Neuroglobin overexpression inhibits oxygen–glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons
Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT)....
Saved in:
| Published in: | Neurobiology of disease Vol. 56; pp. 95 - 103 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Inc
01.08.2013
Elsevier |
| Subjects: | |
| ISSN: | 0969-9961, 1095-953X, 1095-953X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen–glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb–VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD+ release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD+ release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD+ release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection.
•Neuroglobin (Ngb) can bind to voltage dependent anion channel in cultured neurons.•Oxygen/glucose deprivation-induced mPTP opening was reduced by Ngb overexpression.•Ngb overexpression decreased OGD-induced cytochrome c release from mitochondria.•Recombinant Ngb blocked OGD-induced mPTP opening in isolated mitochondria.•Ngb knockdown in neurons showed enhanced mPTP opening following OGD. |
|---|---|
| AbstractList | Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immuocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD+ release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD+ release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD+ release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection.Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen–glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb–VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD+ release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD+ release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD+ release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. •Neuroglobin (Ngb) can bind to voltage dependent anion channel in cultured neurons.•Oxygen/glucose deprivation-induced mPTP opening was reduced by Ngb overexpression.•Ngb overexpression decreased OGD-induced cytochrome c release from mitochondria.•Recombinant Ngb blocked OGD-induced mPTP opening in isolated mitochondria.•Ngb knockdown in neurons showed enhanced mPTP opening following OGD. Abstract Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen–glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb–VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD+ release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD+ release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD+ release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. |
| Author | Yu, Zhanyang Xu, Jianfeng Liu, Ning Wang, Xiaoying Li, Yadan |
| Author_xml | – sequence: 1 givenname: Zhanyang surname: Yu fullname: Yu, Zhanyang email: zyu@partners.org – sequence: 2 givenname: Ning surname: Liu fullname: Liu, Ning – sequence: 3 givenname: Yadan surname: Li fullname: Li, Yadan – sequence: 4 givenname: Jianfeng surname: Xu fullname: Xu, Jianfeng – sequence: 5 givenname: Xiaoying surname: Wang fullname: Wang, Xiaoying email: wangxi@helix.mgh.harvard.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23639789$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1u1DAUhSNURKeFB2CDsmSTwY5_EgupEqr4qVTBApDYWY59J-PBYw92MurseAfegQfjSXA6Q0UrUVaRknO-c3PvOSmOfPBQFE8xmmOE-YvV3HdmXiNM5ojOEWYPihlGglWCkS9HxQwJLiohOD4uTlJaIYQxE82j4rgmnIimFbPi53sYY-hd6KwvwxYiXG0ipGSDL61f2s4OqQxXux78r-8_ejfqkKA0sIl2q4asqqw3owZTru0Q9DJ4E61y5QbiGlRnnR125RCVT3ZSl5sQoQwb8Nb3OaDMnLWKu1KPbhjjhAljDtAhDlZnjp_G8-lx8XChXIInh-dp8fnN60_n76rLD28vzl9dVprX9VDxruEN0hTVnCAAln-4UUQZpnSLayCLmhLaGsYxXtRkwUCrrjGa1lmMuerIaXGx55qgVvIwnAzKyusXIfZSTZM5kAKJhjICLTWC0lq0XYM7g3jHgSLTQGad7VmbsVuD0eDzHtwt6O0v3i5lH7aS8IZi1mbA8wMghm8jpEGubdLgnPKQtyQx4Uy0jAiRpc_-zroJ-XPoLMB7gY4hpQiLGwlGciqTXMlcJjmVSSIqc5myp7nj0Xa4Pnoe17p7nS_3Tsi32lqIMmkLPtfERtBDXqa91312x62d9VMdvsIO0iqM0ecSSCxTLZH8ONV8ajkmueG1QBkg_g34T_hvOl0Tjw |
| CitedBy_id | crossref_primary_10_1007_s11064_015_1580_7 crossref_primary_10_1016_j_biopha_2018_08_113 crossref_primary_10_1002_glia_22867 crossref_primary_10_1016_j_neuint_2015_07_011 crossref_primary_10_3390_cells10123366 crossref_primary_10_1007_s11064_017_2230_z crossref_primary_10_1074_jbc_M116_730176 crossref_primary_10_3390_ijms19072133 crossref_primary_10_1016_j_neuint_2016_02_005 crossref_primary_10_1016_j_bbrc_2016_07_012 crossref_primary_10_1016_j_cbi_2018_05_011 crossref_primary_10_1016_j_freeradbiomed_2014_01_032 crossref_primary_10_1016_j_mam_2016_10_004 crossref_primary_10_3892_mmr_2021_12525 crossref_primary_10_1016_j_lfs_2018_11_047 crossref_primary_10_1177_2155179018760327 crossref_primary_10_1016_j_neuint_2014_10_005 crossref_primary_10_1213_ANE_0000000000001123 crossref_primary_10_1016_j_neuroscience_2024_10_033 crossref_primary_10_1007_s12031_017_0976_z crossref_primary_10_1016_j_bbrc_2013_11_072 crossref_primary_10_1016_j_neuint_2015_07_004 crossref_primary_10_1186_s12974_021_02216_w crossref_primary_10_1016_j_neuroscience_2019_05_039 crossref_primary_10_3389_fncel_2019_00273 crossref_primary_10_1002_ar_24734 crossref_primary_10_3390_biom13071115 crossref_primary_10_1016_j_neuint_2017_07_012 crossref_primary_10_3390_antiox11010099 crossref_primary_10_1186_s12868_016_0286_3 crossref_primary_10_1007_s12031_017_1012_z crossref_primary_10_1016_j_neuint_2016_02_010 crossref_primary_10_3390_biom13081233 crossref_primary_10_1016_j_jss_2016_08_011 crossref_primary_10_1007_s00441_014_1807_y crossref_primary_10_1016_j_freeradbiomed_2025_01_046 crossref_primary_10_3389_fneur_2016_00146 crossref_primary_10_1016_j_freeradbiomed_2020_11_002 crossref_primary_10_1155_2019_6315034 crossref_primary_10_3390_ijms19010281 crossref_primary_10_3389_fnagi_2016_00152 crossref_primary_10_1002_jmr_2654 crossref_primary_10_1155_2019_5728129 crossref_primary_10_1002_jcp_26378 crossref_primary_10_1007_s12035_018_1212_8 crossref_primary_10_3390_ijms15069859 crossref_primary_10_1007_s12031_019_01306_y crossref_primary_10_1371_journal_pone_0189179 crossref_primary_10_3390_cells10081907 crossref_primary_10_3390_pharmaceutics14081737 crossref_primary_10_1177_0271678X20973119 crossref_primary_10_1016_j_brainresbull_2018_07_017 crossref_primary_10_1016_j_nbd_2021_105483 crossref_primary_10_1523_JNEUROSCI_1539_22_2022 crossref_primary_10_1007_s12035_015_9273_4 crossref_primary_10_3233_JAD_180163 crossref_primary_10_1038_s41419_018_1007_x crossref_primary_10_1016_j_mcn_2018_01_007 crossref_primary_10_3390_ijms17111817 crossref_primary_10_1016_j_abb_2021_108823 crossref_primary_10_1007_s10072_017_3168_2 crossref_primary_10_1038_s41598_025_91701_w crossref_primary_10_3892_ijmm_2014_1876 crossref_primary_10_1007_s12035_021_02630_4 crossref_primary_10_1155_2019_3832648 crossref_primary_10_1007_s10571_014_0153_7 |
| Cites_doi | 10.3390/ijms13066995 10.1038/ncb1575 10.1038/35035093 10.1038/sj.cdd.4401950 10.1007/s11064-004-6869-x 10.1002/jnr.21826 10.1074/jbc.271.4.2185 10.1046/j.1432-1327.1998.2580729.x 10.1016/j.neurobiolaging.2004.03.006 10.1038/nrn1868 10.1016/j.ajpath.2011.08.015 10.1074/jbc.M402011200 10.1073/pnas.0706167104 10.1016/j.febslet.2006.08.003 10.1161/STROKEAHA.107.506022 10.1016/j.virol.2005.06.051 10.1042/0264-6021:3410233 10.1007/s10557-006-0642-0 10.1096/fj.03-0012com 10.1016/j.bbadis.2009.09.003 10.1023/A:1020668923852 10.1002/(SICI)1097-4547(19980915)53:6<728::AID-JNR10>3.0.CO;2-U 10.1016/S0008-6363(02)00455-8 10.1016/j.coph.2007.09.003 10.1016/j.neuroscience.2004.06.074 10.1007/s10863-011-9337-8 10.1016/j.bbrc.2005.03.021 10.1016/j.neuroscience.2009.04.055 10.1242/jeb.000729 10.1083/jcb.152.2.237 10.1016/j.mito.2011.04.001 10.1152/ajpheart.01012.2008 10.1152/physrev.00013.2006 10.1073/pnas.87.12.4543 10.1046/j.1471-4159.1998.70010120.x 10.1016/j.gene.2007.03.022 10.1161/STROKEAHA.109.567149 10.1046/j.1460-9568.1999.00743.x 10.4049/jimmunol.180.11.7485 10.1073/pnas.0505294102 10.1097/00004647-200202000-00008 10.1016/j.neuroscience.2011.10.046 10.1074/jbc.M209909200 10.1074/jbc.M202191200 10.1073/pnas.0408766102 10.2174/0929867033457160 10.1006/nbdi.2002.0514 10.1016/S0304-3940(03)00563-9 10.1179/174313209X389866 10.1016/j.neuroscience.2012.05.054 10.3390/ijms11062306 10.1096/fj.01-0269fje 10.1016/j.bbamem.2011.10.025 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. 2013 Elsevier Inc. All rights reserved. 2013 |
| Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: 2013 Elsevier Inc. All rights reserved. 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
| DOI | 10.1016/j.nbd.2013.04.015 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1095-953X |
| EndPage | 103 |
| ExternalDocumentID | oai_doaj_org_article_9097453e84d944298b71bd06b6e40d7e PMC3674158 23639789 10_1016_j_nbd_2013_04_015 S0969996113001290 1_s2_0_S0969996113001290 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS049476 – fundername: NINDS NIH HHS grantid: R01-NS049476 – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS049476 || NS |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABTEW ABUFD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W K-O KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K X7M XPP Z5R ZGI ZMT ZU3 ~G- ~HD 0SF 6I. AACTN AFCTW AFKWA AJOXV AMFUW NCXOZ PKN RIG AADPK AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR 9DU AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c622t-6b7670c402630ee50117a3ad5ac812e3f24348d5611f23f5ecab7dc420ee16ab3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323853300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0969-9961 1095-953X |
| IngestDate | Tue Oct 14 19:02:14 EDT 2025 Tue Nov 04 01:54:40 EST 2025 Sun Nov 09 11:16:35 EST 2025 Mon Jul 21 06:04:15 EDT 2025 Sat Nov 29 04:49:39 EST 2025 Tue Nov 18 19:44:08 EST 2025 Fri Feb 23 02:29:32 EST 2024 Sun Feb 23 10:19:09 EST 2025 Tue Oct 14 19:34:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Oxygen/glucose deprivation Cytochrome c NAD+ release Neuroglobin Mitochondria swelling Mitochondria permeability transition pore (mPTP) NAD + release |
| Language | English |
| License | Copyright © 2013 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c622t-6b7670c402630ee50117a3ad5ac812e3f24348d5611f23f5ecab7dc420ee16ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/9097453e84d944298b71bd06b6e40d7e |
| PMID | 23639789 |
| PQID | 1365985399 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9097453e84d944298b71bd06b6e40d7e pubmedcentral_primary_oai_pubmedcentral_nih_gov_3674158 proquest_miscellaneous_1365985399 pubmed_primary_23639789 crossref_primary_10_1016_j_nbd_2013_04_015 crossref_citationtrail_10_1016_j_nbd_2013_04_015 elsevier_sciencedirect_doi_10_1016_j_nbd_2013_04_015 elsevier_clinicalkeyesjournals_1_s2_0_S0969996113001290 elsevier_clinicalkey_doi_10_1016_j_nbd_2013_04_015 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-08-01 |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Neurobiology of disease |
| PublicationTitleAlternate | Neurobiol Dis |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Wei (bb0225) 2011; 179 Sims, Muyderman (bb0180) 2010; 1802 Toman, Fiskum (bb0195) 2011; 43 Crompton (bb0060) 1998; 258 Sun (bb0190) 2005; 26 Liu (bb0130) 2009; 87 Chan (bb0045) 2004; 29 Kroemer (bb0265) 2007; 87 Uchino (bb0200) 2002; 10 Khaspekov (bb0125) 1999; 11 Wystub (bb0230) 2003; 346 Brunelle, Chandel (bb0025) 2002; 7 Brunori (bb0030) 2005; 102 McCommis, Baines (bb0140) 2012; 1818 Clarke (bb0050) 2002; 277 Burmester (bb0040) 2000; 407 Crompton (bb0055) 1999; 341 Shimizu (bb0170) 2001; 152 Xu (bb0235) 2005; 341 Monick (bb0145) 2008; 180 Wang (bb0215) 2002; 22 Fuchs (bb0085) 2004; 279 Wakasugi, Morishima (bb0205) 2005; 330 Gasser, Hatten (bb0095) 1990; 87 Greenberg (bb0100) 2008; 8 Shoshan-Barmatz, Ben-Hail (bb0175) 2012; 12 Brittain (bb0020) 2010; 11 Fordel (bb0080) 2007; 398 Yu (bb0255) 2012; 200 Garrido (bb0090) 2006; 13 Yu (bb0240) 2009; 31 Snider (bb0185) 1998; 70 Jin (bb0115) 2010; 41 De Giorgi (bb0065) 2002; 16 Nicolli (bb0150) 1996; 271 Yu (bb0245) 2009; 162 Fago (bb0075) 2006; 580 Hausenloy (bb0105) 2002; 55 Ananthakrishnan (bb0010) 2009; 296 Schmidt (bb0165) 2003; 278 Wang (bb0220) 2008; 39 Schinzel (bb0160) 2005; 102 Baines (bb0015) 2007; 9 Dubinsky, Levi (bb0070) 1998; 53 Honda, Ping (bb0110) 2006; 20 Khan (bb0120) 2007; 104 Yu (bb0260) 2012; 218 Abou-Sleiman (bb0005) 2006; 7 Waldmeier (bb0210) 2003; 10 Burmester, Hankeln (bb0035) 2009; 212 Yu (bb0250) 2012; 13 Martinez-Sanchez (bb0135) 2004; 128 Petrosillo (bb0155) 2003; 17 Yu (10.1016/j.nbd.2013.04.015_bb0260) 2012; 218 Khan (10.1016/j.nbd.2013.04.015_bb0120) 2007; 104 Schinzel (10.1016/j.nbd.2013.04.015_bb0160) 2005; 102 De Giorgi (10.1016/j.nbd.2013.04.015_bb0065) 2002; 16 Uchino (10.1016/j.nbd.2013.04.015_bb0200) 2002; 10 Crompton (10.1016/j.nbd.2013.04.015_bb0060) 1998; 258 Wakasugi (10.1016/j.nbd.2013.04.015_bb0205) 2005; 330 Fago (10.1016/j.nbd.2013.04.015_bb0075) 2006; 580 Crompton (10.1016/j.nbd.2013.04.015_bb0055) 1999; 341 Burmester (10.1016/j.nbd.2013.04.015_bb0040) 2000; 407 Fuchs (10.1016/j.nbd.2013.04.015_bb0085) 2004; 279 Dubinsky (10.1016/j.nbd.2013.04.015_bb0070) 1998; 53 Brunori (10.1016/j.nbd.2013.04.015_bb0030) 2005; 102 Yu (10.1016/j.nbd.2013.04.015_bb0250) 2012; 13 Xu (10.1016/j.nbd.2013.04.015_bb0235) 2005; 341 Nicolli (10.1016/j.nbd.2013.04.015_bb0150) 1996; 271 Wang (10.1016/j.nbd.2013.04.015_bb0220) 2008; 39 Petrosillo (10.1016/j.nbd.2013.04.015_bb0155) 2003; 17 Gasser (10.1016/j.nbd.2013.04.015_bb0095) 1990; 87 Baines (10.1016/j.nbd.2013.04.015_bb0015) 2007; 9 Greenberg (10.1016/j.nbd.2013.04.015_bb0100) 2008; 8 Khaspekov (10.1016/j.nbd.2013.04.015_bb0125) 1999; 11 Kroemer (10.1016/j.nbd.2013.04.015_bb0265) 2007; 87 Fordel (10.1016/j.nbd.2013.04.015_bb0080) 2007; 398 Martinez-Sanchez (10.1016/j.nbd.2013.04.015_bb0135) 2004; 128 Yu (10.1016/j.nbd.2013.04.015_bb0255) 2012; 200 Waldmeier (10.1016/j.nbd.2013.04.015_bb0210) 2003; 10 Jin (10.1016/j.nbd.2013.04.015_bb0115) 2010; 41 Burmester (10.1016/j.nbd.2013.04.015_bb0035) 2009; 212 Yu (10.1016/j.nbd.2013.04.015_bb0245) 2009; 162 Snider (10.1016/j.nbd.2013.04.015_bb0185) 1998; 70 Yu (10.1016/j.nbd.2013.04.015_bb0240) 2009; 31 Monick (10.1016/j.nbd.2013.04.015_bb0145) 2008; 180 Clarke (10.1016/j.nbd.2013.04.015_bb0050) 2002; 277 Honda (10.1016/j.nbd.2013.04.015_bb0110) 2006; 20 Garrido (10.1016/j.nbd.2013.04.015_bb0090) 2006; 13 Brittain (10.1016/j.nbd.2013.04.015_bb0020) 2010; 11 Wei (10.1016/j.nbd.2013.04.015_bb0225) 2011; 179 Liu (10.1016/j.nbd.2013.04.015_bb0130) 2009; 87 Toman (10.1016/j.nbd.2013.04.015_bb0195) 2011; 43 Brunelle (10.1016/j.nbd.2013.04.015_bb0025) 2002; 7 Chan (10.1016/j.nbd.2013.04.015_bb0045) 2004; 29 Shoshan-Barmatz (10.1016/j.nbd.2013.04.015_bb0175) 2012; 12 McCommis (10.1016/j.nbd.2013.04.015_bb0140) 2012; 1818 Shimizu (10.1016/j.nbd.2013.04.015_bb0170) 2001; 152 Schmidt (10.1016/j.nbd.2013.04.015_bb0165) 2003; 278 Sun (10.1016/j.nbd.2013.04.015_bb0190) 2005; 26 Wystub (10.1016/j.nbd.2013.04.015_bb0230) 2003; 346 Abou-Sleiman (10.1016/j.nbd.2013.04.015_bb0005) 2006; 7 Wang (10.1016/j.nbd.2013.04.015_bb0215) 2002; 22 Sims (10.1016/j.nbd.2013.04.015_bb0180) 2010; 1802 Hausenloy (10.1016/j.nbd.2013.04.015_bb0105) 2002; 55 Ananthakrishnan (10.1016/j.nbd.2013.04.015_bb0010) 2009; 296 19751827 - Biochim Biophys Acta. 2010 Jan;1802(1):80-91 15662830 - Neurochem Res. 2004 Nov;29(11):1943-9 12270685 - Neurobiol Dis. 2002 Aug;10(3):219-33 11823718 - J Cereb Blood Flow Metab. 2002 Feb;22(2):206-14 18711728 - J Neurosci Res. 2009 Jan;87(1):164-70 16676004 - Cell Death Differ. 2006 Sep;13(9):1423-33 11919169 - FASEB J. 2002 Apr;16(6):607-9 12871122 - Curr Med Chem. 2003 Aug;10(16):1485-506 22659017 - Neuroscience. 2012 Aug 30;218:235-42 11266442 - J Cell Biol. 2001 Jan 22;152(2):237-50 19401220 - Neuroscience. 2009 Aug 18;162(2):396-403 17417626 - Nat Cell Biol. 2007 May;9(5):550-5 12409290 - J Biol Chem. 2003 Jan 17;278(3):1932-5 18403737 - Stroke. 2008 Jun;39(6):1869-74 15932948 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8483-8 10510183 - Eur J Neurosci. 1999 Sep;11(9):3194-8 20640154 - Int J Mol Sci. 2010;11(6):2306-21 19411534 - J Exp Biol. 2009 May;212(Pt 10):1423-8 12850561 - Neurosci Lett. 2003 Jul 31;346(1-2):114-6 14656982 - FASEB J. 2003 Dec;17(15):2202-8 2352935 - Proc Natl Acad Sci U S A. 1990 Jun;87(12):4543-7 15582755 - Neurobiol Aging. 2005 Feb;26(2):275-8 16914148 - FEBS Lett. 2006 Sep 4;580(20):4884-8 17942367 - Curr Opin Pharmacol. 2008 Feb;8(1):20-4 18025470 - Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19114-9 21530686 - Mitochondrion. 2012 Jan;12(1):24-34 15140880 - J Biol Chem. 2004 Jun 4;279(23):24116-22 9753200 - J Neurosci Res. 1998 Sep 15;53(6):728-41 8567677 - J Biol Chem. 1996 Jan 26;271(4):2185-92 21311961 - J Bioenerg Biomembr. 2011 Feb;43(1):3-10 20075359 - Stroke. 2010 Mar;41(3):557-9 19298751 - Neurol Res. 2009 Mar;31(2):122-7 21967817 - Am J Pathol. 2011 Dec;179(6):2788-97 11029004 - Nature. 2000 Sep 28;407(6803):520-3 12160950 - Cardiovasc Res. 2002 Aug 15;55(3):534-43 12095984 - J Biol Chem. 2002 Sep 20;277(38):34793-9 12370489 - Apoptosis. 2002 Dec;7(6):475-82 15796924 - Biochem Biophys Res Commun. 2005 May 6;330(2):591-7 22079573 - Neuroscience. 2012 Jan 3;200:99-105 22062421 - Biochim Biophys Acta. 2012 Jun;1818(6):1444-50 18490749 - J Immunol. 2008 Jun 1;180(11):7485-96 15464281 - Neuroscience. 2004;128(4):729-40 16103352 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12005-10 16102794 - Virology. 2005 Oct 25;341(2):203-14 17532579 - Gene. 2007 Aug 15;398(1-2):114-22 16495942 - Nat Rev Neurosci. 2006 Mar;7(3):207-19 9874241 - Eur J Biochem. 1998 Dec 1;258(2):729-35 22837676 - Int J Mol Sci. 2012;13(6):6995-7014 17171295 - Cardiovasc Drugs Ther. 2006 Dec;20(6):425-32 19060123 - Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H333-41 10393078 - Biochem J. 1999 Jul 15;341 ( Pt 2):233-49 9422354 - J Neurochem. 1998 Jan;70(1):120-9 |
| References_xml | – volume: 271 start-page: 2185 year: 1996 end-page: 2192 ident: bb0150 article-title: Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel publication-title: J. Biol. Chem. – volume: 13 start-page: 1423 year: 2006 end-page: 1433 ident: bb0090 article-title: Mechanisms of cytochrome c release from mitochondria publication-title: Cell Death Differ. – volume: 1818 start-page: 1444 year: 2012 end-page: 1450 ident: bb0140 article-title: The role of VDAC in cell death: friend or foe? publication-title: Biochim. Biophys. Acta – volume: 26 start-page: 275 year: 2005 end-page: 278 ident: bb0190 article-title: Effect of aging on neuroglobin expression in rodent brain publication-title: Neurobiol. Aging – volume: 10 start-page: 219 year: 2002 end-page: 233 ident: bb0200 article-title: Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition publication-title: Neurobiol. Dis. – volume: 212 start-page: 1423 year: 2009 end-page: 1428 ident: bb0035 article-title: What is the function of neuroglobin? publication-title: J. Exp. Biol. – volume: 180 start-page: 7485 year: 2008 end-page: 7496 ident: bb0145 article-title: Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity publication-title: J. Immunol. – volume: 152 start-page: 237 year: 2001 end-page: 250 ident: bb0170 article-title: Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells publication-title: J. Cell Biol. – volume: 87 start-page: 4543 year: 1990 end-page: 4547 ident: bb0095 article-title: Central nervous system neurons migrate on astroglial fibers from heterotypic brain regions in vitro publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 218 start-page: 235 year: 2012 end-page: 242 ident: bb0260 article-title: Mitochondrial distribution of neuroglobin and its response to oxygen–glucose deprivation in primary-cultured mouse cortical neurons publication-title: Neuroscience – volume: 1802 start-page: 80 year: 2010 end-page: 91 ident: bb0180 article-title: Mitochondria, oxidative metabolism and cell death in stroke publication-title: Biochim. Biophys. Acta – volume: 258 start-page: 729 year: 1998 end-page: 735 ident: bb0060 article-title: Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore publication-title: Eur. J. Biochem. – volume: 9 start-page: 550 year: 2007 end-page: 555 ident: bb0015 article-title: Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death publication-title: Nat. Cell Biol. – volume: 29 start-page: 1943 year: 2004 end-page: 1949 ident: bb0045 article-title: Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia publication-title: Neurochem. Res. – volume: 11 start-page: 2306 year: 2010 end-page: 2321 ident: bb0020 article-title: An antiapoptotic neuroprotective role for neuroglobin publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 20 year: 2008 end-page: 24 ident: bb0100 article-title: Neuroglobin: an endogenous neuroprotectant publication-title: Curr. Opin. Pharmacol. – volume: 11 start-page: 3194 year: 1999 end-page: 3198 ident: bb0125 article-title: Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons publication-title: Eur. J. Neurosci. – volume: 346 start-page: 114 year: 2003 end-page: 116 ident: bb0230 article-title: Localization of neuroglobin protein in the mouse brain publication-title: Neurosci. Lett. – volume: 17 start-page: 2202 year: 2003 end-page: 2208 ident: bb0155 article-title: Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria publication-title: FASEB J. – volume: 10 start-page: 1485 year: 2003 end-page: 1506 ident: bb0210 article-title: Cyclophilin D as a drug target publication-title: Curr. Med. Chem. – volume: 341 start-page: 203 year: 2005 end-page: 214 ident: bb0235 article-title: A combination of mutations enhances the neurotropism of AAV-2 publication-title: Virology – volume: 102 start-page: 8483 year: 2005 end-page: 8488 ident: bb0030 article-title: Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 12 start-page: 24 year: 2012 end-page: 34 ident: bb0175 article-title: VDAC, a multi-functional mitochondrial protein as a pharmacological target publication-title: Mitochondrion – volume: 200 start-page: 99 year: 2012 end-page: 105 ident: bb0255 article-title: Identification of neuroglobin-interacting proteins using yeast two-hybrid screening publication-title: Neuroscience – volume: 278 start-page: 1932 year: 2003 end-page: 1935 ident: bb0165 article-title: How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina publication-title: J. Biol. Chem. – volume: 179 start-page: 2788 year: 2011 end-page: 2797 ident: bb0225 article-title: Neuroglobin is an endogenous neuroprotectant for retinal ganglion cells against glaucomatous damage publication-title: Am. J. Pathol. – volume: 341 start-page: 233 year: 1999 end-page: 249 ident: bb0055 article-title: The mitochondrial permeability transition pore and its role in cell death publication-title: Biochem. J. – volume: 53 start-page: 728 year: 1998 end-page: 741 ident: bb0070 article-title: Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons publication-title: J. Neurosci. Res. – volume: 407 start-page: 520 year: 2000 end-page: 523 ident: bb0040 article-title: A vertebrate globin expressed in the brain publication-title: Nature – volume: 580 start-page: 4884 year: 2006 end-page: 4888 ident: bb0075 article-title: The reaction of neuroglobin with potential redox protein partners cytochrome b5 and cytochrome c publication-title: FEBS Lett. – volume: 296 start-page: H333 year: 2009 end-page: H341 ident: bb0010 article-title: Aldose reductase mediates myocardial ischemia–reperfusion injury in part by opening mitochondrial permeability transition pore publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 22 start-page: 206 year: 2002 end-page: 214 ident: bb0215 article-title: Role of intracellular calcium stores in cell death from oxygen–glucose deprivation in a neuronal cell line publication-title: J. Cereb. Blood Flow Metab. – volume: 279 start-page: 24116 year: 2004 end-page: 24122 ident: bb0085 article-title: Zebrafish reveals different and conserved features of vertebrate neuroglobin gene structure, expression pattern, and ligand binding publication-title: J. Biol. Chem. – volume: 102 start-page: 12005 year: 2005 end-page: 12010 ident: bb0160 article-title: Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 13 start-page: 6995 year: 2012 end-page: 7014 ident: bb0250 article-title: Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders publication-title: Int. J. Mol. Sci. – volume: 70 start-page: 120 year: 1998 end-page: 129 ident: bb0185 article-title: Conditioning heat stress reduces excitotoxic and apoptotic components of oxygen-glucose deprivation-induced neuronal death in vitro publication-title: J. Neurochem. – volume: 87 start-page: 99 year: 2007 end-page: 163 ident: bb0265 article-title: Mitochondrial membrane permeabilization in cell death publication-title: Physiol. Rev. – volume: 128 start-page: 729 year: 2004 end-page: 740 ident: bb0135 article-title: Na(+) and Ca(2 publication-title: Neuroscience – volume: 31 start-page: 122 year: 2009 end-page: 127 ident: bb0240 article-title: Neuroprotective roles and mechanisms of neuroglobin publication-title: Neurol. Res. – volume: 7 start-page: 207 year: 2006 end-page: 219 ident: bb0005 article-title: Expanding insights of mitochondrial dysfunction in Parkinson's disease publication-title: Nat. Rev. Neurosci. – volume: 7 start-page: 475 year: 2002 end-page: 482 ident: bb0025 article-title: Oxygen deprivation induced cell death: an update publication-title: Apoptosis – volume: 330 start-page: 591 year: 2005 end-page: 597 ident: bb0205 article-title: Preparation and characterization of a chimeric zebrafish–human neuroglobin engineered by module substitution publication-title: Biochem. Biophys. Res. Commun. – volume: 55 start-page: 534 year: 2002 end-page: 543 ident: bb0105 article-title: Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? publication-title: Cardiovasc. Res. – volume: 16 start-page: 607 year: 2002 end-page: 609 ident: bb0065 article-title: The permeability transition pore signals apoptosis by directing Bax translocation and multimerization publication-title: FASEB J. – volume: 87 start-page: 164 year: 2009 end-page: 170 ident: bb0130 article-title: Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons publication-title: J. Neurosci. Res. – volume: 39 start-page: 1869 year: 2008 end-page: 1874 ident: bb0220 article-title: Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia publication-title: Stroke – volume: 277 start-page: 34793 year: 2002 end-page: 34799 ident: bb0050 article-title: Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A publication-title: J. Biol. Chem. – volume: 104 start-page: 19114 year: 2007 end-page: 19119 ident: bb0120 article-title: Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 20 start-page: 425 year: 2006 end-page: 432 ident: bb0110 article-title: Mitochondrial permeability transition in cardiac cell injury and death publication-title: Cardiovasc. Drugs Ther. – volume: 398 start-page: 114 year: 2007 end-page: 122 ident: bb0080 article-title: Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions publication-title: Gene – volume: 43 start-page: 3 year: 2011 end-page: 10 ident: bb0195 article-title: Influence of aging on membrane permeability transition in brain mitochondria publication-title: J. Bioenerg. Biomembr. – volume: 162 start-page: 396 year: 2009 end-page: 403 ident: bb0245 article-title: Neuroglobin-overexpression alters hypoxic response gene expression in primary neuron culture following oxygen glucose deprivation publication-title: Neuroscience – volume: 41 start-page: 557 year: 2010 end-page: 559 ident: bb0115 article-title: Neuroglobin expression in ischemic stroke publication-title: Stroke – volume: 13 start-page: 6995 year: 2012 ident: 10.1016/j.nbd.2013.04.015_bb0250 article-title: Neuroglobin, a novel target for endogenous neuroprotection against stroke and neurodegenerative disorders publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms13066995 – volume: 9 start-page: 550 year: 2007 ident: 10.1016/j.nbd.2013.04.015_bb0015 article-title: Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death publication-title: Nat. Cell Biol. doi: 10.1038/ncb1575 – volume: 407 start-page: 520 year: 2000 ident: 10.1016/j.nbd.2013.04.015_bb0040 article-title: A vertebrate globin expressed in the brain publication-title: Nature doi: 10.1038/35035093 – volume: 13 start-page: 1423 year: 2006 ident: 10.1016/j.nbd.2013.04.015_bb0090 article-title: Mechanisms of cytochrome c release from mitochondria publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401950 – volume: 29 start-page: 1943 year: 2004 ident: 10.1016/j.nbd.2013.04.015_bb0045 article-title: Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia publication-title: Neurochem. Res. doi: 10.1007/s11064-004-6869-x – volume: 87 start-page: 164 year: 2009 ident: 10.1016/j.nbd.2013.04.015_bb0130 article-title: Effects of neuroglobin overexpression on mitochondrial function and oxidative stress following hypoxia/reoxygenation in cultured neurons publication-title: J. Neurosci. Res. doi: 10.1002/jnr.21826 – volume: 271 start-page: 2185 year: 1996 ident: 10.1016/j.nbd.2013.04.015_bb0150 article-title: Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.4.2185 – volume: 258 start-page: 729 year: 1998 ident: 10.1016/j.nbd.2013.04.015_bb0060 article-title: Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2580729.x – volume: 26 start-page: 275 year: 2005 ident: 10.1016/j.nbd.2013.04.015_bb0190 article-title: Effect of aging on neuroglobin expression in rodent brain publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2004.03.006 – volume: 7 start-page: 207 year: 2006 ident: 10.1016/j.nbd.2013.04.015_bb0005 article-title: Expanding insights of mitochondrial dysfunction in Parkinson's disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1868 – volume: 179 start-page: 2788 year: 2011 ident: 10.1016/j.nbd.2013.04.015_bb0225 article-title: Neuroglobin is an endogenous neuroprotectant for retinal ganglion cells against glaucomatous damage publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2011.08.015 – volume: 279 start-page: 24116 year: 2004 ident: 10.1016/j.nbd.2013.04.015_bb0085 article-title: Zebrafish reveals different and conserved features of vertebrate neuroglobin gene structure, expression pattern, and ligand binding publication-title: J. Biol. Chem. doi: 10.1074/jbc.M402011200 – volume: 104 start-page: 19114 year: 2007 ident: 10.1016/j.nbd.2013.04.015_bb0120 article-title: Neuroglobin attenuates beta-amyloid neurotoxicity in vitro and transgenic Alzheimer phenotype in vivo publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0706167104 – volume: 580 start-page: 4884 year: 2006 ident: 10.1016/j.nbd.2013.04.015_bb0075 article-title: The reaction of neuroglobin with potential redox protein partners cytochrome b5 and cytochrome c publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.08.003 – volume: 39 start-page: 1869 year: 2008 ident: 10.1016/j.nbd.2013.04.015_bb0220 article-title: Effects of neuroglobin overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia publication-title: Stroke doi: 10.1161/STROKEAHA.107.506022 – volume: 341 start-page: 203 year: 2005 ident: 10.1016/j.nbd.2013.04.015_bb0235 article-title: A combination of mutations enhances the neurotropism of AAV-2 publication-title: Virology doi: 10.1016/j.virol.2005.06.051 – volume: 341 start-page: 233 issue: Pt 2 year: 1999 ident: 10.1016/j.nbd.2013.04.015_bb0055 article-title: The mitochondrial permeability transition pore and its role in cell death publication-title: Biochem. J. doi: 10.1042/0264-6021:3410233 – volume: 20 start-page: 425 year: 2006 ident: 10.1016/j.nbd.2013.04.015_bb0110 article-title: Mitochondrial permeability transition in cardiac cell injury and death publication-title: Cardiovasc. Drugs Ther. doi: 10.1007/s10557-006-0642-0 – volume: 17 start-page: 2202 year: 2003 ident: 10.1016/j.nbd.2013.04.015_bb0155 article-title: Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria publication-title: FASEB J. doi: 10.1096/fj.03-0012com – volume: 1802 start-page: 80 year: 2010 ident: 10.1016/j.nbd.2013.04.015_bb0180 article-title: Mitochondria, oxidative metabolism and cell death in stroke publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2009.09.003 – volume: 7 start-page: 475 year: 2002 ident: 10.1016/j.nbd.2013.04.015_bb0025 article-title: Oxygen deprivation induced cell death: an update publication-title: Apoptosis doi: 10.1023/A:1020668923852 – volume: 53 start-page: 728 year: 1998 ident: 10.1016/j.nbd.2013.04.015_bb0070 article-title: Calcium-induced activation of the mitochondrial permeability transition in hippocampal neurons publication-title: J. Neurosci. Res. doi: 10.1002/(SICI)1097-4547(19980915)53:6<728::AID-JNR10>3.0.CO;2-U – volume: 55 start-page: 534 year: 2002 ident: 10.1016/j.nbd.2013.04.015_bb0105 article-title: Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? publication-title: Cardiovasc. Res. doi: 10.1016/S0008-6363(02)00455-8 – volume: 8 start-page: 20 year: 2008 ident: 10.1016/j.nbd.2013.04.015_bb0100 article-title: Neuroglobin: an endogenous neuroprotectant publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2007.09.003 – volume: 128 start-page: 729 year: 2004 ident: 10.1016/j.nbd.2013.04.015_bb0135 article-title: Na(+) and Ca(2+) homeostasis pathways, cell death and protection after oxygen–glucose-deprivation in organotypic hippocampal slice cultures publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.06.074 – volume: 43 start-page: 3 year: 2011 ident: 10.1016/j.nbd.2013.04.015_bb0195 article-title: Influence of aging on membrane permeability transition in brain mitochondria publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-011-9337-8 – volume: 330 start-page: 591 year: 2005 ident: 10.1016/j.nbd.2013.04.015_bb0205 article-title: Preparation and characterization of a chimeric zebrafish–human neuroglobin engineered by module substitution publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2005.03.021 – volume: 162 start-page: 396 year: 2009 ident: 10.1016/j.nbd.2013.04.015_bb0245 article-title: Neuroglobin-overexpression alters hypoxic response gene expression in primary neuron culture following oxygen glucose deprivation publication-title: Neuroscience doi: 10.1016/j.neuroscience.2009.04.055 – volume: 212 start-page: 1423 year: 2009 ident: 10.1016/j.nbd.2013.04.015_bb0035 article-title: What is the function of neuroglobin? publication-title: J. Exp. Biol. doi: 10.1242/jeb.000729 – volume: 152 start-page: 237 year: 2001 ident: 10.1016/j.nbd.2013.04.015_bb0170 article-title: Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells publication-title: J. Cell Biol. doi: 10.1083/jcb.152.2.237 – volume: 12 start-page: 24 year: 2012 ident: 10.1016/j.nbd.2013.04.015_bb0175 article-title: VDAC, a multi-functional mitochondrial protein as a pharmacological target publication-title: Mitochondrion doi: 10.1016/j.mito.2011.04.001 – volume: 296 start-page: H333 year: 2009 ident: 10.1016/j.nbd.2013.04.015_bb0010 article-title: Aldose reductase mediates myocardial ischemia–reperfusion injury in part by opening mitochondrial permeability transition pore publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.01012.2008 – volume: 87 start-page: 99 year: 2007 ident: 10.1016/j.nbd.2013.04.015_bb0265 article-title: Mitochondrial membrane permeabilization in cell death publication-title: Physiol. Rev. doi: 10.1152/physrev.00013.2006 – volume: 87 start-page: 4543 year: 1990 ident: 10.1016/j.nbd.2013.04.015_bb0095 article-title: Central nervous system neurons migrate on astroglial fibers from heterotypic brain regions in vitro publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.87.12.4543 – volume: 70 start-page: 120 year: 1998 ident: 10.1016/j.nbd.2013.04.015_bb0185 article-title: Conditioning heat stress reduces excitotoxic and apoptotic components of oxygen-glucose deprivation-induced neuronal death in vitro publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.1998.70010120.x – volume: 398 start-page: 114 year: 2007 ident: 10.1016/j.nbd.2013.04.015_bb0080 article-title: Anoxia or oxygen and glucose deprivation in SH-SY5Y cells: a step closer to the unraveling of neuroglobin and cytoglobin functions publication-title: Gene doi: 10.1016/j.gene.2007.03.022 – volume: 41 start-page: 557 year: 2010 ident: 10.1016/j.nbd.2013.04.015_bb0115 article-title: Neuroglobin expression in ischemic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.109.567149 – volume: 11 start-page: 3194 year: 1999 ident: 10.1016/j.nbd.2013.04.015_bb0125 article-title: Cyclosporin A and its nonimmunosuppressive analogue N-Me-Val-4-cyclosporin A mitigate glucose/oxygen deprivation-induced damage to rat cultured hippocampal neurons publication-title: Eur. J. Neurosci. doi: 10.1046/j.1460-9568.1999.00743.x – volume: 180 start-page: 7485 year: 2008 ident: 10.1016/j.nbd.2013.04.015_bb0145 article-title: Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity publication-title: J. Immunol. doi: 10.4049/jimmunol.180.11.7485 – volume: 102 start-page: 12005 year: 2005 ident: 10.1016/j.nbd.2013.04.015_bb0160 article-title: Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0505294102 – volume: 22 start-page: 206 year: 2002 ident: 10.1016/j.nbd.2013.04.015_bb0215 article-title: Role of intracellular calcium stores in cell death from oxygen–glucose deprivation in a neuronal cell line publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200202000-00008 – volume: 200 start-page: 99 year: 2012 ident: 10.1016/j.nbd.2013.04.015_bb0255 article-title: Identification of neuroglobin-interacting proteins using yeast two-hybrid screening publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.10.046 – volume: 278 start-page: 1932 year: 2003 ident: 10.1016/j.nbd.2013.04.015_bb0165 article-title: How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina publication-title: J. Biol. Chem. doi: 10.1074/jbc.M209909200 – volume: 277 start-page: 34793 year: 2002 ident: 10.1016/j.nbd.2013.04.015_bb0050 article-title: Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A publication-title: J. Biol. Chem. doi: 10.1074/jbc.M202191200 – volume: 102 start-page: 8483 year: 2005 ident: 10.1016/j.nbd.2013.04.015_bb0030 article-title: Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0408766102 – volume: 10 start-page: 1485 year: 2003 ident: 10.1016/j.nbd.2013.04.015_bb0210 article-title: Cyclophilin D as a drug target publication-title: Curr. Med. Chem. doi: 10.2174/0929867033457160 – volume: 10 start-page: 219 year: 2002 ident: 10.1016/j.nbd.2013.04.015_bb0200 article-title: Differential neuroprotection by cyclosporin A and FK506 following ischemia corresponds with differing abilities to inhibit calcineurin and the mitochondrial permeability transition publication-title: Neurobiol. Dis. doi: 10.1006/nbdi.2002.0514 – volume: 346 start-page: 114 year: 2003 ident: 10.1016/j.nbd.2013.04.015_bb0230 article-title: Localization of neuroglobin protein in the mouse brain publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(03)00563-9 – volume: 31 start-page: 122 year: 2009 ident: 10.1016/j.nbd.2013.04.015_bb0240 article-title: Neuroprotective roles and mechanisms of neuroglobin publication-title: Neurol. Res. doi: 10.1179/174313209X389866 – volume: 218 start-page: 235 year: 2012 ident: 10.1016/j.nbd.2013.04.015_bb0260 article-title: Mitochondrial distribution of neuroglobin and its response to oxygen–glucose deprivation in primary-cultured mouse cortical neurons publication-title: Neuroscience doi: 10.1016/j.neuroscience.2012.05.054 – volume: 11 start-page: 2306 year: 2010 ident: 10.1016/j.nbd.2013.04.015_bb0020 article-title: An antiapoptotic neuroprotective role for neuroglobin publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms11062306 – volume: 16 start-page: 607 year: 2002 ident: 10.1016/j.nbd.2013.04.015_bb0065 article-title: The permeability transition pore signals apoptosis by directing Bax translocation and multimerization publication-title: FASEB J. doi: 10.1096/fj.01-0269fje – volume: 1818 start-page: 1444 year: 2012 ident: 10.1016/j.nbd.2013.04.015_bb0140 article-title: The role of VDAC in cell death: friend or foe? publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2011.10.025 – reference: 12095984 - J Biol Chem. 2002 Sep 20;277(38):34793-9 – reference: 10510183 - Eur J Neurosci. 1999 Sep;11(9):3194-8 – reference: 11919169 - FASEB J. 2002 Apr;16(6):607-9 – reference: 18403737 - Stroke. 2008 Jun;39(6):1869-74 – reference: 15662830 - Neurochem Res. 2004 Nov;29(11):1943-9 – reference: 16914148 - FEBS Lett. 2006 Sep 4;580(20):4884-8 – reference: 16495942 - Nat Rev Neurosci. 2006 Mar;7(3):207-19 – reference: 15932948 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8483-8 – reference: 21311961 - J Bioenerg Biomembr. 2011 Feb;43(1):3-10 – reference: 20075359 - Stroke. 2010 Mar;41(3):557-9 – reference: 8567677 - J Biol Chem. 1996 Jan 26;271(4):2185-92 – reference: 22062421 - Biochim Biophys Acta. 2012 Jun;1818(6):1444-50 – reference: 15582755 - Neurobiol Aging. 2005 Feb;26(2):275-8 – reference: 16102794 - Virology. 2005 Oct 25;341(2):203-14 – reference: 22079573 - Neuroscience. 2012 Jan 3;200:99-105 – reference: 17942367 - Curr Opin Pharmacol. 2008 Feb;8(1):20-4 – reference: 9874241 - Eur J Biochem. 1998 Dec 1;258(2):729-35 – reference: 11266442 - J Cell Biol. 2001 Jan 22;152(2):237-50 – reference: 16676004 - Cell Death Differ. 2006 Sep;13(9):1423-33 – reference: 22659017 - Neuroscience. 2012 Aug 30;218:235-42 – reference: 12409290 - J Biol Chem. 2003 Jan 17;278(3):1932-5 – reference: 10393078 - Biochem J. 1999 Jul 15;341 ( Pt 2):233-49 – reference: 14656982 - FASEB J. 2003 Dec;17(15):2202-8 – reference: 19298751 - Neurol Res. 2009 Mar;31(2):122-7 – reference: 9422354 - J Neurochem. 1998 Jan;70(1):120-9 – reference: 16103352 - Proc Natl Acad Sci U S A. 2005 Aug 23;102(34):12005-10 – reference: 20640154 - Int J Mol Sci. 2010;11(6):2306-21 – reference: 11823718 - J Cereb Blood Flow Metab. 2002 Feb;22(2):206-14 – reference: 9753200 - J Neurosci Res. 1998 Sep 15;53(6):728-41 – reference: 19060123 - Am J Physiol Heart Circ Physiol. 2009 Feb;296(2):H333-41 – reference: 19401220 - Neuroscience. 2009 Aug 18;162(2):396-403 – reference: 12850561 - Neurosci Lett. 2003 Jul 31;346(1-2):114-6 – reference: 17417626 - Nat Cell Biol. 2007 May;9(5):550-5 – reference: 11029004 - Nature. 2000 Sep 28;407(6803):520-3 – reference: 18490749 - J Immunol. 2008 Jun 1;180(11):7485-96 – reference: 21967817 - Am J Pathol. 2011 Dec;179(6):2788-97 – reference: 18025470 - Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19114-9 – reference: 12160950 - Cardiovasc Res. 2002 Aug 15;55(3):534-43 – reference: 12871122 - Curr Med Chem. 2003 Aug;10(16):1485-506 – reference: 19411534 - J Exp Biol. 2009 May;212(Pt 10):1423-8 – reference: 15464281 - Neuroscience. 2004;128(4):729-40 – reference: 12270685 - Neurobiol Dis. 2002 Aug;10(3):219-33 – reference: 21530686 - Mitochondrion. 2012 Jan;12(1):24-34 – reference: 15140880 - J Biol Chem. 2004 Jun 4;279(23):24116-22 – reference: 19751827 - Biochim Biophys Acta. 2010 Jan;1802(1):80-91 – reference: 22837676 - Int J Mol Sci. 2012;13(6):6995-7014 – reference: 17171295 - Cardiovasc Drugs Ther. 2006 Dec;20(6):425-32 – reference: 2352935 - Proc Natl Acad Sci U S A. 1990 Jun;87(12):4543-7 – reference: 15796924 - Biochem Biophys Res Commun. 2005 May 6;330(2):591-7 – reference: 17532579 - Gene. 2007 Aug 15;398(1-2):114-22 – reference: 12370489 - Apoptosis. 2002 Dec;7(6):475-82 – reference: 18711728 - J Neurosci Res. 2009 Jan;87(1):164-70 |
| SSID | ssj0011597 |
| Score | 2.3745637 |
| Snippet | Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our... Abstract Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 95 |
| SubjectTerms | Animals Blotting, Western Cell Death - physiology Cerebral Cortex - cytology Cerebral Cortex - pathology Cyclosporine - pharmacology Cytochrome c Cytochromes c - metabolism Dependovirus - genetics Globins - biosynthesis Globins - physiology Glucose - deficiency Hypoxia - pathology Immunohistochemistry Immunoprecipitation L-Lactate Dehydrogenase - metabolism Mice Mitochondria - drug effects Mitochondria permeability transition pore (mPTP) Mitochondria swelling Mitochondrial Swelling - drug effects NAD - metabolism NAD+ release Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - physiology Neuroglobin Neurology Neurons - drug effects Neurons - pathology Oxygen/glucose deprivation Permeability Primary Cell Culture Recombinant Proteins - metabolism RNA, Small Interfering - genetics Voltage-Dependent Anion Channels - metabolism |
| Title | Neuroglobin overexpression inhibits oxygen–glucose deprivation-induced mitochondrial permeability transition pore opening in primary cultured mouse cortical neurons |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0969996113001290 https://www.clinicalkey.es/playcontent/1-s2.0-S0969996113001290 https://dx.doi.org/10.1016/j.nbd.2013.04.015 https://www.ncbi.nlm.nih.gov/pubmed/23639789 https://www.proquest.com/docview/1365985399 https://pubmed.ncbi.nlm.nih.gov/PMC3674158 https://doaj.org/article/9097453e84d944298b71bd06b6e40d7e |
| Volume | 56 |
| WOSCitedRecordID | wos000323853300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-953X dateEnd: 20191130 omitProxy: false ssIdentifier: ssj0011597 issn: 0969-9961 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagIMQFQctP-FkZCXFAinDsJHaOC2oFCCokQNqbFcdeNRX1Vk1adW99B96BB-NJmHGc1S6g9sJ1Y8cbz2R-PF--IeSFaNAsWpcWypkU_LVN64KbVDijbCXFnA88sx_l_r6azarPa62-EBM20AMPG_e6YhDxFsKp3FY5GE9lZGYsK03pcmalQ-vLZDUmU7F-AE5ajjXMgObyBmlBMxF4TbEH7poXCmT9G87o72DzT8zkmhPau0vuxOiRTod_fY9cc36b7Ew9ZM5HS_qSBjxnOCjfJrc-xbL5DvkZKDiQ-6P1FDGb7jziXz1t_UFr2r6ji_MlKNOvix8RxU4RJBt7n6WQuYMOWHoEBgAMpreot_QYzLobiL6XtEevFwBgFGJ6R7EvF_hFWIAeD5QWdKD5wNssTmEBSHzDSToNpJq-u0--7e1-ffsujQ0a0qbkvE9LI0vJGkhBS8GcK5Bfrha1LeoG4gYHgs5FriyEaNmci3nhmtpI2-QcBmdlbcQDsuUX3j0i1ECiNodUtDRW5nMlK2sgkXGmRr47WbGEsFFguons5dhE47seYWqHGmSsUcaa5RpknJBXqynxOS8b_Aa1YDUQWbfDD6CLOuqivkoXE8JHHdLjh61giuFG7WUry39Ncl00Jp3OdMc1018g28T0NMMKJB4fJiRfzYzx0hAHXbXg81G9NdgSLBDV3oHcNUIeK4VcxQl5OKj7akO4wBKwgity40XY2LHNK749CHzlosSwVT3-H1v8hNzmoSEJQjCfkq3-5NQ9Izebs77tTibkupypCbkxfb87-zAJJuE3kgppyA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuroglobin+overexpression+inhibits+oxygen-glucose+deprivation-induced+mitochondrial+permeability+transition+pore+opening+in+primary+cultured+mouse+cortical+neurons&rft.jtitle=Neurobiology+of+disease&rft.au=Yu%2C+Zhanyang&rft.au=Liu%2C+Ning&rft.au=Li%2C+Yadan&rft.au=Xu%2C+Jianfeng&rft.date=2013-08-01&rft.issn=1095-953X&rft.eissn=1095-953X&rft.volume=56&rft.spage=95&rft_id=info:doi/10.1016%2Fj.nbd.2013.04.015&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F09699961%2FS0969996113X00075%2Fcov150h.gif |