Structural basis for translocation by AddAB helicase–nuclease and its arrest at χ sites
A dual-function helicase–nuclease, typified by RecBCD in Escherichia coli , acts on free DNA ends during bacterial double-stranded break repair until it reaches a χ sequence at which it pauses before continuing with modified enzymatic properties; here several crystal structures of the related AddAB...
Saved in:
| Published in: | Nature (London) Vol. 508; no. 7496; pp. 416 - 419 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
17.04.2014
Nature Publishing Group |
| Subjects: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A dual-function helicase–nuclease, typified by RecBCD in
Escherichia coli
, acts on free DNA ends during bacterial double-stranded break repair until it reaches a χ sequence at which it pauses before continuing with modified enzymatic properties; here several crystal structures of the related AddAB enzyme from
Bacillus subtilis
bound to χ-containing DNA are presented, offering insight into χ recognition and its effect on DNA translocation.
Taming a rampant nuclease
In bacterial double-stranded DNA break repair, the free ends are initially acted upon by a dual function helicase/nuclease, typified by the RecBCD enzyme of
Escherichia coli
. As RecBCD unwinds DNA, it eventually encounters a polar octameric sequence known as Chi (χ), which causes attenuation and a change in specificity of the nuclease activity. Dale Wigley and colleagues have now solved several structures of AddAB, a related enzyme from
Bacillus subtilis
, bound to χ-containing DNA. These structures offer insight into the translocation process, the recognition of χ, and the pausing that occurs when χ is recognized.
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi)
1
,
2
and is catalysed by either an AddAB- or RecBCD-type helicase–nuclease (reviewed in refs
3
,
4
). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence
5
, whereupon they produce a 3′ single-stranded DNA tail onto which they initiate loading of the RecA protein
6
. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of
Bacillus subtilis
AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments
7
,
8
,
9
. |
|---|---|
| AbstractList | In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments.In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments. In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) (1,2) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence (5), whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein (6). Consequently, regulation of the AddAB/ RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments (7-9). In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi1,2 and is catalysed by either an AddAB or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a Chi sequence5 whereupon they produce a 3′-single-stranded DNA tail onto which they initiate loading of the RecA protein6. Consequently, regulation of the AddAB/RecBCD complex by Chi is a key control point in DNA repair and other processes involving genetic recombination. Here, we report crystal structures of AddAB in complex with different Chi-containing DNA substrates either with or without a nonhydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, how the enzyme binds specifically to Chi sequences, and explains how Chi recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single molecule experiments7-9. In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease (reviewed in refs 3, 4). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence, whereupon they produce a 3' single-stranded DNA tail onto which they initiate loading of the RecA protein. Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments. A dual-function helicase–nuclease, typified by RecBCD in Escherichia coli , acts on free DNA ends during bacterial double-stranded break repair until it reaches a χ sequence at which it pauses before continuing with modified enzymatic properties; here several crystal structures of the related AddAB enzyme from Bacillus subtilis bound to χ-containing DNA are presented, offering insight into χ recognition and its effect on DNA translocation. Taming a rampant nuclease In bacterial double-stranded DNA break repair, the free ends are initially acted upon by a dual function helicase/nuclease, typified by the RecBCD enzyme of Escherichia coli . As RecBCD unwinds DNA, it eventually encounters a polar octameric sequence known as Chi (χ), which causes attenuation and a change in specificity of the nuclease activity. Dale Wigley and colleagues have now solved several structures of AddAB, a related enzyme from Bacillus subtilis , bound to χ-containing DNA. These structures offer insight into the translocation process, the recognition of χ, and the pausing that occurs when χ is recognized. In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ (Chi) 1 , 2 and is catalysed by either an AddAB- or RecBCD-type helicase–nuclease (reviewed in refs 3 , 4 ). These enzyme complexes unwind and digest the DNA duplex from the broken end until they encounter a χ sequence 5 , whereupon they produce a 3′ single-stranded DNA tail onto which they initiate loading of the RecA protein 6 . Consequently, regulation of the AddAB/RecBCD complex by χ is a key control point in DNA repair and other processes involving genetic recombination. Here we report crystal structures of Bacillus subtilis AddAB in complex with different χ-containing DNA substrates either with or without a non-hydrolysable ATP analogue. Comparison of these structures suggests a mechanism for DNA translocation and unwinding, suggests how the enzyme binds specifically to χ sequences, and explains how χ recognition leads to the arrest of AddAB (and RecBCD) translocation that is observed in single-molecule experiments 7 , 8 , 9 . |
| Audience | Academic |
| Author | Cronin, Nora B. Krajewski, Wojciech W. Wilkinson, Martin Fu, Xin Wigley, Dale B. Dillingham, Mark S. |
| AuthorAffiliation | 2 School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K 1 Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K |
| AuthorAffiliation_xml | – name: 1 Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, U.K – name: 2 School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, U.K |
| Author_xml | – sequence: 1 givenname: Wojciech W. surname: Krajewski fullname: Krajewski, Wojciech W. organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK, Present address: CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, UK – sequence: 2 givenname: Xin surname: Fu fullname: Fu, Xin organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK – sequence: 3 givenname: Martin surname: Wilkinson fullname: Wilkinson, Martin organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK – sequence: 4 givenname: Nora B. surname: Cronin fullname: Cronin, Nora B. organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK – sequence: 5 givenname: Mark S. surname: Dillingham fullname: Dillingham, Mark S. organization: School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK – sequence: 6 givenname: Dale B. surname: Wigley fullname: Wigley, Dale B. email: Dale.Wigley@icr.ac.uk organization: Division of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24670664$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1ks1u1DAURi1URKeFFXtkwQYEKXac2JkNUjrip1IFEi1CYmM5tpO6ythT20Htjh0PwIPxDjwJHqaUCUrlRaz43BPfm28P7FhnNQAPMTrAiFQvrYiD15ggwu6AGS4YzQpasR0wQyivMlQRugv2QjhHCJWYFffAbl5QhigtZuDLSfSDTALRw0YEE2DrPIxe2NA7KaJxFjZXsFaqPoRnujdSBP3r2w87yF6nLRRWQRMDFN7rEKGI8Od3GEzU4T6424o-6AfXz33w6c3r08W77PjD26NFfZxJmqOYKdEgSRXOc4wJKxFShcBMlnnRaCLmLcVUsrZQharyUrJcNYo0FcK0rLAsECH74NXGuxqapVZS23T9nq-8WQp_xZ0wfHxizRnv3FdO5nNcVmvB02uBdxdD6oIvTZC674XVbggcp6lVjKF5ntAnG7QTvebGti4Z5RrnNaGUEZTjKlHZBNVpq9Pn089rTXo94h9P8HJlLvg2dDABpaX00shJ67NRQWKivoydGELgRycfx-zz29n69PPi_Zh-tD3xm1H_jdU_nfQuBK_bGwQjvg4t3wptovF_tDTxT_RSh6a_pebFpiYks-205-du8DblbBL_DYYl_RY |
| CitedBy_id | crossref_primary_10_1016_j_ymeth_2021_12_002 crossref_primary_10_1038_s41594_019_0355_2 crossref_primary_10_1016_j_molcel_2021_05_027 crossref_primary_10_1083_jcb_201505019 crossref_primary_10_1093_nar_gkw1130 crossref_primary_10_1016_j_dnarep_2022_103389 crossref_primary_10_1002_pro_2533 crossref_primary_10_1016_j_resmic_2024_104189 crossref_primary_10_1074_jbc_M116_719591 crossref_primary_10_1186_s12862_017_1081_1 crossref_primary_10_7554_eLife_09832 crossref_primary_10_1016_j_jmb_2014_07_017 crossref_primary_10_1093_nar_gkw445 crossref_primary_10_1016_j_bbamcr_2015_01_018 crossref_primary_10_7554_eLife_18227 crossref_primary_10_1093_nar_gkv1543 crossref_primary_10_1016_j_jmb_2016_07_002 crossref_primary_10_1371_journal_pgen_1006783 crossref_primary_10_3390_genes7080052 crossref_primary_10_1038_s41467_021_25843_6 crossref_primary_10_1016_j_celrep_2024_115110 crossref_primary_10_1002_bies_201800009 crossref_primary_10_1128_JB_00018_15 crossref_primary_10_4155_fmc_2020_0310 crossref_primary_10_3390_microorganisms11030589 crossref_primary_10_1016_j_ccr_2016_10_003 crossref_primary_10_1016_j_csbj_2025_03_023 crossref_primary_10_15252_embj_2019102500 crossref_primary_10_1073_pnas_2023955118 crossref_primary_10_1073_pnas_1913546116 crossref_primary_10_1093_nar_gky855 crossref_primary_10_4161_15384101_2014_950892 crossref_primary_10_1093_nar_gkv545 crossref_primary_10_1016_j_pbiomolbio_2019_03_005 crossref_primary_10_1016_j_molcel_2025_03_025 crossref_primary_10_1038_srep39414 crossref_primary_10_7554_eLife_18574 crossref_primary_10_1007_s12195_018_00563_y crossref_primary_10_3390_v11030267 crossref_primary_10_1016_j_jtbi_2018_04_014 crossref_primary_10_1002_mlf2_12137 |
| Cites_doi | 10.1016/0092-8674(85)90069-8 10.1038/nature02988 10.1046/j.1365-2958.1998.01018.x 10.1038/nsmb.1901 10.1038/emboj.2012.9 10.1107/S0907444909047337 10.1016/S0092-8674(00)80315-3 10.1074/jbc.M109.076133 10.1016/j.molcel.2005.02.011 10.1016/j.cell.2007.09.023 10.1093/nar/gkm216 10.1074/jbc.M808526200 10.1073/pnas.1303035110 10.1073/pnas.1206081109 10.1146/annurev.biochem.76.052305.115300 10.1107/S0021889807021206 10.1107/S0907444910007493 10.1016/j.jmb.2006.07.016 10.1016/S0092-8674(00)80716-3 10.1074/jbc.274.38.27139 10.1038/nature01674 10.1016/S0092-8674(03)00681-0 10.1093/nar/gkq1124 10.1128/MMBR.00020-08 10.1038/nrmicro2917 10.1073/pnas.1103467108 10.1093/genetics/77.3.425 10.1139/g89-013 10.1126/science.277.5333.1824 10.1038/35053124 10.1107/S0907444909052925 10.1073/pnas.1206076109 10.1107/S0907444994003112 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2014 COPYRIGHT 2014 Nature Publishing Group |
| Copyright_xml | – notice: Springer Nature Limited 2014 – notice: COPYRIGHT 2014 Nature Publishing Group |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ATWCN 7X8 5PM |
| DOI | 10.1038/nature13037 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 419 |
| ExternalDocumentID | PMC3991583 A366730218 24670664 10_1038_nature13037 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 12799 – fundername: Cancer Research UK grantid: A12799 – fundername: Wellcome Trust grantid: 100401 |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ABUFD ACSTC ADXHL AETEA AFANA AFFHD ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB ADGHP CGR CUY CVF ECM EIF NPM ACMFV AEIIB PMFND ESTFP 7X8 5PM |
| ID | FETCH-LOGICAL-c620t-dab0c6d1221137500d4a17c524be3a9f616c7f4d4d825c72dbd3b8016581c4033 |
| ISICitedReferencesCount | 44 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334403000056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Tue Nov 04 01:58:50 EST 2025 Sun Nov 09 12:54:36 EST 2025 Sat Nov 29 13:16:32 EST 2025 Sat Nov 29 11:22:10 EST 2025 Tue Jun 10 15:30:56 EDT 2025 Sun Nov 23 08:55:45 EST 2025 Wed Nov 26 09:52:02 EST 2025 Mon Nov 24 14:38:11 EST 2025 Mon Jul 21 05:53:16 EDT 2025 Tue Nov 18 22:33:33 EST 2025 Sat Nov 29 05:17:27 EST 2025 Fri Feb 21 02:37:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7496 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c620t-dab0c6d1221137500d4a17c524be3a9f616c7f4d4d825c72dbd3b8016581c4033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: CRT Discovery Laboratories, Department of Biological Sciences, Birkbeck, University of London, London, U.K. Contributions: W.W.K. & D.B.W designed the experiments. W.W.K., X.F., M.W and N.B.C performed the experiments. W.W.K., M.W., M.S.D. and D.B.W. analysed the data and prepared the manuscript. |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3991583 |
| PMID | 24670664 |
| PQID | 1517877092 |
| PQPubID | 23479 |
| PageCount | 4 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3991583 proquest_miscellaneous_1517877092 gale_infotracmisc_A366730218 gale_infotracgeneralonefile_A366730218 gale_infotraccpiq_366730218 gale_infotracacademiconefile_A366730218 gale_incontextgauss_ISR_A366730218 gale_incontextgauss_ATWCN_A366730218 pubmed_primary_24670664 crossref_primary_10_1038_nature13037 crossref_citationtrail_10_1038_nature13037 springer_journals_10_1038_nature13037 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-17 |
| PublicationDateYYYYMMDD | 2014-04-17 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2014 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Singleton, Dillingham, Wigley (CR13) 2007; 76 Kabsch (CR28) 2010; 66 Emsley, Lohkamp, Scott, Cowtan (CR31) 2010; 66 Yeeles, Cammack, Dillingham (CR27) 2009; 284 Ponticelli, Schultz, Taylor, Smith (CR5) 1985; 41 Handa, Bianco, Baskin, Kowalczykowski (CR24) 2005; 17 Dillingham, Kowalczykowski (CR3) 2008; 72 Taylor, Smith (CR21) 2003; 423 Adams (CR32) 2010; 66 Thaler (CR22) 1989; 31 Spies (CR7) 2003; 114 Wong, Rice, Baker, Ju, Lohman (CR25) 2006; 362 Carrasco, Gilhooly, Dillingham, Moreno-Herrero (CR9) 2013; 110 Kovall, Matthews (CR19) 1997; 277 Anderson, Kowalczykowski (CR6) 1997; 90 Unciuleac, Shuman (CR14) 2010; 285 Zhang, McCabe, Bell (CR20) 2011; 108 Singleton, Dillingham, Gaudier, Kowalczykowski, Wigley (CR11) 2004; 432 McCoy (CR30) 2007; 40 Davis (CR33) 2007; 35 Anderson, Churchill, Kowalczykowski (CR26) 1999; 274 Spies, Amitani, Baskin, Kowalczykowski (CR8) 2007; 131 CR29 Wigley (CR4) 2013; 11 Velankar, Soultanas, Dillingham, Subramanya, Wigley (CR15) 1999; 97 Chédin, Noirot, Biaudet, Ehrlich (CR2) 1998; 29 Dohoney, Gelles (CR23) 2001; 409 Yang (CR18) 2012; 109 Lam, Stahl, McMilin, Stahl (CR1) 1974; 77 Wu, Bradford, Lohman (CR16) 2010; 17 Handa (CR17) 2012; 109 Yeeles, Gwynn, Webb, Dillingham (CR12) 2011; 39 Saikrishnan (CR10) 2012; 31 L Yang (BFnature13037_CR18) 2012; 109 N Handa (BFnature13037_CR17) 2012; 109 KM Dohoney (BFnature13037_CR23) 2001; 409 MS Dillingham (BFnature13037_CR3) 2008; 72 R Kovall (BFnature13037_CR19) 1997; 277 AJ McCoy (BFnature13037_CR30) 2007; 40 MR Singleton (BFnature13037_CR13) 2007; 76 C Carrasco (BFnature13037_CR9) 2013; 110 CG Wu (BFnature13037_CR16) 2010; 17 M Spies (BFnature13037_CR7) 2003; 114 BFnature13037_CR29 F Chédin (BFnature13037_CR2) 1998; 29 DB Wigley (BFnature13037_CR4) 2013; 11 JT Yeeles (BFnature13037_CR27) 2009; 284 AF Taylor (BFnature13037_CR21) 2003; 423 W Kabsch (BFnature13037_CR28) 2010; 66 P Emsley (BFnature13037_CR31) 2010; 66 PD Adams (BFnature13037_CR32) 2010; 66 SS Velankar (BFnature13037_CR15) 1999; 97 MR Singleton (BFnature13037_CR11) 2004; 432 DS Thaler (BFnature13037_CR22) 1989; 31 JT Yeeles (BFnature13037_CR12) 2011; 39 AS Ponticelli (BFnature13037_CR5) 1985; 41 K Saikrishnan (BFnature13037_CR10) 2012; 31 DG Anderson (BFnature13037_CR26) 1999; 274 IW Davis (BFnature13037_CR33) 2007; 35 J Zhang (BFnature13037_CR20) 2011; 108 CJ Wong (BFnature13037_CR25) 2006; 362 DG Anderson (BFnature13037_CR6) 1997; 90 N Handa (BFnature13037_CR24) 2005; 17 M Spies (BFnature13037_CR8) 2007; 131 MC Unciuleac (BFnature13037_CR14) 2010; 285 ST Lam (BFnature13037_CR1) 1974; 77 |
| References_xml | – volume: 41 start-page: 145 year: 1985 end-page: 151 ident: CR5 article-title: Chi-dependent DNA strand cleavage by RecBC enzyme publication-title: Cell doi: 10.1016/0092-8674(85)90069-8 – volume: 432 start-page: 187 year: 2004 end-page: 193 ident: CR11 article-title: Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks publication-title: Nature doi: 10.1038/nature02988 – volume: 29 start-page: 1369 year: 1998 end-page: 1377 ident: CR2 article-title: A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.01018.x – volume: 17 start-page: 1210 year: 2010 end-page: 1217 ident: CR16 article-title: RecBC helicase has two translocase activities controlled by a single ATPase motor publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.1901 – volume: 31 start-page: 1568 year: 2012 end-page: 1578 ident: CR10 article-title: Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex publication-title: EMBO J. doi: 10.1038/emboj.2012.9 – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: CR28 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909047337 – volume: 90 start-page: 77 year: 1997 end-page: 86 ident: CR6 article-title: The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner publication-title: Cell doi: 10.1016/S0092-8674(00)80315-3 – volume: 285 start-page: 2632 year: 2010 end-page: 2641 ident: CR14 article-title: Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.076133 – volume: 17 start-page: 745 year: 2005 end-page: 750 ident: CR24 article-title: Direct visualization of RecBCD movement reveals cotranslocation of the RecD motor after χ recognition publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.011 – ident: CR29 – volume: 131 start-page: 694 year: 2007 end-page: 705 ident: CR8 article-title: RecBCD enzyme switches lead motor subunits in response to chi recognition publication-title: Cell doi: 10.1016/j.cell.2007.09.023 – volume: 35 start-page: W375 year: 2007 end-page: W383 ident: CR33 article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm216 – volume: 284 start-page: 7746 year: 2009 end-page: 7755 ident: CR27 article-title: An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808526200 – volume: 110 start-page: E2562 year: 2013 end-page: E2571 ident: CR9 article-title: On the mechanism of recombination hotspot scanning during double-stranded DNA break resection publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1303035110 – volume: 109 start-page: 8907 year: 2012 end-page: 8912 ident: CR18 article-title: Mutation of χ-recognition by RecBCD reveals a regulated molecular latch and suggests a channel-bypass mechanism for biological control publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1206081109 – volume: 76 start-page: 23 year: 2007 end-page: 50 ident: CR13 article-title: Structure and mechanism of helicases and nucleic acid translocases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052305.115300 – volume: 40 start-page: 658 year: 2007 end-page: 674 ident: CR30 article-title: crystallographic software publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807021206 – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: CR31 article-title: Features and development of publication-title: Acta Crystallogr. D doi: 10.1107/S0907444910007493 – volume: 362 start-page: 26 year: 2006 end-page: 43 ident: CR25 article-title: Probing 3′-ssDNA loop formation in RecBCD/RecBC-DNA complexes using non-natural DNA: a model for “Chi” recognition complexes publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.07.016 – volume: 97 start-page: 75 year: 1999 end-page: 84 ident: CR15 article-title: Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism publication-title: Cell doi: 10.1016/S0092-8674(00)80716-3 – volume: 274 start-page: 27139 year: 1999 end-page: 27144 ident: CR26 article-title: A single mutation, RecB eliminates RecA protein loading but not Chi recognition by RecBCD enzyme publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.38.27139 – volume: 423 start-page: 889 year: 2003 end-page: 893 ident: CR21 article-title: RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity publication-title: Nature doi: 10.1038/nature01674 – volume: 114 start-page: 647 year: 2003 end-page: 654 ident: CR7 article-title: A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase publication-title: Cell doi: 10.1016/S0092-8674(03)00681-0 – volume: 39 start-page: 2271 year: 2011 end-page: 2285 ident: CR12 article-title: The AddAB helicase-nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1124 – volume: 72 start-page: 642 year: 2008 end-page: 671 ident: CR3 article-title: RecBCD enzyme and the repair of double-stranded DNA breaks publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00020-08 – volume: 11 start-page: 9 year: 2013 end-page: 13 ident: CR4 article-title: Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro2917 – volume: 108 start-page: 11872 year: 2011 end-page: 11877 ident: CR20 article-title: Crystal structures of λ exonuclease in complex with DNA suggest an electrostatic ratchet mechanism for processivity publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103467108 – volume: 77 start-page: 425 year: 1974 end-page: 433 ident: CR1 article-title: Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity publication-title: Genetics doi: 10.1093/genetics/77.3.425 – volume: 31 start-page: 53 year: 1989 end-page: 67 ident: CR22 article-title: Recombination of bacteriophage λ in mutants of publication-title: Genome doi: 10.1139/g89-013 – volume: 277 start-page: 1824 year: 1997 end-page: 1827 ident: CR19 article-title: Toroidal structure of λ-exonuclease publication-title: Science doi: 10.1126/science.277.5333.1824 – volume: 409 start-page: 370 year: 2001 end-page: 374 ident: CR23 article-title: χ-sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules publication-title: Nature doi: 10.1038/35053124 – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: CR32 article-title: : a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – volume: 109 start-page: 8901 year: 2012 end-page: 8906 ident: CR17 article-title: Molecular determinants responsible for recognition of the single-stranded DNA regulatory sequence, χ, by RecBCD enzyme publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1206076109 – volume: 29 start-page: 1369 year: 1998 ident: BFnature13037_CR2 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1998.01018.x – volume: 76 start-page: 23 year: 2007 ident: BFnature13037_CR13 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052305.115300 – volume: 97 start-page: 75 year: 1999 ident: BFnature13037_CR15 publication-title: Cell doi: 10.1016/S0092-8674(00)80716-3 – volume: 274 start-page: 27139 year: 1999 ident: BFnature13037_CR26 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.38.27139 – volume: 409 start-page: 370 year: 2001 ident: BFnature13037_CR23 publication-title: Nature doi: 10.1038/35053124 – volume: 362 start-page: 26 year: 2006 ident: BFnature13037_CR25 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2006.07.016 – volume: 40 start-page: 658 year: 2007 ident: BFnature13037_CR30 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889807021206 – volume: 277 start-page: 1824 year: 1997 ident: BFnature13037_CR19 publication-title: Science doi: 10.1126/science.277.5333.1824 – volume: 114 start-page: 647 year: 2003 ident: BFnature13037_CR7 publication-title: Cell doi: 10.1016/S0092-8674(03)00681-0 – volume: 284 start-page: 7746 year: 2009 ident: BFnature13037_CR27 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808526200 – volume: 66 start-page: 213 year: 2010 ident: BFnature13037_CR32 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – volume: 432 start-page: 187 year: 2004 ident: BFnature13037_CR11 publication-title: Nature doi: 10.1038/nature02988 – volume: 77 start-page: 425 year: 1974 ident: BFnature13037_CR1 publication-title: Genetics doi: 10.1093/genetics/77.3.425 – volume: 72 start-page: 642 year: 2008 ident: BFnature13037_CR3 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00020-08 – volume: 66 start-page: 486 year: 2010 ident: BFnature13037_CR31 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444910007493 – volume: 35 start-page: W375 year: 2007 ident: BFnature13037_CR33 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm216 – volume: 131 start-page: 694 year: 2007 ident: BFnature13037_CR8 publication-title: Cell doi: 10.1016/j.cell.2007.09.023 – volume: 11 start-page: 9 year: 2013 ident: BFnature13037_CR4 publication-title: Nature Rev. Microbiol. doi: 10.1038/nrmicro2917 – volume: 41 start-page: 145 year: 1985 ident: BFnature13037_CR5 publication-title: Cell doi: 10.1016/0092-8674(85)90069-8 – volume: 39 start-page: 2271 year: 2011 ident: BFnature13037_CR12 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1124 – volume: 17 start-page: 1210 year: 2010 ident: BFnature13037_CR16 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.1901 – volume: 108 start-page: 11872 year: 2011 ident: BFnature13037_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1103467108 – volume: 66 start-page: 125 year: 2010 ident: BFnature13037_CR28 publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909047337 – volume: 109 start-page: 8907 year: 2012 ident: BFnature13037_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1206081109 – volume: 110 start-page: E2562 year: 2013 ident: BFnature13037_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1303035110 – volume: 285 start-page: 2632 year: 2010 ident: BFnature13037_CR14 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.076133 – volume: 31 start-page: 53 year: 1989 ident: BFnature13037_CR22 publication-title: Genome doi: 10.1139/g89-013 – volume: 109 start-page: 8901 year: 2012 ident: BFnature13037_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1206076109 – volume: 423 start-page: 889 year: 2003 ident: BFnature13037_CR21 publication-title: Nature doi: 10.1038/nature01674 – volume: 17 start-page: 745 year: 2005 ident: BFnature13037_CR24 publication-title: Mol. Cell doi: 10.1016/j.molcel.2005.02.011 – volume: 31 start-page: 1568 year: 2012 ident: BFnature13037_CR10 publication-title: EMBO J. doi: 10.1038/emboj.2012.9 – ident: BFnature13037_CR29 doi: 10.1107/S0907444994003112 – volume: 90 start-page: 77 year: 1997 ident: BFnature13037_CR6 publication-title: Cell doi: 10.1016/S0092-8674(00)80315-3 |
| SSID | ssj0005174 |
| Score | 2.3390567 |
| Snippet | A dual-function helicase–nuclease, typified by RecBCD in
Escherichia coli
, acts on free DNA ends during bacterial double-stranded break repair until it... In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence χ... In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi1,2... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 416 |
| SubjectTerms | 631/337/1427/2190 631/337/149 631/535/1266 Adenosine Triphosphate - analogs & derivatives Adenosine Triphosphate - metabolism Bacillus subtilis - enzymology Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding Sites Binding sites (Biochemistry) Crystallography, X-Ray DNA - chemistry DNA - genetics DNA - metabolism DNA Helicases - chemistry DNA Helicases - metabolism Exodeoxyribonucleases - chemistry Exodeoxyribonucleases - metabolism Genetic research Helicases Humanities and Social Sciences letter Models, Molecular Molecular Conformation multidisciplinary Proteins Recombination, Genetic - genetics Science Structure Structure-Activity Relationship Translocation (Genetics) |
| Title | Structural basis for translocation by AddAB helicase–nuclease and its arrest at χ sites |
| URI | https://link.springer.com/article/10.1038/nature13037 https://www.ncbi.nlm.nih.gov/pubmed/24670664 https://www.proquest.com/docview/1517877092 https://pubmed.ncbi.nlm.nih.gov/PMC3991583 |
| Volume | 508 |
| WOSCitedRecordID | wos000334403000056&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Nature customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6VFiQuiJa_0FItqOUvclnba-_6mEStQFVD1N-oF2u9dtqUyil1W5UbNx6AF-FNeAeehNld27FDkMqByyj2ji3H83lm7J35FqGVKHCISIhrgQOmFg2iyBKDBDZ5LALuB9SLiF5sgnW7vN8PejMzP4pemKtTlqb8-jo4-6-mhn1gbNU6-w_mLk8KO-A3GB0kmB3kjQy_oxlhNZsGhKhhZgoJVUhScUubG1LOVhy32pAmqm92WVKUPLipojeGHeWcgtCLd6iWx9XOxipnTTXbnFVT2q6mBq0uDTKu3z4XJ-BEzcrYB6MT8CPyuHmwVoLmUg30hyVAwUd9KtvRDMNBOUmiSHzTfKpJNNtr1e8Vti5zMe2ZBd23uqjJj2zNvc2qm85ps02QMp6ZMt-ifh6dc9ftEV7BKKNB1RdT26-EdWo88x8Rw_DDGxZVFc_ZODCW5Yp6ot7lYUXrFppzmBcoP8r6bFxUNMH7nXeEwsHvKgfXcqDJTKCSCk2W6U7M1esUaPc-upe_u-CWwdw8mknSBXRH1xDLbAHN53Eiw69zMvM3D9DhGI5YwxEDHHENjjj6gjUccQHHX1-_F0DEAEQMQMQGiFhc4J_fsAbhQ7S3sb7beW_l63lY0nfIhRWLiEg_th3Htl3IVElMhc2k59AocUUw8G1fsgGNacwdTzInjmI34qrfjtuSEtd9hGbTUZo8QViti8g1uyUNKJFE0AFxBFHkgCSBUzfQ2-IOhzInu1drrpyGU2zZQCul8pnhePmLmjJVqFhTUlWWdSQusyxs7R50umHLVevnqoS5gV5MU_uws11TepUrDUZwXVLkzTDw7xQfW01zsaYpz4afw8roy9rokTHvtNMs1RQhiMja8PMCf6EaUpWXaTK6zEJ4I4CYzkjgNNBjg8fyJjmQZcErC20gVkNqqaC46-sj6fBYc9jDe5HtcbeBVgtMh7kPzabd-6c31FtEd8c-ZwnNAsSTZ-i2vLoYZufL8Kxu7y_rJ1ZLDpJ37GU0117v9rZha7O9BnKLbCrpbGn5UcuekszIHZA97_A3GyEnHQ |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+basis+for+translocation+by+AddAB+helicase%E2%80%93nuclease+and+its+arrest+at+%CF%87+sites&rft.jtitle=Nature+%28London%29&rft.au=Krajewski%2C+Wojciech+W.&rft.au=Fu%2C+Xin&rft.au=Wilkinson%2C+Martin&rft.au=Cronin%2C+Nora+B.&rft.date=2014-04-17&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=508&rft.issue=7496&rft.spage=416&rft.epage=419&rft_id=info:doi/10.1038%2Fnature13037&rft.externalDocID=10_1038_nature13037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |