cit-0027) 2005; 192
Simes (2023021709304484400_rssb12122-cit-0032) 1986; 73
Taylor (2023021709304484400_rssb12122-cit-0036) 2013
Efron (2023021709304484400_rssb12122-cit-0012) 2001; 96
G'Sell (2023021709304484400_rssb12122-cit-0017) 2013
Efron (2023021709304484400_rssb12122-cit-0011) 2004; 32
Bogdan (2023021709304484400_rssb12122-cit-0008) 2014
Meinshausen (2023021709304484400_rssb12122-cit-0025) 2010; 72
Blanchard (2023021709304484400_rssb12122-cit-0007) 2008; 2
Benjamini (2023021709304484400_rssb12122-cit-0004) 2009; 3
Lin (2023021709304484400_rssb12122-cit-0021) 2011; 106
Lee (2023021709304484400_rssb12122-cit-0019) 2013
Lockhart (2023021709304484400_rssb12122-cit-0022) 2014; 42
Foster (2023021709304484400_rssb12122-cit-0014) 2008; 70
Romano (2023021709304484400_rssb12122-cit-0029) 2006; 34
Wu (2023021709304484400_rssb12122-cit-0039) 2007; 102
Simonsen (2023021709304484400_rssb12122-cit-0033) 2004; 3
Marcus (2023021709304484400_rssb12122-cit-0024) 1976; 63
Aharoni (2023021709304484400_rssb12122-cit-0001) 2014; 76
Storey (2023021709304484400_rssb12122-cit-0034) 2004; 66
Barber (2023021709304484400_rssb12122-cit-0003) 2014
Goeman (2023021709304484400_rssb12122-cit-0015) 2010; 38
Tibshirani (2023021709304484400_rssb12122-cit-0037) 1996; 58
Taylor (2023021709304484400_rssb12122-cit-0035) 2014
Lee (2023021709304484400_rssb12122-cit-0020) 2014
Shah (2023021709304484400_rssb12122-cit-0031) 2013; 75
Hocking (2023021709304484400_rssb12122-cit-0018) 1976; 32
Westfall (2023021709304484400_rssb12122-cit-0038) 1993
Fithian (2023021709304484400_rssb12122-cit-0013) 2014
Churchill (2023021709304484400_rssb12122-cit-0009) 1994; 138
Benjamini (2023021709304484400_rssb12122-cit-0005) 1995; 57
Rényi (2023021709304484400_rssb12122-cit-0026) 1953; 4
Akaike (2023021709304484400_rssb12122-cit-0002) 1974; 19
Via Garca (2023021709304484400_rssb12122-cit-0010) 2012; 491
G'Sell (2023021709304484400_rssb12122-cit-0016) 2013
Benjamini (2023021709304484400_rssb12122-cit-0006) 2001; 29
Schwarz (2023021709304484400_rssb12122-cit-0030) 1978; 6
References_xml – reference: Romano, J. P. and Shaikh, A. M. (2006) Stepup procedures for control of generalizations of the familywise error rate. Ann. Statist., 34, 1850-1873.
– reference: Rhee, S.-Y., Taylor, J., Wadhera, G., Ben-Hur, A., Brutlag, D. L. and Shafer, R. W. (2006) Genotypic predictors of human immunodeficiency virus type 1 drug resistance. Proc. Natn. Acad. Sci. USA, 103, 17355-17360.
– reference: Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B, 57, 289-300.
– reference: Goeman, J. J. and Solari, A. (2010) The sequential rejection principle of familywise error control. Ann. Statist., 38, 3782-3810.
– reference: G'Sell, M. G., Taylor, J. and Tibshirani, R. (2013b) Adaptive testing for the graphical lasso. Preprint arXiv:1307.4765. Carnegie Mellon University, Pittsburgh
– reference: G'Sell, M. G., Hastie, T. and Tibshirani, R. (2013a) False variable selection rates in regression. Preprint arXiv:1302.2303. Carnegie Mellon University, Pittsburgh
– reference: Foster, D. P. and Stine, R. A. (2008) α-investing: a procedure for sequential control of expected false discoveries. J. R. Statist. Soc. B, 70, 429-444.
– reference: Simonsen, K. L. and McIntyre, L. M. (2004) Using alpha wisely: improving power to detect multiple qtl. Statist. Appl. Genet. Molec. Biol., 3.
– reference: Churchill, G. A. and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics, 138, 963-971.
– reference: Rhee, S.-Y., Fessel, W. J., Zolopa, A. R., Hurley, L., Liu, T., Taylor, J., Nguyen, D. P., Slome, S., Klein, D., Horberg, M., Flamm, J., Follansbee, S., Schapiro, J. M. and Shafer, R. W. (2005) HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance. J. Infect. Dis., 192, 456-465.
– reference: Blanchard, G. and Roquain, E. (2008) Two simple sufficient conditions for FDR control. Electron. J. Statist., 2, 963-992.
– reference: Westfall, P. H. and Young, S. S. (1993) Resampling-based Multiple Testing: Examples and Methods for p-value Adjustment. New York: Wiley.
– reference: Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Ann. Statist., 29, 1165-1188.
– reference: Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2014) A significance test for the lasso (with discussion). Ann. Statist., 42, 413-468.
– reference: Hocking, R. R. (1976) The analysis and selection of variables in linear regression. Biometrics, 32, 1-49.
– reference: Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression (with discussion). Ann. Statist., 32, 407-499.
– reference: Marcus, R., Eric, P. and Gabriel, K. R. (1976) On closed testing procedures with special reference to ordered analysis of variance. Biometrika, 63, 655-660.
– reference: Akaike, H. (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716-723.
– reference: Shah, R. and Samworth, R. (2013) Variable selection with error control: another look at stability selection. J. R. Statist. Soc. B, 75, 55-80.
– reference: Meinshausen, N. and Bühlmann, P. (2010) Stability selection (with discussion). J. R. Statist. Soc. B, 72, 417-473.
– reference: Rényi, A. (1953) On the theory of order statistics. Acta Math. Hung., 4, 191-231.
– reference: Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464.
– reference: Aharoni, E. and Rosset, S. (2014) Generalized α-investing: definitions, optimality results and application to public databases. J. R. Statist. Soc. B, 76, 771-794.
– reference: Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
– reference: Storey, J. D., Taylor, J. E. and Siegmund, D. (2004) Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J. R. Statist. Soc. B, 66, 187-205.
– reference: Via Garca, M. and 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56-65.
– reference: Benjamini, Y. and Gavrilov, Y. (2009) A simple forward selection procedure based on false discovery rate control. Ann. Appl. Statist., 3, 179-198.
– reference: Lin, D., Foster, D. and Ungar, L. (2011) VIF regression: a fast regression algorithm for large data. J. Am. Statist. Ass., 106, 232-247.
– reference: Simes, R. J. (1986) An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73, 751-754.
– reference: Efron, B., Tibshirani, R. Storey, J. and Tusher, V. (2001) Empirical Bayes analysis of a microarray experiment. J. Am. Statist. Ass., 96, 1151-1160.
– reference: Wu, Y., Boos, D. and Stefanski, L. (2007) Controlling variable selection by the addition of pseudovariables. J. Am. Statist. Ass., 102, 235-243.
– volume: 76
  start-page: 771
  year: 2014
  end-page: 794
  article-title: Generalized ‐investing: definitions, optimality results and application to public databases
  publication-title: J. R. Statist. Soc. B
– volume: 75
  start-page: 55
  year: 2013
  end-page: 80
  article-title: Variable selection with error control: another look at stability selection
  publication-title: J. R. Statist. Soc. B
– volume: 70
  start-page: 429
  year: 2008
  end-page: 444
  article-title: ‐investing: a procedure for sequential control of expected false discoveries
  publication-title: J. R. Statist. Soc. B
– volume: 42
  start-page: 413
  year: 2014
  end-page: 468
  article-title: A significance test for the lasso (with discussion)
  publication-title: Ann. Statist.
– volume: 491
  start-page: 56
  year: 2012
  end-page: 65
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
– volume: 66
  start-page: 187
  year: 2004
  end-page: 205
  article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach
  publication-title: J. R. Statist. Soc. B
– volume: 138
  start-page: 963
  year: 1994
  end-page: 971
  article-title: Empirical threshold values for quantitative trait mapping
  publication-title: Genetics
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  article-title: Least angle regression (with discussion)
  publication-title: Ann. Statist.
– year: 2014
– volume: 38
  start-page: 3782
  year: 2010
  end-page: 3810
  article-title: The sequential rejection principle of familywise error control
  publication-title: Ann. Statist.
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– year: 2013b
– volume: 2
  start-page: 963
  year: 2008
  end-page: 992
  article-title: Two simple sufficient conditions for FDR control
  publication-title: Electron. J. Statist.
– volume: 96
  start-page: 1151
  year: 2001
  end-page: 1160
  article-title: Empirical Bayes analysis of a microarray experiment
  publication-title: J. Am. Statist. Ass.
– volume: 29
  start-page: 1165
  year: 2001
  end-page: 1188
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Ann. Statist.
– volume: 102
  start-page: 235
  year: 2007
  end-page: 243
  article-title: Controlling variable selection by the addition of pseudovariables
  publication-title: J. Am. Statist. Ass.
– volume: 32
  start-page: 1
  year: 1976
  end-page: 49
  article-title: The analysis and selection of variables in linear regression
  publication-title: Biometrics
– volume: 3
  start-page: 179
  year: 2009
  end-page: 198
  article-title: A simple forward selection procedure based on false discovery rate control
  publication-title: Ann. Appl. Statist.
– volume: 103
  start-page: 17355
  year: 2006
  end-page: 17360
  article-title: Genotypic predictors of human immunodeficiency virus type 1 drug resistance
  publication-title: Proc. Natn. Acad. Sci. USA
– volume: 34
  start-page: 1850
  year: 2006
  end-page: 1873
  article-title: Stepup procedures for control of generalizations of the familywise error rate
  publication-title: Ann. Statist.
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  article-title: Stability selection (with discussion)
  publication-title: J. R. Statist. Soc. B
– volume: 4
  start-page: 191
  year: 1953
  end-page: 231
  article-title: On the theory of order statistics
  publication-title: Acta Math. Hung.
– volume: 73
  start-page: 751
  year: 1986
  end-page: 754
  article-title: An improved Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– volume: 192
  start-page: 456
  year: 2005
  end-page: 465
  article-title: HIV‐1 protease and reverse‐transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug‐resistance surveillance
  publication-title: J. Infect. Dis.
– volume: 106
  start-page: 232
  year: 2011
  end-page: 247
  article-title: VIF regression: a fast regression algorithm for large data
  publication-title: J. Am. Statist. Ass.
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Statist. Soc. B
– volume: 3
  year: 2004
  article-title: Using alpha wisely: improving power to detect multiple qtl
  publication-title: Statist. Appl. Genet. Molec. Biol.
– year: 1993
– volume: 63
  start-page: 655
  year: 1976
  end-page: 660
  article-title: On closed testing procedures with special reference to ordered analysis of variance
  publication-title: Biometrika
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Statist. Soc. B
– year: 2013a
– year: 2013
– volume: 29
  start-page: 1165
  year: 2001
  ident: 2023021709304484400_rssb12122-cit-0006
  article-title: The control of the false discovery rate in multiple testing under dependency
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013699998
– volume: 72
  start-page: 417
  year: 2010
  ident: 2023021709304484400_rssb12122-cit-0025
  article-title: Stability selection (with discussion)
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 2
  start-page: 963
  year: 2008
  ident: 2023021709304484400_rssb12122-cit-0007
  article-title: Two simple sufficient conditions for FDR control
  publication-title: Electron. J. Statist.
  doi: 10.1214/08-EJS180
– volume-title: Optimal inference after model selection
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0013
– volume-title: Post-selection adaptive inference for least angle regression and the lasso
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0035
– volume-title: Resampling-based Multiple Testing: Examples and Methods for p-value Adjustment
  year: 1993
  ident: 2023021709304484400_rssb12122-cit-0038
– volume: 32
  start-page: 407
  year: 2004
  ident: 2023021709304484400_rssb12122-cit-0011
  article-title: Least angle regression (with discussion)
  publication-title: Ann. Statist.
  doi: 10.1214/009053604000000067
– volume: 103
  start-page: 17355
  year: 2006
  ident: 2023021709304484400_rssb12122-cit-0028
  article-title: Genotypic predictors of human immunodeficiency virus type 1 drug resistance
  publication-title: Proc. Natn. Acad. Sci. USA
  doi: 10.1073/pnas.0607274103
– volume-title: Exact post-selection inference with the lasso
  year: 2013
  ident: 2023021709304484400_rssb12122-cit-0019
– volume-title: Tests in adaptive regression via the Kac-Rice formula
  year: 2013
  ident: 2023021709304484400_rssb12122-cit-0036
– volume: 491
  start-page: 56
  year: 2012
  ident: 2023021709304484400_rssb12122-cit-0010
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume-title: False variable selection rates in regression
  year: 2013
  ident: 2023021709304484400_rssb12122-cit-0016
– volume: 34
  start-page: 1850
  year: 2006
  ident: 2023021709304484400_rssb12122-cit-0029
  article-title: Stepup procedures for control of generalizations of the familywise error rate
  publication-title: Ann. Statist.
  doi: 10.1214/009053606000000461
– volume: 63
  start-page: 655
  year: 1976
  ident: 2023021709304484400_rssb12122-cit-0024
  article-title: On closed testing procedures with special reference to ordered analysis of variance
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.655
– volume: 3
  year: 2004
  ident: 2023021709304484400_rssb12122-cit-0033
  article-title: Using alpha wisely: improving power to detect multiple qtl
  publication-title: Statist. Appl. Genet. Molec. Biol.
  doi: 10.2202/1544-6115.1023
– volume: 3
  start-page: 179
  year: 2009
  ident: 2023021709304484400_rssb12122-cit-0004
  article-title: A simple forward selection procedure based on false discovery rate control
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/08-AOAS194
– volume: 57
  start-page: 289
  year: 1995
  ident: 2023021709304484400_rssb12122-cit-0005
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 4
  start-page: 191
  year: 1953
  ident: 2023021709304484400_rssb12122-cit-0026
  article-title: On the theory of order statistics
  publication-title: Acta Math. Hung.
  doi: 10.1007/BF02127580
– volume: 32
  start-page: 1
  year: 1976
  ident: 2023021709304484400_rssb12122-cit-0018
  article-title: The analysis and selection of variables in linear regression
  publication-title: Biometrics
  doi: 10.2307/2529336
– volume: 58
  start-page: 267
  year: 1996
  ident: 2023021709304484400_rssb12122-cit-0037
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 73
  start-page: 751
  year: 1986
  ident: 2023021709304484400_rssb12122-cit-0032
  article-title: An improved Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/73.3.751
– volume: 76
  start-page: 771
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0001
  article-title: Generalized α-investing: definitions, optimality results and application to public databases
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/rssb.12048
– volume: 19
  start-page: 716
  year: 1974
  ident: 2023021709304484400_rssb12122-cit-0002
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1974.1100705
– volume-title: SLOPE—adaptive variable selection via convex optimization
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0008
– volume: 38
  start-page: 3782
  year: 2010
  ident: 2023021709304484400_rssb12122-cit-0015
  article-title: The sequential rejection principle of familywise error control
  publication-title: Ann. Statist.
  doi: 10.1214/10-AOS829
– volume: 138
  start-page: 963
  year: 1994
  ident: 2023021709304484400_rssb12122-cit-0009
  article-title: Empirical threshold values for quantitative trait mapping
  publication-title: Genetics
  doi: 10.1093/genetics/138.3.963
– volume: 96
  start-page: 1151
  year: 2001
  ident: 2023021709304484400_rssb12122-cit-0012
  article-title: Empirical Bayes analysis of a microarray experiment
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214501753382129
– volume: 75
  start-page: 55
  year: 2013
  ident: 2023021709304484400_rssb12122-cit-0031
  article-title: Variable selection with error control: another look at stability selection
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2011.01034.x
– volume: 102
  start-page: 235
  year: 2007
  ident: 2023021709304484400_rssb12122-cit-0039
  article-title: Controlling variable selection by the addition of pseudovariables
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/016214506000000843
– volume-title: Controlling the false discovery rate via knockoffs
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0003
– volume: 70
  start-page: 429
  year: 2008
  ident: 2023021709304484400_rssb12122-cit-0014
  article-title: α-investing: a procedure for sequential control of expected false discoveries
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2007.00643.x
– volume: 192
  start-page: 456
  year: 2005
  ident: 2023021709304484400_rssb12122-cit-0027
  article-title: HIV-1 protease and reverse-transcriptase mutations: correlations with antiretroviral therapy in subtype B isolates and implications for drug-resistance surveillance
  publication-title: J. Infect. Dis.
  doi: 10.1086/431601
– volume-title: Adaptive testing for the graphical lasso
  year: 2013
  ident: 2023021709304484400_rssb12122-cit-0017
– volume: 106
  start-page: 232
  year: 2011
  ident: 2023021709304484400_rssb12122-cit-0021
  article-title: VIF regression: a fast regression algorithm for large data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/jasa.2011.tm10113
– volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0020
– volume: 42
  start-page: 413
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0022
  article-title: A significance test for the lasso (with discussion)
  publication-title: Ann. Statist.
– volume: 6
  start-page: 461
  year: 1978
  ident: 2023021709304484400_rssb12122-cit-0030
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume-title: A significance test for forward stepwise model selection
  year: 2014
  ident: 2023021709304484400_rssb12122-cit-0023
– volume: 66
  start-page: 187
  year: 2004
  ident: 2023021709304484400_rssb12122-cit-0034
  article-title: Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2004.00439.x
SSID ssj0000673
Score 2.509251
Snippet We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of...
We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,..., Hk...
Summary We consider a multiple‐hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block...
We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H1,…,Hk of...
Summary We consider a multiple-hypothesis testing setting where the hypotheses are ordered and one is only permitted to reject an initial contiguous block H 1...
SourceID proquest
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 423
SubjectTerms Discovery
equations
False discovery rate
Hypotheses
Hypothesis testing
Multiple-hypothesis testing
Rules
Selection procedures
Sequential testing
Statistical analysis
Statistics
Stopping rule
Studies
Title Sequential selection procedures and false discovery rate control
URI https://api.istex.fr/ark:/67375/WNG-CMS8PD7J-W/fulltext.pdf
https://www.jstor.org/stable/24775345
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12122
https://www.proquest.com/docview/1760264693
https://www.proquest.com/docview/1803073987
Volume 78
WOSCitedRecordID wos000369136600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_q1Ye-aP0ojbYSUQSFgLfZvd2AD2rrKVKP0ni0b8t-pQ-WnFx6pf3vndl8eAURxLdAZkky35Od_Q3ASyxwQoWyzqQPNuOioCaACcus5BbDD3NOxoPCR3I2U2dnxfEGvOvPwrT4EMMPN7KM6K_JwI1t1ox82TSWsBEYOuBNhorLR7B5eDKdH6174rw9d1VkGDlZB09KnTy_V98KSHcqs8A0lTh83Xco3so91zPYGIKm9__v5bfhXpd6ph9aXXkAG6F-CFuUbbZgzY_gfRkbq9HoL9ImDshBqaUxxvkV1uWpqX1aocKGlE7zUvfnTUpYE2nX8f4Y5tNP3w--ZN2Ihcxh3sMyzl1ufAgoSDl2YxH4uLCG7L7KC6NEkF54xytmBBNWBeuwmq6ky62fWMNDvgOjelGHXUi9e2uUz72qaKS6YMpU1mI6hU8Q3BqVwOuez9p1-OM0BuNC93UIMUVHpiTwYqD92aJu_JFqF8WlzTm6Qz0vGYHl0U4h-swEXkUZDqvN8ge1sEmhT2ef9cG3Uh0fyq_6NIGdKOSBkHGJFRwXCez1UtedWTd6LGliF58UeQLPh9tokLTLYuqwWCGNin6zUDKBN1EH_vIJ-qQsP8arJ_9C_BS26GvbXrg9GF0uV2Ef7rorVJjls84MfgHicwjC
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_0KtgXv0tXq0YUQWHByyaX7Jvaela9HqXbo30L-VofLHty54n-985k99YriCC-LeyE3WS-k19mAJ5hghNr5HWuQnS5kCWBAEY8d0o4dD_ce5UuCk_UdKrPz8vjDptDd2Ha-hD9hhtpRrLXpOC0Ib2h5Yvl0lFxBI4WeEugHMkBbB2cjGeTTVNctBevyhxdJ-_qkxKU5_foSx7pam3nGKfSEv9YQxQvBZ-bIWzyQeOb__n3t-BGF3yyN6203IYrsbkD2xRvtuWa78LrKkGrUe0v2DK1yEG-seTlwgozc2abwGoU2cjoPi_hP38yqjbBOsz7PZiN353uH-Zdk4XcY-TDcyF8YUOMyEo19EMZxbB0ljS_LkqrZVRBBi9qbiWXTkfnMZ-ulS9cGDkrYrEDg2bexF1gwb-yOhRB19RUXXJta-cwoMIvSOGszuDFeqGN7yqQUyOMC7PORGhRTFqUDJ72tF_buht_pNpFfhn7GQ2imVWcyuXRWSFazQyeJyb2o-3iC4HYlDRn0_dm_6jSxwfqoznLYCdxuSfkQmEOJ2QGe2u2m06xl2aoqGeXGJVFBk_616iSdM5imzhfIY1OlrPUKoOXSQj-MgVzUlVv09P9fyF-DNcPT48mZvJh-ukBbNPMW2TcHgy-LVbxIVzz31F4Fo86nfgFuVwMsg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB_0TuRe_D4uempEERQCdrPb3bypV-tXLeViuXtb9tMHj_Roreh_78wmjT0QQXwLZMJmd_Y3H8lvZwCeYIITIuq6kD7YgouKSABDVljJLbof5pxMB4UncjpVp6fVrOPm0FmYtj5E_8GNkJHsNQE8nPu4hfLlamWpOAJDC7yLowwRl7uj4_F8sm2Ky_bgVVWg62RdfVKi8vx--oJHuhzNAuNUWuIfG4riheBzO4RNPmh8_T_f_gZc64LP_FW7W27CpdDcgj2KN9tyzbfhZZ2o1Qj7s3yVWuSg3vLk5fwaM_PcND6PuGVDTud5if_5M6dqE3nHeb8D8_Gbz0fviq7JQuEw8mEF5640PgRUpRy4gQh8UFlDyI9lZZQI0gvveGRGMGFVsA7z6Shdaf3QGh7KfdhpFk04gNy7F0b50qtITdUFUyZaiwEVjiC4NSqDZ5uF1q6rQE6NMM70JhOhRdFpUTJ43Muet3U3_ih1gPrS5gsaRD2vGZXLo3-FaDUzeJqU2D9tll-JxCaFPpm-1UefajUbyQ_6JIP9pOVekHGJORwXGRxu1K47YK_0QFLPLj6sygwe9bcRkvSfxTRhsUYZlSxnpWQGz9Mm-MsU9HFdv05Xd_9F-CFcnY3GevJ--vEe7NHEW2LcIex8W67DfbjivuPeWT7oIPELMgcMLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequential+selection+procedures+and+false+discovery+rate+control&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=G%27Sell%2C+Max+Grazier&rft.au=Wager%2C+Stefan&rft.au=Chouldechova%2C+Alexandra&rft.au=Tibshirani%2C+Robert&rft.date=2016-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=78&rft.issue=2&rft.spage=423&rft.epage=444&rft_id=info:doi/10.1111%2Frssb.12122&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CMS8PD7J_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon