Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data

In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the pro...

Full description

Saved in:
Bibliographic Details
Published in:PloS one Vol. 12; no. 12; p. e0188746
Main Author: Ye, Fei
Format: Journal Article
Language:English
Published: United States Public Library of Science 13.12.2017
Public Library of Science (PLoS)
Subjects:
ISSN:1932-6203, 1932-6203
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks.
AbstractList In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks.
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks.In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks.
Audience Academic
Author Ye, Fei
AuthorAffiliation Beihang University, CHINA
School of information science and technology, Southwest Jiaotong University, ChengDu, China
AuthorAffiliation_xml – name: School of information science and technology, Southwest Jiaotong University, ChengDu, China
– name: Beihang University, CHINA
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0002-5894-2178
  surname: Ye
  fullname: Ye, Fei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29236718$$D View this record in MEDLINE/PubMed
BookMark eNqNk9tu1DAQhiNURA_wBggiISG4yGInGzvhAqmqOFSqVMTp1prYk10XJ05thwIPwvPibNOqW1UI5WKi8Tf_2L_H-8lOb3tMkseULGjB6aszO7oezGKI6QWhVcWX7F6yR-siz1hOip0b_7vJvvdnhJRFxdiDZDev84JxWu0lfz6CC1oaTP0FuC61Q9Cd_g1B2z5rwKNKYQy2iwmZDuCgw4Au9WhQTkzaWpcqxCHtcXRgYggX1n33KfQq1SHGYTBabgR9qvvUgFth5iXEnhOz1qt1pnSHvY9IVFAQ4GFyvwXj8dEcD5Kv795-OfqQnZy-Pz46PMkky_OQVRCPTSgCctLIuqEVFkUtKWJcqXOOlLUosclL4LRQUqmyIbSBkiFVrOTFQfL0Uncw1ovZUi9ozdmSElKzSBxfEsrCmRic7sD9Eha02CSsW4nZQQGUo-RQk5zgkkjSsJYyRaMOVAUlVdR6M3cbmw6VxD5Ey7ZEt1d6vRYr-0OUPK9KMm33xSzg7PmIPohOe4nGQI923Oyb57QqyzKiz26hd59uplbxOoTuWxv7yklUHJa0YnXJ2aS1uIOKn8JOyzh_rY75rYKXWwWRCfgzrGD0Xhx__vT_7Om3bfb5DXaNYMLaWzNuhmsbfHLT6WuLrwY_AstLQDrrvcP2GqFETO_ryi4xvS8xv69Y9vpWmdRhM9vREW3-XfwXjfQu7Q
CitedBy_id crossref_primary_10_1080_08839514_2021_1972251
crossref_primary_10_1016_j_isci_2024_109148
crossref_primary_10_1109_ACCESS_2019_2904709
crossref_primary_10_1080_10106049_2021_1878291
crossref_primary_10_1109_TNNLS_2021_3130896
crossref_primary_10_1007_s41060_024_00690_y
crossref_primary_10_1007_s13369_023_08021_2
crossref_primary_10_1109_ACCESS_2019_2903015
crossref_primary_10_1109_ACCESS_2019_2909756
crossref_primary_10_3390_math11091989
crossref_primary_10_1007_s10462_019_09719_2
crossref_primary_10_1016_j_comnet_2019_107042
crossref_primary_10_1016_j_knosys_2019_01_015
crossref_primary_10_1155_2019_8213056
crossref_primary_10_1002_ima_22562
crossref_primary_10_3233_JIFS_179211
crossref_primary_10_1002_ima_22522
crossref_primary_10_1109_TNNLS_2020_3016666
crossref_primary_10_1016_j_energy_2025_138078
crossref_primary_10_1016_j_oceaneng_2024_118398
crossref_primary_10_2478_jaiscr_2024_0015
crossref_primary_10_1109_TNNLS_2021_3100554
crossref_primary_10_32604_cmc_2022_020485
crossref_primary_10_1007_s11063_022_11055_6
crossref_primary_10_1016_j_applthermaleng_2022_119917
crossref_primary_10_1016_j_eswa_2023_121044
crossref_primary_10_1007_s00521_021_05960_5
crossref_primary_10_1007_s00521_018_3653_4
crossref_primary_10_1155_2022_1128217
crossref_primary_10_1016_j_cie_2021_107400
crossref_primary_10_1109_ACCESS_2025_3591403
crossref_primary_10_1007_s40996_025_02016_9
crossref_primary_10_1017_S1759078721001690
crossref_primary_10_1016_j_apenergy_2023_121077
crossref_primary_10_1109_TCAD_2022_3207320
crossref_primary_10_1016_j_engappai_2025_110209
crossref_primary_10_1007_s00521_021_06169_2
crossref_primary_10_1088_1361_6501_aae5b2
crossref_primary_10_1155_2018_9327215
crossref_primary_10_1016_j_cie_2022_107970
crossref_primary_10_1016_j_neucom_2020_12_133
crossref_primary_10_1002_smll_202502328
crossref_primary_10_1007_s40314_025_03215_w
crossref_primary_10_1007_s12519_025_00950_2
crossref_primary_10_1155_2021_6656150
crossref_primary_10_1016_j_swevo_2022_101120
crossref_primary_10_1007_s11042_021_11032_6
crossref_primary_10_1080_15472450_2022_2140046
crossref_primary_10_3233_JIFS_189039
crossref_primary_10_1111_jch_14597
Cites_doi 10.1016/j.patcog.2015.11.022
10.1093/bioinformatics/btw427
10.1162/neco.2006.18.7.1527
10.1007/978-3-319-48390-0_12
ContentType Journal Article
Copyright COPYRIGHT 2017 Public Library of Science
2017 Fei Ye. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017 Fei Ye 2017 Fei Ye
Copyright_xml – notice: COPYRIGHT 2017 Public Library of Science
– notice: 2017 Fei Ye. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017 Fei Ye 2017 Fei Ye
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0188746
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Agricultural Science Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate A PSO-based deep learning approach
EISSN 1932-6203
ExternalDocumentID 1976410096
oai_doaj_org_article_a17ec7a9020e40c0b6f16d1100a83108
PMC5728507
A518695765
29236718
10_1371_journal_pone_0188746
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
BBORY
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
ESTFP
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
PUEGO
5PM
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c622t-8a88701eae70bc9b18e339c1ee8a8927e16feceb25a713dcdd5b01ba56e1d6573
IEDL.DBID DOA
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417884100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1932-6203
IngestDate Fri Nov 26 17:14:32 EST 2021
Tue Oct 14 19:00:16 EDT 2025
Tue Nov 04 01:59:17 EST 2025
Wed Oct 01 14:26:59 EDT 2025
Tue Oct 07 07:39:00 EDT 2025
Sat Nov 29 13:10:54 EST 2025
Sat Nov 29 09:59:33 EST 2025
Wed Nov 26 10:21:48 EST 2025
Wed Nov 26 10:22:22 EST 2025
Thu May 22 21:22:24 EDT 2025
Mon Jul 21 06:05:52 EDT 2025
Sat Nov 29 05:45:13 EST 2025
Tue Nov 18 22:26:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c622t-8a88701eae70bc9b18e339c1ee8a8927e16feceb25a713dcdd5b01ba56e1d6573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-5894-2178
OpenAccessLink https://doaj.org/article/a17ec7a9020e40c0b6f16d1100a83108
PMID 29236718
PQID 1976410096
PQPubID 1436336
PageCount e0188746
ParticipantIDs plos_journals_1976410096
doaj_primary_oai_doaj_org_article_a17ec7a9020e40c0b6f16d1100a83108
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5728507
proquest_miscellaneous_1977218555
proquest_journals_1976410096
gale_infotracmisc_A518695765
gale_infotracacademiconefile_A518695765
gale_incontextgauss_ISR_A518695765
gale_incontextgauss_IOV_A518695765
gale_healthsolutions_A518695765
pubmed_primary_29236718
crossref_primary_10_1371_journal_pone_0188746
crossref_citationtrail_10_1371_journal_pone_0188746
PublicationCentury 2000
PublicationDate 2017-12-13
PublicationDateYYYYMMDD 2017-12-13
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2017
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References S. Zhang (ref45) 2014
A. Ratnaweera (ref61) 2004
H. Chen (ref2) 2016; 55
X. Ji (ref5) 2017; 122
ref59
D. Needell (ref48) 2016; 155
D. Romo-Bucheli (ref29) 2017; 91
J. Xu (ref23) 2016; 35
K. H. Cha (ref18) 2016; 43
B. Alipanahi (ref31) 2015; 33
I. Chaturvedi (ref9) 2016; 108
T. Yao (ref7) 2017; 64
S. Chen (ref25) 2017; 36
X. N. Fan (ref32) 2015; 11
Y. Chen (ref27) 2016; 32
J. Read (ref14) 2014; 85
ref42
K. Kamnitsas (ref24) 2017; 36
A. Nasef (ref46) 2017
H. Lodhi (ref36) 2012; 4
Q. Li (ref12) 2016; 107
S. Klein (ref47) 2009; 81
W. T. Pan (ref52) 2012; 26
G. Carneiro (ref15) 2012
N. Dhungel (ref21) 2017; 37
G Hinton (ref39) 2006; 18
V. K. Ithapu (ref44) 2015
S. Zhang (ref33) 2016; 44
ref4
Y. Lécun (ref63) 2001; 86
ref40
J. Schmidhuber (ref41) 2015; 61
S. Poria (ref10) 2016
ref30
T. Lei (ref13) 2015; 58
R. Baly (ref11) 2016; 35
Z. Yan (ref17) 2016; 35
ref38
Y. Tang (ref43) 2013
C. Angermueller (ref35) 2016; 12
Z. L. Gaing (ref54) 2004; 19
A. A. A. Esmin (ref56) 2005; 20
E. P. Ijjina (ref6) 2016
P. Wang (ref8) 2016; 46
M. Dorigo (ref53) 1997; 1
M. Anthimopoulos (ref22) 2016; 35
H. L. Chen (ref60) 2014; 239
G. Venter (ref50) 2013; 41
T. A. Ngo (ref20) 2017; 35
K. Ishaque (ref58) 2012; 27
ref28
D. R. Kelley (ref34) 2016; 26
F. Murtaza (ref3) 2017; 10
T. O. Ting (ref57) 2006; 21
V. Golkov (ref19) 2016; 35
M. R. Avendi (ref16) 2016; 30
N. Zhang (ref37) 2016
C. L. Huang (ref62) 2008; 8
W. A. Chang (ref49) 2002; 6
S. Das (ref51) 2011; 15
Y. Yi (ref1) 2016; 53
J. B. Park (ref55) 2005; 20
H. Greenspan (ref26) 2016; 35
References_xml – volume: 36
  start-page: 802
  issue: 3
  year: 2017
  ident: ref25
  article-title: Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in ct images
– volume: 21
  start-page: 411
  issue: 1
  year: 2006
  ident: ref57
  article-title: A novel approach for unit commitment problem via an effective hybrid particle swarm optimization
– volume: 53
  start-page: 148
  issue: C
  year: 2016
  ident: ref1
  article-title: Human action recognition with graph-based multiple-instance learning
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2015.11.022
– year: 2016
  ident: ref6
  article-title: Human action recognition using genetic algorithms and convolutional neural networks
– volume: 239
  start-page: 180
  issue: 8
  year: 2014
  ident: ref60
  article-title: Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy
– volume: 11
  start-page: 892
  issue: 3
  year: 2015
  ident: ref32
  article-title: Lncrna-mfdl: identification of human long non-coding rnas by fusing multiple features and using deep learning
– ident: ref28
  doi: 10.1093/bioinformatics/btw427
– start-page: 685
  year: 2014
  ident: ref45
  article-title: Deep learning with elastic averaging sgd
  publication-title: Deep learning with elastic averaging sgd
– volume: 35
  start-page: 7
  issue: 1
  year: 2016
  ident: ref11
  article-title: A meta-framework for modeling the human reading process in sentiment analysis
– volume: 20
  start-page: 859
  issue: 2
  year: 2005
  ident: ref56
  article-title: A hybrid particle swarm optimization applied to loss power minimization
– year: 2016
  ident: ref37
  article-title: Research on point-wise gated deep networks
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  ident: ref22
  article-title: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
– volume: 86
  start-page: 2278
  issue: 11
  year: 2001
  ident: ref63
  article-title: Gradient-based learning applied to document recognition
– volume: 12
  start-page: 878
  issue: 7
  year: 2016
  ident: ref35
  article-title: Deep learning for computational biology
– ident: ref30
– volume: 155
  start-page: 549
  issue: 1–2
  year: 2016
  ident: ref48
  article-title: Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: ref53
  article-title: Ant colony system: a cooperative learning approach to the traveling salesman problem
– volume: 107
  start-page: 289
  issue: C
  year: 2016
  ident: ref12
  article-title: Mining opinion summarizations using convolutional neural networks in chinese microblogging systems
– volume: 81
  start-page: 227
  issue: 3
  year: 2009
  ident: ref47
  article-title: Adaptive stochastic gradient descent optimisation for image registration
– volume: 26
  start-page: 990
  issue: 7
  year: 2016
  ident: ref34
  article-title: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
– volume: 35
  start-page: 1332
  issue: 5
  year: 2016
  ident: ref17
  article-title: Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition
– year: 2017
  ident: ref46
  article-title: Stochastic gradient descent analysis for the evaluation of a speaker recognition
– volume: 26
  start-page: 69
  issue: 2
  year: 2012
  ident: ref52
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
– volume: 85
  start-page: 333
  issue: 3
  year: 2014
  ident: ref14
  article-title: Deep learning for multi-label classification
– ident: ref40
– volume: 58
  start-page: 1151
  issue: 3
  year: 2015
  ident: ref13
  article-title: Molding cnns for text: non-linear, non-consecutive convolutions
– volume: 19
  start-page: 384
  issue: 2
  year: 2004
  ident: ref54
  article-title: A particle swarm optimization approach for optimum design of pid controller in avr system
– volume: 55
  start-page: 148
  issue: C
  year: 2016
  ident: ref2
  article-title: A novel hierarchical framework for human action recognition
– volume: 35
  start-page: 1344
  issue: 5
  year: 2016
  ident: ref19
  article-title: Q-space deep learning: twelve-fold shorter and model-free diffusion mri scans
– volume: 43
  start-page: 1882
  issue: 4
  year: 2016
  ident: ref18
  article-title: Urinary bladder segmentation in ct urography using deep-learning convolutional neural network and level sets
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: ref39
  article-title: A Fast Learning Algorithm for Deep Belief Nets[J]
  publication-title: Neural Computation
  doi: 10.1162/neco.2006.18.7.1527
– year: 2013
  ident: ref43
  article-title: Deep learning using linear support vector machines
– volume: 30
  start-page: 108
  year: 2016
  ident: ref16
  article-title: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac mri ☆
– volume: 35
  start-page: 1153
  issue: 5
  year: 2016
  ident: ref26
  article-title: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique
– volume: 33
  start-page: 831
  issue: 8
  year: 2015
  ident: ref31
  article-title: Predicting the sequence specificities of dna- and rna-binding proteins by deep learning
– volume: 44
  start-page: e32
  issue: 4
  year: 2016
  ident: ref33
  article-title: A deep learning framework for modeling structural features of rna-binding protein targets
– volume: 61
  start-page: 85
  year: 2015
  ident: ref41
  article-title: Deep learning in neural networks: an overview
– year: 2012
  ident: ref15
  article-title: The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods
– volume: 41
  start-page: 129
  issue: 8
  year: 2013
  ident: ref50
  article-title: Particle swarm optimization
– volume: 108
  start-page: 144
  issue: C
  year: 2016
  ident: ref9
  article-title: Learning word dependencies in text by means of a deep recurrent belief network
– volume: 36
  start-page: 61
  year: 2017
  ident: ref24
  article-title: Efficient multi-scale 3d cnn with fully connected crf for accurate brain lesion segmentation
– ident: ref38
  doi: 10.1007/978-3-319-48390-0_12
– year: 2004
  ident: ref61
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
– start-page: 488
  year: 2015
  ident: ref44
  article-title: On the interplay of network structure and gradient convergence in deep learning
– volume: 37
  start-page: 114
  year: 2017
  ident: ref21
  article-title: A deep learning approach for the analysis of masses in mammograms with minimal user intervention
– volume: 6
  start-page: 566
  issue: 6
  year: 2002
  ident: ref49
  article-title: A genetic algorithm for shortest path routing problem and the sizing of populations
– volume: 27
  start-page: 3627
  issue: 8
  year: 2012
  ident: ref58
  article-title: An improved particle swarm optimization (pso)–based mppt for pv with reduced steady-state oscillation
– volume: 64
  start-page: 236
  issue: C
  year: 2017
  ident: ref7
  article-title: Learning universal multiview dictionary for human action recognition
– volume: 10
  start-page: 758
  issue: 7
  year: 2017
  ident: ref3
  article-title: Multi-view human action recognition using 2d motion templates based on mhis and their hog description
– ident: ref4
– year: 2016
  ident: ref10
  article-title: Aspect extraction for opinion mining with a deep convolutional neural network
– ident: ref59
– volume: 20
  start-page: 34
  issue: 1
  year: 2005
  ident: ref55
  article-title: A particle swarm optimization for economic dispatch with nonsmooth cost functions
– volume: 46
  start-page: 498
  issue: 4
  year: 2016
  ident: ref8
  article-title: Action recognition from depth maps using deep convolutional neural networks
– volume: 4
  start-page: 455
  issue: 5
  year: 2012
  ident: ref36
  article-title: Computational biology perspective: kernel methods and deep learning
– ident: ref42
– volume: 15
  start-page: 4
  issue: 1
  year: 2011
  ident: ref51
  article-title: Differential evolution: a survey of the state-of-the-art
– volume: 32
  start-page: 1832
  issue: 12
  year: 2016
  ident: ref27
  article-title: Gene expression inference with deep learning
– volume: 35
  start-page: 159
  year: 2017
  ident: ref20
  article-title: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance
– volume: 35
  start-page: 119
  issue: 1
  year: 2016
  ident: ref23
  article-title: Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images
– volume: 91
  start-page: 566
  issue: 6
  year: 2017
  ident: ref29
  article-title: A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
– volume: 8
  start-page: 1381
  issue: 4
  year: 2008
  ident: ref62
  article-title: A distributed pso—svm hybrid system with feature selection and parameter optimization
– volume: 122
  start-page: 64
  issue: C
  year: 2017
  ident: ref5
  article-title: The spatial laplacian and temporal energy pyramid representation for human action recognition using depth sequences
SSID ssj0053866
Score 2.4722953
Snippet In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0188746
SubjectTerms Algorithms
Analysis
Artificial intelligence
Artificial neural networks
Biological activity
Biology and Life Sciences
Classifiers
Computer and Information Sciences
Computer Simulation
Configurations
Construction
Cooperative learning
Engineering and Technology
Mathematical models
Mathematical programming
Network configuration management software
Neural networks
Neural Networks, Computer
Optimization
Optimization theory
Particle swarm optimization
Pattern recognition systems
Physical Sciences
Power
Research and Analysis Methods
Searching
Social Sciences
Swarm intelligence
SummonAdditionalLinks – databaseName: Nursing & Allied Health Database
  dbid: 7RV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg8MALMD62wgCDkIAHb3ESx8kTGogJJDSmAdPeIscfo1KblKaF_4S_lzvHDQ2aAImnSPUvSXO-O5_t8-8IeeriIjXcKeaySrM0cY4BkjMZYcGjSujUn606fS-PjvKzs-I4LLi1Ia1y7RO9ozaNxjXyfQ7jZsox4n45_8qwahTuroYSGpfJFY6xMeizPDlde2Kw5SwLx-USyfdD7-zNm9ruRRzMC8PejeHIs_b3vnk0nzbtRYHn7_mTGwPS4Y3__ZSb5HoIRelBpztb5JKtb5GtYOwtfR4YqV_cJj-Og4LR9rtazGgDfmYWDnAyHAcNVatl49lfKZKJzzDJhra-xg5gKETG1Fg7p0ifCe-su-Tzlqra0MkSrhv76HRS0ykmqLMWFMh6DLIqM4OVCDoWEYqZrXfI58M3n16_ZaGgA9NZHC9ZrkDmEbfKyqjSRcVzmySF5tZCSxFLyzNnNcz1hYK5s9HGiCrilRKZ5SYTMrlLRjV03g6hUnLrhDHOKZ0mKqmirMqjLMIlHBfJakySdb-WOrCdY9GNaem38CTMejopl6gNZdCGMWH9XfOO7eMv-FeoMj0Wubr9D83ivAw9UyourZaqgMDcppGOqszxzCBVn8Iqb_mYPEKFK7uDr73HKQ8ElguD-aAYkycegXwdNSYEnatV25bvPpz-A-jjyQD0LIBcA-LQKhzCgG9CHrABcneABK-jB807aB5rqbTlL6WGO9dqf3Hz474ZH4pJfrVtVh4jIeIUAp6-3VlYL9m4QKpBDsKSA9sbiH7YUk--eLp0IeMcZj33_vy37pNrMUZsPGY82SWj5WJlH5Cr-tty0i4eer_yE6mLh4I
  priority: 102
  providerName: ProQuest
– databaseName: Public Library of Science (PLoS) Journals Open Access
  dbid: FPL
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagcOACLI_dwgIGIQEHL3ES28lxQVQgrZaKx2pvkeMHVGqTqmnhn_B7mUncsFntCjhFqj_nMfaMZ-rxN4Q893GeWu4187I0LE28Z4DkTEVY8KgUJm3PVp0cqePj7PQ0n_4JFM_t4CeKvw4yPVjWlTuIOChFKq-Sa3EiJQZbk-nR1vKC7koZjsdd1nOw_LQs_b0tHi3ndXORo3k-X_LMAjS59b-vfpvcDK4mPezmxg654qo7ZCcoc0NfBsbpV3fJr2mYQLT5qVcLWoMdWYQDmgzXOUv1Zl237K4UycIXmERDm7aGDmAoeL7UOrekSI8Jz6y65PKG6srS2RquZ_bJ6ayic0xAZw1MENdikDWZWaw00LGEUMxcvUe-Tt59efuehYINzMg4XrNMwydG3GmnotLkJc9ckuSGOwcteawcl94ZiOWFhtjYGmtFGfFSC-m4lUIl98moAlntEaoUd15Y6702aaKTMpJlFskI_6LxkSrHJNmOY2ECmzkW1ZgX7Radgqimk3KBwi-C8MeE9b2WHZvHX_BvcIr0WOTibn-AUS7CyBSaK2eUzsHxdmlkolJ6Li1S8Wms4paNyROcYEV3sLW3KMWhwHJgEO-JMXnWIpCPo8KEn2960zTFh48n_wD6_GkAehFAvgZxGB0OWcA3Ic_XALk_QIJVMYPmPVSHrVSagoPfmnKMeKHnVkUubn7aN-NNMYmvcvWmxSjwKIWAu-92GtVLNs6RSpCDsNRA1waiH7ZUs-8tHbpQcQZRzYPL3_ghuRGjN8ZjxpN9MlqvNu4RuW5-rGfN6nFrQ34DQVl1ww
  priority: 102
  providerName: Public Library of Science
Title Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data
URI https://www.ncbi.nlm.nih.gov/pubmed/29236718
https://www.proquest.com/docview/1976410096
https://www.proquest.com/docview/1977218555
https://pubmed.ncbi.nlm.nih.gov/PMC5728507
https://doaj.org/article/a17ec7a9020e40c0b6f16d1100a83108
http://dx.doi.org/10.1371/journal.pone.0188746
Volume 12
WOSCitedRecordID wos000417884100028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: P5Z
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M0K
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7P
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M7S
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PATMY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KB.
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7RV
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: PIMPY
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: FPL
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELeg8MALYvxbYRSDkICHdHbSxMnjOq1i2laiDqqxl8hxHKjUJlXTwjfh83LnuFGDJo0HXq5SfU6aO_t819z9jpB3uRsNMp5LJw9S5Qy8PHeAkzuCYcOj1FcDU1s1PRfjcXh1FcU7rb4wJ6yGB64Fdyi50ErICNwaPWCKpUHOgwyBziT2yDJlvkxE22CqtsGwi4PAFsp5gh9avfSXZaH7jMPGQod35yAyeP2NVe4s52V1k8v5d-bkzlE0ekQeWh-SHtW_fY_c0cVjsmd3aUU_WCjpj0_I79g-IK1-ydWClmAgFrby0sEDLKNysy4NbCtFFPAFZsfQyjTHAR4KLi3NtF5SxL2EexZ11nhFZZHR2Ro-d16A01lB55hZ7lSgeW14EA7ZybCFQA3_QTEl9Sn5Ojr5cvzJsZ0YHBW47toJJYiMcS21YKmKUh5qz4sU1xpGIldoHuRaQZDuSwh6M5Vlfsp4Kv1A8yzwhfeMdAqQ_T6hQnCd-1mW51INPOmlLEhDFjD87yVnIu0Sb6uWRFmYcuyWMU_MuzcB4Uot5QSVmVhldonTzFrWMB238A9R4w0vgmybL2DpJVYzyW1Lr0te43pJ6orVxlQkRz72-YJAzu-St4YDgTYKzOT5LjdVlZx-nv4D0-WkxfTeMuUliENJWz0Bz4QAXi3OgxYnmAvVGt7H1b2VSpVwcEgHHENZmLld8TcPv2mG8aKYnVfocmN4BLiKvg9Xf15vkEayboQYgRyEJVpbpyX69kgx-2Fwzn3hhhCuvPgfunpJHrjokHHX4d4B6axXG_2K3Fc_17Nq1SN3xWSK9EoYGgINj3mP3BuejONJzxgXoKP4HOjZsA_0gp0hFbGhl0Bj_xpmxKcX8bc_OZyE_w
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgAQXoLwaKHRBIOCwrdevjQ8IlUfVqiFEUKqKi1nvrkukxA5xQsUf4WfwG5mx1yZGFXDpgVOk7Gc7Gc_Mztgz3xDyMHUjX_NUsjRMFPO9NGWA5Ew4OPAoCZRf9lYd9sVg0Ds6ioYr5EfdC4NllbVPLB21zhU-I9_isG_6HCPu59MvDKdG4dvVeoRGpRb75tsJpGzFs71XcH8fue7O64OXu8xOFWAqdN0560mwK4cbaYSTqCjhPeN5keLGwErkCsPD1ChIOAMJCZxWWgeJwxMZhIbrMBAenPccOe_7roNWNAw-1p4ffEcY2vY8T_Atqw2b0zwzmw6Hy2KYvbT9lVMCmr2gMx3nxWmB7u_1mksb4M6V_010V8llG2rT7co2VsmKya6RVevMCvrEMm4_vU6-D60B0eJEziY0Bz86sQ2qDPd5TeVinpfsthTJ0idYRESLcoYQYChE_lQbM6VIDwrXzKri-oLKTNPRHD6X6gToKKNjLMBnBRiIKTHIGs00TlqoWFIoVu7eIB_ORD43SScDZVkjVAhu0kDrNJXK96SXOGHSc0IHH1Gljki6xKv1KFaWzR2Hiozj8hWlgKyuknKM2hdb7esS1hw1rdhM_oJ_gSraYJGLvPwinx3H9s7EkgujhIwg8TC-o5wkTHmokYpQ4hS7XpdsoILHVWNv41Hj7QDHoUG-G3TJgxKBfCQZFjwdy0VRxHtvD_8B9P5dC_TYgtIcxKGkbTKB_4Q8Zy3kegsJXlW1ltfQHGupFPEvI4IjazM7ffl-s4wnxSLGzOSLEiMgog4COPutyqIbyboRUilyEJZo2XpL9O2VbPS5pIMPhNuDrO72n3_WBrm4e_CmH_f3Bvt3yCUXo1PuMu6tk858tjB3yQX1dT4qZvdKn0bJp7P2BD8B_HfmVQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgBAXoLwaKHRBIOCwjdeOvfEBoUKJqFqFiEdVcTHrfZRIiR3ihIo_wo_h1zFjr0OMKuDSA6dI2c92Mp6ZnbFnviHkofXjruZWMhulinUDaxkgORMeDjxKQ9Ute6sOD8Rg0Ds6iodr5EfdC4NllbVPLB21zhU-I-9w2De7HCPujnVlEcPd_vPpF4YTpPBNaz1Oo1KRffPtBNK34tneLtzrR77ff_X-5WvmJgwwFfn-nPUk2JjHjTTCS1Wc8p4JglhxY2Al9oXhkTUKks9QQjKnldZh6vFUhpHhOgpFAOc9R84LyDGxnHAYfqx3AfAjUeRa9QLBO04ztqd5ZrY9DpfFkHtlKywnBiz3hdZ0nBenBb2_126ubIb9K_-zGK-Syy4EpzuVzayTNZNdI-vOyRX0iWPifnqdfB86w6LFiZxNaA7-deIaVxnu_5rKxTwvWW8pkqhPsLiIFuVsIcBQyAioNmZKkTYUrplVRfcFlZmmozl8rtQP0FFGx1iYzwowHFNikE2aaZzAULGnUKzovUE-nIl8bpJWBoqzQagQ3NhQa2ul6gYySL0o7XmRh4-urCfSNglqnUqUY3nHYSPjpHx1KSDbq6ScoCYmThPbhC2PmlYsJ3_Bv0B1XWKRo7z8Ip8dJ-7OJJILo4SMISExXU95aWR5pJGiUOJ0u16bbKGyJ1XD79LTJjshjkmDPDhskwclAnlKMlTVY7koimTvzeE_gN69bYAeO5DNQRxKuuYT-E_If9ZAbjaQ4G1VY3kDTbOWSpH8Mig4sja505fvL5fxpFjcmJl8UWIERNphCGe_VVn3UrJ-jBSLHIQlGnbfEH1zJRt9LmniQ-H3INu7_eeftUUuggNIDvYG-3fIJR-DVu4zHmyS1ny2MHfJBfV1Pipm90r3Rsmns3YEPwGRku8f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization-based+automatic+parameter+selection+for+deep+neural+networks+and+its+applications+in+large-scale+and+high-dimensional+data&rft.jtitle=PloS+one&rft.au=Fei+Ye&rft.date=2017-12-13&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.eissn=1932-6203&rft.volume=12&rft.issue=12&rft.spage=e0188746&rft_id=info:doi/10.1371%2Fjournal.pone.0188746&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a17ec7a9020e40c0b6f16d1100a83108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon