Model-Free Feature Screening for Ultrahigh-Dimensional Data

With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 106; číslo 496; s. 1464 - 1475
Hlavní autoři: Zhu, Li-Ping, Li, Lexin, Li, Runze, Zhu, Li-Xing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria, VA Taylor & Francis 01.12.2011
American Statistical Association
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide variety of commonly used parametric and semiparametric models. The new method does not require imposing a specific model structure on regression functions, and thus is particularly appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate predictors but little information about the actual model forms. We demonstrate that, with the number of predictors growing at an exponential rate of the sample size, the proposed procedure possesses consistency in ranking, which is both useful in its own right and can lead to consistency in selection. The new procedure is computationally efficient and simple, and exhibits a competent empirical performance in our intensive simulations and real data analysis.
AbstractList With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide variety of commonly used parametric and semiparametric models. The new method does not require imposing a specific model structure on regression functions, and thus is particularly appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate predictors but little information about the actual model forms. We demonstrate that, with the number of predictors growing at an exponential rate of the sample size, the proposed procedure possesses consistency in ranking, which is both useful in its own right and can lead to consistency in selection. The new procedure is computationally efficient and simple, and exhibits a competent empirical performance in our intensive simulations and real data analysis.
With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide variety of commonly used parametric and semiparametric models. The new method does not require imposing a specific model structure on regression functions, and thus is particularly appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate predictors but little information about the actual model forms. We demonstrate that, with the number of predictors growing at an exponential rate of the sample size, the proposed procedure possesses consistency in ranking, which is both useful in its own right and can lead to consistency in selection. The new procedure is computationally efficient and simple, and exhibits a competent empirical performance in our intensive simulations and real data analysis. [PUBLICATION ABSTRACT]
With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide variety of commonly used parametric and semiparametric models. The new method does not require imposing a specific model structure on regression functions, and thus is particularly appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate predictors but little information about the actual model forms. We domonstrate that, with the number of predictors growing at an exponential rate of the sample size, the proposed procedure possesses consistency in ranking, which is both useful in its own right and can lead to consistency in selection. The new procedure is computationally efficient and simple, and exhibits a competent empirical performance in our intensive simulations and real data analysis.
With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide variety of commonly used parametric and semiparametric models. The new method does not require imposing a specific model structure on regression functions, and thus is particularly appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate predictors but little information about the actual model forms. We demonstrate that, with the number of predictors growing at an exponential rate of the sample size, the proposed procedure possesses consistency in ranking, which is both useful in its own right and can lead to consistency in selection. The new procedure is computationally efficient and simple, and exhibits a competent empirical performance in our intensive simulations and real data analysis.With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in many scientific studies. In this article, we propose a novel feature screening procedure under a unified model framework, which covers a wide variety of commonly used parametric and semiparametric models. The new method does not require imposing a specific model structure on regression functions, and thus is particularly appealing to ultrahigh-dimensional regressions, where there are a huge number of candidate predictors but little information about the actual model forms. We demonstrate that, with the number of predictors growing at an exponential rate of the sample size, the proposed procedure possesses consistency in ranking, which is both useful in its own right and can lead to consistency in selection. The new procedure is computationally efficient and simple, and exhibits a competent empirical performance in our intensive simulations and real data analysis.
Author Li, Runze
Zhu, Li-Ping
Li, Lexin
Zhu, Li-Xing
Author_xml – sequence: 1
  givenname: Li-Ping
  surname: Zhu
  fullname: Zhu, Li-Ping
– sequence: 2
  givenname: Lexin
  surname: Li
  fullname: Li, Lexin
– sequence: 3
  givenname: Runze
  surname: Li
  fullname: Li, Runze
– sequence: 4
  givenname: Li-Xing
  surname: Zhu
  fullname: Zhu, Li-Xing
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25425048$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22754050$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9rFDEUxYNU7Lb6AXxQFkHwZdb8ncmgFKR1Vaj4oAXfwp1MZjdLJqlJptJvb5bdtlpQ8xLC_d3Dyb3nCB344A1CTwleENLK1xtIsKCYkEUeCRY1e4BmRLCmog3_foBmmNS0Ily0h-gopQ0up5HyETqktBEcCzxDbz6H3rhqGY2ZLw3kKZr5V11e3vrVfAhxfuFyhLVdraszOxqfbPDg5meQ4TF6OIBL5sn-PkYXy_ffTj9W518-fDp9d17pmuJcNRpT0HRoMNPMdHowUHMtoRaESw61lloO0LdQ45Z0vSSSd6aTwDtqOoN7doxOdrqXUzeaXhtfHDl1Ge0I8VoFsOrPirdrtQpXijHJBa6LwKu9QAw_JpOyGm3SxjnwJkxJEcmEEA0h-P9ombYsxjEr6It76CZMsQwnqZYS0kiMZYGe_-791vTNBgrwcg9A0uCGCF7bdMcJTgXmWyGy43QMKUUz3CIEq20a1DYNapsGtU9D6Wnu9WibIZcNljFZ98_OZ7vOTcoh3rlhlLVCkFJ_u6tbXzIyws8QXa8yXLsQb77A_i7_C1hI2KM
CODEN JSTNAL
CitedBy_id crossref_primary_10_1080_01621459_2012_695654
crossref_primary_10_1080_07350015_2013_863158
crossref_primary_10_1007_s00362_017_0894_8
crossref_primary_10_1016_j_spl_2018_08_003
crossref_primary_10_1007_s11749_022_00839_6
crossref_primary_10_1214_17_AOS1561
crossref_primary_10_1089_cmb_2022_0416
crossref_primary_10_1080_03610926_2020_1769672
crossref_primary_10_1080_03610926_2023_2179881
crossref_primary_10_1007_s00362_017_0931_7
crossref_primary_10_1016_j_csda_2018_10_003
crossref_primary_10_1016_j_eswa_2023_121398
crossref_primary_10_1016_j_csda_2020_106942
crossref_primary_10_1155_2022_1600986
crossref_primary_10_1016_j_jmva_2020_104693
crossref_primary_10_1016_j_csda_2018_09_001
crossref_primary_10_1111_biom_13628
crossref_primary_10_1007_s10463_019_00711_9
crossref_primary_10_1186_s12859_020_3492_z
crossref_primary_10_1007_s11222_025_10714_7
crossref_primary_10_1007_s00180_021_01184_2
crossref_primary_10_1016_j_csda_2017_04_006
crossref_primary_10_1080_00401706_2023_2271091
crossref_primary_10_1109_JSTARS_2022_3206886
crossref_primary_10_1016_j_csda_2018_06_009
crossref_primary_10_1080_01621459_2024_2316364
crossref_primary_10_1111_biom_12420
crossref_primary_10_1002_sim_9712
crossref_primary_10_1080_01621459_2014_887012
crossref_primary_10_1002_sta4_320
crossref_primary_10_1007_s00184_018_0660_5
crossref_primary_10_1007_s00362_024_01615_4
crossref_primary_10_1002_bimj_201800269
crossref_primary_10_1080_00949655_2020_1783666
crossref_primary_10_1007_s11425_015_5062_9
crossref_primary_10_1080_00949655_2019_1690492
crossref_primary_10_3390_axioms14050340
crossref_primary_10_1080_03610918_2020_1775848
crossref_primary_10_1214_18_AOS1738
crossref_primary_10_1080_01621459_2021_2011735
crossref_primary_10_1007_s10182_023_00491_x
crossref_primary_10_1080_01621459_2015_1092974
crossref_primary_10_1007_s10985_022_09549_5
crossref_primary_10_1016_j_jmva_2016_12_006
crossref_primary_10_1080_03610918_2022_2092639
crossref_primary_10_1111_obes_12538
crossref_primary_10_1002_sta4_115
crossref_primary_10_1111_anzs_12218
crossref_primary_10_1080_03610918_2020_1779293
crossref_primary_10_1080_03610918_2020_1779292
crossref_primary_10_1177_09622802221102624
crossref_primary_10_1016_j_jmva_2017_11_005
crossref_primary_10_1007_s11222_016_9637_2
crossref_primary_10_1080_01621459_2017_1409122
crossref_primary_10_1080_03610926_2018_1429627
crossref_primary_10_1109_TIM_2025_3557124
crossref_primary_10_1016_j_csda_2019_106828
crossref_primary_10_1080_02664763_2014_949640
crossref_primary_10_1016_j_jmva_2015_02_007
crossref_primary_10_1093_biomet_asaa077
crossref_primary_10_1214_13_AOS1139
crossref_primary_10_1016_j_csda_2019_106824
crossref_primary_10_1016_j_jspi_2021_04_004
crossref_primary_10_1007_s11222_025_10677_9
crossref_primary_10_1007_s40304_022_00317_3
crossref_primary_10_3390_math9233057
crossref_primary_10_1016_j_spl_2017_03_012
crossref_primary_10_1016_j_spl_2020_108815
crossref_primary_10_1016_j_jmva_2021_104852
crossref_primary_10_1080_00949655_2016_1223668
crossref_primary_10_1093_biomet_asx052
crossref_primary_10_1016_j_jspi_2022_10_002
crossref_primary_10_1111_j_1751_5823_2012_00182_x
crossref_primary_10_3390_math11020362
crossref_primary_10_1109_ACCESS_2017_2728532
crossref_primary_10_3390_bioengineering12070694
crossref_primary_10_3390_math10234551
crossref_primary_10_1080_07350015_2022_2116442
crossref_primary_10_3934_era_2025217
crossref_primary_10_1186_s12911_020_01240_9
crossref_primary_10_1080_01621459_2020_1783274
crossref_primary_10_1016_j_jspi_2017_11_006
crossref_primary_10_1080_01621459_2022_2063130
crossref_primary_10_1007_s00180_023_01399_5
crossref_primary_10_1016_j_csda_2023_107784
crossref_primary_10_1093_bioinformatics_btx409
crossref_primary_10_3390_e27080773
crossref_primary_10_1016_j_csda_2013_05_016
crossref_primary_10_1080_01621459_2019_1632078
crossref_primary_10_1016_j_neucom_2015_09_122
crossref_primary_10_1002_sta4_70094
crossref_primary_10_1214_13_AOS1149
crossref_primary_10_1080_01621459_2023_2169700
crossref_primary_10_1080_01621459_2025_2468011
crossref_primary_10_12677_aam_2024_133091
crossref_primary_10_1002_bimj_202200089
crossref_primary_10_3390_e25030524
crossref_primary_10_3390_e26090767
crossref_primary_10_7717_peerj_13098
crossref_primary_10_1080_00949655_2018_1554068
crossref_primary_10_1080_01621459_2023_2195976
crossref_primary_10_1016_j_ins_2025_122186
crossref_primary_10_1080_00949655_2022_2062358
crossref_primary_10_1007_s11222_024_10424_6
crossref_primary_10_1007_s42952_023_00237_0
crossref_primary_10_1016_j_jeconom_2020_05_007
crossref_primary_10_1177_09622802211037071
crossref_primary_10_12677_aam_2025_141034
crossref_primary_10_1007_s11222_024_10507_4
crossref_primary_10_1080_10618600_2024_2342984
crossref_primary_10_1002_gepi_70008
crossref_primary_10_1016_j_jmva_2014_09_014
crossref_primary_10_1111_biom_12579
crossref_primary_10_1007_s11425_016_0117_3
crossref_primary_10_1016_j_jspi_2017_03_006
crossref_primary_10_1111_sjos_12697
crossref_primary_10_1080_10485252_2024_2429541
crossref_primary_10_1111_rssb_12093
crossref_primary_10_12677_AAM_2021_1011400
crossref_primary_10_1080_00949655_2017_1389944
crossref_primary_10_1214_17_AOS1635
crossref_primary_10_1155_2023_2400194
crossref_primary_10_1007_s11222_016_9664_z
crossref_primary_10_1016_j_jkss_2014_03_001
crossref_primary_10_1093_biomtc_ujad040
crossref_primary_10_1007_s40304_023_00379_x
crossref_primary_10_1016_j_cam_2017_01_010
crossref_primary_10_1002_cjs_11575
crossref_primary_10_1016_j_catena_2025_108952
crossref_primary_10_1080_00949655_2023_2263128
crossref_primary_10_1007_s11425_016_9208_6
crossref_primary_10_1111_biom_12209
crossref_primary_10_1080_01621459_2014_920256
crossref_primary_10_1080_10485252_2020_1834554
crossref_primary_10_1080_01621459_2021_1938084
crossref_primary_10_1080_03610926_2019_1633353
crossref_primary_10_1111_biom_13658
crossref_primary_10_1002_cem_3009
crossref_primary_10_1080_00949655_2023_2256926
crossref_primary_10_1080_01621459_2015_1050494
crossref_primary_10_1002_sta4_272
crossref_primary_10_3390_math11102398
crossref_primary_10_1016_j_csda_2015_09_002
crossref_primary_10_1016_j_apm_2019_12_024
crossref_primary_10_1080_02664763_2020_1772734
crossref_primary_10_1007_s10463_021_00801_7
crossref_primary_10_1016_j_jeconom_2022_09_005
crossref_primary_10_1007_s10463_024_00912_x
crossref_primary_10_1007_s11425_024_2377_7
crossref_primary_10_1109_TNSE_2020_2973994
crossref_primary_10_1080_00949655_2020_1719104
crossref_primary_10_1136_gutjnl_2017_314281
crossref_primary_10_1007_s00180_022_01206_7
crossref_primary_10_1007_s00362_018_0993_1
crossref_primary_10_1214_15_AOS1424
crossref_primary_10_1080_00401706_2015_1054435
crossref_primary_10_1080_01621459_2022_2044825
crossref_primary_10_1080_01621459_2018_1514305
crossref_primary_10_1007_s00184_018_0646_3
crossref_primary_10_1007_s10985_017_9395_2
crossref_primary_10_1080_10485252_2016_1167206
crossref_primary_10_1016_j_eswa_2023_122958
crossref_primary_10_1080_03610926_2024_2413846
crossref_primary_10_1016_j_apm_2021_04_031
crossref_primary_10_1093_biomtc_ujae158
crossref_primary_10_1007_s11424_020_9295_5
crossref_primary_10_1016_j_jkss_2018_11_003
crossref_primary_10_1016_j_csda_2019_106894
crossref_primary_10_3390_e22030335
crossref_primary_10_1007_s11222_025_10599_6
crossref_primary_10_1007_s00357_021_09399_0
crossref_primary_10_1016_j_cmpb_2022_107269
crossref_primary_10_1016_j_jspi_2017_12_005
crossref_primary_10_1080_01621459_2018_1497498
crossref_primary_10_1080_10618600_2023_2270656
crossref_primary_10_1111_biom_12820
crossref_primary_10_1080_00949655_2025_2550340
crossref_primary_10_1016_j_csda_2016_04_008
crossref_primary_10_1016_j_csda_2023_107911
crossref_primary_10_1007_s10114_014_3694_2
crossref_primary_10_1016_j_csda_2017_10_008
crossref_primary_10_1109_TCBB_2020_3029952
crossref_primary_10_1016_j_csda_2017_10_003
crossref_primary_10_1016_j_csda_2021_107231
crossref_primary_10_1177_0962280219864710
crossref_primary_10_1016_j_csda_2017_10_004
crossref_primary_10_1214_19_AOS1880
crossref_primary_10_1002_sim_8571
crossref_primary_10_1080_01621459_2013_850086
crossref_primary_10_1016_j_patrec_2024_06_011
crossref_primary_10_1016_j_csda_2025_108203
crossref_primary_10_1007_s00184_019_00758_x
crossref_primary_10_1080_10618600_2023_2183213
crossref_primary_10_1007_s00184_017_0629_9
crossref_primary_10_1214_12_AOS1024
crossref_primary_10_1007_s10463_018_0675_8
crossref_primary_10_1080_00949655_2019_1703371
crossref_primary_10_1111_biom_12137
crossref_primary_10_1007_s00184_016_0589_5
crossref_primary_10_1111_biom_12499
crossref_primary_10_1007_s11222_024_10414_8
crossref_primary_10_1002_sam_11363
crossref_primary_10_1016_j_csda_2022_107504
crossref_primary_10_1080_01621459_2018_1462709
crossref_primary_10_1016_j_jmva_2020_104618
crossref_primary_10_1002_bimj_201900154
crossref_primary_10_1007_s10255_021_1012_1
crossref_primary_10_1007_s10255_019_0861_3
crossref_primary_10_1016_j_csda_2022_107508
crossref_primary_10_1016_j_csda_2021_107369
crossref_primary_10_1093_biomet_asae022
crossref_primary_10_1007_s00180_020_01039_2
crossref_primary_10_1080_01621459_2019_1573734
crossref_primary_10_1093_biomet_asad070
crossref_primary_10_1080_07350015_2021_1899932
crossref_primary_10_1016_j_csda_2016_08_008
crossref_primary_10_1002_sim_9563
crossref_primary_10_1080_10618600_2021_1923517
crossref_primary_10_1016_j_jspi_2019_08_005
crossref_primary_10_1002_sim_9204
crossref_primary_10_1002_sim_9688
crossref_primary_10_1080_03610918_2025_2504474
crossref_primary_10_3389_fgene_2018_00206
crossref_primary_10_1016_j_csda_2022_107530
crossref_primary_10_1016_j_jmva_2018_11_002
crossref_primary_10_1007_s12561_022_09336_8
crossref_primary_10_1080_01621459_2021_1918554
crossref_primary_10_1080_03610926_2023_2277130
crossref_primary_10_1007_s13171_021_00261_4
crossref_primary_10_1155_2024_6452731
crossref_primary_10_1093_biomet_asu068
crossref_primary_10_1080_00031305_2017_1302359
crossref_primary_10_1002_sim_9212
crossref_primary_10_1016_j_jspi_2023_01_004
crossref_primary_10_1080_03610918_2014_904340
crossref_primary_10_1016_j_csda_2019_06_013
crossref_primary_10_1016_j_csda_2020_107042
crossref_primary_10_1080_02664763_2016_1238044
crossref_primary_10_1214_19_AOS1859
crossref_primary_10_1016_j_jmva_2019_04_006
crossref_primary_10_1007_s00362_019_01128_5
crossref_primary_10_1007_s11425_016_9116_6
crossref_primary_10_1093_bioadv_vbae047
crossref_primary_10_1080_07350015_2021_1910041
crossref_primary_10_1002_sam_11381
crossref_primary_10_1111_insr_12609
crossref_primary_10_1007_s10614_021_10174_x
crossref_primary_10_1007_s13571_023_00309_5
crossref_primary_10_1016_j_csda_2025_108132
crossref_primary_10_1111_sjos_12503
crossref_primary_10_1016_j_csda_2016_11_005
crossref_primary_10_1016_j_jmva_2015_10_010
crossref_primary_10_1093_jrsssb_qkae094
crossref_primary_10_1080_00949655_2017_1334779
crossref_primary_10_1007_s11425_016_0186_8
crossref_primary_10_1016_j_jmva_2024_105360
crossref_primary_10_1080_03610918_2019_1622716
crossref_primary_10_1016_j_jmva_2022_105081
crossref_primary_10_1111_rssb_12127
crossref_primary_10_1007_s00362_020_01210_3
crossref_primary_10_1080_01621459_2013_879531
crossref_primary_10_1093_biomet_ass062
crossref_primary_10_1007_s10114_023_0346_4
crossref_primary_10_31083_j_fbl2708225
crossref_primary_10_1002_sim_10026
crossref_primary_10_1007_s10463_016_0597_2
crossref_primary_10_1214_13_AOS1087
crossref_primary_10_1007_s00362_025_01661_6
crossref_primary_10_1214_14_AOS1303
crossref_primary_10_1177_0962280217739522
crossref_primary_10_1093_biomet_asz010
crossref_primary_10_1186_s41512_018_0043_4
crossref_primary_10_1016_j_csda_2021_107206
crossref_primary_10_1002_sim_70167
crossref_primary_10_1080_02664763_2018_1529151
crossref_primary_10_1111_sjos_12290
crossref_primary_10_1186_s12859_017_1617_9
crossref_primary_10_1109_TNSE_2020_2970997
crossref_primary_10_1002_wics_1454
crossref_primary_10_1080_03610926_2014_948199
crossref_primary_10_1002_adts_202301099
crossref_primary_10_1155_2022_7584374
crossref_primary_10_1080_00949655_2017_1341887
crossref_primary_10_1016_j_jspi_2023_06_006
crossref_primary_10_1080_10618600_2017_1328364
crossref_primary_10_1080_00949655_2014_928820
crossref_primary_10_1016_j_ecosta_2017_02_005
crossref_primary_10_1080_01621459_2016_1156545
crossref_primary_10_1007_s40304_022_00326_2
crossref_primary_10_1016_j_jgg_2022_12_005
crossref_primary_10_1080_01621459_2020_1864380
crossref_primary_10_1016_j_jspi_2020_06_011
crossref_primary_10_1016_j_jspi_2020_12_001
crossref_primary_10_1080_01621459_2014_998760
crossref_primary_10_1214_15_AOS1374
crossref_primary_10_1007_s10463_021_00794_3
crossref_primary_10_1007_s11425_024_2410_6
crossref_primary_10_1016_j_csda_2022_107618
crossref_primary_10_1080_02664763_2018_1548583
crossref_primary_10_3390_math13101558
crossref_primary_10_1080_01621459_2018_1527226
crossref_primary_10_1007_s10463_015_0534_9
crossref_primary_10_1016_j_neucom_2024_128361
crossref_primary_10_1080_10485252_2017_1375111
crossref_primary_10_1007_s11425_019_1702_5
crossref_primary_10_1080_02664763_2021_1884209
crossref_primary_10_1002_sta4_70055
crossref_primary_10_1016_j_csda_2024_108068
crossref_primary_10_1016_j_jmva_2019_05_003
crossref_primary_10_1016_j_ins_2020_11_031
crossref_primary_10_1007_s00180_020_00963_7
crossref_primary_10_1007_s10985_021_09531_7
crossref_primary_10_1007_s42952_025_00333_3
crossref_primary_10_1016_j_jmva_2019_104557
crossref_primary_10_1080_00949655_2020_1753057
crossref_primary_10_1007_s11749_016_0496_0
crossref_primary_10_1016_j_jmva_2018_08_007
crossref_primary_10_1007_s11749_016_0497_z
Cites_doi 10.1111/j.1467-9868.2005.00532.x
10.1198/016214506000000843
10.1214/aos/1176349020
10.1198/004017005000000319
10.1111/j.2517-6161.1972.tb00899.x
10.1214/10-AOS798
10.1093/bioinformatics/bti324
10.2307/2290563
10.1214/009053606000001523
10.1198/jasa.2008.tm08516
10.1198/016214506000000735
10.1214/aos/1176349155
10.2307/1269730
10.1093/biostatistics/kxn005
10.2307/2965697
10.1198/016214501753382273
10.1056/NEJMoa012914
10.1111/j.2517-6161.1996.tb02080.x
10.1111/j.1467-9868.2008.00674.x
10.1111/j.2517-6161.1982.tb01204.x
ContentType Journal Article
Copyright 2011 American Statistical Association 2011
2011 The American Statistical Association
2015 INIST-CNRS
Copyright American Statistical Association Dec 2011
Copyright_xml – notice: 2011 American Statistical Association 2011
– notice: 2011 The American Statistical Association
– notice: 2015 INIST-CNRS
– notice: Copyright American Statistical Association Dec 2011
DBID AAYXX
CITATION
IQODW
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
DOI 10.1198/jasa.2011.tm10563
DatabaseName CrossRef
Pascal-Francis
PubMed
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
International Bibliography of the Social Sciences (IBSS)

PubMed
International Bibliography of the Social Sciences (IBSS)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 1475
ExternalDocumentID PMC3384506
2584633761
22754050
25425048
10_1198_jasa_2011_tm10563
23239551
10711018
Genre Research Article
Journal Article
Feature
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R21 DA024260
– fundername: NIDA NIH HHS
  grantid: P50 DA010075
– fundername: National Institute on Drug Abuse : NIDA
  grantid: P50 DA010075 || DA
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABRLO
ABTAI
ABUFD
ABXSQ
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACMTB
ACNCT
ACTCW
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIHAF
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UQL
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
ZUP
~S~
ADYSH
AFSUE
ALIPV
AMPGV
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAYXX
ABEFU
ABJCF
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFFHD
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CITATION
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
VH1
VOH
WHG
YXB
YYP
ZCG
ZGI
ZXP
IQODW
NPM
8BJ
FQK
JBE
K9.
7X8
5PM
ID FETCH-LOGICAL-c620t-7c02ac2f703c3ebcfea64c8a651484a6c8c8fad9a6091bd8184beb8a4b2ebe0d3
IEDL.DBID TFW
ISICitedReferencesCount 393
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000299662900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
IngestDate Tue Nov 04 01:54:11 EST 2025
Thu Oct 02 10:57:49 EDT 2025
Mon Sep 29 03:47:00 EDT 2025
Mon Nov 10 21:51:07 EST 2025
Thu Apr 03 07:07:07 EDT 2025
Mon Jul 21 09:14:25 EDT 2025
Sat Nov 29 08:05:08 EST 2025
Tue Nov 18 22:33:46 EST 2025
Thu May 29 08:44:01 EDT 2025
Mon Oct 20 23:40:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 496
Keywords Rank statistic
Data analysis
Sample size
Explosions
Parametric model
Semiparametric model
Parametric method
Statistical method
Statistical regression
Selection problem
Sampling theory
Simulation
Regression model
Ultrahigh-dimensional regression
Sample survey
Feature ranking
Variable selection
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-7c02ac2f703c3ebcfea64c8a651484a6c8c8fad9a6091bd8184beb8a4b2ebe0d3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 22754050
PQID 921178008
PQPubID 41715
PageCount 12
ParticipantIDs pubmed_primary_22754050
jstor_primary_23239551
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3384506
proquest_miscellaneous_1835557110
crossref_primary_10_1198_jasa_2011_tm10563
pascalfrancis_primary_25425048
crossref_citationtrail_10_1198_jasa_2011_tm10563
proquest_miscellaneous_1011851403
informaworld_taylorfrancis_310_1198_jasa_2011_tm10563
proquest_journals_921178008
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationTitleAlternate J Am Stat Assoc
PublicationYear 2011
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References p_27
p_17
p_28
p_2
p_18
p_1
p_19
p_3
p_14
p_25
p_26
Fan J. (p_12) 2009; 10
Tibshirani R. (p_24) 1996; 58
p_7
p_9
Fan J. (p_10) 2010; 20
p_20
p_11
p_22
Härdle W. (p_15) 1993; 21
Pettitt A. N. (p_21) 1982; 44
Cox D. R. (p_5) 1972; 34
15713732 - Bioinformatics. 2005 May 15;21(10):2403-9
19603084 - J R Stat Soc Series B Stat Methodol. 2008;70(5):849-911
18344565 - Biostatistics. 2008 Oct;9(4):658-67
12075054 - N Engl J Med. 2002 Jun 20;346(25):1937-47
21603590 - J Mach Learn Res. 2009;10:2013-2038
15256406 - Bioinformatics. 2004 Dec 12;20(18):3406-12
21572976 - Stat Sin. 2010 Jan;20(1):101-148
References_xml – ident: p_27
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: p_26
  doi: 10.1198/016214506000000843
– volume: 21
  start-page: 157
  year: 1993
  ident: p_15
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176349020
– ident: p_20
  doi: 10.1198/004017005000000319
– volume: 20
  start-page: 101
  year: 2010
  ident: p_10
  publication-title: Statistica Sinica
– volume: 34
  start-page: 187
  year: 1972
  ident: p_5
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: p_11
  doi: 10.1214/10-AOS798
– ident: p_17
  doi: 10.1093/bioinformatics/bti324
– volume: 10
  start-page: 1829
  year: 2009
  ident: p_12
  publication-title: Journal of Machine Learning Research
– ident: p_18
  doi: 10.2307/2290563
– ident: p_2
  doi: 10.1214/009053606000001523
– ident: p_25
  doi: 10.1198/jasa.2008.tm08516
– ident: p_28
  doi: 10.1198/016214506000000735
– ident: p_14
  doi: 10.1214/aos/1176349155
– ident: p_1
  doi: 10.2307/1269730
– ident: p_19
  doi: 10.1093/biostatistics/kxn005
– ident: p_3
  doi: 10.2307/2965697
– ident: p_7
  doi: 10.1198/016214501753382273
– ident: p_22
  doi: 10.1056/NEJMoa012914
– volume: 58
  start-page: 267
  year: 1996
  ident: p_24
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: p_9
  doi: 10.1111/j.1467-9868.2008.00674.x
– volume: 44
  start-page: 234
  year: 1982
  ident: p_21
  publication-title: Journal of Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1982.tb01204.x
– reference: 19603084 - J R Stat Soc Series B Stat Methodol. 2008;70(5):849-911
– reference: 18344565 - Biostatistics. 2008 Oct;9(4):658-67
– reference: 21572976 - Stat Sin. 2010 Jan;20(1):101-148
– reference: 15256406 - Bioinformatics. 2004 Dec 12;20(18):3406-12
– reference: 21603590 - J Mach Learn Res. 2009;10:2013-2038
– reference: 15713732 - Bioinformatics. 2005 May 15;21(10):2403-9
– reference: 12075054 - N Engl J Med. 2002 Jun 20;346(25):1937-47
SSID ssj0000788
Score 2.5489106
Snippet With the recent explosion of scientific data of unprecedented size and complexity, feature ranking and screening are playing an increasingly important role in...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1464
SubjectTerms Applications
Candidates
Computational methods
Data analysis
Distribution
Exact sciences and technology
Feature ranking
Framing
Gaussian distributions
General topics
Genetic screening
Grants
Linear inference, regression
Linear models
Linear regression
Mathematics
Medical procedures
Medical screening
Methodology
Modeling
Parameter estimation
Parametric inference
Probability and statistics
Ratings & rankings
Regression analysis
Sample size
Sampling techniques
Sciences and techniques of general use
Statistical models
Statistics
Tests
Theory and Methods
Threshing
Ultrahigh-dimensional regression
Variable selection
Title Model-Free Feature Screening for Ultrahigh-Dimensional Data
URI https://www.tandfonline.com/doi/abs/10.1198/jasa.2011.tm10563
https://www.jstor.org/stable/23239551
https://www.ncbi.nlm.nih.gov/pubmed/22754050
https://www.proquest.com/docview/921178008
https://www.proquest.com/docview/1011851403
https://www.proquest.com/docview/1835557110
https://pubmed.ncbi.nlm.nih.gov/PMC3384506
Volume 106
WOSCitedRecordID wos000299662900019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9QwEIZHUHHohe9CKKyCxAnJIk2c2BYnRFlxQBUSrdhbNHYcAVpStMn293fG8e42qNoDnO1sNuOx_Th59Q7AG5SGlZOt8LlEQUSsBbLjUIMEH1oSgTfBXf-LOjvTi4X5GrU5fZRV8hm6HY0iwlrNkxttrEBi9Ltf2ONovjn85sLx7PVJVM_5fT7_vluHVag6SUyTixNZmvhN89ZfmOxKE8_SjU6RRZPYU9zaseDFbUT6t7Dyxk41f_Cfz_gQ7kdETT-MOfUI7vjuMRwylY6mzk_gPVdQW4r5yvuUGXK98uk3xwoe2ghTeqr0Ykn_jK2QxSmXDxitP9JTHPApXMw_nX_8LGIVBuGqPBuEclmOLm9paXCFt671WEmnsSLU0hIrp51usTFYEXrYhgBAWm81SptTgmRNcQQH3WXnn0NKZ8NWK-tQaSONs5hLe4LOWd201tgigWwzCrWLFuVcKWNZh6OK0TWHpeaw1DEsCbzdXvJn9OfY17m8ObT1EF6KxAGtiz3XHYUc2N6BMLQwxJoJzCZJsetQSvaG0wkcb7KkjotDXxs6dCsCdWp9vW2lWc2farDzl-uehXcEUuyluKcPwXNZKuK3BJ6Nebe7f64YxalFTTJy24Fdxact3c8fwV28KLQss-rFP8bqGA7Da_eg-HkJB8Nq7V_BPXdFObqawV210LMwT68BIQ9Btg
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fb9MwEMdPMJDYC78HYTCCxBNSRJY4iS2eEKMaolRIdGJv1tlxBKhkqEn5-7mz03ZBUx_g2XYSn8_2x87pewAvUSiOnGwSlwlMiIhlgqw4VCPBhxRE4LVX159Ws5k8P1efhwu3bgir5DN0E4Qi_FrNk5svo8MMV_L1D-wwqG_2PzlzfH4dbhS0z3JI33zydbsSVz7vJFFNlhyLQg1_Na98xGhfGqmWriMVOWwSO7JcE1JeXMWkf4dWXtqrJnf-t5d34fZAqfHb4Fb34Jpr78M-g2nQdX4AbziJ2iKZLJ2LGSNXSxd_sRzEQ3thTN2Kzxb0aayGnJxwBoGg_hGfYI8P4Wzyfv7uNBkSMSS2zNI-qWyaoc0aWh1s7oxtHJbCSiyJtqTA0korG6wVlkQfpiYGEMYZicJk5CNpnR_AXnvRuscQ0_GwkZWxWEkllDWYCXOM1hpZN0aZPIJ0PQzaDirlnCxjof1pRUnNZtFsFj2YJYJXmya_gkTHrsrF5bHVvb8XGUZU5zvaHXgn2LyBSDRXhJsRHI28YluhECwPJyM4XLuJHtaHTis6d1fE6lT6YlNKE5v_1mDrLlYdx94RS7Gc4o46xM9FURHCRfAoON72_VnFNE4l1cglNxVYWHxc0n7_5gXG81yKIi2f_KOtnsOt0_mnqZ5-mH08hH1_C-8DgJ7CXr9cuWdw0_4mf10e-en6B4GnRO8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BQaiX8tk2LZQgcUKKSBMnsdVTxRKBqFaVaEVv1thxBGhJq02W38-Mk91tULUHOI_zNX62n52nNwBvUShWTtaRSwRGxIhlhOw4VCGRDymIgVfeXf-smE7l1ZU6H7Q57SCr5D103RtF-LmaB_dNVfcDXMn3P7HF3nyz-8WF49P78MAbYxGcL8pv64m48GUnKZJExyJTw0_NO28xWpZGpqVLoSKrJrGlxNV9xYu7KOnfyspbS1X5-D8_8gnsDBw1PO1B9RTuueYZbDMt7V2dn8MJl1CbReXcuZBJ5GLuwq-WJTy0Eob0VeHljN6MvZCjCdcP6L0_wgl2-AIuy48XHz5FQxmGyOZJ3EWFjRO0SU1zg02dsbXDXFiJOXEtKTC30soaK4U5cQ9TEQMQxhmJwiSEkLhKd2GruW7cPoS0OaxlYSwWUgllDSbCHKO1Rla1USYNIF72graDRzmXyphpv1dRUnNaNKdFD2kJ4N3qkpveoGNT4-x21-rOn4oMHarTDdftegysnkA8NFVENgM4GoFi3SATbA4nAzhcokQPs0OrFe26C2LqFH2zitKw5n812LjrRcvKO2JSbKa4oQ2x5ywriMAFsNfjbv38pGAuTpFihMhVA7YVH0eaH9-9vXiaSpHF-cE_5uo1PDqflPrs8_TLIWz7I3iv_nkJW9184V7BQ_ub4Do_8oP1D17IQ5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Free+Feature+Screening+for+Ultrahigh-Dimensional+Data&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Zhu%2C+Li-Ping&rft.au=Li%2C+Lexin&rft.au=Li%2C+Runze&rft.au=Zhu%2C+Li-Xing&rft.date=2011-12-01&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=106&rft.issue=496&rft.spage=1464&rft.epage=1475&rft_id=info:doi/10.1198%2Fjasa.2011.tm10563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1198_jasa_2011_tm10563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon