Randomized algorithms for the low-rank approximation of matrices
We describe two recently proposed randomized algorithms for the construction of low-rank approximations to matrices, and demonstrate their application (inter alia) to the evaluation of the singular value decompositions of numerically low-rank matrices. Being probabilistic, the schemes described here...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 104; H. 51; S. 20167 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
18.12.2007
|
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We describe two recently proposed randomized algorithms for the construction of low-rank approximations to matrices, and demonstrate their application (inter alia) to the evaluation of the singular value decompositions of numerically low-rank matrices. Being probabilistic, the schemes described here have a finite probability of failure; in most cases, this probability is rather negligible (10(-17) is a typical value). In many situations, the new procedures are considerably more efficient and reliable than the classical (deterministic) ones; they also parallelize naturally. We present several numerical examples to illustrate the performance of the schemes. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1091-6490 1091-6490 |
| DOI: | 10.1073/pnas.0709640104 |