Structural basis for translocation by AddAB helicase–nuclease and its arrest at χ sites

A dual-function helicase–nuclease, typified by RecBCD in Escherichia coli , acts on free DNA ends during bacterial double-stranded break repair until it reaches a χ sequence at which it pauses before continuing with modified enzymatic properties; here several crystal structures of the related AddAB...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) Vol. 508; no. 7496; pp. 416 - 419
Main Authors: Krajewski, Wojciech W., Fu, Xin, Wilkinson, Martin, Cronin, Nora B., Dillingham, Mark S., Wigley, Dale B.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 17.04.2014
Nature Publishing Group
Subjects:
ISSN:0028-0836, 1476-4687, 1476-4687
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A dual-function helicase–nuclease, typified by RecBCD in Escherichia coli , acts on free DNA ends during bacterial double-stranded break repair until it reaches a χ sequence at which it pauses before continuing with modified enzymatic properties; here several crystal structures of the related AddAB enzyme from Bacillus subtilis bound to χ-containing DNA are presented, offering insight into χ recognition and its effect on DNA translocation. Taming a rampant nuclease In bacterial double-stranded DNA break repair, the free ends are initially acted upon by a dual function helicase/nuclease, typified by the RecBCD enzyme of Escherichia coli . As RecBCD unwinds DNA, it eventually encounters a polar octameric sequence known as Chi (χ), which causes attenuation and a change in specificity of the nuclease activity. Dale Wigley and colleagues have now solved several structures of AddAB, a related enzyme from Bacillus subtilis , bound to χ-containing DNA. These structures offer insight into the translocation process, the recognition of χ, and the pausing that occurs when χ is recognized. In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) 1 , 2 and is catalysed by either an AddAB- or RecBCD-type helicase–nuclease (reviewed in refs 3 , 4 ). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence 5 , whereupon they produce a 3′ single-stranded DNA tail onto which they initiate loading of the RecA protein 6 . Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments 7 , 8 , 9 .
AbstractList In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments.In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments.
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) (1,2) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence (5), whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein (6). Consequently, regulation of the AddAB/ RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments (7-9).
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi1,2 and is catalysed by either an AddAB or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a Chi sequence5 whereupon they produce a 3′-single-stranded DNA tail onto which they initiate loading of the RecA protein6. Consequently, regulation of the AddAB/RecBCD complex by Chi is a key control point in DNA repair and other processes involving genetic recombination. Here, we report crystal structures of AddAB in complex with different Chi-containing DNA substrates either with or without a nonhydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, how the enzyme binds specifically to Chi sequences, and explains how Chi recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single molecule experiments7-9.
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments.
A dual-function helicase–nuclease, typified by RecBCD in Escherichia coli , acts on free DNA ends during bacterial double-stranded break repair until it reaches a χ sequence at which it pauses before continuing with modified enzymatic properties; here several crystal structures of the related AddAB enzyme from Bacillus subtilis bound to χ-containing DNA are presented, offering insight into χ recognition and its effect on DNA translocation. Taming a rampant nuclease In bacterial double-stranded DNA break repair, the free ends are initially acted upon by a dual function helicase/nuclease, typified by the RecBCD enzyme of Escherichia coli . As RecBCD unwinds DNA, it eventually encounters a polar octameric sequence known as Chi (χ), which causes attenuation and a change in specificity of the nuclease activity. Dale Wigley and colleagues have now solved several structures of AddAB, a related enzyme from Bacillus subtilis , bound to χ-containing DNA. These structures offer insight into the translocation process, the recognition of χ, and the pausing that occurs when χ is recognized. In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) 1 , 2 and is catalysed by either an AddAB- or RecBCD-type helicase–nuclease (reviewed in refs 3 , 4 ). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence 5 , whereupon they produce a 3′ single-stranded DNA tail onto which they initiate loading of the RecA protein 6 . Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments 7 , 8 , 9 .
Audience Academic
Author Cronin, Nora B.
Krajewski, Wojciech W.
Wilkinson, Martin
Fu, Xin
Wigley, Dale B.
Dillingham, Mark S.
AuthorAffiliation 2 School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
1 Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
AuthorAffiliation_xml – name: 1 Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K
– name: 2 School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K
Author_xml – sequence: 1
  givenname: Wojciech W.
  surname: Krajewski
  fullname: Krajewski, Wojciech W.
  organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK, Present address: CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
– sequence: 2
  givenname: Xin
  surname: Fu
  fullname: Fu, Xin
  organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
– sequence: 3
  givenname: Martin
  surname: Wilkinson
  fullname: Wilkinson, Martin
  organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
– sequence: 4
  givenname: Nora B.
  surname: Cronin
  fullname: Cronin, Nora B.
  organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
– sequence: 5
  givenname: Mark S.
  surname: Dillingham
  fullname: Dillingham, Mark S.
  organization: School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
– sequence: 6
  givenname: Dale B.
  surname: Wigley
  fullname: Wigley, Dale B.
  email: Dale.Wigley@icr.ac.uk
  organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24670664$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1u1DAURi1URKeFFXtkwQYEKXac2JkNUjrip1IFEi1CYmM5tpO6ythT20Htjh0PwIPxDjwJHqaUCUrlRaz43BPfm28P7FhnNQAPMTrAiFQvrYiD15ggwu6AGS4YzQpasR0wQyivMlQRugv2QjhHCJWYFffAbl5QhigtZuDLSfSDTALRw0YEE2DrPIxe2NA7KaJxFjZXsFaqPoRnujdSBP3r2w87yF6nLRRWQRMDFN7rEKGI8Od3GEzU4T6424o-6AfXz33w6c3r08W77PjD26NFfZxJmqOYKdEgSRXOc4wJKxFShcBMlnnRaCLmLcVUsrZQharyUrJcNYo0FcK0rLAsECH74NXGuxqapVZS23T9nq-8WQp_xZ0wfHxizRnv3FdO5nNcVmvB02uBdxdD6oIvTZC674XVbggcp6lVjKF5ntAnG7QTvebGti4Z5RrnNaGUEZTjKlHZBNVpq9Pn089rTXo94h9P8HJlLvg2dDABpaX00shJ67NRQWKivoydGELgRycfx-zz29n69PPi_Zh-tD3xm1H_jdU_nfQuBK_bGwQjvg4t3wptovF_tDTxT_RSh6a_pebFpiYks-205-du8DblbBL_DYYl_RY
CitedBy_id crossref_primary_10_1016_j_ymeth_2021_12_002
crossref_primary_10_1038_s41594_019_0355_2
crossref_primary_10_1016_j_molcel_2021_05_027
crossref_primary_10_1083_jcb_201505019
crossref_primary_10_1093_nar_gkw1130
crossref_primary_10_1016_j_dnarep_2022_103389
crossref_primary_10_1002_pro_2533
crossref_primary_10_1016_j_resmic_2024_104189
crossref_primary_10_1074_jbc_M116_719591
crossref_primary_10_1186_s12862_017_1081_1
crossref_primary_10_7554_eLife_09832
crossref_primary_10_1016_j_jmb_2014_07_017
crossref_primary_10_1093_nar_gkw445
crossref_primary_10_1016_j_bbamcr_2015_01_018
crossref_primary_10_7554_eLife_18227
crossref_primary_10_1093_nar_gkv1543
crossref_primary_10_1016_j_jmb_2016_07_002
crossref_primary_10_1371_journal_pgen_1006783
crossref_primary_10_3390_genes7080052
crossref_primary_10_1038_s41467_021_25843_6
crossref_primary_10_1016_j_celrep_2024_115110
crossref_primary_10_1002_bies_201800009
crossref_primary_10_1128_JB_00018_15
crossref_primary_10_4155_fmc_2020_0310
crossref_primary_10_3390_microorganisms11030589
crossref_primary_10_1016_j_ccr_2016_10_003
crossref_primary_10_1016_j_csbj_2025_03_023
crossref_primary_10_15252_embj_2019102500
crossref_primary_10_1073_pnas_2023955118
crossref_primary_10_1073_pnas_1913546116
crossref_primary_10_1093_nar_gky855
crossref_primary_10_4161_15384101_2014_950892
crossref_primary_10_1093_nar_gkv545
crossref_primary_10_1016_j_pbiomolbio_2019_03_005
crossref_primary_10_1016_j_molcel_2025_03_025
crossref_primary_10_1038_srep39414
crossref_primary_10_7554_eLife_18574
crossref_primary_10_1007_s12195_018_00563_y
crossref_primary_10_3390_v11030267
crossref_primary_10_1016_j_jtbi_2018_04_014
crossref_primary_10_1002_mlf2_12137
Cites_doi 10.1016/0092-8674(85)90069-8
10.1038/nature02988
10.1046/j.1365-2958.1998.01018.x
10.1038/nsmb.1901
10.1038/emboj.2012.9
10.1107/S0907444909047337
10.1016/S0092-8674(00)80315-3
10.1074/jbc.M109.076133
10.1016/j.molcel.2005.02.011
10.1016/j.cell.2007.09.023
10.1093/nar/gkm216
10.1074/jbc.M808526200
10.1073/pnas.1303035110
10.1073/pnas.1206081109
10.1146/annurev.biochem.76.052305.115300
10.1107/S0021889807021206
10.1107/S0907444910007493
10.1016/j.jmb.2006.07.016
10.1016/S0092-8674(00)80716-3
10.1074/jbc.274.38.27139
10.1038/nature01674
10.1016/S0092-8674(03)00681-0
10.1093/nar/gkq1124
10.1128/MMBR.00020-08
10.1038/nrmicro2917
10.1073/pnas.1103467108
10.1093/genetics/77.3.425
10.1139/g89-013
10.1126/science.277.5333.1824
10.1038/35053124
10.1107/S0907444909052925
10.1073/pnas.1206076109
10.1107/S0907444994003112
ContentType Journal Article
Copyright Springer Nature Limited 2014
COPYRIGHT 2014 Nature Publishing Group
Copyright_xml – notice: Springer Nature Limited 2014
– notice: COPYRIGHT 2014 Nature Publishing Group
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
7X8
5PM
DOI 10.1038/nature13037
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 419
ExternalDocumentID PMC3991583
A366730218
24670664
10_1038_nature13037
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 12799
– fundername: Cancer Research UK
  grantid: A12799
– fundername: Wellcome Trust
  grantid: 100401
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
ADXHL
AETEA
AFANA
AFFHD
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ADGHP
CGR
CUY
CVF
ECM
EIF
NPM
ACMFV
AEIIB
PMFND
ESTFP
7X8
5PM
ID FETCH-LOGICAL-c620t-dab0c6d1221137500d4a17c524be3a9f616c7f4d4d825c72dbd3b8016581c4033
ISICitedReferencesCount 44
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334403000056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Tue Nov 04 01:58:50 EST 2025
Sun Nov 09 12:54:36 EST 2025
Sat Nov 29 13:16:32 EST 2025
Sat Nov 29 11:22:10 EST 2025
Tue Jun 10 15:30:56 EDT 2025
Sun Nov 23 08:55:45 EST 2025
Wed Nov 26 09:52:02 EST 2025
Mon Nov 24 14:38:11 EST 2025
Mon Jul 21 05:53:16 EDT 2025
Tue Nov 18 22:33:33 EST 2025
Sat Nov 29 05:17:27 EST 2025
Fri Feb 21 02:37:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7496
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c620t-dab0c6d1221137500d4a17c524be3a9f616c7f4d4d825c72dbd3b8016581c4033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London, U.K.
Contributions: W.W.K. & D.B.W designed the experiments. W.W.K., X.F., M.W and N.B.C performed the experiments. W.W.K., M.W., M.S.D. and D.B.W. analysed the data and prepared the manuscript.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3991583
PMID 24670664
PQID 1517877092
PQPubID 23479
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991583
proquest_miscellaneous_1517877092
gale_infotracmisc_A366730218
gale_infotracgeneralonefile_A366730218
gale_infotraccpiq_366730218
gale_infotracacademiconefile_A366730218
gale_incontextgauss_ISR_A366730218
gale_incontextgauss_ATWCN_A366730218
pubmed_primary_24670664
crossref_primary_10_1038_nature13037
crossref_citationtrail_10_1038_nature13037
springer_journals_10_1038_nature13037
PublicationCentury 2000
PublicationDate 2014-04-17
PublicationDateYYYYMMDD 2014-04-17
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-17
  day: 17
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2014
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Singleton, Dillingham, Wigley (CR13) 2007; 76
Kabsch (CR28) 2010; 66
Emsley, Lohkamp, Scott, Cowtan (CR31) 2010; 66
Yeeles, Cammack, Dillingham (CR27) 2009; 284
Ponticelli, Schultz, Taylor, Smith (CR5) 1985; 41
Handa, Bianco, Baskin, Kowalczykowski (CR24) 2005; 17
Dillingham, Kowalczykowski (CR3) 2008; 72
Taylor, Smith (CR21) 2003; 423
Adams (CR32) 2010; 66
Thaler (CR22) 1989; 31
Spies (CR7) 2003; 114
Wong, Rice, Baker, Ju, Lohman (CR25) 2006; 362
Carrasco, Gilhooly, Dillingham, Moreno-Herrero (CR9) 2013; 110
Kovall, Matthews (CR19) 1997; 277
Anderson, Kowalczykowski (CR6) 1997; 90
Unciuleac, Shuman (CR14) 2010; 285
Zhang, McCabe, Bell (CR20) 2011; 108
Singleton, Dillingham, Gaudier, Kowalczykowski, Wigley (CR11) 2004; 432
McCoy (CR30) 2007; 40
Davis (CR33) 2007; 35
Anderson, Churchill, Kowalczykowski (CR26) 1999; 274
Spies, Amitani, Baskin, Kowalczykowski (CR8) 2007; 131
CR29
Wigley (CR4) 2013; 11
Velankar, Soultanas, Dillingham, Subramanya, Wigley (CR15) 1999; 97
Chédin, Noirot, Biaudet, Ehrlich (CR2) 1998; 29
Dohoney, Gelles (CR23) 2001; 409
Yang (CR18) 2012; 109
Lam, Stahl, McMilin, Stahl (CR1) 1974; 77
Wu, Bradford, Lohman (CR16) 2010; 17
Handa (CR17) 2012; 109
Yeeles, Gwynn, Webb, Dillingham (CR12) 2011; 39
Saikrishnan (CR10) 2012; 31
L Yang (BFnature13037_CR18) 2012; 109
N Handa (BFnature13037_CR17) 2012; 109
KM Dohoney (BFnature13037_CR23) 2001; 409
MS Dillingham (BFnature13037_CR3) 2008; 72
R Kovall (BFnature13037_CR19) 1997; 277
AJ McCoy (BFnature13037_CR30) 2007; 40
MR Singleton (BFnature13037_CR13) 2007; 76
C Carrasco (BFnature13037_CR9) 2013; 110
CG Wu (BFnature13037_CR16) 2010; 17
M Spies (BFnature13037_CR7) 2003; 114
BFnature13037_CR29
F Chédin (BFnature13037_CR2) 1998; 29
DB Wigley (BFnature13037_CR4) 2013; 11
JT Yeeles (BFnature13037_CR27) 2009; 284
AF Taylor (BFnature13037_CR21) 2003; 423
W Kabsch (BFnature13037_CR28) 2010; 66
P Emsley (BFnature13037_CR31) 2010; 66
PD Adams (BFnature13037_CR32) 2010; 66
SS Velankar (BFnature13037_CR15) 1999; 97
MR Singleton (BFnature13037_CR11) 2004; 432
DS Thaler (BFnature13037_CR22) 1989; 31
JT Yeeles (BFnature13037_CR12) 2011; 39
AS Ponticelli (BFnature13037_CR5) 1985; 41
K Saikrishnan (BFnature13037_CR10) 2012; 31
DG Anderson (BFnature13037_CR26) 1999; 274
IW Davis (BFnature13037_CR33) 2007; 35
J Zhang (BFnature13037_CR20) 2011; 108
CJ Wong (BFnature13037_CR25) 2006; 362
DG Anderson (BFnature13037_CR6) 1997; 90
N Handa (BFnature13037_CR24) 2005; 17
M Spies (BFnature13037_CR8) 2007; 131
MC Unciuleac (BFnature13037_CR14) 2010; 285
ST Lam (BFnature13037_CR1) 1974; 77
References_xml – volume: 41
  start-page: 145
  year: 1985
  end-page: 151
  ident: CR5
  article-title: Chi-dependent DNA strand cleavage by RecBC enzyme
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90069-8
– volume: 432
  start-page: 187
  year: 2004
  end-page: 193
  ident: CR11
  article-title: Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks
  publication-title: Nature
  doi: 10.1038/nature02988
– volume: 29
  start-page: 1369
  year: 1998
  end-page: 1377
  ident: CR2
  article-title: A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.01018.x
– volume: 17
  start-page: 1210
  year: 2010
  end-page: 1217
  ident: CR16
  article-title: RecBC helicase has two translocase activities controlled by a single ATPase motor
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.1901
– volume: 31
  start-page: 1568
  year: 2012
  end-page: 1578
  ident: CR10
  article-title: Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.9
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  ident: CR28
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909047337
– volume: 90
  start-page: 77
  year: 1997
  end-page: 86
  ident: CR6
  article-title: The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80315-3
– volume: 285
  start-page: 2632
  year: 2010
  end-page: 2641
  ident: CR14
  article-title: Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.076133
– volume: 17
  start-page: 745
  year: 2005
  end-page: 750
  ident: CR24
  article-title: Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after χ recognition
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.011
– ident: CR29
– volume: 131
  start-page: 694
  year: 2007
  end-page: 705
  ident: CR8
  article-title: RecBCD enzyme switches lead motor subunits in response to chi recognition
  publication-title: Cell
  doi: 10.1016/j.cell.2007.09.023
– volume: 35
  start-page: W375
  year: 2007
  end-page: W383
  ident: CR33
  article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm216
– volume: 284
  start-page: 7746
  year: 2009
  end-page: 7755
  ident: CR27
  article-title: An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808526200
– volume: 110
  start-page: E2562
  year: 2013
  end-page: E2571
  ident: CR9
  article-title: On the mechanism of recombination hotspot scanning during double-stranded DNA break resection
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1303035110
– volume: 109
  start-page: 8907
  year: 2012
  end-page: 8912
  ident: CR18
  article-title: Mutation of χ-recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1206081109
– volume: 76
  start-page: 23
  year: 2007
  end-page: 50
  ident: CR13
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 40
  start-page: 658
  year: 2007
  end-page: 674
  ident: CR30
  article-title: crystallographic software
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889807021206
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: CR31
  article-title: Features and development of
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444910007493
– volume: 362
  start-page: 26
  year: 2006
  end-page: 43
  ident: CR25
  article-title: Probing 3′-ssDNA loop formation in RecBCD/RecBC-DNA complexes using non-natural DNA: a model for “Chi” recognition complexes
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.07.016
– volume: 97
  start-page: 75
  year: 1999
  end-page: 84
  ident: CR15
  article-title: Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80716-3
– volume: 274
  start-page: 27139
  year: 1999
  end-page: 27144
  ident: CR26
  article-title: A single mutation, RecB eliminates RecA protein loading but not Chi recognition by RecBCD enzyme
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.38.27139
– volume: 423
  start-page: 889
  year: 2003
  end-page: 893
  ident: CR21
  article-title: RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity
  publication-title: Nature
  doi: 10.1038/nature01674
– volume: 114
  start-page: 647
  year: 2003
  end-page: 654
  ident: CR7
  article-title: A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00681-0
– volume: 39
  start-page: 2271
  year: 2011
  end-page: 2285
  ident: CR12
  article-title: The AddAB helicase-nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1124
– volume: 72
  start-page: 642
  year: 2008
  end-page: 671
  ident: CR3
  article-title: RecBCD enzyme and the repair of double-stranded DNA breaks
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00020-08
– volume: 11
  start-page: 9
  year: 2013
  end-page: 13
  ident: CR4
  article-title: Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro2917
– volume: 108
  start-page: 11872
  year: 2011
  end-page: 11877
  ident: CR20
  article-title: Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103467108
– volume: 77
  start-page: 425
  year: 1974
  end-page: 433
  ident: CR1
  article-title: Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity
  publication-title: Genetics
  doi: 10.1093/genetics/77.3.425
– volume: 31
  start-page: 53
  year: 1989
  end-page: 67
  ident: CR22
  article-title: Recombination of bacteriophage λ in mutants of
  publication-title: Genome
  doi: 10.1139/g89-013
– volume: 277
  start-page: 1824
  year: 1997
  end-page: 1827
  ident: CR19
  article-title: Toroidal structure of λ-exonuclease
  publication-title: Science
  doi: 10.1126/science.277.5333.1824
– volume: 409
  start-page: 370
  year: 2001
  end-page: 374
  ident: CR23
  article-title: χ-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules
  publication-title: Nature
  doi: 10.1038/35053124
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: CR32
  article-title: : a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909052925
– volume: 109
  start-page: 8901
  year: 2012
  end-page: 8906
  ident: CR17
  article-title: Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, χ, by RecBCD enzyme
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1206076109
– volume: 29
  start-page: 1369
  year: 1998
  ident: BFnature13037_CR2
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1998.01018.x
– volume: 76
  start-page: 23
  year: 2007
  ident: BFnature13037_CR13
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 97
  start-page: 75
  year: 1999
  ident: BFnature13037_CR15
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80716-3
– volume: 274
  start-page: 27139
  year: 1999
  ident: BFnature13037_CR26
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.38.27139
– volume: 409
  start-page: 370
  year: 2001
  ident: BFnature13037_CR23
  publication-title: Nature
  doi: 10.1038/35053124
– volume: 362
  start-page: 26
  year: 2006
  ident: BFnature13037_CR25
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2006.07.016
– volume: 40
  start-page: 658
  year: 2007
  ident: BFnature13037_CR30
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889807021206
– volume: 277
  start-page: 1824
  year: 1997
  ident: BFnature13037_CR19
  publication-title: Science
  doi: 10.1126/science.277.5333.1824
– volume: 114
  start-page: 647
  year: 2003
  ident: BFnature13037_CR7
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00681-0
– volume: 284
  start-page: 7746
  year: 2009
  ident: BFnature13037_CR27
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808526200
– volume: 66
  start-page: 213
  year: 2010
  ident: BFnature13037_CR32
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909052925
– volume: 432
  start-page: 187
  year: 2004
  ident: BFnature13037_CR11
  publication-title: Nature
  doi: 10.1038/nature02988
– volume: 77
  start-page: 425
  year: 1974
  ident: BFnature13037_CR1
  publication-title: Genetics
  doi: 10.1093/genetics/77.3.425
– volume: 72
  start-page: 642
  year: 2008
  ident: BFnature13037_CR3
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00020-08
– volume: 66
  start-page: 486
  year: 2010
  ident: BFnature13037_CR31
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444910007493
– volume: 35
  start-page: W375
  year: 2007
  ident: BFnature13037_CR33
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm216
– volume: 131
  start-page: 694
  year: 2007
  ident: BFnature13037_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2007.09.023
– volume: 11
  start-page: 9
  year: 2013
  ident: BFnature13037_CR4
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/nrmicro2917
– volume: 41
  start-page: 145
  year: 1985
  ident: BFnature13037_CR5
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90069-8
– volume: 39
  start-page: 2271
  year: 2011
  ident: BFnature13037_CR12
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1124
– volume: 17
  start-page: 1210
  year: 2010
  ident: BFnature13037_CR16
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.1901
– volume: 108
  start-page: 11872
  year: 2011
  ident: BFnature13037_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1103467108
– volume: 66
  start-page: 125
  year: 2010
  ident: BFnature13037_CR28
  publication-title: Acta Crystallogr. D
  doi: 10.1107/S0907444909047337
– volume: 109
  start-page: 8907
  year: 2012
  ident: BFnature13037_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1206081109
– volume: 110
  start-page: E2562
  year: 2013
  ident: BFnature13037_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1303035110
– volume: 285
  start-page: 2632
  year: 2010
  ident: BFnature13037_CR14
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.076133
– volume: 31
  start-page: 53
  year: 1989
  ident: BFnature13037_CR22
  publication-title: Genome
  doi: 10.1139/g89-013
– volume: 109
  start-page: 8901
  year: 2012
  ident: BFnature13037_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1206076109
– volume: 423
  start-page: 889
  year: 2003
  ident: BFnature13037_CR21
  publication-title: Nature
  doi: 10.1038/nature01674
– volume: 17
  start-page: 745
  year: 2005
  ident: BFnature13037_CR24
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2005.02.011
– volume: 31
  start-page: 1568
  year: 2012
  ident: BFnature13037_CR10
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.9
– ident: BFnature13037_CR29
  doi: 10.1107/S0907444994003112
– volume: 90
  start-page: 77
  year: 1997
  ident: BFnature13037_CR6
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80315-3
SSID ssj0005174
Score 2.3390567
Snippet A dual-function helicase–nuclease, typified by RecBCD in Escherichia coli , acts on free DNA ends during bacterial double-stranded break repair until it...
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ...
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi1,2...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 416
SubjectTerms 631/337/1427/2190
631/337/149
631/535/1266
Adenosine Triphosphate - analogs & derivatives
Adenosine Triphosphate - metabolism
Bacillus subtilis - enzymology
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding Sites
Binding sites (Biochemistry)
Crystallography, X-Ray
DNA - chemistry
DNA - genetics
DNA - metabolism
DNA Helicases - chemistry
DNA Helicases - metabolism
Exodeoxyribonucleases - chemistry
Exodeoxyribonucleases - metabolism
Genetic research
Helicases
Humanities and Social Sciences
letter
Models, Molecular
Molecular Conformation
multidisciplinary
Proteins
Recombination, Genetic - genetics
Science
Structure
Structure-Activity Relationship
Translocation (Genetics)
Title Structural basis for translocation by AddAB helicase–nuclease and its arrest at χ sites
URI https://link.springer.com/article/10.1038/nature13037
https://www.ncbi.nlm.nih.gov/pubmed/24670664
https://www.proquest.com/docview/1517877092
https://pubmed.ncbi.nlm.nih.gov/PMC3991583
Volume 508
WOSCitedRecordID wos000334403000056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VFiQuiJa_0FItqOUvclnba-_6mEStQFVD1N-oF2u9dtqUyil1W5UbNx6AF-FNeAeehNld27FDkMqByyj2ji3H83lm7J35FqGVKHCISIhrgQOmFg2iyBKDBDZ5LALuB9SLiF5sgnW7vN8PejMzP4pemKtTlqb8-jo4-6-mhn1gbNU6-w_mLk8KO-A3GB0kmB3kjQy_oxlhNZsGhKhhZgoJVUhScUubG1LOVhy32pAmqm92WVKUPLipojeGHeWcgtCLd6iWx9XOxipnTTXbnFVT2q6mBq0uDTKu3z4XJ-BEzcrYB6MT8CPyuHmwVoLmUg30hyVAwUd9KtvRDMNBOUmiSHzTfKpJNNtr1e8Vti5zMe2ZBd23uqjJj2zNvc2qm85ps02QMp6ZMt-ifh6dc9ftEV7BKKNB1RdT26-EdWo88x8Rw_DDGxZVFc_ZODCW5Yp6ot7lYUXrFppzmBcoP8r6bFxUNMH7nXeEwsHvKgfXcqDJTKCSCk2W6U7M1esUaPc-upe_u-CWwdw8mknSBXRH1xDLbAHN53Eiw69zMvM3D9DhGI5YwxEDHHENjjj6gjUccQHHX1-_F0DEAEQMQMQGiFhc4J_fsAbhQ7S3sb7beW_l63lY0nfIhRWLiEg_th3Htl3IVElMhc2k59AocUUw8G1fsgGNacwdTzInjmI34qrfjtuSEtd9hGbTUZo8QViti8g1uyUNKJFE0AFxBFHkgCSBUzfQ2-IOhzInu1drrpyGU2zZQCul8pnhePmLmjJVqFhTUlWWdSQusyxs7R50umHLVevnqoS5gV5MU_uws11TepUrDUZwXVLkzTDw7xQfW01zsaYpz4afw8roy9rokTHvtNMs1RQhiMja8PMCf6EaUpWXaTK6zEJ4I4CYzkjgNNBjg8fyJjmQZcErC20gVkNqqaC46-sj6fBYc9jDe5HtcbeBVgtMh7kPzabd-6c31FtEd8c-ZwnNAsSTZ-i2vLoYZufL8Kxu7y_rJ1ZLDpJ37GU0117v9rZha7O9BnKLbCrpbGn5UcuekszIHZA97_A3GyEnHQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+translocation+by+AddAB+helicase%E2%80%93nuclease+and+its+arrest+at+%CF%87+sites&rft.jtitle=Nature+%28London%29&rft.au=Krajewski%2C+Wojciech+W.&rft.au=Fu%2C+Xin&rft.au=Wilkinson%2C+Martin&rft.au=Cronin%2C+Nora+B.&rft.date=2014-04-17&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=508&rft.issue=7496&rft.spage=416&rft.epage=419&rft_id=info:doi/10.1038%2Fnature13037&rft.externalDocID=10_1038_nature13037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon