Identification of microbe–disease signed associations via multi-scale variational graph autoencoder based on signed message propagation

Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Results Consider...

Full description

Saved in:
Bibliographic Details
Published in:BMC biology Vol. 22; no. 1; pp. 172 - 15
Main Authors: Zhu, Huan, Hao, Hongxia, Yu, Liang
Format: Journal Article
Language:English
Published: London BioMed Central 15.08.2024
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1741-7007, 1741-7007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Results Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. Conclusions MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
AbstractList Abstract Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Results Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. Conclusions MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
BackgroundPlenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine.ResultsConsidering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes.ConclusionsMSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine.BACKGROUNDPlenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine.Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes.RESULTSConsidering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes.MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.CONCLUSIONSMSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Results Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. Conclusions MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Results Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. Conclusions MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information. Keywords: Variational graph autoencoder, Microbe-disease association, Signed message propagation, XGBoost
ArticleNumber 172
Audience Academic
Author Yu, Liang
Zhu, Huan
Hao, Hongxia
Author_xml – sequence: 1
  givenname: Huan
  surname: Zhu
  fullname: Zhu, Huan
  organization: School of Computer Science and Technology, Xidian University
– sequence: 2
  givenname: Hongxia
  surname: Hao
  fullname: Hao, Hongxia
  email: hxhao@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-8351-3332
  surname: Yu
  fullname: Yu, Liang
  email: lyu@xidian.edu.cn
  organization: School of Computer Science and Technology, Xidian University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39148051$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhSNURB_wB1ggS2xgkWInduwsq4rHSJUq8dpaN_ZNcJXEg51UZceWNf-QX4I7GVqmQhXKItHNd451j89htjf6EbPsKaPHjKnqVWRFzUROC55TVlcqpw-yAyY5yyWlcu-v7_3sMMYLSgshZfko2y9rxhUV7CD7sbI4Tq51BibnR-JbMjgTfIO_vv-0LiJEJNF1I1oCMXrjNlwklw7IMPeTy6OBHsklhOUX9KQLsP5CYJ48jsZbDKRJNpYk_63VgDFCh2Qd_Bq6je5x9rCFPuKT7fso-_Tm9cfTd_nZ-dvV6clZbqqCTjkIEIyapmkV58qKpihqFAZpzVtaMWyskLZEKaiRsmG8ktDwujJgoGnSoDzKVouv9XCh18ENEL5pD05vBj50GsLkTI_agqlbw4VkLeXCUlVxVRlGS85oXWKRvF4sXmmPrzPGSQ8uGux7GNHPUZcJEzWXQiX0-R30ws8hpZUolq6wUoJXt1SXMtVubP0UwFyb6hNFVVGqsqoTdfwPKj0W0-WlkrQuzXcEL3cEiZnwaupgjlGvPrz_f_b88y77bLvU3Axob9L8068EFAuQKhVjwPYGYVRfl1gvJdYpAb0psaZJpO6IjJs2HUlruv5-ablIYzpn7DDcpnyP6jfBGgUw
CitedBy_id crossref_primary_10_1016_j_ymeth_2025_03_023
crossref_primary_10_1016_j_ymeth_2025_03_002
crossref_primary_10_1021_acs_jcim_5c00895
crossref_primary_10_1093_bib_bbae584
crossref_primary_10_1186_s12915_025_02314_8
crossref_primary_10_1016_j_inffus_2025_103227
crossref_primary_10_1093_bib_bbaf313
crossref_primary_10_1021_acs_jcim_5c00530
crossref_primary_10_3389_fpls_2025_1626539
crossref_primary_10_3389_fpls_2025_1618174
crossref_primary_10_3389_fphar_2025_1578140
crossref_primary_10_1016_j_ijbiomac_2025_146849
crossref_primary_10_1371_journal_pcbi_1013489
crossref_primary_10_1016_j_ymeth_2025_07_012
crossref_primary_10_1007_s11432_024_4457_2
crossref_primary_10_1021_acs_jcim_5c00444
crossref_primary_10_1093_bib_bbaf189
crossref_primary_10_1093_bib_bbaf026
crossref_primary_10_1186_s12915_025_02202_1
crossref_primary_10_1186_s12915_025_02329_1
crossref_primary_10_1093_bib_bbaf447
crossref_primary_10_1021_acs_biochem_5c00237
crossref_primary_10_1021_acs_jcim_5c01073
crossref_primary_10_1016_j_curpro_2025_100003
crossref_primary_10_1186_s12915_025_02197_9
crossref_primary_10_1016_j_compeleceng_2025_110725
crossref_primary_10_1093_bioinformatics_btaf362
crossref_primary_10_3390_foods14122014
crossref_primary_10_3390_ijms26146701
crossref_primary_10_1016_j_ijbiomac_2025_142255
crossref_primary_10_1016_j_neunet_2025_107655
Cites_doi 10.1016/j.xcrm.2022.100794
10.1186/s40168-018-0483-7
10.1093/bioinformatics/bty451
10.1093/bib/bbac080
10.1093/bib/bbad371
10.1093/bib/bbaa157
10.3389/fmicb.2020.592430
10.1016/j.inffus.2021.02.015
10.1093/bioinformatics/btw715
10.1111/j.1574-695X.2002.tb00632.x
10.1093/nar/gkab829
10.1609/aaai.v34i04.5911
10.1109/ICDM.2018.00113
10.1038/s41746-023-00887-8
10.1145/2939672.2939785
10.1609/aaai.v37i4.25565
10.1086/510385
10.1093/bioinformatics/btab792
10.1007/978-3-030-30493-5_53
10.1016/j.ymthe.2023.05.016
10.1016/j.biotechadv.2021.107797
10.1109/JBHI.2021.3088342
10.1038/nmeth.2810
10.3389/fmed.2023.1281880
10.1007/s11432-024-4171-9
10.3389/fmed.2023.1291352
10.1186/s12967-021-02732-6
10.1145/3539618.3592075
10.1093/nar/gkad055
10.1016/j.bbadis.2014.05.023
10.1145/3488560.3498531
10.1109/JBHI.2022.3156166
10.1093/bib/bbw005
10.1126/science.1124234
10.1145/2939672.2939754
10.1038/nature11234
10.1016/j.phrs.2017.12.009
10.1038/nature25979
10.1038/nrmicro2974
10.1093/bib/bbac423
10.1109/TCBB.2023.3274587
10.1016/j.jaut.2013.07.001
10.1186/s12915-023-01796-8
10.2174/1574893618666230316113621
10.1609/aaai.v37i4.25573
10.1016/j.jaci.2014.11.011
10.1038/ncomms5212
10.1093/nar/gkaa902
10.1016/j.gpb.2020.11.001
10.1371/journal.pcbi.1011214
10.1038/s41586-019-1291-3
10.3389/fmicb.2020.00579
10.1093/bib/bbaa146
10.1038/nrc3610
10.1186/s12866-018-1197-5
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PADUT
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.1186/s12915-024-01968-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
University Readers
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
ProQuest Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Research Library China
ProQuest One Academic
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Research Library China
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

Publicly Available Content Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1741-7007
EndPage 15
ExternalDocumentID oai_doaj_org_article_dac9fc4571f045d086486c10341093e2
A808238369
39148051
10_1186_s12915_024_01968_0
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072353; 62272065
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 62272065
– fundername: National Natural Science Foundation of China
  grantid: 62072353
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
7X7
88E
8FE
8FH
8FI
8FJ
8G5
AAFWJ
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
IOV
ISE
ISR
ITC
KQ8
LK8
M1P
M2O
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PADUT
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4U-
7QG
7QP
7QR
7SN
7SS
7TK
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c620t-a5a510cbbf8448d5b229e5ce094f061ebd57d3e750c77b1467ab496cacabb7b13
IEDL.DBID M7P
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001292128000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1741-7007
IngestDate Tue Oct 14 19:05:46 EDT 2025
Fri Sep 05 06:09:59 EDT 2025
Mon Oct 06 18:25:00 EDT 2025
Tue Nov 11 10:56:11 EST 2025
Tue Nov 04 18:23:34 EST 2025
Thu Nov 13 16:10:37 EST 2025
Thu Nov 13 16:09:27 EST 2025
Mon Jul 21 05:40:54 EDT 2025
Tue Nov 18 21:18:20 EST 2025
Sat Nov 29 04:14:39 EST 2025
Sat Sep 06 07:29:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Signed message propagation
Microbe-disease association
Variational graph autoencoder
XGBoost
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-a5a510cbbf8448d5b229e5ce094f061ebd57d3e750c77b1467ab496cacabb7b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8351-3332
OpenAccessLink https://www.proquest.com/docview/3102468546?pq-origsite=%requestingapplication%
PMID 39148051
PQID 3102468546
PQPubID 42637
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_dac9fc4571f045d086486c10341093e2
proquest_miscellaneous_3093594758
proquest_journals_3102468546
gale_infotracmisc_A808238369
gale_infotracacademiconefile_A808238369
gale_incontextgauss_ISR_A808238369
gale_incontextgauss_IOV_A808238369
pubmed_primary_39148051
crossref_primary_10_1186_s12915_024_01968_0
crossref_citationtrail_10_1186_s12915_024_01968_0
springer_journals_10_1186_s12915_024_01968_0
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC biology
PublicationTitleAbbrev BMC Biol
PublicationTitleAlternate BMC Biol
PublicationYear 2024
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References H Zulfiqar (1968_CR35) 2024; 10
F Sommer (1968_CR2) 2013; 11
L Peng (1968_CR22) 2020; 11
Z Wen (1968_CR19) 2021; 22
1968_CR20
SR Gill (1968_CR4) 2006; 312
H Yang (1968_CR58) 2021; 75
L Wei (1968_CR26) 2018; 34
Y Janssens (1968_CR44) 2018; 18
1968_CR28
1968_CR29
X Chen (1968_CR48) 2017; 33
ML Cross (1968_CR5) 2002; 34
1968_CR27
L Wang (1968_CR11) 2023; 18
LE McCoubrey (1968_CR13) 2022; 54
X Lei (1968_CR21) 2020; 11
X Zhou (1968_CR47) 2014; 5
G Skoufos (1968_CR46) 2021; 49
1968_CR60
J Henao-Mejia (1968_CR6) 2013; 46
X Zou (1968_CR36) 2023; 10
H Li (1968_CR51) 2023; 19
L Wang (1968_CR18) 2022; 23
Y Long (1968_CR24) 2021; 22
1968_CR55
M Zimmermann (1968_CR14) 2019; 570
1968_CR56
1968_CR54
1968_CR52
W Tao (1968_CR25) 2023; 24
RF Schwabe (1968_CR9) 2013; 13
YJ Huang (1968_CR8) 2015; 135
X Zeng (1968_CR31) 2022; 4
H Zhu (1968_CR32) 2023; 21
C Ai (1968_CR53) 2023; 20
EL Amitay (1968_CR41) 2018; 9
J Feng (1968_CR10) 2022; 23
PB Eckburg (1968_CR42) 2007; 44
L Wang (1968_CR12) 2022; 26
C Mancuso (1968_CR40) 2018; 129
B Wang (1968_CR33) 2014; 11
L Van der Maaten (1968_CR39) 2008; 9
H Yang (1968_CR57) 2023; 6
L Maier (1968_CR16) 2018; 555
G Yao (1968_CR45) 2020; 18
C Panebianco (1968_CR15) 2018; 6
Human Microbiome Project Consortium (1968_CR3) 2012; 486
R Wang (1968_CR17) 2023; 51
L Deng (1968_CR49) 2022; 38
L Wen (1968_CR7) 2008; 455
1968_CR34
Y Ding (1968_CR50) 2021; 26
1968_CR30
Z Abbas (1968_CR59) 2023; 31
W Ma (1968_CR43) 2017; 18
D Xu (1968_CR23) 2021; 19
M Cénit (1968_CR1) 2014; 1842
1968_CR37
1968_CR38
References_xml – volume: 4
  start-page: 100794
  year: 2022
  ident: 1968_CR31
  publication-title: Cell Rep Med
  doi: 10.1016/j.xcrm.2022.100794
– volume: 6
  start-page: 1
  year: 2018
  ident: 1968_CR15
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0483-7
– volume: 34
  start-page: 4007
  issue: 23
  year: 2018
  ident: 1968_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty451
– volume: 23
  start-page: bbac080
  issue: 3
  year: 2022
  ident: 1968_CR18
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac080
– volume: 24
  start-page: 371
  issue: 6
  year: 2023
  ident: 1968_CR25
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbad371
– volume: 22
  start-page: bbaa157
  issue: 3
  year: 2021
  ident: 1968_CR19
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa157
– volume: 11
  start-page: 592430
  year: 2020
  ident: 1968_CR22
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.592430
– volume: 75
  start-page: 140
  year: 2021
  ident: 1968_CR58
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2021.02.015
– volume: 33
  start-page: 733
  issue: 5
  year: 2017
  ident: 1968_CR48
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw715
– volume: 34
  start-page: 245
  issue: 4
  year: 2002
  ident: 1968_CR5
  publication-title: FEMS Immunol Med Microbiol
  doi: 10.1111/j.1574-695X.2002.tb00632.x
– ident: 1968_CR52
  doi: 10.1093/nar/gkab829
– ident: 1968_CR29
  doi: 10.1609/aaai.v34i04.5911
– ident: 1968_CR27
  doi: 10.1109/ICDM.2018.00113
– volume: 6
  start-page: 136
  issue: 1
  year: 2023
  ident: 1968_CR57
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-023-00887-8
– ident: 1968_CR34
  doi: 10.1145/2939672.2939785
– volume: 455
  start-page: 1109
  issue: 7216
  year: 2008
  ident: 1968_CR7
  publication-title: Nat Methods
– ident: 1968_CR30
  doi: 10.1609/aaai.v37i4.25565
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 1968_CR39
  publication-title: J Mach Learn Res
– volume: 44
  start-page: 256
  issue: 2
  year: 2007
  ident: 1968_CR42
  publication-title: Clin Infect Dis
  doi: 10.1086/510385
– volume: 38
  start-page: 1118
  issue: 4
  year: 2022
  ident: 1968_CR49
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab792
– ident: 1968_CR28
  doi: 10.1007/978-3-030-30493-5_53
– volume: 31
  start-page: 2543
  issue: 8
  year: 2023
  ident: 1968_CR59
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2023.05.016
– volume: 54
  year: 2022
  ident: 1968_CR13
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2021.107797
– volume: 26
  start-page: 446
  issue: 1
  year: 2021
  ident: 1968_CR50
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2021.3088342
– volume: 11
  start-page: 333
  issue: 3
  year: 2014
  ident: 1968_CR33
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2810
– volume: 10
  start-page: 1281880
  year: 2023
  ident: 1968_CR36
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2023.1281880
– ident: 1968_CR60
  doi: 10.1007/s11432-024-4171-9
– volume: 10
  start-page: 1291352
  year: 2024
  ident: 1968_CR35
  publication-title: Front Med
  doi: 10.3389/fmed.2023.1291352
– volume: 19
  start-page: 1
  year: 2021
  ident: 1968_CR23
  publication-title: J Transl Med
  doi: 10.1186/s12967-021-02732-6
– ident: 1968_CR37
  doi: 10.1145/3539618.3592075
– ident: 1968_CR54
– volume: 51
  start-page: 3017
  issue: 7
  year: 2023
  ident: 1968_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkad055
– volume: 1842
  start-page: 1981
  issue: 10
  year: 2014
  ident: 1968_CR1
  publication-title: Biochimica et Biophysica Acta -Molecular Basis of Disease
  doi: 10.1016/j.bbadis.2014.05.023
– ident: 1968_CR55
  doi: 10.1145/3488560.3498531
– volume: 26
  start-page: 3427
  issue: 7
  year: 2022
  ident: 1968_CR12
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3156166
– volume: 18
  start-page: 85
  issue: 1
  year: 2017
  ident: 1968_CR43
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbw005
– volume: 312
  start-page: 1355
  issue: 5778
  year: 2006
  ident: 1968_CR4
  publication-title: Science
  doi: 10.1126/science.1124234
– ident: 1968_CR20
  doi: 10.1145/2939672.2939754
– volume: 486
  start-page: 207
  issue: 7402
  year: 2012
  ident: 1968_CR3
  publication-title: Nature
  doi: 10.1038/nature11234
– volume: 129
  start-page: 329
  year: 2018
  ident: 1968_CR40
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2017.12.009
– volume: 555
  start-page: 623
  issue: 7698
  year: 2018
  ident: 1968_CR16
  publication-title: Nature
  doi: 10.1038/nature25979
– volume: 9
  start-page: 293
  issue: 4
  year: 2018
  ident: 1968_CR41
  publication-title: Gut microbes
– volume: 11
  start-page: 227
  issue: 4
  year: 2013
  ident: 1968_CR2
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2974
– volume: 23
  start-page: bbac423
  issue: 6
  year: 2022
  ident: 1968_CR10
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac423
– volume: 20
  start-page: 3033
  issue: 5
  year: 2023
  ident: 1968_CR53
  publication-title: Ieee-Acm Transact Comput Biol Bioinform
  doi: 10.1109/TCBB.2023.3274587
– volume: 46
  start-page: 66
  year: 2013
  ident: 1968_CR6
  publication-title: J Autoimmun
  doi: 10.1016/j.jaut.2013.07.001
– volume: 21
  start-page: 294
  issue: 1
  year: 2023
  ident: 1968_CR32
  publication-title: BMC Biol
  doi: 10.1186/s12915-023-01796-8
– volume: 18
  start-page: 497
  issue: 6
  year: 2023
  ident: 1968_CR11
  publication-title: Curr Bioinform
  doi: 10.2174/1574893618666230316113621
– ident: 1968_CR38
  doi: 10.1609/aaai.v37i4.25573
– volume: 135
  start-page: 25
  issue: 1
  year: 2015
  ident: 1968_CR8
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2014.11.011
– volume: 5
  start-page: 4212
  issue: 1
  year: 2014
  ident: 1968_CR47
  publication-title: Nat Commun
  doi: 10.1038/ncomms5212
– volume: 49
  start-page: D1328
  issue: D1
  year: 2021
  ident: 1968_CR46
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa902
– volume: 18
  start-page: 760
  issue: 6
  year: 2020
  ident: 1968_CR45
  publication-title: Genomics, Proteomics Bioinform
  doi: 10.1016/j.gpb.2020.11.001
– volume: 19
  start-page: e1011214
  issue: 6
  year: 2023
  ident: 1968_CR51
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1011214
– volume: 570
  start-page: 462
  issue: 7762
  year: 2019
  ident: 1968_CR14
  publication-title: Nature
  doi: 10.1038/s41586-019-1291-3
– volume: 11
  start-page: 579
  year: 2020
  ident: 1968_CR21
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00579
– ident: 1968_CR56
– volume: 22
  start-page: bbaa146
  issue: 3
  year: 2021
  ident: 1968_CR24
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa146
– volume: 13
  start-page: 800
  issue: 11
  year: 2013
  ident: 1968_CR9
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3610
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  ident: 1968_CR44
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-018-1197-5
SSID ssj0025773
Score 2.5518572
Snippet Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human...
Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health....
Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human...
BackgroundPlenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human...
Abstract Background Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to...
SourceID doaj
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms Ablation
Accuracy
Algorithms
Background noise
Biomedical and Life Sciences
Biomedical data
Computational Biology - methods
Disease
Drugs
Dysbiosis
Graph representations
Graph theory
Graphical representations
Health aspects
Heterogeneity
Humans
Influence
Information processing
Life Sciences
Medical research
Messages
Microbe-disease association
Microbial metabolism
Microbiomes
Microbiota
Microorganisms
Neural networks
Noise prediction
Noise propagation
Performance evaluation
Precision medicine
Propagation
Regularization methods
Research Article
Signal processing
Signed message propagation
Similarity
Social networks
Variational graph autoencoder
XGBoost
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQw0EIVSFwQbwIFGYTEAaJu4meOBVGBhAripd4sv1JVahO02V2JG1fO_CFfwozj3TagwoVrPLbimfE87HkQ8lhFKxoWQlmxti15EKzUVsXSNZp5xRiXIiUKv1H7-_rgoHl3ptUXxoSN5YFHxO0E65vWc6GqFqyPABY419JXM5C-4IzHJH3B6lk7U9nVEkqxdYqMljsDaLUKM5Ex4qKRupxN1FCq1v-nTD6jlH57JU3KZ-8quZKtRro7_u01ciF218mlsY_k1xvk-5hu2-b7N9q39AQD7Vz8-e1HfoKhGKkRA7Wn9Bjo6sjSFFJYDkCrSFfgOefbQZpKWVO7XPRY6zLEOUWNFyisn5c6wfYph5HCTkAspXk3yae9lx9fvCpzj4XSy3q2KK2wcCq9c60GRy0IV9dNFD6C19eCqo8uCBVYBLvCK-VQrFrHG-mtt87BB3aLbHV9F-8QGlowHrh33AKeXS11sNEyXTulwMawdUGqNcqNzwXIsQ_GsUmOiJZmJJOB6SaRycwK8nQz58tYfuOv0M-RkhtILJ2dPgBDmcxQ5l8MVZBHyAcGi2N0GH1zaJfDYF6__Wx2Nb5Laiab84A-vJ8APclAbQ8bRZyljAdAFxbdmkBuTyDhiPvp8JonTRYxgwG7vOZSCy4L8nAzjDMxbK6L_RJg8Jm74eATFuT2yMsb5LAGPGEQyQV5tmbu08XPx_Hd_4Hje-RynQ6jLiuxTbYW82W8Ty761eJomD9IR_kX7QVKHg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LahRBsJGo4MX3YzVKK4IHHbIzPf06RjEoSJREQ25Nv2YJmJ2ws7uQm1fP_qFfYlVPz8ZVI-h1pqqZqa5n16MJeSqj5ZqFUJSsaYo6cFYoK2PhtGJeMlYLnhqF38ndXXV4qD_kprBuqHYfUpJJUyexVmKrA8tUYjcxVk1ooQoI1C-CuVMojnv7B6swi0vJhvaYP-KtmaA0qf93ffyTQfolQ5oMz861__vk6-RqdjTpds8ZN8iFOL1JLvdXT57eIl_7Dt0mH9nRtqHHWJvn4vcv33LWhmJxRwzUnm1hR5dHlqYqxKKD7Y10CcF2PlCkafo1tYt5i-MxQ5xRNJKBwvp5qWO8cWUSKRAANFnCu00-7bz--OpNka9lKLyoxvPCcguC7J1rFMR2gbuq0pH7CIFiA95BdIHLwCK4Il5Kh5rYuloLb711Dh6wO2Rj2k7jPUJDA_5G7V1tgUauEirYaJmqnJTglthqRMphp4zPM8vx6ozPJsUuSpiexAbQTSKxGY_I8xXOST-x46_QL5EBVpA4bTs9aGcTk4XXBOt142suywY84ABRYK2EL8fgAYw1i_CZT5B9DM7TmGLBzsQuus68fX9gthWmMhUT-jyg_b01oGcZqGnhR5FmqUkCyIVzutYgN9cgQSv49dcDK5uslToDrnxVC8VrMSKPV68REyvtprFdAAxmxnUNYeSI3O1FYEUcpiF4Bi0-Ii8Gfj9b_Hwa3_838AfkSpVERhUl3yQb89kiPiSX_HJ-1M0eJVn_ATx5T2g
  priority: 102
  providerName: Springer Nature
Title Identification of microbe–disease signed associations via multi-scale variational graph autoencoder based on signed message propagation
URI https://link.springer.com/article/10.1186/s12915-024-01968-0
https://www.ncbi.nlm.nih.gov/pubmed/39148051
https://www.proquest.com/docview/3102468546
https://www.proquest.com/docview/3093594758
https://doaj.org/article/dac9fc4571f045d086486c10341093e2
Volume 22
WOSCitedRecordID wos001292128000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: RBZ
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: DOA
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: M2O
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1741-7007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025773
  issn: 1741-7007
  databaseCode: RSV
  dateStart: 20031201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Nb9Mw1GIbSFz4_iiMyiAkDhAtiZPYOaENbWIS66oOpnKy_JVqEmtG01bixpUz_5BfwnuO21LQduESKfGz5bxnP7_n90XIS-5UXjJro4RVVZTZnEVCcRfpUjDDGcuK3AcKf-C9nhgOy364cGuCW-WCJ3pGbWuDd-Q7IIakWSHyrHh78TXCqlFoXQ0lNDbIFmZJYN51r79UuHLO2SJQRhQ7DZxtCcYjo99FWYgoXjuMfM7-fznzH0fTX7ZSfwQd3P7fyd8ht4LwSXfb1XKXXHPje-RGW47y233yo43arcI1Hq0reo7-etr9-v4zWHIoOnw4S9WKrA2dnynqPROjBkju6BwU8HDJSH1GbKpm0xpTZlo3oXhwWgrjh6HOsQrLyFH4J-Buvt8D8ulg_-O791Eo1RCZIo2nkcoVbG6jdSVA37O5TtPS5caB8liBxOC0zbllDsQTw7lG7qx0VhZGGaU1fGAPyea4HrvHhNoKZJDM6EwBznRaCKucYiLVnIOootIOSRY0kybkMcdyGl-k12dEIVs6S-guPZ1l3CGvl30u2iweV0Lv4VJYQmIGbv-hnoxk2NDSKlNWJst5UoFUbEEzzERhkhikgrhkDqb5AheSxBwbY3TiGalZ08jD41O5K9C8KVhRXgZ0MlgDehWAqhp-FHHmAycAXZi7aw1yew0SOIVZb16sThk4VSNXS7NDni-bsSd6341dPQMYtJaXGaiWHfKo3QxL5LASFGrg7B3yZrE7VoNfjuMnV8_lKbmZ-n0qoiTfJpvTycw9I9fNfHrWTLpkgw-5f4ou2drb7_UHXX-ZAs-j9LjruQC09A-P-p_hbXBy-huf72Fb
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VFAQX9iVQYEAgDmA19ow94wNCZakaNQ0RLaichtlcVaJxiZOg3rhy5n_wo_glvOclIaD21gNX-83Ifv7e5nkLIY-E13HKnAtClmUBdzELpBY-MKlkVjDGk7gsFO6Jfl_u7qaDJfKzqYXBtMpGJ5aK2uUW_5GvghsS8UTGPHlx-CXAqVF4utqM0KhgsemPvkLIVjzvvobv-ziK1t_svNoI6qkCgU2izjjQsQYcWmMyCaGJi00UpT62HuKcDIybNy4WjnmwpFYIg4pEG54mVlttDFxgsO8ZsswB7LJFlgfdrcHHWYgXC8Ga0hyZrBZgTUOsgMZMjzSRQWfB_JVTAv61BX8Yw79OZ0ujt37pf2PXZXKxdq_pWiUPV8iSH14l56qBm0fXyPeqLjmrf1TSPKMHmJFo_K9vP-qzKoopLd5RPQduQaf7mpa5l0EBoPZ0qkf79W9UWvb8pnoyzrEpqPMjiq6Bo7B_vdUBzpnZ8xR4CPq7XHedvD8VPtwgrWE-9LcIdRl4WdwaruEbmSiRTnvNZGSEAGdMR20SNhhRtu7UjgNDPqsyYpOJqnClYLkqcaU6bfJ0tuaw6lNyIvVLhN6MEnuMlxfy0Z6qVZZy2qaZ5bEIM_D7HcS-XCY27IDf00mZh8d8iMBV2EVkiGlKe3pSFKr79oNak3iAK1mSHke0_W6B6ElNlOXwosizsjQE2IXdyRYoVxYoQRfaxduNNKhaFxdqLgpt8mB2G1difuHQ5xOgwXyAlEPw3CY3K-GbMYelIZdgu9rkWSON882P5_Htk5_lPjm_sbPVU71uf_MOuRCVOkIGYbxCWuPRxN8lZ-10vF-M7tU6hpJPpy2nvwHiUbll
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB6VsogL-xIoMCAQB2ol9tie8QGhQomIWoWITb1NZ3MUicYlToJ648qZf8PP4Zfw3thOCKi99cDVfjOyn7-3ed5CyGPuVJIxa4OQ5XkQ24QFQnEX6EwwwxmL08QXCu_yfl_s7WWDNfKzqYXBtMpGJ3pFbQuD_8jb4IZEcSqSOG3ndVrEYLv74vBLgBOk8KS1GadRQWTHHX2F8K183tuGb_0kirqvP7x6E9QTBgKTRp1poBIFmDRa5wLCFJvoKMpcYhzEPDkYOqdtwi1zYFUN5xqVitJxlhpllNZwgcG-Z8hZjk3LfdrgYBHsJZyzpkhHpO0S7GqItdCY85GlIuisGEI_L-Bfq_CHWfzrnNabv-7l_5lxV8il2ummW5WUXCVrbnyNnK_GcB5dJ9-rauW8_n1Ji5weYJ6idr--_ahPsCgmujhL1RLOJZ2PFPUZmUEJUHd0riaj-ucq9Z3AqZpNC2wVat2EosNgKexfb3WA02eGjgI_Qav7dTfIx1Phw02yPi7G7jahNgffKzY6VvC9dJQKq5xiItKcg4umohYJG7xIU_dvxzEin6WP40QqK4xJWC49xmSnRZ4t1hxW3UtOpH6JMFxQYudxf6GYDGWtyKRVJstNnPAwh2jAQkQci9SEHfCGOhlz8JiPEMQSe4uMEWxDNStL2Xv7SW4JPNYVLM2OI3r_boXoaU2UF_CiyDNfMALswp5lK5QbK5SgIc3q7UYyZK2hS7kUixZ5uLiNKzHrcOyKGdBglkAWQ0jdIrcqQVwwh2VhLMCitchmI5nLzY_n8Z2Tn-UBuQDCKXd7_Z275GLk1YUIwmSDrE8nM3ePnDPz6aic3PfKhpL90xbS35BewKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+microbe%E2%80%93disease+signed+associations+via+multi-scale+variational+graph+autoencoder+based+on+signed+message+propagation&rft.jtitle=BMC+biology&rft.au=Zhu%2C+Huan&rft.au=Hao%2C+Hongxia&rft.au=Yu%2C+Liang&rft.date=2024-08-15&rft.pub=Springer+Nature+B.V&rft.eissn=1741-7007&rft.volume=22&rft.spage=1&rft_id=info:doi/10.1186%2Fs12915-024-01968-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-7007&client=summon