Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells
Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide funct...
Uložené v:
| Vydané v: | Proceedings of the National Academy of Sciences - PNAS Ročník 103; číslo 14; s. 5614 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
04.04.2006
|
| Predmet: | |
| ISSN: | 0027-8424 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most, if not all, medicinal plants. We report here a comprehensive profiling analysis of the Madagascar periwinkle (Catharanthus roseus), a source of the anticancer drugs vinblastine and vincristine. Genome-wide transcript profiling by cDNA-amplified fragment-length polymorphism combined with metabolic profiling of elicited C. roseus cell cultures yielded a collection of known and previously undescribed transcript tags and metabolites associated with terpenoid indole alkaloids. Previously undescribed gene-to-gene and gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 417 gene tags and the accumulation profiles of 178 metabolite peaks. These networks revealed that the different branches of terpenoid indole alkaloid biosynthesis and various other metabolic pathways are subject to differing hormonal regulation. These networks also served to identify a select number of genes and metabolites likely to be involved in the biosynthesis of terpenoid indole alkaloids. This study provides the basis for a better understanding of periwinkle secondary metabolism and increases the practical potential of metabolic engineering of this important medicinal plant. |
|---|---|
| AbstractList | Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most, if not all, medicinal plants. We report here a comprehensive profiling analysis of the Madagascar periwinkle (Catharanthus roseus), a source of the anticancer drugs vinblastine and vincristine. Genome-wide transcript profiling by cDNA-amplified fragment-length polymorphism combined with metabolic profiling of elicited C. roseus cell cultures yielded a collection of known and previously undescribed transcript tags and metabolites associated with terpenoid indole alkaloids. Previously undescribed gene-to-gene and gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 417 gene tags and the accumulation profiles of 178 metabolite peaks. These networks revealed that the different branches of terpenoid indole alkaloid biosynthesis and various other metabolic pathways are subject to differing hormonal regulation. These networks also served to identify a select number of genes and metabolites likely to be involved in the biosynthesis of terpenoid indole alkaloids. This study provides the basis for a better understanding of periwinkle secondary metabolism and increases the practical potential of metabolic engineering of this important medicinal plant. Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most, if not all, medicinal plants. We report here a comprehensive profiling analysis of the Madagascar periwinkle (Catharanthus roseus), a source of the anticancer drugs vinblastine and vincristine. Genome-wide transcript profiling by cDNA-amplified fragment-length polymorphism combined with metabolic profiling of elicited C. roseus cell cultures yielded a collection of known and previously undescribed transcript tags and metabolites associated with terpenoid indole alkaloids. Previously undescribed gene-to-gene and gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 417 gene tags and the accumulation profiles of 178 metabolite peaks. These networks revealed that the different branches of terpenoid indole alkaloid biosynthesis and various other metabolic pathways are subject to differing hormonal regulation. These networks also served to identify a select number of genes and metabolites likely to be involved in the biosynthesis of terpenoid indole alkaloids. This study provides the basis for a better understanding of periwinkle secondary metabolism and increases the practical potential of metabolic engineering of this important medicinal plant.Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most, if not all, medicinal plants. We report here a comprehensive profiling analysis of the Madagascar periwinkle (Catharanthus roseus), a source of the anticancer drugs vinblastine and vincristine. Genome-wide transcript profiling by cDNA-amplified fragment-length polymorphism combined with metabolic profiling of elicited C. roseus cell cultures yielded a collection of known and previously undescribed transcript tags and metabolites associated with terpenoid indole alkaloids. Previously undescribed gene-to-gene and gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 417 gene tags and the accumulation profiles of 178 metabolite peaks. These networks revealed that the different branches of terpenoid indole alkaloid biosynthesis and various other metabolic pathways are subject to differing hormonal regulation. These networks also served to identify a select number of genes and metabolites likely to be involved in the biosynthesis of terpenoid indole alkaloids. This study provides the basis for a better understanding of periwinkle secondary metabolism and increases the practical potential of metabolic engineering of this important medicinal plant. |
| Author | Van Montagu, Marc C E Lammertyn, Freya Seppänen-Laakso, Tuulikki Oksman-Caldentey, Kirsi-Marja Oresic, Matej Katajamaa, Mikko Inzé, Dirk Rischer, Heiko Goossens, Alain Ardiles-Diaz, Wilson |
| Author_xml | – sequence: 1 givenname: Heiko surname: Rischer fullname: Rischer, Heiko organization: VTT Technical Research Centre of Finland, Tietotie 2, FIN-02044 VTT, Espoo, Finland – sequence: 2 givenname: Matej surname: Oresic fullname: Oresic, Matej – sequence: 3 givenname: Tuulikki surname: Seppänen-Laakso fullname: Seppänen-Laakso, Tuulikki – sequence: 4 givenname: Mikko surname: Katajamaa fullname: Katajamaa, Mikko – sequence: 5 givenname: Freya surname: Lammertyn fullname: Lammertyn, Freya – sequence: 6 givenname: Wilson surname: Ardiles-Diaz fullname: Ardiles-Diaz, Wilson – sequence: 7 givenname: Marc C E surname: Van Montagu fullname: Van Montagu, Marc C E – sequence: 8 givenname: Dirk surname: Inzé fullname: Inzé, Dirk – sequence: 9 givenname: Kirsi-Marja surname: Oksman-Caldentey fullname: Oksman-Caldentey, Kirsi-Marja – sequence: 10 givenname: Alain surname: Goossens fullname: Goossens, Alain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16565214$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1UMtOwzAQ9KGIPuDMDeXELWUdP5IcUQQFqRIXOEdOslZDEzvYjlD_HleUvczuzmg0mjVZGGuQkDsKWwo5e5yM8luQQCHLKbAFWUHc0oJnfEnW3n8BQCkKuCZLKoUUGeUr0u7QYBpsOmJQjR36gInB8GPd0SfauiSgm9DYvkt609kBEzUc1XC-m976kwkH9L2PZFKpcFBOxc_sE2c9RmhxGPwNudJq8Hh7wQ35fHn-qF7T_fvurXrap63MIKRdV7JGC05lmyMVlHGtOZSdiiO1bEvgipZQZghC0YIJLVADaF62smC0yDbk4c93cvZ7Rh_qsffnBMqgnX0t89iFZCwK7y_CuRmxqyfXj8qd6v9asl_tQGaJ |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0029678 crossref_primary_10_1073_pnas_1103010108 crossref_primary_10_1007_s10725_008_9320_5 crossref_primary_10_1007_s00709_018_1233_1 crossref_primary_10_1039_b817077k crossref_primary_10_1111_pce_13468 crossref_primary_10_1080_23311932_2016_1138595 crossref_primary_10_1093_mp_sss156 crossref_primary_10_3389_fpls_2015_00582 crossref_primary_10_3389_fpls_2016_00431 crossref_primary_10_1007_s11101_006_9050_0 crossref_primary_10_1093_pcp_pct003 crossref_primary_10_1104_pp_114_252361 crossref_primary_10_1371_journal_pone_0103583 crossref_primary_10_1038_hortres_2017_38 crossref_primary_10_3390_plants8120534 crossref_primary_10_1007_s11033_011_0912_1 crossref_primary_10_1155_2015_982412 crossref_primary_10_1007_s11101_015_9406_4 crossref_primary_10_1093_aobpla_pls002 crossref_primary_10_1186_s43141_020_00049_3 crossref_primary_10_3389_fpls_2017_00894 crossref_primary_10_12677_BR_2014_33012 crossref_primary_10_1007_s00299_015_1841_6 crossref_primary_10_1007_s11240_013_0369_0 crossref_primary_10_1007_s11105_012_0439_1 crossref_primary_10_1038_s41598_020_76650_w crossref_primary_10_3390_molecules13081722 crossref_primary_10_1002_elsc_201300075 crossref_primary_10_1371_journal_pone_0187622 crossref_primary_10_1093_pcp_pct039 crossref_primary_10_1007_s10725_010_9468_7 crossref_primary_10_1002_cbdv_202500356 crossref_primary_10_1002_ps_6068 crossref_primary_10_1016_j_ijbiomac_2017_08_162 crossref_primary_10_1093_pcp_pcr086 crossref_primary_10_1016_j_jbiotec_2017_12_010 crossref_primary_10_1111_j_1399_3054_2009_01257_x crossref_primary_10_1007_s00253_009_2150_1 crossref_primary_10_1016_j_tig_2012_09_006 crossref_primary_10_1016_j_scienta_2011_02_025 crossref_primary_10_1016_j_tplants_2007_10_006 crossref_primary_10_1007_s00344_025_11758_9 crossref_primary_10_1016_j_jchromb_2014_04_003 crossref_primary_10_1073_pnas_0809737105 crossref_primary_10_1111_tpj_13485 crossref_primary_10_1002_rcm_7804 crossref_primary_10_3390_ijms23169389 crossref_primary_10_1093_jxb_erv333 crossref_primary_10_1016_j_molstruc_2016_10_097 crossref_primary_10_1038_nprot_2007_95 crossref_primary_10_1007_s00425_014_2232_x crossref_primary_10_1007_s11101_015_9447_8 crossref_primary_10_1146_annurev_arplant_043008_092035 crossref_primary_10_1002_btpr_204 crossref_primary_10_1093_pcp_pcm013 crossref_primary_10_1093_pcp_pcl041 crossref_primary_10_1186_1471_2164_13_295 crossref_primary_10_1371_journal_pone_0024978 crossref_primary_10_1007_s00253_009_2049_x crossref_primary_10_1002_pmic_201200218 crossref_primary_10_1016_j_gene_2015_09_083 crossref_primary_10_1016_S1674_6384_15_60042_9 crossref_primary_10_1016_j_crvi_2015_07_008 crossref_primary_10_1186_s12859_018_2098_1 crossref_primary_10_1007_s00709_021_01650_0 crossref_primary_10_1016_j_jbiosc_2012_12_007 crossref_primary_10_1093_plphys_kiae142 crossref_primary_10_3389_fpls_2021_808899 crossref_primary_10_1104_pp_109_150821 crossref_primary_10_1016_j_nbt_2010_03_004 crossref_primary_10_1007_s11240_015_0773_8 crossref_primary_10_3389_fgene_2023_1023433 crossref_primary_10_1007_s00299_007_0305_z crossref_primary_10_1038_nchembio_2007_8 crossref_primary_10_1007_s11103_019_00892_0 crossref_primary_10_1111_j_1365_313X_2008_03438_x crossref_primary_10_1007_s12041_007_0033_8 crossref_primary_10_1111_pbi_12205 crossref_primary_10_1016_S1875_5364_18_30008_6 crossref_primary_10_1007_s11240_014_0660_8 crossref_primary_10_1016_j_crvi_2016_10_004 crossref_primary_10_1007_s11101_011_9210_8 crossref_primary_10_1080_16878507_2020_1847386 crossref_primary_10_3389_fpls_2017_00787 crossref_primary_10_3390_ijms21010054 crossref_primary_10_1016_j_jep_2021_114647 crossref_primary_10_1371_journal_pcbi_1000270 crossref_primary_10_1002_bab_1580 crossref_primary_10_3390_ijms19061593 crossref_primary_10_1073_pnas_0711203105 crossref_primary_10_1016_j_jarmap_2017_12_003 crossref_primary_10_1016_j_plantsci_2019_110293 crossref_primary_10_1016_j_sajb_2018_08_015 crossref_primary_10_1371_journal_pone_0029713 crossref_primary_10_1186_s12864_025_11535_8 crossref_primary_10_1007_s13205_023_03636_6 crossref_primary_10_1038_s41467_020_14776_1 crossref_primary_10_1016_j_tplants_2008_02_003 crossref_primary_10_1007_s11240_023_02453_2 crossref_primary_10_1111_ppl_14400 crossref_primary_10_1007_s00709_011_0291_4 crossref_primary_10_1007_s11627_022_10262_z crossref_primary_10_1016_j_foodchem_2015_11_113 crossref_primary_10_1186_s12864_021_07887_6 crossref_primary_10_1016_j_molp_2014_11_004 crossref_primary_10_1007_s00344_024_11238_6 crossref_primary_10_1093_aob_mcn108 crossref_primary_10_1007_s00425_006_0419_5 crossref_primary_10_1111_j_1365_313X_2007_03293_x crossref_primary_10_3109_08923973_2011_601314 crossref_primary_10_1007_s12041_012_0150_x crossref_primary_10_1016_j_indcrop_2021_113448 crossref_primary_10_1016_j_plipres_2011_12_001 crossref_primary_10_1186_1471_2164_14_857 crossref_primary_10_3390_molecules201219873 crossref_primary_10_1016_j_phytochem_2014_07_023 crossref_primary_10_1146_annurev_arplant_59_032607_092730 crossref_primary_10_1111_j_1467_7652_2011_00664_x crossref_primary_10_3389_fmars_2023_1304132 crossref_primary_10_1016_j_celrep_2025_115715 crossref_primary_10_1093_aob_mcy109 crossref_primary_10_1016_j_phytochem_2013_12_007 crossref_primary_10_1111_tpj_14725 crossref_primary_10_1016_j_chroma_2007_04_021 crossref_primary_10_3390_ijms19030728 crossref_primary_10_1038_nature12685 crossref_primary_10_1007_s13205_014_0218_9 crossref_primary_10_1111_ppl_12243 crossref_primary_10_1007_s00425_014_2059_5 crossref_primary_10_1186_s12864_018_4879_3 crossref_primary_10_1021_ja2089348 crossref_primary_10_1002_pca_1187 crossref_primary_10_1016_j_crvi_2018_10_001 crossref_primary_10_1007_s12010_018_2851_y crossref_primary_10_1105_tpc_107_056630 crossref_primary_10_1093_aob_mcr162 crossref_primary_10_3390_ijms23073704 crossref_primary_10_3390_molecules21020182 crossref_primary_10_1016_j_abb_2008_10_009 crossref_primary_10_1007_s00709_017_1151_7 crossref_primary_10_1007_s10725_017_0366_0 crossref_primary_10_1007_s11101_006_9018_0 crossref_primary_10_1016_j_crvi_2015_05_005 crossref_primary_10_1016_j_jprot_2019_103470 crossref_primary_10_1186_1752_0509_1_12 crossref_primary_10_1016_j_tibtech_2006_07_002 crossref_primary_10_1038_nchembio0506_237 crossref_primary_10_1007_s11033_012_2286_4 crossref_primary_10_1038_s41598_017_17724_0 crossref_primary_10_1007_s10529_017_2320_7 crossref_primary_10_1007_s00709_014_0718_9 crossref_primary_10_1007_s11738_012_0948_4 crossref_primary_10_1105_tpc_113_118919 crossref_primary_10_1111_j_1469_8137_2007_02292_x crossref_primary_10_1016_j_tplants_2006_11_001 crossref_primary_10_1016_j_tplants_2008_11_005 crossref_primary_10_3390_agronomy15071738 crossref_primary_10_1073_pnas_0611629104 crossref_primary_10_1002_mas_21611 crossref_primary_10_1007_s11738_012_1130_8 crossref_primary_10_3389_fgene_2019_00238 crossref_primary_10_1042_BA20080239 crossref_primary_10_1111_pce_12069 crossref_primary_10_1093_pcp_pcx097 crossref_primary_10_1093_bib_bbs021 crossref_primary_10_1111_j_1365_2672_2008_03946_x crossref_primary_10_1007_s11103_007_9190_7 crossref_primary_10_1016_j_sajb_2017_10_008 crossref_primary_10_1016_j_ncrops_2023_10_001 crossref_primary_10_1111_tpj_13833 crossref_primary_10_1186_1471_2164_12_533 crossref_primary_10_1038_nprot_2010_82 crossref_primary_10_1007_s00253_007_0856_5 crossref_primary_10_1016_j_febslet_2006_07_020 crossref_primary_10_1038_nchembio_160 crossref_primary_10_3390_ijms22168835 crossref_primary_10_1007_s10327_013_0469_z crossref_primary_10_1038_s41598_022_20314_4 crossref_primary_10_1002_bab_1176 crossref_primary_10_1371_journal_pone_0062467 crossref_primary_10_1016_j_jplph_2016_06_004 crossref_primary_10_1007_s11240_014_0554_9 crossref_primary_10_22207_JPAM_15_4_05 crossref_primary_10_1093_mp_sst058 crossref_primary_10_1007_s11101_007_9064_2 crossref_primary_10_3389_fgene_2022_867064 crossref_primary_10_1007_s00299_019_02486_y crossref_primary_10_5511_plantbiotechnology_26_3 crossref_primary_10_1007_s11240_013_0320_4 crossref_primary_10_1111_j_1469_8137_2010_03466_x crossref_primary_10_1134_S1022795410070070 crossref_primary_10_3389_fphar_2019_00571 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.0601027103 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| ExternalDocumentID | 16565214 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA VXZ W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YIF YIN YKV YSK ZCA ZCG ~02 ~KM 7X8 ADQXQ ADXHL |
| ID | FETCH-LOGICAL-c620t-dd93bf5416c7e15134ff409daaaa6f6c904a19092e05a1835f5ef00f49c683182 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 240 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000236636400067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0027-8424 |
| IngestDate | Sun Nov 09 12:53:20 EST 2025 Wed Feb 19 01:47:48 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c620t-dd93bf5416c7e15134ff409daaaa6f6c904a19092e05a1835f5ef00f49c683182 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-70898 |
| PMID | 16565214 |
| PQID | 67842633 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_67842633 pubmed_primary_16565214 |
| PublicationCentury | 2000 |
| PublicationDate | 2006-04-04 |
| PublicationDateYYYYMMDD | 2006-04-04 |
| PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-04 day: 04 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2006 |
| References | 9747537 - Phytochemistry. 1998 Sep;49(2):395-402 15032608 - Curr Med Chem. 2004 Mar;11(5):607-28 15199185 - Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10205-10 15465826 - J Biol Chem. 2004 Dec 17;279(51):52940-8 16026613 - BMC Bioinformatics. 2005;6:179 12353909 - Mol Biotechnol. 2002 Sep;22(1):1-8 11171980 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1501-6 12756529 - Mol Genet Genomics. 2003 May;269(2):173-9 11198427 - Plant Mol Biol. 2000 Nov;44(5):675-85 10449411 - EMBO J. 1999 Aug 16;18(16):4455-63 2085431 - Biochem Cell Biol. 1990 Dec;68(12):1344-51 11154328 - Plant Physiol. 2001 Jan;125(1):189-98 15682277 - Planta. 2005 Jul;221(5):690-704 16359398 - Plant J. 2005 Dec;44(6):1065-76 12966042 - J Exp Bot. 2003 Nov;54(392):2587-8 10894776 - Science. 2000 Jul 14;289(5477):295-7 14671332 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16113-8 15702951 - Appl Bioinformatics. 2004;3(4):205-17 12826618 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8595-600 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 10481044 - FEBS Lett. 1999 Sep 17;458(2):97-102 15130560 - Trends Biochem Sci. 2004 May;29(5):243-9 11352466 - Plant Mol Biol. 2001 Mar;45(4):477-88 15337493 - Trends Plant Sci. 2004 Sep;9(9):433-40 12943756 - Phytochemistry. 2003 Sep;64(2):401-9 15807784 - Plant J. 2005 Apr;42(2):218-35 15269549 - Biotechnol Lett. 2004 May;26(10):793-8 10330473 - Plant Cell. 1999 May;11(5):887-900 |
| References_xml | – reference: 12353909 - Mol Biotechnol. 2002 Sep;22(1):1-8 – reference: 15130560 - Trends Biochem Sci. 2004 May;29(5):243-9 – reference: 15032608 - Curr Med Chem. 2004 Mar;11(5):607-28 – reference: 15682277 - Planta. 2005 Jul;221(5):690-704 – reference: 15807784 - Plant J. 2005 Apr;42(2):218-35 – reference: 10894776 - Science. 2000 Jul 14;289(5477):295-7 – reference: 10449411 - EMBO J. 1999 Aug 16;18(16):4455-63 – reference: 15199185 - Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10205-10 – reference: 11352466 - Plant Mol Biol. 2001 Mar;45(4):477-88 – reference: 15337493 - Trends Plant Sci. 2004 Sep;9(9):433-40 – reference: 11154328 - Plant Physiol. 2001 Jan;125(1):189-98 – reference: 2085431 - Biochem Cell Biol. 1990 Dec;68(12):1344-51 – reference: 12966042 - J Exp Bot. 2003 Nov;54(392):2587-8 – reference: 16359398 - Plant J. 2005 Dec;44(6):1065-76 – reference: 12826618 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8595-600 – reference: 10330473 - Plant Cell. 1999 May;11(5):887-900 – reference: 10481044 - FEBS Lett. 1999 Sep 17;458(2):97-102 – reference: 15465826 - J Biol Chem. 2004 Dec 17;279(51):52940-8 – reference: 16026613 - BMC Bioinformatics. 2005;6:179 – reference: 11198427 - Plant Mol Biol. 2000 Nov;44(5):675-85 – reference: 12943756 - Phytochemistry. 2003 Sep;64(2):401-9 – reference: 15702951 - Appl Bioinformatics. 2004;3(4):205-17 – reference: 15269549 - Biotechnol Lett. 2004 May;26(10):793-8 – reference: 9747537 - Phytochemistry. 1998 Sep;49(2):395-402 – reference: 12756529 - Mol Genet Genomics. 2003 May;269(2):173-9 – reference: 14671332 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16113-8 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 11171980 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1501-6 |
| SSID | ssj0009580 |
| Score | 2.3643556 |
| Snippet | Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 5614 |
| SubjectTerms | Catharanthus - cytology Catharanthus - genetics Catharanthus - metabolism Cells, Cultured Chromatography, Liquid DNA, Complementary Expressed Sequence Tags Gene Expression Profiling Genes, Plant Indole Alkaloids - metabolism Mass Spectrometry Polymorphism, Restriction Fragment Length RNA, Messenger - genetics |
| Title | Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16565214 https://www.proquest.com/docview/67842633 |
| Volume | 103 |
| WOSCitedRecordID | wos000236636400067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA7VevCi1rWuOXjQw9jpJLMEBBGxeLH0oNDbkMmCxTpTzVTw3_veLOBFPDiHWQgDIXn58iV573uEnAcs1DAtRp6UXHsc_WikwgAfAfxVWT_MrK6STcTjcTKdikmHXLexMOhW2WJiBdS6ULhHPgBQRW1xdrN49zBnFJ6tNgk0VkiXAZFBm46nyQ_J3aQOQAkAh3nAW2GfmA0WuXRXqEQCZcMqX9Yv7LKaZUab_6vfFtlo2CW9rc2hRzom3ya9Zvw6etGITF_uEIWvXll4b6YEO8BIZJrXLuGOApGl6Ito8mKmKazai7mhcv4q5_idzQr3lQNxdDMHhRSDCCVMeeXL0lGYdA088DzA7ZLn0f3T3YPXJFzwVBT4pae1YJkNgaOp2AAVYNxaWP9pCVdkIyV8LoFAiMD4oQQsCG1orO9bLqB7ARyCPbKaF7k5IJQhT4hMYDlLuBFCJtoMfR1m2RBgTQR9ctY2YwoGjbWSuSmWLm0bsk_2655IF7XuRopCQcA2-OGf_x6R9XqrBJ1sjknXwlA2J2RNfZYz93Fa2Qncx5PHb8dCyPU |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene-to-metabolite+networks+for+terpenoid+indole+alkaloid+biosynthesis+in+Catharanthus+roseus+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Rischer%2C+Heiko&rft.au=Oresic%2C+Matej&rft.au=Sepp%C3%A4nen-Laakso%2C+Tuulikki&rft.au=Katajamaa%2C+Mikko&rft.date=2006-04-04&rft.issn=0027-8424&rft.volume=103&rft.issue=14&rft.spage=5614&rft_id=info:doi/10.1073%2Fpnas.0601027103&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |