Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the str...
Uložené v:
| Vydané v: | PLoS pathogens Ročník 8; číslo 5; s. e1002742 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Public Library of Science
01.05.2012
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1553-7374, 1553-7366, 1553-7374 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. |
|---|---|
| AbstractList |
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission. During their development in the mosquito vector, Plasmodium parasites undergo complex developmental steps and incur severe bottlenecks. The largest parasite losses occur in the mosquito midgut where robust immune responses are activated. Variability in P. falciparum infection levels indicates that parasite transmission is the result of complex interactions between vectors and parasites, which rely on both genetic and environmental factors. However, in contrast to genetically encoded factors, the role of environmental factors in parasite transmission has received little attention. In this study, we characterized the midgut microbiota of mosquitoes derived from diverse breeding sites using pyrosequencing. We show that the composition of the midgut microbiota in adult mosquitoes exhibits great variability, which is likely determined by bacterial richness of the larval habitats. When field mosquitoes were collected at late immature stages in natural breeding sites and the emerging females challenged with Plasmodium falciparum in the laboratory, significant correlation was observed between P. falciparum infection and the presence of Enterobacteriaceae in the mosquito midgut. Greater understanding of these malaria-bacteria interactions may lead to novel malaria control strategies. |
| Author | Tchioffo, Majoline T. Shahbazkia, Hamid R. Marie, Alexandra Nsango, Sandrine E. Bachar, Dipankar Abate, Luc Morlais, Isabelle Awono-Ambene, Parfait H. Christen, Richard Levashina, Elena A. Boissière, Anne |
| AuthorAffiliation | Institut Pasteur, France 1 UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France 5 Área Departamental de Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal 4 CNRS UPR 9022, Inserm U963, Université de Strasbourg, Strasbourg, France 3 UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France 2 Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun |
| AuthorAffiliation_xml | – name: 1 UMR MIVEGEC (IRD 224- CNRS 5290- UM1- UM2), Montpellier, France – name: 3 UMR 7138 Systématique Adaptation Evolution, Université de Nice-Sophia Antipolis, Parc Valrose, France – name: 4 CNRS UPR 9022, Inserm U963, Université de Strasbourg, Strasbourg, France – name: 5 Área Departamental de Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal – name: Institut Pasteur, France – name: 2 Laboratoire de Recherche sur le Paludisme, IRD-OCEAC, BP288, Yaoundé, Cameroun |
| Author_xml | – sequence: 1 givenname: Anne surname: Boissière fullname: Boissière, Anne – sequence: 2 givenname: Majoline T. surname: Tchioffo fullname: Tchioffo, Majoline T. – sequence: 3 givenname: Dipankar surname: Bachar fullname: Bachar, Dipankar – sequence: 4 givenname: Luc surname: Abate fullname: Abate, Luc – sequence: 5 givenname: Alexandra surname: Marie fullname: Marie, Alexandra – sequence: 6 givenname: Sandrine E. surname: Nsango fullname: Nsango, Sandrine E. – sequence: 7 givenname: Hamid R. surname: Shahbazkia fullname: Shahbazkia, Hamid R. – sequence: 8 givenname: Parfait H. surname: Awono-Ambene fullname: Awono-Ambene, Parfait H. – sequence: 9 givenname: Elena A. surname: Levashina fullname: Levashina, Elena A. – sequence: 10 givenname: Richard surname: Christen fullname: Christen, Richard – sequence: 11 givenname: Isabelle surname: Morlais fullname: Morlais, Isabelle |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22693451$$D View this record in MEDLINE/PubMed https://hal.science/hal-01546176$$DView record in HAL |
| BookMark | eNp9UktvEzEQXqEi2gb-AQJLXMohwa99cUCKKqCREsEBuFqztjdx5F1vbW8p_x6nSas2Qpw8Gn-P8fg7z0561-sse03wjLCSfNi60fdgZ8MAcUYwpiWnz7IzkudsWrKSnzyqT7PzELYYc8JI8SI7pbSoGc_JWXa7Mmo9RrQy0rvGuAjItShuNFqBBW8ArVy4Hk106JeW0Xk0792w0VYHtIauMaAR9Aot-qg9yGhcH9BvEzfou4XQOWXGDrVgpRnAp3LRt_oO9TJ7ntpBvzqck-znl88_Lq-my29fF5fz5VQWlMRpzRgGCjnVShPJuYRC4bZtK6BtrkhFS6VwxRpc55ymp1LS5o2mDWkogG40m2Rv97qDdUEclhYEoVVNMGekSojFHqEcbMXgTQf-j3BgxF3D-bUAH420WuhW0gKrqoJWcV5WkHzTGGnCvOIlZUnr08FtbDqtpO6jB_tE9OlNbzZi7W4EYwWv03dNsvd7gc0R7Wq-FLseJjkvSFnckIS9OJh5dz3qEEVngtTWQq_dmN6IKc5xXeKd7Lsj6L838ebx9A_-93FJAL4HpLCE4HX7ACFY7FJ5Lyt2qRSHVCbaxyOaNBF2KUg7MPb_5L-EO-zS |
| CitedBy_id | crossref_primary_10_1016_j_chom_2017_10_016 crossref_primary_10_3389_fimmu_2022_841835 crossref_primary_10_3390_v15061309 crossref_primary_10_1016_j_scitotenv_2022_153694 crossref_primary_10_1038_s41598_017_19013_2 crossref_primary_10_1186_s12915_021_00963_z crossref_primary_10_1016_j_pt_2012_11_004 crossref_primary_10_1111_1574_6976_12025 crossref_primary_10_1186_s13071_023_05749_6 crossref_primary_10_1073_pnas_1719063115 crossref_primary_10_3389_fcimb_2017_00508 crossref_primary_10_1093_femsre_fuw018 crossref_primary_10_1007_s11274_016_2066_8 crossref_primary_10_3389_fmicb_2022_971083 crossref_primary_10_1111_mve_12672 crossref_primary_10_3389_fmicb_2019_01580 crossref_primary_10_3389_fmicb_2020_596352 crossref_primary_10_1038_s41598_022_10190_3 crossref_primary_10_1186_s13071_015_0635_6 crossref_primary_10_1371_journal_pntd_0005677 crossref_primary_10_1371_journal_pone_0222145 crossref_primary_10_1016_j_actatropica_2024_107284 crossref_primary_10_1016_j_actatropica_2017_11_004 crossref_primary_10_1038_s41564_018_0214_7 crossref_primary_10_1186_s12915_014_0087_z crossref_primary_10_1007_s11033_019_05121_x crossref_primary_10_1186_1756_3305_6_146 crossref_primary_10_1186_1472_6785_13_1 crossref_primary_10_1371_journal_pone_0246452 crossref_primary_10_1155_2016_5304028 crossref_primary_10_3389_fmicb_2016_00302 crossref_primary_10_1089_omi_2017_0130 crossref_primary_10_1038_ncomms6921 crossref_primary_10_1186_s43088_024_00579_6 crossref_primary_10_1155_2020_8732473 crossref_primary_10_1371_journal_pntd_0003923 crossref_primary_10_1371_journal_pntd_0006638 crossref_primary_10_1371_journal_ppat_1003365 crossref_primary_10_3389_fgene_2020_504354 crossref_primary_10_3389_fmicb_2021_635772 crossref_primary_10_1038_s41598_018_20367_4 crossref_primary_10_1099_mic_0_000086 crossref_primary_10_1371_journal_pntd_0005426 crossref_primary_10_1038_srep26276 crossref_primary_10_1002_cbic_201800124 crossref_primary_10_1186_s40168_020_00987_7 crossref_primary_10_1186_s12866_022_02571_5 crossref_primary_10_1038_s41598_023_40432_x crossref_primary_10_1111_cmi_12604 crossref_primary_10_3389_fmicb_2020_00965 crossref_primary_10_1371_journal_pone_0077619 crossref_primary_10_1371_journal_ppat_1013154 crossref_primary_10_1016_j_mehy_2015_12_005 crossref_primary_10_1371_journal_pone_0190352 crossref_primary_10_1128_spectrum_01666_23 crossref_primary_10_1080_10807039_2025_2484229 crossref_primary_10_1186_s13071_021_04579_8 crossref_primary_10_1038_nutd_2015_3 crossref_primary_10_1038_s41598_018_34640_z crossref_primary_10_1073_pnas_1703546114 crossref_primary_10_1093_jme_tjab028 crossref_primary_10_1016_j_meegid_2014_09_029 crossref_primary_10_1016_j_meegid_2014_04_006 crossref_primary_10_1038_s41564_021_00899_8 crossref_primary_10_1007_s12010_023_04747_9 crossref_primary_10_3389_fcimb_2022_1058926 crossref_primary_10_1093_ofid_ofw074 crossref_primary_10_1016_j_actatropica_2016_08_018 crossref_primary_10_3390_microorganisms10020332 crossref_primary_10_1371_journal_pntd_0007383 crossref_primary_10_1016_j_meegid_2024_105650 crossref_primary_10_1038_s41598_021_87017_0 crossref_primary_10_1371_journal_pone_0238931 crossref_primary_10_1007_s42690_022_00761_2 crossref_primary_10_3389_fcimb_2023_1162918 crossref_primary_10_1016_j_actatropica_2016_01_009 crossref_primary_10_1128_JB_01173_12 crossref_primary_10_1007_s42690_020_00173_0 crossref_primary_10_1007_s00248_018_1289_7 crossref_primary_10_1186_s13071_020_04491_7 crossref_primary_10_1016_j_exppara_2013_04_003 crossref_primary_10_1093_cid_ciy374 crossref_primary_10_3390_ijerph19063480 crossref_primary_10_3389_fmicb_2025_1656709 crossref_primary_10_1186_s13071_019_3287_0 crossref_primary_10_1007_s11829_014_9293_4 crossref_primary_10_1016_j_actatropica_2019_105174 crossref_primary_10_1016_j_cois_2014_07_004 crossref_primary_10_1186_s13071_015_1252_0 crossref_primary_10_1186_s12866_018_1290_9 crossref_primary_10_1186_1756_3305_7_419 crossref_primary_10_1111_1462_2920_12381 crossref_primary_10_1016_j_tibtech_2013_01_001 crossref_primary_10_1007_s00248_024_02444_6 crossref_primary_10_1371_journal_pone_0120664 crossref_primary_10_1371_journal_pntd_0011234 crossref_primary_10_3389_fcimb_2025_1649545 crossref_primary_10_1136_bmjgast_2016_000080 crossref_primary_10_1371_journal_pone_0097715 crossref_primary_10_1186_1756_3305_6_182 crossref_primary_10_1371_journal_pone_0218907 crossref_primary_10_1371_journal_pntd_0007412 crossref_primary_10_3390_microorganisms9122433 crossref_primary_10_1016_j_virol_2016_07_031 crossref_primary_10_1111_mve_12754 crossref_primary_10_1371_journal_pntd_0007883 crossref_primary_10_1371_journal_pntd_0008059 crossref_primary_10_1016_j_coviro_2015_08_011 crossref_primary_10_1186_s12866_024_03593_x crossref_primary_10_1128_Spectrum_00852_21 crossref_primary_10_1038_nmicrobiol_2016_203 crossref_primary_10_1038_srep24207 crossref_primary_10_1111_een_13360 crossref_primary_10_1371_journal_pbio_3002897 crossref_primary_10_1073_pnas_1702983114 crossref_primary_10_1038_ismej_2017_133 crossref_primary_10_1159_000443883 crossref_primary_10_1007_s00436_022_07576_7 crossref_primary_10_1186_s12866_020_01861_0 crossref_primary_10_1007_s13199_022_00836_1 crossref_primary_10_1128_AEM_03733_14 crossref_primary_10_1371_journal_pntd_0008615 crossref_primary_10_1371_journal_pone_0072522 crossref_primary_10_1002_ecm_1346 crossref_primary_10_1016_j_pt_2019_12_001 crossref_primary_10_1038_s41598_020_70745_0 crossref_primary_10_1007_s12010_021_03706_6 crossref_primary_10_1590_0074_0276140194 crossref_primary_10_3390_v15030589 crossref_primary_10_1371_journal_pone_0289733 crossref_primary_10_1128_MRA_00509_23 crossref_primary_10_1016_j_csbj_2021_12_019 crossref_primary_10_1186_s13071_018_3036_9 crossref_primary_10_1186_s40168_018_0528_y crossref_primary_10_1371_journal_ppat_1004646 crossref_primary_10_1590_0074_02760140266 crossref_primary_10_1242_jeb_245714 crossref_primary_10_15446_abc_v28n3_105865 crossref_primary_10_1186_s13071_016_1660_9 crossref_primary_10_3390_insects13121165 crossref_primary_10_1371_journal_pone_0058026 crossref_primary_10_1016_j_actatropica_2012_07_006 crossref_primary_10_1186_s12936_015_0912_z crossref_primary_10_1371_journal_ppat_1003790 crossref_primary_10_1371_journal_ppat_1007470 crossref_primary_10_1111_mec_14436 crossref_primary_10_1128_AEM_00079_14 crossref_primary_10_1016_j_cois_2022_100875 crossref_primary_10_1186_s13071_016_1766_0 crossref_primary_10_1186_s12866_018_1288_3 crossref_primary_10_1073_pnas_1504031112 crossref_primary_10_1186_s12936_021_03855_3 crossref_primary_10_3389_fmicb_2015_01500 crossref_primary_10_1073_pnas_1613422114 crossref_primary_10_3201_eid2308_161565 crossref_primary_10_1186_s13071_016_1767_z crossref_primary_10_1186_s13071_019_3761_8 crossref_primary_10_3390_v6114294 crossref_primary_10_1186_s40168_018_0444_1 crossref_primary_10_3389_fmicb_2022_891573 crossref_primary_10_1038_s41598_017_03487_1 crossref_primary_10_3389_fmicb_2023_1157613 crossref_primary_10_1186_1471_2180_13_70 crossref_primary_10_1371_journal_pone_0143541 crossref_primary_10_1603_EN14031 crossref_primary_10_1016_j_molbiopara_2023_111543 crossref_primary_10_1186_s12936_018_2343_0 crossref_primary_10_1371_journal_ppat_1004871 crossref_primary_10_1016_j_freeradbiomed_2016_11_031 crossref_primary_10_3390_tropicalmed9040084 crossref_primary_10_1186_s13071_017_2593_7 crossref_primary_10_1371_journal_pntd_0005273 crossref_primary_10_1186_s12866_025_04114_0 crossref_primary_10_1093_ofid_ofz398 crossref_primary_10_1038_s41598_020_60075_6 crossref_primary_10_1371_journal_pone_0194899 crossref_primary_10_3389_fmicb_2020_00306 crossref_primary_10_1016_j_phrs_2020_104809 crossref_primary_10_1038_s41598_022_05437_y crossref_primary_10_1186_s12936_016_1227_4 crossref_primary_10_4102_ajlm_v7i2_784 crossref_primary_10_1007_s00248_020_01544_3 crossref_primary_10_1016_j_actatropica_2024_107439 crossref_primary_10_1186_s12936_024_04870_w crossref_primary_10_3389_fphar_2016_00104 crossref_primary_10_1007_s00248_021_01743_6 crossref_primary_10_1371_journal_ppat_1003897 crossref_primary_10_1590_0074_02760160373 crossref_primary_10_3389_fmicb_2019_02036 crossref_primary_10_1093_jisesa_iey118 crossref_primary_10_1016_j_jinsphys_2021_104295 crossref_primary_10_3390_microorganisms13020248 crossref_primary_10_3389_fmicb_2016_01351 crossref_primary_10_1080_19490976_2021_1897208 crossref_primary_10_1089_vbz_2014_1705 crossref_primary_10_1007_s42690_022_00789_4 crossref_primary_10_1186_s12936_018_2535_7 crossref_primary_10_3389_fcimb_2018_00308 crossref_primary_10_1186_s13071_021_05069_7 crossref_primary_10_3389_fmicb_2021_650743 crossref_primary_10_1186_s13059_016_0907_2 crossref_primary_10_1186_s40168_022_01256_5 crossref_primary_10_1016_j_ibmb_2012_10_006 crossref_primary_10_1186_gb_2013_14_2_r19 crossref_primary_10_1371_journal_pone_0251790 crossref_primary_10_1155_2024_1832200 crossref_primary_10_1371_journal_pntd_0010609 crossref_primary_10_1080_01650424_2015_1041396 crossref_primary_10_3389_frchs_2023_1242716 crossref_primary_10_1186_s12936_016_1468_2 crossref_primary_10_1111_pim_12043 crossref_primary_10_1038_s41598_023_35641_3 crossref_primary_10_1002_mbo3_1026 crossref_primary_10_1371_journal_pntd_0006221 crossref_primary_10_1038_s41598_018_20967_0 crossref_primary_10_1007_s10682_022_10197_2 crossref_primary_10_1016_j_chom_2013_12_001 crossref_primary_10_1038_s41579_020_0400_5 crossref_primary_10_1186_s13071_016_1776_y crossref_primary_10_3389_fcimb_2014_00059 crossref_primary_10_3389_fmicb_2016_01485 crossref_primary_10_4103_0972_9062_289392 crossref_primary_10_3389_fmicb_2018_02160 crossref_primary_10_3390_microorganisms11051145 crossref_primary_10_1016_j_actatropica_2018_07_005 crossref_primary_10_1128_Spectrum_00157_21 crossref_primary_10_1016_j_jff_2017_12_046 crossref_primary_10_1371_journal_pntd_0003513 crossref_primary_10_1007_s10750_018_3671_3 crossref_primary_10_1016_j_exppara_2014_12_010 crossref_primary_10_1371_journal_pntd_0005377 crossref_primary_10_47430_ujmr_25103_026 crossref_primary_10_1371_journal_pntd_0012458 crossref_primary_10_1007_s00284_015_0774_1 crossref_primary_10_3389_fmicb_2021_775078 crossref_primary_10_3390_pathogens9090679 crossref_primary_10_1007_s00248_018_1175_3 crossref_primary_10_3389_fmicb_2015_00970 crossref_primary_10_3390_microorganisms10050882 crossref_primary_10_1038_s41598_024_68898_3 crossref_primary_10_1016_j_exger_2014_11_001 crossref_primary_10_1371_journal_pntd_0005128 crossref_primary_10_1186_1475_2875_12_453 crossref_primary_10_1186_s13071_016_1299_6 crossref_primary_10_1186_s13071_021_04900_5 crossref_primary_10_1371_journal_ppat_1007891 crossref_primary_10_3390_insects10020049 crossref_primary_10_1093_jme_tjx199 crossref_primary_10_7717_peerj_11633 crossref_primary_10_1074_jbc_M117_797787 crossref_primary_10_3389_fmicb_2021_645362 crossref_primary_10_3389_fmicb_2022_870462 crossref_primary_10_1371_journal_pone_0123777 crossref_primary_10_3389_fmicb_2022_761459 crossref_primary_10_1007_s10123_025_00688_x crossref_primary_10_1073_pnas_1504887113 crossref_primary_10_1016_j_cois_2018_05_008 crossref_primary_10_3389_fcimb_2025_1568103 crossref_primary_10_1007_s00248_019_01369_9 crossref_primary_10_1016_j_jip_2017_10_008 crossref_primary_10_1371_journal_pone_0118634 crossref_primary_10_1038_s41598_023_38654_0 crossref_primary_10_1093_femsec_fiad140 crossref_primary_10_1186_s12866_015_0475_8 crossref_primary_10_1186_s12936_021_03754_7 crossref_primary_10_1038_ismej_2013_86 crossref_primary_10_1186_s13071_020_04170_7 crossref_primary_10_1371_journal_pone_0054820 crossref_primary_10_1016_j_meegid_2016_05_002 crossref_primary_10_1093_jme_tju011 crossref_primary_10_1016_j_jinsphys_2012_10_011 crossref_primary_10_1128_Spectrum_02005_21 crossref_primary_10_1155_2020_4065315 crossref_primary_10_1371_journal_pntd_0007361 crossref_primary_10_3389_fmicb_2017_01464 crossref_primary_10_1093_procel_pwad021 crossref_primary_10_1051_jbio_2019003 crossref_primary_10_1371_journal_pone_0080453 crossref_primary_10_1371_journal_pone_0081663 crossref_primary_10_1371_journal_pone_0293946 crossref_primary_10_3389_fmicb_2021_630438 crossref_primary_10_1007_s00248_015_0709_1 crossref_primary_10_1111_mve_12583 crossref_primary_10_1186_s12936_021_03606_4 crossref_primary_10_3389_fmicb_2022_891151 crossref_primary_10_3390_microorganisms12030568 crossref_primary_10_1186_s13071_018_2784_x crossref_primary_10_1038_srep44565 crossref_primary_10_3390_microorganisms10061141 crossref_primary_10_1371_journal_pone_0223543 crossref_primary_10_3389_fmicb_2021_625539 crossref_primary_10_1073_pnas_2101080118 crossref_primary_10_1186_s13071_015_1049_1 crossref_primary_10_1111_mec_16901 crossref_primary_10_1371_journal_pone_0161118 crossref_primary_10_3389_fmicb_2016_02095 crossref_primary_10_3389_fmicb_2023_1208633 crossref_primary_10_1038_s41598_021_87946_w crossref_primary_10_1016_j_pt_2020_04_010 crossref_primary_10_1186_s12864_024_10153_0 crossref_primary_10_1093_jme_tjab184 crossref_primary_10_1111_mec_13877 crossref_primary_10_1016_j_phymed_2019_153157 crossref_primary_10_1093_femsec_fiy058 crossref_primary_10_1186_1756_3305_7_235 crossref_primary_10_3390_insects11090584 crossref_primary_10_12688_wellcomeopenres_14765_1 crossref_primary_10_1126_science_aan5478 crossref_primary_10_12688_wellcomeopenres_14765_2 crossref_primary_10_1038_s41598_019_48414_8 crossref_primary_10_1016_j_celrep_2025_116282 crossref_primary_10_1038_s41467_018_07014_2 crossref_primary_10_3390_tropicalmed8100478 crossref_primary_10_1186_s12936_023_04551_0 crossref_primary_10_1186_s13071_020_3889_6 crossref_primary_10_1007_s11274_025_04431_6 crossref_primary_10_1371_journal_pone_0157529 crossref_primary_10_1371_journal_pone_0225833 crossref_primary_10_7852_ijie_2012_25_2_195 crossref_primary_10_3390_pathogens10080947 crossref_primary_10_1186_s13071_019_3402_2 crossref_primary_10_1111_mec_13741 crossref_primary_10_3390_pathogens13080691 crossref_primary_10_1111_mec_12771 crossref_primary_10_1186_s13071_025_06663_9 crossref_primary_10_3389_frchs_2023_1297733 crossref_primary_10_1007_s00248_017_1092_x crossref_primary_10_1038_s41598_024_78288_4 crossref_primary_10_1186_s13071_021_05132_3 crossref_primary_10_1038_srep01641 crossref_primary_10_1186_s12866_018_1284_7 crossref_primary_10_3389_fimmu_2023_1102065 crossref_primary_10_1186_s42523_022_00164_1 crossref_primary_10_1186_s12936_020_03574_1 crossref_primary_10_1007_s11686_022_00631_4 crossref_primary_10_3390_insects16030269 crossref_primary_10_1016_S0140_6736_13_60318_9 crossref_primary_10_1007_s13199_013_0231_5 crossref_primary_10_1038_srep38230 crossref_primary_10_1016_j_actatropica_2025_107653 crossref_primary_10_1093_jme_tjy183 crossref_primary_10_1111_cmi_12755 crossref_primary_10_1186_s13071_019_3876_y crossref_primary_10_1007_s00203_021_02506_0 crossref_primary_10_1371_journal_pone_0169753 crossref_primary_10_1186_s12936_021_03934_5 crossref_primary_10_1086_698013 |
| Cites_doi | 10.1006/expr.1993.1076 10.1007/s00248-010-9704-8 10.1371/journal.ppat.1000069 10.1006/expr.1999.4350 10.2332/allergolint.O-07-501 10.1046/j.1365-2915.2002.00393.x 10.4269/ajtmh.1996.54.214 10.1038/ismej.2007.95 10.1128/AEM.00067-07 10.1093/jmedent/35.3.222 10.1186/1471-2164-9-576 10.1146/annurev.nutr.22.011602.092259 10.1126/science.1201618 10.1126/science.1187703 10.3109/08820131003622809 10.1186/1741-7007-7-72 10.1016/j.mib.2010.12.003 10.1126/science.3532325 10.1111/j.1574-6941.2010.01012.x 10.1126/science.1175241 10.1603/0022-2585-38.1.29 10.1126/science.1196759 10.1371/journal.ppat.1001112 10.1038/ni0111-5 10.1126/science.1211057 10.1080/11956860.1994.11682237 10.1038/nature08821 10.1111/j.1574-6976.2008.00113.x 10.1073/pnas.1007028107 10.1186/1471-2180-9-259 10.1603/022.038.0320 10.1016/j.cell.2006.07.014 10.1186/1471-2180-9-96 10.1097/MOG.0b013e328333d751 10.1186/1475-2875-10-269 10.1016/j.actatropica.2008.06.008 10.1038/nri2710 10.1126/science.1155725 10.1128/AEM.01336-10 10.1073/pnas.0610451104 10.1373/clinchem.2008.107565 10.1186/1472-6785-9-16 10.1128/AEM.01747-10 10.1038/nature09937 10.1093/jmedent/42.6.998 10.1271/bbb.60672 10.1093/jmedent/31.4.561 10.1016/S0966-842X(01)02132-1 10.1080/00034983.1996.11813102 10.1073/pnas.0605127103 10.1371/journal.ppat.1000423 10.1016/j.femsle.2004.09.005 10.1371/journal.pbio.0030285 10.1038/nature07540 10.1186/1471-2180-11-6 10.1016/j.chom.2009.01.003 10.1603/ME10134 10.1099/00207713-47-2-284 10.1017/S0031182003004219 10.1126/science.1195755 10.1590/S1519-566X2008000500016 10.1126/science.1210718 10.1038/nrg2626 10.1264/jsme2.ME08525 10.1016/S0966-842X(03)00038-6 10.1111/j.1365-294X.2010.04959.x 10.1007/s00436-011-2306-7 10.1016/j.jip.2007.09.010 10.1603/0022-2585-40.3.371 10.1111/j.1365-294X.2011.05339.x 10.1017/S0007485300011184 10.1099/ijs.0.026393-0 10.1371/journal.ppat.1000542 10.1186/1472-6785-9-17 10.1128/AEM.71.7.4035-4043.2005 10.1126/science.1190689 10.1111/j.1462-2920.2009.02048.x |
| ContentType | Journal Article |
| Copyright | 2012 Boissière et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, et al. (2012) Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection. PLoS Pathog 8(5): e1002742. doi:10.1371/journal.ppat.1002742 Distributed under a Creative Commons Attribution 4.0 International License Boissière et al. 2012 |
| Copyright_xml | – notice: 2012 Boissière et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, et al. (2012) Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection. PLoS Pathog 8(5): e1002742. doi:10.1371/journal.ppat.1002742 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Boissière et al. 2012 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1371/journal.ppat.1002742 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | Anopheles gambiae Midgut Microbiota |
| EISSN | 1553-7374 |
| ExternalDocumentID | 1289104318 oai_doaj_org_article_efc260d88afd4478ab09f5d0a2584723 PMC3364955 oai:HAL:hal-01546176v1 2896641681 22693451 10_1371_journal_ppat_1002742 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO QF4 QN7 RNS RPM SV3 TR2 TUS UKHRP WOW ~8M CGR CUY CVF ECM EIF H13 IPNFZ NPM PV9 RIG RZL WOQ 3V. 7QL 7U9 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 1XC VOOES 5PM AAPBV ABPTK M~E |
| ID | FETCH-LOGICAL-c621t-9330a2a52ede1c44ca6d0fff8a2f5d1827dd083b0954273721f5be2b1b2aaebe3 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 312 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000305322900061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7374 1553-7366 |
| IngestDate | Sun Oct 01 00:11:17 EDT 2023 Tue Oct 14 19:01:03 EDT 2025 Tue Nov 04 02:01:37 EST 2025 Tue Oct 14 20:23:49 EDT 2025 Wed Oct 01 14:40:33 EDT 2025 Sat Nov 29 14:30:59 EST 2025 Thu Apr 03 07:08:19 EDT 2025 Tue Nov 18 21:53:50 EST 2025 Sat Nov 29 02:46:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c621t-9330a2a52ede1c44ca6d0fff8a2f5d1827dd083b0954273721f5be2b1b2aaebe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceived and designed the experiments: AB RC IM. Performed the experiments: AB MTT LA AM SEN PHAA RC IM. Analyzed the data: AB DB LA HRS RC IM. Contributed reagents/materials/analysis tools: EAL RC IM. Wrote the paper: AB RC IM. |
| ORCID | 0000-0003-3958-2602 0000-0002-2962-7670 0000-0003-3973-3036 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.ppat.1002742 |
| PMID | 22693451 |
| PQID | 1289104318 |
| PQPubID | 1436335 |
| ParticipantIDs | plos_journals_1289104318 doaj_primary_oai_doaj_org_article_efc260d88afd4478ab09f5d0a2584723 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3364955 hal_primary_oai_HAL_hal_01546176v1 proquest_miscellaneous_1020509705 proquest_journals_1289104318 pubmed_primary_22693451 crossref_primary_10_1371_journal_ppat_1002742 crossref_citationtrail_10_1371_journal_ppat_1002742 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-05-01 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, USA |
| PublicationTitle | PLoS pathogens |
| PublicationTitleAlternate | PLoS Pathog |
| PublicationYear | 2012 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | ME Bruno (ref72) 2010; 39 G Elango (ref1) 2011; 109 KS Hayes (ref68) 2010; 328 A Rani (ref42) 2009; 9 SK Kuss (ref70) 2011; 334 S Compant (ref57) 2008; 32 Y Dong (ref15) 2009; 5 C Dale (ref47) 2006; 126 MO Ndiath (ref9) 2011; 10 CA Lowenberger (ref20) 1999; 91 G Avgustin (ref46) 1997; 47 CD Marsden (ref5) 2011; 20 E Crotti (ref53) 2009; 11 SC Straif (ref25) 1998; 35 RE Ley (ref33) 2008; 320 R Christen (ref45) 2008; 23 (ref82) 2009 M Kane (ref69) 2011; 334 C Wondji (ref10) 2005; 42 J Okasen (ref80) 2007 A Chao (ref83) 2010 R Kindt (ref81) 2005 TL Turner (ref6) 2005; 3 J Qin (ref62) 2010; 464 AM Mendes (ref76) 2008; 4 Y Kikuchi (ref58) 2005; 71 G Reid (ref67) 2001; 9 MK Lawniczak (ref4) 2010; 330 J Rodrigues (ref17) 2010; 329 O Terenius (ref44) 2012 LV Hooper (ref64) 2002; 22 MM Riehle (ref74) 2011; 331 SA Blandin (ref11) 2009; 326 CM Cirimotich (ref24) 2011; 332 MS Beier (ref18) 1994; 31 P Kampfer (ref36) 2011; 61 J Jadin (ref26) 1967; 47 CB Pumpuni (ref22) 1993; 77 SM Geib (ref39) 2009; 38 RE Ley (ref48) 2010; 26 C Fanello (ref77) 2002; 16 E Zaura (ref30) 2009; 9 CB Pumpuni (ref23) 1996; 54 CJF Ter Braak (ref84) 1994; 1 CJF Ter Braak (ref85) 2002 KM Maslowski (ref50) 2011; 12 AV Santos (ref55) 2004; 239 C Damiani (ref51) 2010; 60 LV Hooper (ref63) 2010; 10 G Favia (ref16) 2007; 104 RM Moll (ref52) 2001; 38 (ref75) 1977; 67 FH Collins (ref12) 1986; 234 S Meister (ref21) 2009; 5 KW Mah (ref49) 2008; 57 C Costantini (ref7) 2009; 9 RJ Dillon (ref38) 2008; 97 Y Kikuchi (ref54) 2007; 73 AM Briones (ref14) 2008; 2 F Simard (ref8) 2009; 9 VG Martinson (ref41) 2011; 20 R Andreotti (ref37) 2011; 11 PJ Turnbaugh (ref34) 2009; 457 E Crotti (ref56) 2010; 76 T Stoeck (ref79) 2009; 7 F Armougom (ref32) 2008; 9 AK Benson (ref61) 2010; 107 II Ivanov (ref65) 2011; 14 N Windbichler (ref3) 2011; 473 C Harris (ref71) 2010; 6 C Gouveia (ref40) 2008; 37 RJ Dillon (ref59) 1996; 90 KD Vernick (ref13) 2005; 295 N Buchon (ref73) 2009; 5 JF Petrosino (ref28) 2009; 55 K Zouache (ref43) 2011; 75 ML Metzker (ref31) 2010; 11 R Miyata (ref60) 2007; 71 B Chouaia (ref35) 2010; 76 M Farenhorst (ref2) 2011; 48 L Gonzalez-Ceron (ref19) 2003; 40 ML Sogin (ref29) 2006; 103 U Hentschel (ref66) 2003; 11 JM Lindh (ref27) 2008; 107 R Fabre (ref78) 2004; 128 18671931 - Acta Trop. 2008 Sep;107(3):242-50 18180748 - ISME J. 2008 Jan;2(1):74-82 16076241 - PLoS Biol. 2005 Sep;3(9):e285 20966253 - Science. 2010 Oct 22;330(6003):512-4 20182457 - Nat Rev Immunol. 2010 Mar;10(3):159-69 8619451 - Am J Trop Med Hyg. 1996 Feb;54(2):214-8 16000818 - Appl Environ Microbiol. 2005 Jul;71(7):4035-43 21211038 - BMC Microbiol. 2011;11(1):6 9103611 - Int J Syst Bacteriol. 1997 Apr;47(2):284-8 17967463 - J Invertebr Pathol. 2008 Mar;97(3):265-72 19460146 - BMC Ecol. 2009;9:17 15476982 - FEMS Microbiol Lett. 2004 Oct 15;239(2):319-23 19043404 - Nature. 2009 Jan 22;457(7228):480-4 9039284 - Ann Trop Med Parasitol. 1996 Dec;90(6):669-73 19450290 - BMC Microbiol. 2009;9:96 19901833 - Curr Opin Gastroenterol. 2010 Jan;26(1):5-11 21175905 - Mol Ecol. 2011 Feb;20(3):619-28 21508956 - Nature. 2011 May 12;473(7346):212-5 22283178 - FEMS Microbiol Ecol. 2012 Jun;80(3):556-65 21373809 - Parasitol Res. 2011 Sep;109(3):715-26 21566196 - Science. 2011 May 13;332(6031):855-8 16901780 - Cell. 2006 Aug 11;126(3):453-65 19424427 - PLoS Pathog. 2009 May;5(5):e1000423 22059383 - Mol Ecol. 2011 Dec;20(23):4983-94 19046425 - BMC Genomics. 2008;9:576 19264858 - Clin Chem. 2009 May;55(5):856-66 20538949 - Science. 2010 Jun 11;328(5984):1391-4 11268687 - J Med Entomol. 2001 Jan;38(1):29-32 21998395 - Science. 2011 Oct 14;334(6053):249-52 20203603 - Nature. 2010 Mar 4;464(7285):59-65 12943119 - J Med Entomol. 2003 May;40(3):371-4 21485366 - J Med Entomol. 2011 Mar;48(2):305-13 21998394 - Science. 2011 Oct 14;334(6053):245-9 20571792 - Microb Ecol. 2010 Oct;60(3):644-54 19735280 - Environ Microbiol. 2009 Dec;11(12):3252-64 21169462 - Int J Syst Evol Microbiol. 2011 Nov;61(Pt 11):2670-5 18497261 - Science. 2008 Jun 20;320(5883):1647-51 9615538 - J Med Entomol. 1998 May;35(3):222-6 16880384 - Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12115-20 4326449 - Ann Soc Belges Med Trop Parasitol Mycol. 1967;47(4):331-42 19797663 - Science. 2009 Oct 2;326(5949):147-50 18089942 - Allergol Int. 2008 Mar;57(1):65-71 21929746 - Malar J. 2011;10:269 20862317 - PLoS Pathog. 2010;6(9):e1001112 19508777 - Environ Entomol. 2009 Jun;38(3):686-99 15002899 - Parasitology. 2004 Jan;128(Pt 1):15-21 19218090 - Cell Host Microbe. 2009 Feb 19;5(2):200-11 19460144 - BMC Ecol. 2009;9:16 18483558 - PLoS Pathog. 2008 May;4(5):e1000069 16265899 - Curr Top Microbiol Immunol. 2005;295:383-415 20829487 - Science. 2010 Sep 10;329(5997):1353-5 12706986 - Trends Microbiol. 2003 Apr;11(4):148-50 21558717 - Microbes Environ. 2008;23(4):253-68 17485852 - Biosci Biotechnol Biochem. 2007 May;71(5):1244-51 19061048 - Neotrop Entomol. 2008 Sep-Oct;37(5):597-601 21175696 - FEMS Microbiol Ecol. 2011 Mar;75(3):377-89 20851960 - Appl Environ Microbiol. 2010 Nov;76(22):7444-50 21215684 - Curr Opin Microbiol. 2011 Feb;14(1):106-14 20851977 - Appl Environ Microbiol. 2010 Nov;76(21):6963-70 3532325 - Science. 1986 Oct 31;234(4776):607-10 21169997 - Nat Immunol. 2011 Jan;12(1):5-9 9920043 - Exp Parasitol. 1999 Jan;91(1):59-69 20450283 - Immunol Invest. 2010;39(4-5):356-82 17502606 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9047-51 17483286 - Appl Environ Microbiol. 2007 Jul;73(13):4308-16 19886985 - BMC Biol. 2009;7:72 16465741 - J Med Entomol. 2005 Nov;42(6):998-1005 8375488 - Exp Parasitol. 1993 Sep;77(2):195-9 19997069 - Nat Rev Genet. 2010 Jan;11(1):31-46 19662170 - PLoS Pathog. 2009 Aug;5(8):e1000542 7932602 - J Med Entomol. 1994 Jul;31(4):561-5 12510902 - Med Vet Entomol. 2002 Dec;16(4):461-4 12055347 - Annu Rev Nutr. 2002;22:283-307 11553454 - Trends Microbiol. 2001 Sep;9(9):424-8 18422616 - FEMS Microbiol Rev. 2008 Jul;32(4):607-26 21292978 - Science. 2011 Feb 4;331(6017):596-8 20003481 - BMC Microbiol. 2009;9:259 20937875 - Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18933-8 |
| References_xml | – volume: 77 start-page: 195 year: 1993 ident: ref22 article-title: Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. publication-title: Exp Parasitol doi: 10.1006/expr.1993.1076 – volume: 60 start-page: 644 year: 2010 ident: ref51 article-title: Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. publication-title: Microb Ecol doi: 10.1007/s00248-010-9704-8 – volume: 4 start-page: e1000069 year: 2008 ident: ref76 article-title: Conserved mosquito/parasite interactions affect development of Plasmodium falciparum in Africa. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000069 – volume: 47 start-page: 331 year: 1967 ident: ref26 article-title: [Role of bacteria in the digestive tube of insects, vectors of plasmodidae and trypanosomidae]. publication-title: Ann Soc Belges Med Trop Parasitol Mycol – volume: 91 start-page: 59 year: 1999 ident: ref20 article-title: Mosquito-Plasmodium interactions in response to immune activation of the vector. publication-title: Exp Parasitol doi: 10.1006/expr.1999.4350 – year: 2002 ident: ref85 article-title: CANOCO Reference Manual and Cano Draw for Windows User's Guide: Software for Canonical Community Ordination, version 4.5. – year: 2009 ident: ref82 article-title: R: a language and environment for statistical computing – volume: 57 start-page: 65 year: 2008 ident: ref49 article-title: Gut microbiota of children living in rural south Thailand and urban Singapore. publication-title: Allergol Int doi: 10.2332/allergolint.O-07-501 – volume: 16 start-page: 461 year: 2002 ident: ref77 article-title: Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. publication-title: Med Vet Entomol doi: 10.1046/j.1365-2915.2002.00393.x – volume: 54 start-page: 214 year: 1996 ident: ref23 article-title: Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1996.54.214 – volume: 2 start-page: 74 year: 2008 ident: ref14 article-title: Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes. publication-title: ISME J doi: 10.1038/ismej.2007.95 – volume: 73 start-page: 4308 year: 2007 ident: ref54 article-title: Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00067-07 – year: 2005 ident: ref81 article-title: Tree diversity analysis: A manual and software for common statistical methods and biodiversity studies – volume: 35 start-page: 222 year: 1998 ident: ref25 article-title: Midgut bacteria in Anopheles gambiae and A. funestus (Diptera: Culicidae) from Kenya and Mali. publication-title: J Med Entomol doi: 10.1093/jmedent/35.3.222 – volume: 9 start-page: 576 year: 2008 ident: ref32 article-title: Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. publication-title: BMC Genomics doi: 10.1186/1471-2164-9-576 – volume: 22 start-page: 283 year: 2002 ident: ref64 article-title: How host-microbial interactions shape the nutrient environment of the mammalian intestine. publication-title: Annu Rev Nutr doi: 10.1146/annurev.nutr.22.011602.092259 – volume: 332 start-page: 855 year: 2011 ident: ref24 article-title: Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. publication-title: Science doi: 10.1126/science.1201618 – volume: 328 start-page: 1391 year: 2010 ident: ref68 article-title: Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. publication-title: Science doi: 10.1126/science.1187703 – volume: 39 start-page: 356 year: 2010 ident: ref72 article-title: Regulation of the polymeric immunoglobulin receptor in intestinal epithelial cells by Enterobacteriaceae: implications for mucosal homeostasis. publication-title: Immunol Invest doi: 10.3109/08820131003622809 – volume: 7 start-page: 72 year: 2009 ident: ref79 article-title: Massively parallel tag sequencing reveals the complexity of anaerobic marine protistan communities. publication-title: BMC Biol doi: 10.1186/1741-7007-7-72 – volume: 14 start-page: 106 year: 2011 ident: ref65 article-title: Modulation of immune homeostasis by commensal bacteria. publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2010.12.003 – volume: 234 start-page: 607 year: 1986 ident: ref12 article-title: Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. publication-title: Science doi: 10.1126/science.3532325 – volume: 75 start-page: 377 year: 2011 ident: ref43 article-title: Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.01012.x – volume: 326 start-page: 147 year: 2009 ident: ref11 article-title: Dissecting the genetic basis of resistance to malaria parasites in Anopheles gambiae. publication-title: Science doi: 10.1126/science.1175241 – volume: 38 start-page: 29 year: 2001 ident: ref52 article-title: Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. publication-title: J Med Entomol doi: 10.1603/0022-2585-38.1.29 – volume: 331 start-page: 596 year: 2011 ident: ref74 article-title: A cryptic subgroup of Anopheles gambiae is highly susceptible to human malaria parasites. publication-title: Science doi: 10.1126/science.1196759 – volume: 6 start-page: e1001112 year: 2010 ident: ref71 article-title: Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001112 – volume: 12 start-page: 5 year: 2011 ident: ref50 article-title: Diet, gut microbiota and immune responses. publication-title: Nat Immunol doi: 10.1038/ni0111-5 – volume: 334 start-page: 249 year: 2011 ident: ref70 article-title: Intestinal microbiota promote enteric virus replication and systemic pathogenesis. publication-title: Science doi: 10.1126/science.1211057 – volume: 1 start-page: 127 year: 1994 ident: ref84 article-title: Canonical community ordination. Part I: basic theory and linear methods. publication-title: Ecoscience doi: 10.1080/11956860.1994.11682237 – volume: 464 start-page: 59 year: 2010 ident: ref62 article-title: A human gut microbial gene catalogue established by metagenomic sequencing. publication-title: Nature doi: 10.1038/nature08821 – volume: 32 start-page: 607 year: 2008 ident: ref57 article-title: Diversity and occurrence of Burkholderia spp. in the natural environment. publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2008.00113.x – volume: 107 start-page: 18933 year: 2010 ident: ref61 article-title: Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1007028107 – volume: 9 start-page: 259 year: 2009 ident: ref30 article-title: Defining the healthy “core microbiome” of oral microbial communities. publication-title: BMC Microbiol doi: 10.1186/1471-2180-9-259 – volume: 38 start-page: 686 year: 2009 ident: ref39 article-title: Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle. publication-title: Environ Entomol doi: 10.1603/022.038.0320 – volume: 126 start-page: 453 year: 2006 ident: ref47 article-title: Molecular interactions between bacterial symbionts and their hosts. publication-title: Cell doi: 10.1016/j.cell.2006.07.014 – volume: 9 start-page: 96 year: 2009 ident: ref42 article-title: Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector. publication-title: BMC Microbiol doi: 10.1186/1471-2180-9-96 – volume: 26 start-page: 5 year: 2010 ident: ref48 article-title: Obesity and the human microbiome. publication-title: Curr Opin Gastroenterol doi: 10.1097/MOG.0b013e328333d751 – volume: 10 start-page: 269 year: 2011 ident: ref9 article-title: Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis. publication-title: Malar J doi: 10.1186/1475-2875-10-269 – volume: 107 start-page: 242 year: 2008 ident: ref27 article-title: Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. publication-title: Acta Trop doi: 10.1016/j.actatropica.2008.06.008 – volume: 10 start-page: 159 year: 2010 ident: ref63 article-title: Immune adaptations that maintain homeostasis with the intestinal microbiota. publication-title: Nat Rev Immunol doi: 10.1038/nri2710 – volume: 320 start-page: 1647 year: 2008 ident: ref33 article-title: Evolution of mammals and their gut microbes. publication-title: Science doi: 10.1126/science.1155725 – volume: 76 start-page: 6963 year: 2010 ident: ref56 article-title: Acetic acid bacteria, newly emerging symbionts of insects. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01336-10 – volume: 104 start-page: 9047 year: 2007 ident: ref16 article-title: Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0610451104 – volume: 295 start-page: 383 year: 2005 ident: ref13 article-title: Molecular genetics of mosquito resistance to malaria parasites. publication-title: Curr Top Microbiol Immunol – volume: 55 start-page: 856 year: 2009 ident: ref28 article-title: Metagenomic pyrosequencing and microbial identification. publication-title: Clin Chem doi: 10.1373/clinchem.2008.107565 – volume: 9 start-page: 16 year: 2009 ident: ref7 article-title: Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae. publication-title: BMC Ecol doi: 10.1186/1472-6785-9-16 – volume: 76 start-page: 7444 year: 2010 ident: ref35 article-title: Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01747-10 – volume: 473 start-page: 212 year: 2011 ident: ref3 article-title: A synthetic homing endonuclease-based gene drive system in the human malaria mosquito. publication-title: Nature doi: 10.1038/nature09937 – volume: 42 start-page: 998 year: 2005 ident: ref10 article-title: Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s. publication-title: J Med Entomol doi: 10.1093/jmedent/42.6.998 – volume: 71 start-page: 1244 year: 2007 ident: ref60 article-title: Influence of feed components on symbiotic bacterial community structure in the gut of the wood-feeding higher termite Nasutitermes takasagoensis. publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.60672 – volume: 31 start-page: 561 year: 1994 ident: ref18 article-title: Effects of para-aminobenzoic acid, insulin, and gentamicin on Plasmodium falciparum development in anopheline mosquitoes (Diptera: Culicidae). publication-title: J Med Entomol doi: 10.1093/jmedent/31.4.561 – volume: 9 start-page: 424 year: 2001 ident: ref67 article-title: Can bacterial interference prevent infection? publication-title: Trends Microbiol doi: 10.1016/S0966-842X(01)02132-1 – volume: 90 start-page: 669 year: 1996 ident: ref59 article-title: The prevalence of a microbiota in the digestive tract of Phlebotomus papatasi. publication-title: Ann Trop Med Parasitol doi: 10.1080/00034983.1996.11813102 – year: 2007 ident: ref80 article-title: Vegan: community ecology package version 1.8-6. – volume: 103 start-page: 12115 year: 2006 ident: ref29 article-title: Microbial diversity in the deep sea and the underexplored “rare biosphere”. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0605127103 – volume: 5 start-page: e1000423 year: 2009 ident: ref15 article-title: Implication of the mosquito midgut microbiota in the defense against malaria parasites. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000423 – volume: 239 start-page: 319 year: 2004 ident: ref55 article-title: Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. publication-title: FEMS Microbiol Lett doi: 10.1016/j.femsle.2004.09.005 – volume: 3 start-page: e285 year: 2005 ident: ref6 article-title: Genomic islands of speciation in Anopheles gambiae. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030285 – volume: 457 start-page: 480 year: 2009 ident: ref34 article-title: A core gut microbiome in obese and lean twins. publication-title: Nature doi: 10.1038/nature07540 – volume: 11 start-page: 6 year: 2011 ident: ref37 article-title: Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. publication-title: BMC Microbiol doi: 10.1186/1471-2180-11-6 – volume: 5 start-page: 200 year: 2009 ident: ref73 article-title: Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. publication-title: Cell Host Microbe doi: 10.1016/j.chom.2009.01.003 – volume: 48 start-page: 305 year: 2011 ident: ref2 article-title: Development of fungal applications on netting substrates for malaria vector control. publication-title: J Med Entomol doi: 10.1603/ME10134 – year: 2010 ident: ref83 article-title: Program SPADE (Species Prediction And Diversity Estimation). – volume: 47 start-page: 284 year: 1997 ident: ref46 article-title: Phenotypic diversity among ruminal isolates of Prevotella ruminicola: proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola. publication-title: Int J Syst Bacteriol doi: 10.1099/00207713-47-2-284 – volume: 128 start-page: 15 year: 2004 ident: ref78 article-title: Comparative assessment of conventional PCR with multiplex real-time PCR using SYBR Green I detection for the molecular diagnosis of imported malaria. publication-title: Parasitology doi: 10.1017/S0031182003004219 – volume: 330 start-page: 512 year: 2010 ident: ref4 article-title: Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences. publication-title: Science doi: 10.1126/science.1195755 – volume: 37 start-page: 597 year: 2008 ident: ref40 article-title: Study on the bacterial midgut microbiota associated to different Brazilian populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae). publication-title: Neotrop Entomol doi: 10.1590/S1519-566X2008000500016 – volume: 334 start-page: 245 year: 2011 ident: ref69 article-title: Successful transmission of a retrovirus depends on the commensal microbiota. publication-title: Science doi: 10.1126/science.1210718 – volume: 11 start-page: 31 year: 2010 ident: ref31 article-title: Sequencing technologies - the next generation. publication-title: Nat Rev Genet doi: 10.1038/nrg2626 – volume: 23 start-page: 253 year: 2008 ident: ref45 article-title: Global sequencing: a review of current molecular data and new methods available to assess microbial diversity. publication-title: Microbes Environ doi: 10.1264/jsme2.ME08525 – volume: 11 start-page: 148 year: 2003 ident: ref66 article-title: Commensal bacteria make a difference. publication-title: Trends Microbiol doi: 10.1016/S0966-842X(03)00038-6 – volume: 20 start-page: 619 year: 2011 ident: ref41 article-title: A simple and distinctive microbiota associated with honey bees and bumble bees. publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2010.04959.x – volume: 109 start-page: 715 year: 2011 ident: ref1 article-title: Screening for feeding deterrent activity of herbal extracts against the larvae of malaria vector Anopheles subpictus Grassi. publication-title: Parasitol Res doi: 10.1007/s00436-011-2306-7 – volume: 97 start-page: 265 year: 2008 ident: ref38 article-title: Composition of Acridid gut bacterial communities as revealed by 16S rRNA gene analysis. publication-title: J Invertebr Pathol doi: 10.1016/j.jip.2007.09.010 – year: 2012 ident: ref44 article-title: Midgut bacterial dynamics in Aedes aegypti. publication-title: FEMS Microbiol Ecol – volume: 40 start-page: 371 year: 2003 ident: ref19 article-title: Bacteria in midguts of field-collected Anopheles albimanus block Plasmodium vivax sporogonic development. publication-title: J Med Entomol doi: 10.1603/0022-2585-40.3.371 – volume: 20 start-page: 4983 year: 2011 ident: ref5 article-title: Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridization. publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2011.05339.x – volume: 67 start-page: 343 year: 1977 ident: ref75 article-title: A critical review of procedure for sampling populations of adult mosquitoes. publication-title: Bull Entomol Res doi: 10.1017/S0007485300011184 – volume: 61 start-page: 2670 year: 2011 ident: ref36 article-title: Elizabethkingia anophelis sp. nov., isolated from the midgut of the mosquito Anopheles gambiae. publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.026393-0 – volume: 5 start-page: e1000542 year: 2009 ident: ref21 article-title: Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000542 – volume: 9 start-page: 17 year: 2009 ident: ref8 article-title: Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. publication-title: BMC Ecol doi: 10.1186/1472-6785-9-17 – volume: 71 start-page: 4035 year: 2005 ident: ref58 article-title: Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa chinensis (Heteroptera: Alydidae). publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.7.4035-4043.2005 – volume: 329 start-page: 1353 year: 2010 ident: ref17 article-title: Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. publication-title: Science doi: 10.1126/science.1190689 – volume: 11 start-page: 3252 year: 2009 ident: ref53 article-title: Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.02048.x – reference: 17483286 - Appl Environ Microbiol. 2007 Jul;73(13):4308-16 – reference: 20851960 - Appl Environ Microbiol. 2010 Nov;76(22):7444-50 – reference: 15476982 - FEMS Microbiol Lett. 2004 Oct 15;239(2):319-23 – reference: 16000818 - Appl Environ Microbiol. 2005 Jul;71(7):4035-43 – reference: 20450283 - Immunol Invest. 2010;39(4-5):356-82 – reference: 9103611 - Int J Syst Bacteriol. 1997 Apr;47(2):284-8 – reference: 19061048 - Neotrop Entomol. 2008 Sep-Oct;37(5):597-601 – reference: 21998394 - Science. 2011 Oct 14;334(6053):245-9 – reference: 8375488 - Exp Parasitol. 1993 Sep;77(2):195-9 – reference: 21211038 - BMC Microbiol. 2011;11(1):6 – reference: 19218090 - Cell Host Microbe. 2009 Feb 19;5(2):200-11 – reference: 19450290 - BMC Microbiol. 2009;9:96 – reference: 21929746 - Malar J. 2011;10:269 – reference: 17485852 - Biosci Biotechnol Biochem. 2007 May;71(5):1244-51 – reference: 18180748 - ISME J. 2008 Jan;2(1):74-82 – reference: 19735280 - Environ Microbiol. 2009 Dec;11(12):3252-64 – reference: 19797663 - Science. 2009 Oct 2;326(5949):147-50 – reference: 9920043 - Exp Parasitol. 1999 Jan;91(1):59-69 – reference: 8619451 - Am J Trop Med Hyg. 1996 Feb;54(2):214-8 – reference: 19264858 - Clin Chem. 2009 May;55(5):856-66 – reference: 20937875 - Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):18933-8 – reference: 15002899 - Parasitology. 2004 Jan;128(Pt 1):15-21 – reference: 17967463 - J Invertebr Pathol. 2008 Mar;97(3):265-72 – reference: 17502606 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9047-51 – reference: 20003481 - BMC Microbiol. 2009;9:259 – reference: 21169997 - Nat Immunol. 2011 Jan;12(1):5-9 – reference: 9615538 - J Med Entomol. 1998 May;35(3):222-6 – reference: 9039284 - Ann Trop Med Parasitol. 1996 Dec;90(6):669-73 – reference: 19460146 - BMC Ecol. 2009;9:17 – reference: 12943119 - J Med Entomol. 2003 May;40(3):371-4 – reference: 18089942 - Allergol Int. 2008 Mar;57(1):65-71 – reference: 20571792 - Microb Ecol. 2010 Oct;60(3):644-54 – reference: 21485366 - J Med Entomol. 2011 Mar;48(2):305-13 – reference: 20829487 - Science. 2010 Sep 10;329(5997):1353-5 – reference: 16901780 - Cell. 2006 Aug 11;126(3):453-65 – reference: 20203603 - Nature. 2010 Mar 4;464(7285):59-65 – reference: 21558717 - Microbes Environ. 2008;23(4):253-68 – reference: 20862317 - PLoS Pathog. 2010;6(9):e1001112 – reference: 12706986 - Trends Microbiol. 2003 Apr;11(4):148-50 – reference: 16076241 - PLoS Biol. 2005 Sep;3(9):e285 – reference: 21508956 - Nature. 2011 May 12;473(7346):212-5 – reference: 11553454 - Trends Microbiol. 2001 Sep;9(9):424-8 – reference: 7932602 - J Med Entomol. 1994 Jul;31(4):561-5 – reference: 16265899 - Curr Top Microbiol Immunol. 2005;295:383-415 – reference: 21998395 - Science. 2011 Oct 14;334(6053):249-52 – reference: 19886985 - BMC Biol. 2009;7:72 – reference: 22283178 - FEMS Microbiol Ecol. 2012 Jun;80(3):556-65 – reference: 12055347 - Annu Rev Nutr. 2002;22:283-307 – reference: 21292978 - Science. 2011 Feb 4;331(6017):596-8 – reference: 21566196 - Science. 2011 May 13;332(6031):855-8 – reference: 16465741 - J Med Entomol. 2005 Nov;42(6):998-1005 – reference: 21169462 - Int J Syst Evol Microbiol. 2011 Nov;61(Pt 11):2670-5 – reference: 19997069 - Nat Rev Genet. 2010 Jan;11(1):31-46 – reference: 12510902 - Med Vet Entomol. 2002 Dec;16(4):461-4 – reference: 3532325 - Science. 1986 Oct 31;234(4776):607-10 – reference: 18483558 - PLoS Pathog. 2008 May;4(5):e1000069 – reference: 21215684 - Curr Opin Microbiol. 2011 Feb;14(1):106-14 – reference: 20538949 - Science. 2010 Jun 11;328(5984):1391-4 – reference: 19662170 - PLoS Pathog. 2009 Aug;5(8):e1000542 – reference: 19424427 - PLoS Pathog. 2009 May;5(5):e1000423 – reference: 19043404 - Nature. 2009 Jan 22;457(7228):480-4 – reference: 18422616 - FEMS Microbiol Rev. 2008 Jul;32(4):607-26 – reference: 18671931 - Acta Trop. 2008 Sep;107(3):242-50 – reference: 22059383 - Mol Ecol. 2011 Dec;20(23):4983-94 – reference: 20966253 - Science. 2010 Oct 22;330(6003):512-4 – reference: 18497261 - Science. 2008 Jun 20;320(5883):1647-51 – reference: 20182457 - Nat Rev Immunol. 2010 Mar;10(3):159-69 – reference: 21175905 - Mol Ecol. 2011 Feb;20(3):619-28 – reference: 20851977 - Appl Environ Microbiol. 2010 Nov;76(21):6963-70 – reference: 19046425 - BMC Genomics. 2008;9:576 – reference: 21373809 - Parasitol Res. 2011 Sep;109(3):715-26 – reference: 19508777 - Environ Entomol. 2009 Jun;38(3):686-99 – reference: 19901833 - Curr Opin Gastroenterol. 2010 Jan;26(1):5-11 – reference: 19460144 - BMC Ecol. 2009;9:16 – reference: 11268687 - J Med Entomol. 2001 Jan;38(1):29-32 – reference: 4326449 - Ann Soc Belges Med Trop Parasitol Mycol. 1967;47(4):331-42 – reference: 16880384 - Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12115-20 – reference: 21175696 - FEMS Microbiol Ecol. 2011 Mar;75(3):377-89 |
| SSID | ssj0041316 |
| Score | 2.550211 |
| Snippet | The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number... The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A... |
| SourceID | plos doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1002742 |
| SubjectTerms | Animals Anopheles - genetics Anopheles - immunology Anopheles - microbiology Anopheles - parasitology Aquatic insects Biodiversity Biology Breeding sites Digestive System - microbiology Digestive System - parasitology Disease transmission Enterobacter - genetics Enterobacter - immunology Environmental factors Flora Gene Expression Regulation Genomics Host-Parasite Interactions Insect Vectors - genetics Insect Vectors - immunology Insect Vectors - microbiology Larvae Life Sciences Malaria Malaria, Falciparum - genetics Malaria, Falciparum - immunology Malaria, Falciparum - parasitology Microbiology Mosquitoes Parasites Plasmodium falciparum - genetics Plasmodium falciparum - immunology Plasmodium falciparum - microbiology Populations and Evolution Vector-borne diseases |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pj5QwFG7MRBMvxt-LrqYar7hQSgvH0bjZg272oMneSKHtDskAswNM9L_3vRYmM2aTvXgjtJTy3ivva_v6PUI-leBiyrhEmn1ThtxUNlTM8FBokasoj7TUlUs2IS8vs-vr_Oog1RfGhHl6YC-4M2MrgNw6y5TVnMtMlVFuUx0phht8zPF8AuqZJ1P-Hwx_Zpf0FJPihDIRYjo0l8j4bNLR581GDY6AVHJ25JQcdz-4mhVGRi42666_C33-G0R54JXOn5InE5ykS_8Zz8gD0z4nj3yCyT8vyO8ftb4ZB9rUnm9pULSzFDAfbRRMaWtFm66_HWFU051bvqfLFokG1qanN6opa2WoajVFUomtPwLRU1y6pVeAuptO12NDrVpjYPYWLufQrvYl-XX-7efXi3DKtRBWgsVDiOsaiqmUGW3iivNKCR1ZazPFQNowCZFaA1oD4aecYWqb2KalYaBmphQYQvKKLNquNSeEAiQsdRInvET6t5SXFpqzJkuyKhOxyAOSzMIuqomIHPNhrAu3uyZhQuKFV6CKiklFAQn3T208Ecc99b-gHvd1kUbb3QDjKibjKu4zroB8XGG7B21cLL8XeA-xJ6A_sYsDcoJGMveiL8DlAwgDZJYF5HQ2nLuLP-yLYVTjVo1qTTdCHUDxAOVklAbktbezfS8AMOcJT-G98sgCj7p5XNLWK8ccniQCNJK--R-yeUseA3hkPvjzlCyG7WjekYfVbqj77Xs3HP8CylE8fQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegA4kXvmGBgQziNayxna8n1KFNQ6JVhQDtLXL80UZqk6xJJvjvuUvcsqIJHnirYse1c5e7n8-X3xHyLgcXkwc50uyb3BdGWV8yI_xIR6kcp2Mda9UXm4hns-TiIp27gFvj0iq3NrE31LpSGCM_BjsKng3cXfKhvvSxahSerroSGrfJATKViRE5ODmdzb9sbTFY6L74KRbH8WMeRe7jOR4Hx05W7-tatj0RaSzYnnPqOfzB5SwxQ3JUr6rmJhT6ZzLlNe909uB_1_WQ3He4lE4GRXpEbpnyMbk7VKr8-YT8mBZ60bV0WgzETa2klaUAHulUwt64kHRaNZcdmAf6vT8HoJMSGQtWpqELuc4LaagsNe0DkMO3FA3FGDCdA3xfV7ro1tTKFWZ4b-DnJ5cjVj4l385Ov348913RBl9FLGh9DJBIJkNmtAmUEEpGemytTSSzoYbdTKw1wL4coJ1gWCMnsGFuGOgLkxI0ij8jo7IqzSGhgC1zzQMucuSRC0VuYThrEp6oJAqi1CN8K61MOUZzLKyxyvpjuhh2NsPDy1DGmZOxR_zdXfXA6PGP_ieoCLu-yMfdX6g2i8y93pmxCjaGOkmk1ULEiYT1wXLhSeAxNOMeebvEca-NcT75nOE1BLEAI6OrwCOHqGXbWTTZb93wyNFWe25ufrNrBvOAZz6yNFUHfWA7AJgwHoceeT4o6m4WgLxTLkL433hPhfemud9SFsuegpzzCCQSvvj7tF6Se4Av2ZAfekRG7aYzr8gdddUWzea1e1d_AW36SvQ priority: 102 providerName: ProQuest |
| Title | Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22693451 https://www.proquest.com/docview/1289104318 https://www.proquest.com/docview/1020509705 https://hal.science/hal-01546176 https://pubmed.ncbi.nlm.nih.gov/PMC3364955 https://doaj.org/article/efc260d88afd4478ab09f5d0a2584723 http://dx.doi.org/10.1371/journal.ppat.1002742 |
| Volume | 8 |
| WOSCitedRecordID | wos000305322900061&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Biological Science customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: M7P dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: BENPR dateStart: 20050901 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: 7X7 dateStart: 20050901 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: PIMPY dateStart: 20050901 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7374 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0041316 issn: 1553-7374 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb5swED6t6SbtZb-3snXIm_bKFmww5DGdGrVSidC0TdkTMthukBLIAqm2_35nQ7KmajXtBSFszHE-4-_s4zuADzlOMbmfG5p9lXuBKrQnqAo8LvlIDEdDGcnCJpuIptN4Nhulfx3FGzv4LPI_9Tr9uFqJ1hKGojN3AIeUcW5CuCbpxfbLi99jn_e_x9115970Y1n6cVKZmxjIwWpRN7fhzJvhktfmn8nj_5X8CTzqkSYZd6bxFO6p6hk86HJP_n4Ov5JSXm5akpQdFVMrSK0JwkGSCPR2S0GSuvm5wQFPvtuVfTKuDAfBQjXkUizzUigiKknskmL3d0RDzKouSRGQL2tZbpZEi4WJ2V7j6Xkf9VW9gG-T06-fz7w-DYNXcOq3nlnyEFSEVEnlF0FQCC6HWutYUB1K9E8iKRHI5QjWAmqy3vg6zBVFC6BCoI2wlzCo6kodAUG0mEvmsyA3zHBhkGtsTquYxUXMfT5ygG17Jyt6jnKTKmOR2Y23CH2VTnmZ0WnW69QBb3fXquPo-Ef9E9Pxu7qGYdtewM7L-gGbKV2gqyfjWGgZBFEs8P3wdVETZmOZMgfez02719o4G19k5pqBpQgM-ZXvwJGxqq0UTYZoAPEZgrbYgeOtpd1e_G5XjAPe7OKIStUbrIMAH1FeNAwdeNUZ5k4KxNIjFoT43GjPZPfE3C-pyrklFWeMY4-Er--W-A08RLRIu2jPYxi06416C_eLq7Zs1i4cRLPIHmMXDk9Op-kX1y5wuHaMuiaoNsWS9DxJf_wBuyw9Gg |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUAAMX3lBDAcHA0TSWbMs-MEx4dJJpkumhMLm5siUlnknsNHYK_VP8Rnb9CA3TgVMP3DKWrGjl1e632tUuIW9iUDGxE2OafR3brk6MLZl2bV_5oeyGXSVUUhWbEONxMJmERzvkZ3sXBsMqW5lYCWqVJ3hGvg9yFDQbqLvgw_LUxqpR6F1tS2jUbHGoz7-DyVa8H3yG7_uWsYMvx5_6dlNVwE585pQ2WvCSSY9ppZ3EdRPpq64xJpDMeArgtlAKcEkM2MNlWMTFMV6sGRDEpASSOYx7jVwHOS4whExMNgYe6IOq1CqW4rEF9_3mqh4Xzn7DGe-WS1lWaU-Fy7ZUYVUxABTcDOMxO8t5XlyGef8M3bygCw_u_m-reI_caVA37dXb5D7Z0dkDcrOuw3n-kPwYpWq6LukordNSlZLmhgI0piMJln8q6SgvTtcg_Oi3ystBexnmY5jrgk7lIk6lpjJTtDperW-KFBRPuOkRGCeLXKXrBTVyjvHrK_g5aCLgskfk65WQ_Zh0sjzTu4QCco4Vd7gbY5Y8z40NDGd0wIMk8B0_tAhvuSNKmnztWDZkHlVOSAF2W714EfJU1PCURezNW8s6X8k_-n9Extv0xWzj1YN8NY0a4RVpk4DZq4JAGuW6IpBAH5ALK4FOdsYt8nqG414Yo98bRvgMITqAZP_MscgucnU7iyL6zYsW2Wu59fLmV5tmEH7o0ZKZztfQB4wdQLyi61nkSb0xNrMAuyLkrgf_K7a2zNY0t1uydFYlWOfchy_iPf37tF6SW_3j0TAaDsaHz8htQNKsjoTdI51ytdbPyY3krEyL1YtKSlByctUb6hdnsqgO |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELdGB4gXvmGBAQbBY2jjOHH6gFDHVq3aWlUI0N4yJ7bbSG3SNelg_xp_HXf5KCua4GkPvFWx49rOffzOd74j5G0EKiZyIkyzryOb69jYkmlu-8rvyk63o4SKy2ITYjQKTk664y3ys7kLg2GVjUwsBbXKYjwjb4McBc0G6i5omzosYrzf_7g4s7GCFHpam3IaFYkc6YvvYL7lHwb78K3fMdY_-PLp0K4rDNixz5zCRmteMukxrbQTcx5LX3WMMYFkxlMAvYVSgFEiwCGcYUEXx3iRZrA4JiUs34Vxb5BtASADuGt772A0_tzoAdAOZeFVLMxjC9f364t7rnDaNZ28XyxkUSZBFZxtKMayfgCouylGZ7YWsyy_CgH_Gch5STP27_3Pe3qf3K3xOO1VDPSAbOn0IblVVei8eER-DBM1WRV0mFQJqwpJM0MBNNOhnElgXjrM8rMViEX6rfR_0F6KmRpmOqcTOY8SqalMFS0PXqs7JDnFs286BrNlnqlkNadGzjCyfQk_B3VsXPqYfL2WZT8hrTRL9Q6hgKkj5ToujzB_nscjA8MZHbhBHPiO37WI21BKGNeZ3LGgyCws3ZMCLLpq80Kkr7CmL4vY67cWVSaTf_TfQyJc98U85OWDbDkJa7EWahODQayCQBrFuQgkrA-WCzuB7nfmWuTNFMe9NMZh7zjEZwjeAT77545FdpDCm1nk4W-6tMhuQ7lXN79eN4NYRF-XTHW2gj5gBgEWFh3PIk8rJlnPAiyOrss9-F-xwT4b09xsSZNpmXrddX34It6zv0_rFbkNfBQeD0ZHz8kdgNisCpHdJa1iudIvyM34vEjy5ctaZFByet0c9QvaxLIv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Midgut+microbiota+of+the+malaria+mosquito+vector+Anopheles+gambiae+and+interactions+with+Plasmodium+falciparum+infection&rft.jtitle=PLoS+pathogens&rft.au=Boissi%C3%A8re%2C+Anne&rft.au=Tchioffo%2C+Majoline+T&rft.au=Bachar%2C+Dipankar&rft.au=Abate%2C+Luc&rft.date=2012-05-01&rft.eissn=1553-7374&rft.volume=8&rft.issue=5&rft.spage=e1002742&rft_id=info:doi/10.1371%2Fjournal.ppat.1002742&rft_id=info%3Apmid%2F22693451&rft.externalDocID=22693451 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |