Computationally efficient whole-genome regression for quantitative and binary traits

Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitat...

Full description

Saved in:
Bibliographic Details
Published in:Nature genetics Vol. 53; no. 7; pp. 1097 - 1103
Main Authors: Mbatchou, Joelle, Barnard, Leland, Backman, Joshua, Marcketta, Anthony, Kosmicki, Jack A., Ziyatdinov, Andrey, Benner, Christian, O’Dushlaine, Colm, Barber, Mathew, Boutkov, Boris, Habegger, Lukas, Ferreira, Manuel, Baras, Aris, Reid, Jeffrey, Abecasis, Goncalo, Maxwell, Evan, Marchini, Jonathan
Format: Journal Article
Language:English
Published: New York Nature Publishing Group US 01.07.2021
Nature Publishing Group
Subjects:
ISSN:1061-4036, 1546-1718, 1546-1718
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case–control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals. REGENIE is a whole-genome regression method based on ridge regression that enables highly parallelized analysis of quantitative and binary traits in biobank-scale data with reduced computational requirements.
AbstractList Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case–control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals. REGENIE is a whole-genome regression method based on ridge regression that enables highly parallelized analysis of quantitative and binary traits in biobank-scale data with reduced computational requirements.
Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case-control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals.
Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case-control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals. REGENIE is a whole-genome regression method based on ridge regression that enables highly parallelized analysis of quantitative and binary traits in biobank-scale data with reduced computational requirements.
Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case-control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals.Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or population structure. Here we present a novel machine-learning method called REGENIE for fitting a whole-genome regression model for quantitative and binary phenotypes that is substantially faster than alternatives in multi-trait analyses while maintaining statistical efficiency. The method naturally accommodates parallel analysis of multiple phenotypes and requires only local segments of the genotype matrix to be loaded in memory, in contrast to existing alternatives, which must load genome-wide matrices into memory. This results in substantial savings in compute time and memory usage. We introduce a fast, approximate Firth logistic regression test for unbalanced case-control phenotypes. The method is ideally suited to take advantage of distributed computing frameworks. We demonstrate the accuracy and computational benefits of this approach using the UK Biobank dataset with up to 407,746 individuals.
Audience Academic
Author Reid, Jeffrey
Mbatchou, Joelle
Benner, Christian
Ferreira, Manuel
Kosmicki, Jack A.
Baras, Aris
Abecasis, Goncalo
Maxwell, Evan
Boutkov, Boris
Marcketta, Anthony
Marchini, Jonathan
Habegger, Lukas
Ziyatdinov, Andrey
Barber, Mathew
Backman, Joshua
Barnard, Leland
O’Dushlaine, Colm
Author_xml – sequence: 1
  givenname: Joelle
  orcidid: 0000-0002-2245-3743
  surname: Mbatchou
  fullname: Mbatchou, Joelle
  organization: Regeneron Genetics Center
– sequence: 2
  givenname: Leland
  surname: Barnard
  fullname: Barnard, Leland
  organization: Regeneron Genetics Center
– sequence: 3
  givenname: Joshua
  surname: Backman
  fullname: Backman, Joshua
  organization: Regeneron Genetics Center
– sequence: 4
  givenname: Anthony
  surname: Marcketta
  fullname: Marcketta, Anthony
  organization: Regeneron Genetics Center
– sequence: 5
  givenname: Jack A.
  surname: Kosmicki
  fullname: Kosmicki, Jack A.
  organization: Regeneron Genetics Center
– sequence: 6
  givenname: Andrey
  surname: Ziyatdinov
  fullname: Ziyatdinov, Andrey
  organization: Regeneron Genetics Center
– sequence: 7
  givenname: Christian
  surname: Benner
  fullname: Benner, Christian
  organization: Regeneron Genetics Center
– sequence: 8
  givenname: Colm
  surname: O’Dushlaine
  fullname: O’Dushlaine, Colm
  organization: Regeneron Genetics Center
– sequence: 9
  givenname: Mathew
  surname: Barber
  fullname: Barber, Mathew
  organization: Regeneron Genetics Center
– sequence: 10
  givenname: Boris
  surname: Boutkov
  fullname: Boutkov, Boris
  organization: Regeneron Genetics Center
– sequence: 11
  givenname: Lukas
  surname: Habegger
  fullname: Habegger, Lukas
  organization: Regeneron Genetics Center
– sequence: 12
  givenname: Manuel
  surname: Ferreira
  fullname: Ferreira, Manuel
  organization: Regeneron Genetics Center
– sequence: 13
  givenname: Aris
  orcidid: 0000-0002-6830-3396
  surname: Baras
  fullname: Baras, Aris
  organization: Regeneron Genetics Center
– sequence: 14
  givenname: Jeffrey
  orcidid: 0000-0001-8645-4713
  surname: Reid
  fullname: Reid, Jeffrey
  organization: Regeneron Genetics Center
– sequence: 15
  givenname: Goncalo
  surname: Abecasis
  fullname: Abecasis, Goncalo
  organization: Regeneron Genetics Center
– sequence: 16
  givenname: Evan
  orcidid: 0000-0002-7325-7531
  surname: Maxwell
  fullname: Maxwell, Evan
  organization: Regeneron Genetics Center
– sequence: 17
  givenname: Jonathan
  orcidid: 0000-0003-0610-8322
  surname: Marchini
  fullname: Marchini, Jonathan
  email: jonathan.marchini@regeneron.com
  organization: Regeneron Genetics Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34017140$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1r1jAYhotM3If-AQ-k4Ik76EyaNE0Px4vOwWCg09OQpE9qRpu8S9Lp_r2p3RjvkCE5aCjX9cCd-zks9px3UBRvMTrBiPCPkeKG8wrVuEKIt6hqXxQHuKGswi3me_mOGK4oImy_OIzxGiFMKeKvin1CUUYoOiiuNn7azkkm650cx7sSjLHagkvlr59-hGoA5ycoAwwBYsxUaXwob2bpkl20Wyil60tlnQx3ZQrSpvi6eGnkGOHN_feo-P7509XmS3VxeXa-Ob2oNKtRqiiuJfQKWN3imqmmo6hXnVLcNKjXEivd9qzHoBTFRtZEa6UN5TmCJBIbQo6KD-vcbfA3M8QkJhs1jKN04Oco6obgmhDOaEbfP0Gv_Rxy5IVqEEFdw5tHapAjCOuMz4H0MlScMtZ2He0oy9TJP6h8episzh0Zm__vCMc7QmYS_E6DnGMU59--_j97-WOXfXcfalYT9GIb7JRbEA_1ZoCvgA4-xgBGaLt2vRQ1CozEskli3SSRN0n83STRZrV-oj5Mf1YiqxQz7AYIj6_8jPUHKDzYsA
CitedBy_id crossref_primary_10_1038_s41588_024_01975_5
crossref_primary_10_1016_j_ajhg_2025_03_008
crossref_primary_10_3389_fphar_2024_1370350
crossref_primary_10_1038_s41467_024_50583_8
crossref_primary_10_1371_journal_pcbi_1012160
crossref_primary_10_3389_fgene_2021_682638
crossref_primary_10_3389_fgene_2023_1113058
crossref_primary_10_1097_MD_0000000000044482
crossref_primary_10_1002_ejp_4764
crossref_primary_10_1080_02770903_2024_2400279
crossref_primary_10_1093_gerona_glaf007
crossref_primary_10_1016_j_ajhg_2021_11_005
crossref_primary_10_1161_CIRCGEN_123_004626
crossref_primary_10_1038_s41467_024_55198_7
crossref_primary_10_1038_s41391_024_00879_z
crossref_primary_10_1177_20420188251343140
crossref_primary_10_1038_s41467_022_32398_7
crossref_primary_10_1001_jamanetworkopen_2023_34836
crossref_primary_10_3390_nu16213588
crossref_primary_10_1038_s42003_022_03932_6
crossref_primary_10_1016_j_xhgg_2024_100317
crossref_primary_10_1016_j_tranon_2025_102533
crossref_primary_10_1038_s41588_024_02052_7
crossref_primary_10_3389_fimmu_2024_1438680
crossref_primary_10_1016_j_xhgg_2024_100300
crossref_primary_10_1016_j_ajhg_2025_03_016
crossref_primary_10_1038_s43856_025_01003_5
crossref_primary_10_1186_s12931_024_03034_3
crossref_primary_10_1038_s41588_023_01607_4
crossref_primary_10_1093_schbul_sbae093
crossref_primary_10_1101_gr_279057_124
crossref_primary_10_1093_hmg_ddad194
crossref_primary_10_1186_s40364_024_00591_z
crossref_primary_10_1038_s42003_022_03408_7
crossref_primary_10_1038_s41467_024_53467_z
crossref_primary_10_1172_JCI172885
crossref_primary_10_1038_s41467_025_56695_z
crossref_primary_10_1016_j_xgen_2025_100840
crossref_primary_10_1038_s41467_023_41185_x
crossref_primary_10_1007_s10519_025_10226_0
crossref_primary_10_1016_j_jad_2025_04_012
crossref_primary_10_1038_s41467_024_52579_w
crossref_primary_10_1186_s12920_023_01658_w
crossref_primary_10_3389_fneur_2024_1464984
crossref_primary_10_1016_j_ajhg_2025_03_020
crossref_primary_10_1007_s12672_024_01644_3
crossref_primary_10_1038_s41467_025_61978_6
crossref_primary_10_1038_s41586_022_04394_w
crossref_primary_10_1016_j_xgen_2025_100978
crossref_primary_10_1038_s41467_024_48190_8
crossref_primary_10_1038_s41467_025_56935_2
crossref_primary_10_1038_s41467_024_46277_w
crossref_primary_10_1093_genetics_iyac157
crossref_primary_10_1016_j_jpainsymman_2024_10_033
crossref_primary_10_1038_s41591_023_02405_5
crossref_primary_10_1371_journal_pgen_1011192
crossref_primary_10_3389_fendo_2023_1274791
crossref_primary_10_1038_s41588_024_01963_9
crossref_primary_10_1016_j_xhgg_2024_100323
crossref_primary_10_1038_s41586_025_09357_5
crossref_primary_10_1038_s41467_024_45135_z
crossref_primary_10_1016_j_ophtha_2023_08_023
crossref_primary_10_1002_oby_24248
crossref_primary_10_1016_S2665_9913_22_00180_1
crossref_primary_10_1038_s41467_023_43036_1
crossref_primary_10_1038_s41431_025_01789_x
crossref_primary_10_1371_journal_pgen_1010093
crossref_primary_10_1038_s41408_025_01351_4
crossref_primary_10_1186_s10194_024_01836_w
crossref_primary_10_3390_ijms25136986
crossref_primary_10_1016_j_jacc_2023_01_044
crossref_primary_10_1038_s41588_021_01011_w
crossref_primary_10_1186_s12916_024_03361_8
crossref_primary_10_1038_s41588_024_01898_1
crossref_primary_10_1016_j_joca_2024_12_006
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108192
crossref_primary_10_1186_s13098_025_01744_2
crossref_primary_10_1038_s41598_023_49105_1
crossref_primary_10_1038_s41591_023_02374_9
crossref_primary_10_1038_s41467_023_36864_8
crossref_primary_10_1007_s00335_025_10154_8
crossref_primary_10_3390_bioengineering11080797
crossref_primary_10_1038_s41390_025_03975_5
crossref_primary_10_1038_s41398_021_01674_3
crossref_primary_10_1681_ASN_0000000622
crossref_primary_10_1038_s44161_022_00196_5
crossref_primary_10_3390_nu16101417
crossref_primary_10_1002_gepi_70007
crossref_primary_10_1038_s41467_024_50718_x
crossref_primary_10_3389_fpsyt_2025_1589688
crossref_primary_10_1038_s10038_022_01094_1
crossref_primary_10_1038_s41431_023_01302_2
crossref_primary_10_1038_s41588_021_00912_0
crossref_primary_10_1038_s43588_024_00739_9
crossref_primary_10_1038_s41467_025_58129_2
crossref_primary_10_1186_s12863_025_01360_z
crossref_primary_10_1371_journal_pbio_3002782
crossref_primary_10_1016_j_ejphar_2025_177957
crossref_primary_10_1038_s41467_025_59442_6
crossref_primary_10_1177_15347346241283260
crossref_primary_10_1097_MD_0000000000044445
crossref_primary_10_1212_WNL_0000000000013165
crossref_primary_10_1167_iovs_62_14_3
crossref_primary_10_1093_hmg_ddac060
crossref_primary_10_1186_s13059_024_03439_9
crossref_primary_10_1016_j_ajhg_2025_04_004
crossref_primary_10_1016_j_jacc_2022_05_024
crossref_primary_10_33073_pjm_2024_006
crossref_primary_10_3389_fneur_2024_1327873
crossref_primary_10_1038_s41588_024_01720_y
crossref_primary_10_1038_s41467_024_55326_3
crossref_primary_10_1007_s12013_025_01781_8
crossref_primary_10_1038_s41467_025_61330_y
crossref_primary_10_3389_fmicb_2024_1384095
crossref_primary_10_1016_j_crmeth_2025_101115
crossref_primary_10_1038_s41592_023_02024_5
crossref_primary_10_1016_j_diabres_2025_112194
crossref_primary_10_1016_j_jlr_2024_100662
crossref_primary_10_1038_s41467_024_53687_3
crossref_primary_10_1093_rheumatology_keae075
crossref_primary_10_1016_j_jhep_2024_06_030
crossref_primary_10_1371_journal_pmed_1004174
crossref_primary_10_1038_s41588_024_01962_w
crossref_primary_10_1681_ASN_0000000768
crossref_primary_10_1038_s41431_023_01326_8
crossref_primary_10_3389_fnut_2024_1440896
crossref_primary_10_1038_s41588_023_01420_z
crossref_primary_10_1111_ahg_12606
crossref_primary_10_1038_s41467_024_46023_2
crossref_primary_10_1038_s41467_025_59949_y
crossref_primary_10_1002_cam4_7300
crossref_primary_10_1097_j_pain_0000000000003104
crossref_primary_10_1038_s41467_025_56944_1
crossref_primary_10_1038_s41586_025_09326_y
crossref_primary_10_1038_s42003_023_05496_5
crossref_primary_10_1038_s41588_024_01908_2
crossref_primary_10_14309_ajg_0000000000003048
crossref_primary_10_1002_wics_1635
crossref_primary_10_1038_s41598_025_95286_2
crossref_primary_10_1186_s12981_024_00610_x
crossref_primary_10_1097_j_pain_0000000000003463
crossref_primary_10_1038_s41598_025_88412_7
crossref_primary_10_1038_s41588_024_02044_7
crossref_primary_10_3389_fonc_2024_1505675
crossref_primary_10_1080_07853890_2025_2495763
crossref_primary_10_1097_MAO_0000000000004594
crossref_primary_10_1038_s41380_024_02836_7
crossref_primary_10_1038_s41588_025_02085_6
crossref_primary_10_1186_s13229_024_00599_0
crossref_primary_10_1038_s41598_023_44566_w
crossref_primary_10_3390_app14020785
crossref_primary_10_1002_ejhf_2482
crossref_primary_10_1038_s41588_024_01764_0
crossref_primary_10_1038_s41588_024_01919_z
crossref_primary_10_1016_j_heliyon_2024_e28154
crossref_primary_10_1016_j_biopsych_2024_12_021
crossref_primary_10_1111_jdi_14273
crossref_primary_10_1002_gepi_22492
crossref_primary_10_1186_s13059_025_03520_x
crossref_primary_10_1038_s41586_023_06957_x
crossref_primary_10_1016_j_pbi_2024_102658
crossref_primary_10_1038_s41586_021_04103_z
crossref_primary_10_1038_s41586_023_06560_0
crossref_primary_10_1016_j_bja_2025_04_013
crossref_primary_10_1016_j_jacadv_2024_101241
crossref_primary_10_1016_j_isci_2024_109815
crossref_primary_10_1007_s40520_024_02865_w
crossref_primary_10_1038_s41525_023_00376_7
crossref_primary_10_1126_science_adq0071
crossref_primary_10_1002_jgm_70033
crossref_primary_10_1016_j_numecd_2024_01_025
crossref_primary_10_1186_s12874_023_01973_x
crossref_primary_10_1016_j_spinee_2023_04_001
crossref_primary_10_1038_s41467_024_53556_z
crossref_primary_10_3389_fnut_2024_1477537
crossref_primary_10_1038_s41380_025_03047_4
crossref_primary_10_1016_j_ajo_2025_03_007
crossref_primary_10_1038_s41467_023_41394_4
crossref_primary_10_1038_s41467_023_41876_5
crossref_primary_10_1093_genetics_iyae143
crossref_primary_10_1212_NXG_0000000000200143
crossref_primary_10_1038_s41467_024_51819_3
crossref_primary_10_1155_jobe_7792701
crossref_primary_10_1073_pnas_2401687121
crossref_primary_10_1016_j_identj_2025_100867
crossref_primary_10_1007_s00223_025_01399_1
crossref_primary_10_1038_s41467_024_48339_5
crossref_primary_10_1093_nar_gkae1070
crossref_primary_10_3390_biomedicines12020304
crossref_primary_10_1038_s41588_024_01917_1
crossref_primary_10_3389_fnut_2024_1408778
crossref_primary_10_1126_science_abn2937
crossref_primary_10_1681_ASN_0000000718
crossref_primary_10_3390_genes16050523
crossref_primary_10_1182_bloodadvances_2024014399
crossref_primary_10_3389_fendo_2024_1405517
crossref_primary_10_1016_j_bbrc_2025_151340
crossref_primary_10_1038_s41562_024_02061_w
crossref_primary_10_1016_j_jid_2024_12_011
crossref_primary_10_1038_s41588_025_02095_4
crossref_primary_10_3389_fgene_2022_897210
crossref_primary_10_1007_s00403_024_03525_9
crossref_primary_10_1111_eci_14064
crossref_primary_10_3389_fgene_2023_1129389
crossref_primary_10_1016_j_ebiom_2024_105285
crossref_primary_10_1038_s41467_022_35188_3
crossref_primary_10_18332_tid_205419
crossref_primary_10_1016_j_ajhg_2022_04_016
crossref_primary_10_1038_s41588_023_01444_5
crossref_primary_10_1038_s41588_024_01884_7
crossref_primary_10_1016_j_arth_2023_05_006
crossref_primary_10_1038_s41467_024_49430_7
crossref_primary_10_1016_j_ajhg_2021_05_017
crossref_primary_10_1038_s41586_022_05448_9
crossref_primary_10_3233_JAD_221223
crossref_primary_10_1515_jtim_2024_0017
crossref_primary_10_1038_s42255_024_01061_4
crossref_primary_10_1038_s41598_023_47441_w
crossref_primary_10_1038_s41467_024_49990_8
crossref_primary_10_1371_journal_pgen_1011346
crossref_primary_10_7554_eLife_90419
crossref_primary_10_1093_genetics_iyaf138
crossref_primary_10_1186_s12916_022_02535_6
crossref_primary_10_1093_genetics_iyaf019
crossref_primary_10_1038_s41598_025_02630_7
crossref_primary_10_2147_NSS_S475171
crossref_primary_10_1016_j_ajhg_2024_08_021
crossref_primary_10_3168_jds_2024_25892
crossref_primary_10_1038_s41598_025_08000_7
crossref_primary_10_1016_j_jbi_2024_104678
crossref_primary_10_1016_j_numecd_2024_07_012
crossref_primary_10_1038_s41588_024_01894_5
crossref_primary_10_1007_s00586_023_07711_7
crossref_primary_10_1111_tan_70284
crossref_primary_10_1186_s13073_025_01456_2
crossref_primary_10_3390_biom13030543
crossref_primary_10_1016_j_csbj_2025_06_042
crossref_primary_10_1038_s41467_024_51095_1
crossref_primary_10_1016_j_ajhg_2023_12_001
crossref_primary_10_1038_s41586_023_06592_6
crossref_primary_10_1681_ASN_0000000000000419
crossref_primary_10_1016_j_atherosclerosis_2025_119174
crossref_primary_10_1038_s41467_022_31757_8
crossref_primary_10_1016_j_archger_2025_105762
crossref_primary_10_1016_j_biopsych_2023_11_006
crossref_primary_10_1038_s42255_025_01359_x
crossref_primary_10_1038_s41467_024_55636_6
crossref_primary_10_3389_fgene_2023_1106328
crossref_primary_10_1093_gigascience_giaf049
crossref_primary_10_1038_s41588_025_02109_1
crossref_primary_10_1038_s41598_024_63972_2
crossref_primary_10_1371_journal_pgen_1011051
crossref_primary_10_3389_fgene_2022_1014947
crossref_primary_10_1016_j_ajhg_2022_12_013
crossref_primary_10_1016_j_molmet_2022_101509
crossref_primary_10_1038_s41586_024_07903_1
crossref_primary_10_1007_s00125_023_05923_6
crossref_primary_10_3390_nu14204408
crossref_primary_10_1016_j_ajhg_2022_12_017
crossref_primary_10_1038_s41588_025_02229_8
crossref_primary_10_1038_s41598_022_26413_6
crossref_primary_10_1053_j_gastro_2023_06_031
crossref_primary_10_2337_db23_1005
crossref_primary_10_1210_clinem_dgaf304
crossref_primary_10_1371_journal_pgen_1011288
crossref_primary_10_1093_hmg_ddaf054
crossref_primary_10_1161_CIRCGEN_122_003968
crossref_primary_10_1038_s41467_024_52890_6
crossref_primary_10_1038_s41467_025_58149_y
crossref_primary_10_1126_science_abe0348
crossref_primary_10_1016_j_xhgg_2025_100406
crossref_primary_10_1038_s41562_023_01781_9
crossref_primary_10_1038_s10038_023_01147_z
crossref_primary_10_1136_jmg_2022_108615
crossref_primary_10_12688_wellcomeopenres_24365_1
crossref_primary_10_1016_j_ajhg_2025_01_014
crossref_primary_10_1186_s12870_024_05218_x
crossref_primary_10_1016_j_ajhg_2024_09_008
crossref_primary_10_1016_j_bpsgos_2025_100502
crossref_primary_10_1186_s13293_024_00602_6
crossref_primary_10_3389_fgene_2022_1070511
crossref_primary_10_3389_fendo_2024_1404747
crossref_primary_10_1186_s13073_023_01261_9
crossref_primary_10_1016_j_ajhg_2023_07_001
crossref_primary_10_1038_s41586_025_08623_w
crossref_primary_10_1016_j_ajhg_2025_02_020
crossref_primary_10_1038_s41467_022_31030_y
crossref_primary_10_1097_MD_0000000000040908
crossref_primary_10_7554_eLife_92574_3
crossref_primary_10_3389_fpls_2024_1436532
crossref_primary_10_1186_s13048_024_01420_5
crossref_primary_10_1038_s41467_025_59155_w
crossref_primary_10_2337_db23_0498
crossref_primary_10_2147_IJNRD_S511736
crossref_primary_10_1038_s41598_024_52373_0
crossref_primary_10_1007_s00125_024_06291_5
crossref_primary_10_1038_s41467_025_58686_6
crossref_primary_10_1038_s41588_024_01904_6
crossref_primary_10_1016_j_jprot_2024_105324
crossref_primary_10_1016_j_xgen_2025_100783
crossref_primary_10_1093_hmg_ddae060
crossref_primary_10_1038_s41467_023_41315_5
crossref_primary_10_1038_s41591_024_02858_2
crossref_primary_10_1093_hmg_ddad093
crossref_primary_10_1007_s00125_025_06420_8
crossref_primary_10_1186_s12883_024_03955_y
crossref_primary_10_1038_s41467_024_45983_9
crossref_primary_10_1038_s41591_025_03543_8
crossref_primary_10_1186_s12864_024_10172_x
crossref_primary_10_1162_netn_a_00286
crossref_primary_10_1038_s41467_025_59383_0
crossref_primary_10_1111_pcmr_70038
crossref_primary_10_1186_s13059_024_03400_w
crossref_primary_10_1038_s41576_024_00778_y
crossref_primary_10_1038_s41588_021_01006_7
crossref_primary_10_1038_s41588_024_01707_9
crossref_primary_10_1681_ASN_0000000000000453
crossref_primary_10_1093_bib_bbaf044
crossref_primary_10_3168_jds_2024_25861
crossref_primary_10_3389_fimmu_2024_1390516
crossref_primary_10_3389_fmed_2024_1439344
crossref_primary_10_1159_000540358
crossref_primary_10_7554_eLife_90419_2
crossref_primary_10_1073_pnas_2121279119
crossref_primary_10_1093_infdis_jiae029
crossref_primary_10_1007_s00125_025_06395_6
crossref_primary_10_1186_s13059_022_02697_9
crossref_primary_10_1016_j_jid_2024_03_043
crossref_primary_10_1038_s41562_023_01722_6
crossref_primary_10_1038_s41467_024_53634_2
crossref_primary_10_1097_MD_0000000000042506
crossref_primary_10_3390_math9233083
crossref_primary_10_1038_s41562_023_01591_z
crossref_primary_10_1134_S1022795423140065
crossref_primary_10_1093_gpbjnl_qzae020
crossref_primary_10_1161_CIRCGEN_122_003808
crossref_primary_10_1016_j_atherosclerosis_2023_01_022
crossref_primary_10_1016_j_heliyon_2024_e38101
crossref_primary_10_1016_j_jclepro_2023_139035
crossref_primary_10_1016_j_molp_2022_02_012
crossref_primary_10_1016_j_ebiom_2023_104630
crossref_primary_10_1038_s41467_024_51467_7
crossref_primary_10_1093_humrep_dead217
crossref_primary_10_3389_fgene_2024_1231521
crossref_primary_10_1002_ijgo_16029
crossref_primary_10_1038_s41581_024_00886_2
crossref_primary_10_1186_s13059_025_03518_5
crossref_primary_10_1038_s41467_022_30931_2
crossref_primary_10_1016_j_ajhg_2025_07_004
crossref_primary_10_1016_j_cjca_2023_07_011
crossref_primary_10_3389_fendo_2022_863893
crossref_primary_10_1186_s12964_025_02038_w
crossref_primary_10_1002_jbmr_4920
crossref_primary_10_1186_s13098_025_01883_6
crossref_primary_10_1038_s41467_025_59034_4
crossref_primary_10_1371_journal_pone_0294095
crossref_primary_10_1016_j_freeradbiomed_2025_03_044
crossref_primary_10_7554_eLife_79238
crossref_primary_10_1038_s41588_025_02286_z
crossref_primary_10_1161_CIRCULATIONAHA_124_070982
crossref_primary_10_1186_s13578_024_01214_8
crossref_primary_10_3389_fgene_2025_1534726
crossref_primary_10_1038_s41588_024_01839_y
crossref_primary_10_1038_s41588_023_01500_0
crossref_primary_10_1038_s43587_025_00928_9
crossref_primary_10_2337_db23_0575
crossref_primary_10_1001_jamaophthalmol_2023_0706
crossref_primary_10_1126_science_abo1131
crossref_primary_10_1016_j_ebiom_2025_105590
crossref_primary_10_1016_j_ajhg_2024_05_003
crossref_primary_10_1007_s11695_025_07681_3
crossref_primary_10_1038_s41467_023_39247_1
crossref_primary_10_3389_fendo_2024_1359015
crossref_primary_10_1016_j_biopsych_2025_01_020
crossref_primary_10_1111_1753_0407_70131
crossref_primary_10_1007_s00520_025_09392_y
crossref_primary_10_1016_j_ecoenv_2024_117522
crossref_primary_10_1038_s41467_024_54678_0
crossref_primary_10_1016_j_cels_2022_05_007
crossref_primary_10_1016_j_mayocp_2025_04_030
crossref_primary_10_3390_cancers13205137
crossref_primary_10_1038_s41380_024_02604_7
crossref_primary_10_1161_STROKEAHA_123_044937
crossref_primary_10_1161_CIRCULATIONAHA_125_074554
crossref_primary_10_1016_j_atherosclerosis_2023_117397
crossref_primary_10_1002_hbm_26283
crossref_primary_10_20960_nh_05819
crossref_primary_10_1016_j_heliyon_2024_e31535
crossref_primary_10_1038_s41588_022_01178_w
crossref_primary_10_1038_s41598_023_29641_6
crossref_primary_10_1371_journal_pgen_1010367
crossref_primary_10_1097_MD_0000000000039776
crossref_primary_10_3168_jds_2024_25926
crossref_primary_10_1093_nargab_lqad062
crossref_primary_10_1038_s41467_025_59950_5
crossref_primary_10_3389_fendo_2023_1146099
crossref_primary_10_1038_s41588_022_01251_4
crossref_primary_10_1016_j_jid_2024_02_019
crossref_primary_10_1016_j_ebiom_2025_105584
crossref_primary_10_2147_NSS_S489433
crossref_primary_10_1038_s41588_021_00996_8
crossref_primary_10_1161_CIRCULATIONAHA_121_057709
crossref_primary_10_1038_s41467_025_57457_7
crossref_primary_10_1038_s41598_025_10031_z
crossref_primary_10_1093_sleep_zsad279
crossref_primary_10_1186_s12967_024_05993_z
crossref_primary_10_1038_s41588_023_01428_5
crossref_primary_10_1038_s41598_023_27551_1
crossref_primary_10_1038_s41467_025_61193_3
crossref_primary_10_1093_nargab_lqae015
crossref_primary_10_1038_s43588_023_00461_y
crossref_primary_10_1007_s00011_024_01850_3
crossref_primary_10_7554_eLife_92574
crossref_primary_10_1093_ije_dyad010
crossref_primary_10_1016_j_metabol_2025_156263
crossref_primary_10_1093_bioadv_vbae067
crossref_primary_10_1038_s41590_023_01423_2
crossref_primary_10_1080_01621459_2025_2464271
crossref_primary_10_1016_j_ajhg_2023_04_009
crossref_primary_10_1186_s12933_024_02143_z
crossref_primary_10_1038_s41531_025_00888_2
crossref_primary_10_1016_j_ajhg_2025_08_006
crossref_primary_10_1016_j_medp_2024_100046
crossref_primary_10_1161_JAHA_124_038341
crossref_primary_10_1186_s12967_025_06782_y
crossref_primary_10_1038_s41586_024_07533_7
crossref_primary_10_1038_s42003_025_07860_z
crossref_primary_10_1007_s00122_025_05003_w
crossref_primary_10_1038_s41586_021_03855_y
crossref_primary_10_2106_JBJS_22_00872
crossref_primary_10_1038_s41467_024_50317_w
crossref_primary_10_1016_j_gim_2023_100012
crossref_primary_10_1371_journal_pgen_1010105
crossref_primary_10_1016_j_ajhg_2023_09_013
crossref_primary_10_1038_s41591_025_03913_2
crossref_primary_10_1016_j_ajhg_2025_08_013
crossref_primary_10_1038_s41588_025_02288_x
crossref_primary_10_1016_j_ajhg_2025_08_016
crossref_primary_10_1126_scitranslmed_adg4517
crossref_primary_10_1186_s13048_025_01614_5
crossref_primary_10_1038_s42003_023_05753_7
crossref_primary_10_1017_S0033291725101037
crossref_primary_10_1038_s41467_023_43851_6
crossref_primary_10_1016_j_atherosclerosis_2023_117384
crossref_primary_10_1016_j_molp_2022_11_004
crossref_primary_10_1038_s41591_024_03284_0
crossref_primary_10_1038_s41467_024_53516_7
crossref_primary_10_1038_s41467_025_59964_z
crossref_primary_10_1007_s10162_023_00917_y
crossref_primary_10_1371_journal_pone_0304280
crossref_primary_10_1210_clinem_dgae510
crossref_primary_10_1101_gr_279230_124
crossref_primary_10_1080_09513590_2025_2487498
crossref_primary_10_1186_s12885_024_12515_z
crossref_primary_10_1038_s41598_024_66085_y
crossref_primary_10_1038_s41467_024_54301_2
crossref_primary_10_1016_j_ebiom_2025_105790
crossref_primary_10_1038_s41431_023_01485_8
crossref_primary_10_1093_bib_bbad030
crossref_primary_10_1093_hmg_ddac003
crossref_primary_10_1038_s41467_022_32864_2
crossref_primary_10_1016_j_ajhg_2025_05_015
crossref_primary_10_1016_j_diabres_2025_112246
crossref_primary_10_1016_j_jad_2024_02_061
crossref_primary_10_1007_s00125_024_06241_1
crossref_primary_10_1007_s12016_024_08986_4
crossref_primary_10_1097_MD_0000000000042210
crossref_primary_10_1038_s41588_025_02100_w
crossref_primary_10_1038_s41467_025_62338_0
crossref_primary_10_1038_s43588_025_00852_3
crossref_primary_10_1161_STROKEAHA_124_046249
crossref_primary_10_3390_ijms26125757
crossref_primary_10_1007_s00438_024_02202_w
crossref_primary_10_1016_j_sleep_2024_10_029
crossref_primary_10_2106_JBJS_21_01407
crossref_primary_10_1002_ajmg_b_32938
crossref_primary_10_1093_hmg_ddac011
crossref_primary_10_1080_17512433_2023_2292605
crossref_primary_10_1016_j_cell_2023_12_006
crossref_primary_10_1161_STROKEAHA_120_031792
crossref_primary_10_1016_j_cell_2023_04_014
crossref_primary_10_1038_s41588_024_01791_x
crossref_primary_10_3389_fgene_2021_781451
crossref_primary_10_3389_fendo_2024_1436823
crossref_primary_10_1038_s41430_024_01489_7
crossref_primary_10_2337_db24_1103
crossref_primary_10_1016_j_jbc_2021_101413
crossref_primary_10_1111_1756_185X_15350
crossref_primary_10_1038_s41586_025_08980_6
crossref_primary_10_1016_j_ajhg_2023_10_017
crossref_primary_10_1038_s41588_024_01978_2
crossref_primary_10_1513_AnnalsATS_202303_215OC
crossref_primary_10_3390_jcdd10120495
crossref_primary_10_1038_s41598_021_99091_5
crossref_primary_10_1016_j_numecd_2024_05_023
crossref_primary_10_1038_s41588_023_01372_4
crossref_primary_10_1093_postmj_qgae105
crossref_primary_10_1186_s42358_024_00354_2
crossref_primary_10_1038_s41588_023_01417_8
crossref_primary_10_1016_j_ijcrp_2025_200426
crossref_primary_10_1038_s41467_025_61721_1
crossref_primary_10_1210_clinem_dgae843
crossref_primary_10_1055_s_0044_1786970
crossref_primary_10_1161_CIRCRESAHA_123_323973
crossref_primary_10_1016_j_compbiomed_2023_107221
crossref_primary_10_1038_s41467_022_33829_1
crossref_primary_10_1038_s41467_024_53091_x
crossref_primary_10_1177_13872877251375432
crossref_primary_10_1038_s41467_024_52105_y
crossref_primary_10_1186_s40246_023_00488_2
crossref_primary_10_3390_genes14051081
crossref_primary_10_1016_j_jpsychires_2024_04_027
crossref_primary_10_1038_s43856_024_00473_3
crossref_primary_10_1007_s12035_025_04987_2
crossref_primary_10_1016_j_atherosclerosis_2021_11_032
crossref_primary_10_1038_s41588_025_02156_8
crossref_primary_10_1016_j_bbi_2025_01_024
crossref_primary_10_1161_STROKEAHA_124_047103
crossref_primary_10_1038_s41467_024_49998_0
crossref_primary_10_1038_s41598_022_16967_w
crossref_primary_10_1002_alz_14181
crossref_primary_10_1097_MD_0000000000043417
crossref_primary_10_1126_science_abf8683
crossref_primary_10_1167_iovs_66_12_22
crossref_primary_10_1038_s41467_024_51947_w
crossref_primary_10_1016_j_jaci_2025_03_012
crossref_primary_10_1186_s12916_025_04228_2
crossref_primary_10_1016_j_jinf_2024_106262
crossref_primary_10_1038_s43586_021_00056_9
crossref_primary_10_1016_j_ajhg_2025_06_011
crossref_primary_10_1002_hsr2_70162
crossref_primary_10_1186_s12859_022_05034_w
crossref_primary_10_3389_fimmu_2024_1420840
crossref_primary_10_1038_s10038_025_01388_0
crossref_primary_10_1038_s41588_024_01868_7
crossref_primary_10_3350_cmh_2024_0642
crossref_primary_10_1371_journal_pone_0318249
crossref_primary_10_1038_s41598_024_51636_0
crossref_primary_10_1038_s41380_025_02912_6
crossref_primary_10_1038_s41467_023_40566_6
crossref_primary_10_1038_s41588_023_01342_w
crossref_primary_10_1681_ASN_0000000000000094
crossref_primary_10_2147_ORR_S513204
crossref_primary_10_1038_s41467_025_56669_1
crossref_primary_10_1093_hmg_ddac212
crossref_primary_10_1186_s12920_025_02154_z
crossref_primary_10_1038_s42003_024_06890_3
crossref_primary_10_1038_s41467_023_41442_z
crossref_primary_10_1038_s41588_021_00954_4
crossref_primary_10_1371_journal_pone_0275934
crossref_primary_10_1056_NEJMoa2117872
crossref_primary_10_1001_jamadermatol_2023_2217
crossref_primary_10_1371_journal_pgen_1011600
crossref_primary_10_1038_s41588_023_01398_8
crossref_primary_10_1016_j_ajhg_2024_04_020
crossref_primary_10_1093_bioinformatics_btaf067
crossref_primary_10_1167_iovs_64_14_33
crossref_primary_10_1016_j_jpain_2022_10_005
crossref_primary_10_1080_00221309_2025_2525809
crossref_primary_10_1126_scisignal_adv0970
crossref_primary_10_1007_s00438_024_02213_7
crossref_primary_10_1016_j_jacc_2024_12_033
crossref_primary_10_1371_journal_ppat_1012786
crossref_primary_10_1093_sleep_zsad107
crossref_primary_10_3168_jds_2024_26042
crossref_primary_10_1016_j_ajhg_2024_10_018
crossref_primary_10_1038_s41586_024_07931_x
crossref_primary_10_1038_s42003_022_04070_9
crossref_primary_10_1038_s42255_024_01135_3
crossref_primary_10_1038_s43856_024_00506_x
crossref_primary_10_1016_j_cell_2023_12_016
crossref_primary_10_1128_msphere_00567_24
crossref_primary_10_1038_s41467_024_55761_2
crossref_primary_10_1038_s41588_024_01930_4
crossref_primary_10_1016_j_ajcnut_2024_06_018
crossref_primary_10_1038_s41467_023_35808_6
crossref_primary_10_1002_oby_24335
crossref_primary_10_1186_s12967_024_04919_z
crossref_primary_10_1038_s41588_024_01844_1
crossref_primary_10_1136_ard_2023_224732
crossref_primary_10_1038_s41598_023_47555_1
crossref_primary_10_1093_bioadv_vbad142
crossref_primary_10_1161_JAHA_122_029103
crossref_primary_10_3389_fimmu_2024_1325868
crossref_primary_10_1038_s41467_024_52302_9
crossref_primary_10_1111_tpj_16790
crossref_primary_10_1161_CIRCULATIONAHA_124_069398
crossref_primary_10_1038_s41467_023_41210_z
crossref_primary_10_1038_s41467_025_58152_3
crossref_primary_10_1038_s42003_025_07875_6
crossref_primary_10_1097_MD_0000000000040591
crossref_primary_10_1016_j_diabres_2024_111094
crossref_primary_10_1038_s41562_024_01919_3
crossref_primary_10_2106_JBJS_22_00364
crossref_primary_10_1038_s41398_025_03437_w
crossref_primary_10_1038_s41435_024_00255_w
crossref_primary_10_3390_ani14152152
crossref_primary_10_1038_s41467_024_52129_4
crossref_primary_10_1016_j_ebiom_2025_105830
crossref_primary_10_1038_s41467_025_62456_9
crossref_primary_10_1093_hr_uhad136
crossref_primary_10_1016_j_cyto_2025_156935
crossref_primary_10_1016_j_jacadv_2024_100888
crossref_primary_10_1016_j_ajhg_2024_04_009
crossref_primary_10_1038_s44161_024_00475_3
crossref_primary_10_1093_brain_awaf235
Cites_doi 10.1186/s13742-015-0047-8
10.1093/biomet/85.2.347
10.1186/1471-2105-11-58
10.1101/2020.12.14.20248176
10.1093/bioinformatics/btq559
10.1038/ng.3190
10.1016/j.ajhg.2020.08.009
10.1038/ng.546
10.1101/2020.08.03.235150
10.1038/nrg2813
10.1038/ng.2410
10.1534/genetics.108.094201
10.1038/nature05911
10.1086/519795
10.1214/12-BA703
10.1038/ng.2310
10.1038/ng1702
10.1038/s41586-018-0579-z
10.1038/s41588-018-0225-6
10.1093/biostatistics/kxs014
10.1093/bioinformatics/bty920
10.1038/ng.548
10.1016/j.ajhg.2011.05.029
10.1038/s41588-019-0530-8
10.1038/s41588-020-0621-6
10.1002/gepi.22156
10.1016/j.ajhg.2020.03.002
10.1534/genetics.112.143313
10.1038/nmeth.2037
10.1093/genetics/157.4.1819
10.1038/ng.2376
10.1038/ng.3513
10.1007/BF00117832
10.1093/bioinformatics/btw075
10.1002/gepi.20486
10.1038/s41588-018-0144-6
10.1038/ng.2876
10.1038/s41588-018-0184-y
10.1016/j.ajhg.2017.05.014
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Jul 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jul 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/s41588-021-00870-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList




MEDLINE
MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1546-1718
EndPage 1103
ExternalDocumentID A667994946
34017140
10_1038_s41588_021_00870_7
Genre Journal Article
GeographicLocations United States
United Kingdom--UK
GeographicLocations_xml – name: United States
– name: United Kingdom--UK
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: MC_QA137853
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACSTC
AETEA
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIEIU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c620t-412aedbe627126b5940db9bb8f50dca1bc7d6d1ebb41fa23ccbcf48408a3a1f33
IEDL.DBID 8C1
ISICitedReferencesCount 716
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000652463200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-4036
1546-1718
IngestDate Thu Sep 04 18:28:24 EDT 2025
Mon Oct 06 17:25:38 EDT 2025
Sat Nov 29 13:16:09 EST 2025
Sat Nov 29 10:00:50 EST 2025
Wed Nov 26 09:27:28 EST 2025
Wed Nov 26 10:40:39 EST 2025
Mon Jul 21 06:00:15 EDT 2025
Sat Nov 29 03:07:11 EST 2025
Tue Nov 18 22:11:21 EST 2025
Fri Feb 21 02:36:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c620t-412aedbe627126b5940db9bb8f50dca1bc7d6d1ebb41fa23ccbcf48408a3a1f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8645-4713
0000-0003-0610-8322
0000-0002-7325-7531
0000-0002-2245-3743
0000-0002-6830-3396
OpenAccessLink https://www.nature.com/articles/s41588-021-00870-7.pdf
PMID 34017140
PQID 2550309585
PQPubID 33429
PageCount 7
ParticipantIDs proquest_miscellaneous_2531233864
proquest_journals_2550309585
gale_infotracmisc_A667994946
gale_infotracacademiconefile_A667994946
gale_incontextgauss_ISR_A667994946
gale_incontextgauss_IOV_A667994946
pubmed_primary_34017140
crossref_citationtrail_10_1038_s41588_021_00870_7
crossref_primary_10_1038_s41588_021_00870_7
springer_journals_10_1038_s41588_021_00870_7
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References L Shang (870_CR35) 2020; 106
The Wellcome Trust Case Control Consortium. (870_CR1) 2007; 447
TH Meuwissen (870_CR9) 2001; 157
AL Price (870_CR4) 2010; 11
L Jostins (870_CR32) 2016; 32
J Listgarten (870_CR8) 2012; 9
BA Logsdon (870_CR11) 2010; 11
M Kerin (870_CR15) 2020; 107
HM Kang (870_CR34) 2008; 180
L Jiang (870_CR16) 2019; 51
W Zhou (870_CR18) 2018; 50
Z Zhang (870_CR6) 2010; 42
AI Young (870_CR23) 2018; 50
S Lee (870_CR25) 2012; 13
D Dutta (870_CR29) 2018; 43
AA Rizvi (870_CR30) 2018; 35
GR Svishcheva (870_CR21) 2012; 44
X Zhou (870_CR7) 2012; 44
A Dahl (870_CR33) 2016; 48
A Manichaikul (870_CR40) 2010; 26
J Yu (870_CR5) 2006; 38
870_CR20
P-R Loh (870_CR13) 2015; 47
870_CR41
GdL Campos (870_CR10) 2012; 193
870_CR22
C Bycroft (870_CR17) 2018; 562
CC Chang (870_CR39) 2015; 4
P-R Loh (870_CR14) 2018; 50
S Chib (870_CR27) 1998; 85
R Dey (870_CR37) 2017; 101
P Carbonetto (870_CR12) 2012; 7
J Yang (870_CR19) 2014; 46
AP Morris (870_CR31) 2010; 34
A Korte (870_CR28) 2012; 44
MC Wu (870_CR24) 2011; 89
S Purcell (870_CR2) 2007; 81
870_CR38
HM Kang (870_CR3) 2010; 42
W Zhou (870_CR26) 2020; 52
GK Robinson (870_CR36) 1991; 6
References_xml – volume: 4
  start-page: 7
  year: 2015
  ident: 870_CR39
  publication-title: Gigascience
  doi: 10.1186/s13742-015-0047-8
– volume: 85
  start-page: 347
  year: 1998
  ident: 870_CR27
  publication-title: Biometrika
  doi: 10.1093/biomet/85.2.347
– volume: 11
  year: 2010
  ident: 870_CR11
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-58
– ident: 870_CR38
  doi: 10.1101/2020.12.14.20248176
– volume: 26
  start-page: 2867
  year: 2010
  ident: 870_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq559
– volume: 47
  start-page: 284
  year: 2015
  ident: 870_CR13
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3190
– ident: 870_CR41
– volume: 107
  start-page: 698
  year: 2020
  ident: 870_CR15
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.08.009
– volume: 42
  start-page: 355
  year: 2010
  ident: 870_CR6
  publication-title: Nat. Genet.
  doi: 10.1038/ng.546
– ident: 870_CR20
  doi: 10.1101/2020.08.03.235150
– volume: 11
  start-page: 459
  year: 2010
  ident: 870_CR4
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2813
– volume: 6
  start-page: 15
  year: 1991
  ident: 870_CR36
  publication-title: Stat. Sci.
– volume: 44
  start-page: 1166
  year: 2012
  ident: 870_CR21
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2410
– volume: 180
  start-page: 1909
  year: 2008
  ident: 870_CR34
  publication-title: Genetics
  doi: 10.1534/genetics.108.094201
– volume: 447
  start-page: 661
  year: 2007
  ident: 870_CR1
  publication-title: Nature
  doi: 10.1038/nature05911
– volume: 81
  start-page: 559
  year: 2007
  ident: 870_CR2
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/519795
– volume: 7
  start-page: 73
  year: 2012
  ident: 870_CR12
  publication-title: Bayesian Anal.
  doi: 10.1214/12-BA703
– volume: 44
  start-page: 821
  year: 2012
  ident: 870_CR7
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2310
– volume: 38
  start-page: 203
  year: 2006
  ident: 870_CR5
  publication-title: Nat. Genet.
  doi: 10.1038/ng1702
– volume: 562
  start-page: 203
  year: 2018
  ident: 870_CR17
  publication-title: Nature
  doi: 10.1038/s41586-018-0579-z
– volume: 50
  start-page: 1608
  year: 2018
  ident: 870_CR23
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0225-6
– volume: 13
  start-page: 762
  year: 2012
  ident: 870_CR25
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxs014
– volume: 35
  start-page: 1968
  year: 2018
  ident: 870_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty920
– volume: 42
  start-page: 348
  year: 2010
  ident: 870_CR3
  publication-title: Nat. Genet.
  doi: 10.1038/ng.548
– volume: 89
  start-page: 82
  year: 2011
  ident: 870_CR24
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.05.029
– volume: 51
  start-page: 1749
  year: 2019
  ident: 870_CR16
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0530-8
– volume: 52
  start-page: 634
  year: 2020
  ident: 870_CR26
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0621-6
– volume: 43
  start-page: 4
  year: 2018
  ident: 870_CR29
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.22156
– volume: 106
  start-page: 496
  year: 2020
  ident: 870_CR35
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2020.03.002
– volume: 193
  start-page: 327
  year: 2012
  ident: 870_CR10
  publication-title: Genetics
  doi: 10.1534/genetics.112.143313
– volume: 9
  start-page: 525
  year: 2012
  ident: 870_CR8
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2037
– volume: 157
  start-page: 1819
  year: 2001
  ident: 870_CR9
  publication-title: Genetics
  doi: 10.1093/genetics/157.4.1819
– volume: 44
  start-page: 1066
  year: 2012
  ident: 870_CR28
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2376
– volume: 48
  start-page: 466
  year: 2016
  ident: 870_CR33
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3513
– ident: 870_CR22
  doi: 10.1007/BF00117832
– volume: 32
  start-page: 1898
  year: 2016
  ident: 870_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw075
– volume: 34
  start-page: 335
  year: 2010
  ident: 870_CR31
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20486
– volume: 50
  start-page: 906
  year: 2018
  ident: 870_CR14
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0144-6
– volume: 46
  start-page: 100
  year: 2014
  ident: 870_CR19
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2876
– volume: 50
  start-page: 1335
  year: 2018
  ident: 870_CR18
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0184-y
– volume: 101
  start-page: 37
  year: 2017
  ident: 870_CR37
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2017.05.014
SSID ssj0014408
Score 2.7424238
Snippet Genome-wide association analysis of cohorts with thousands of phenotypes is computationally expensive, particularly when accounting for sample relatedness or...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1097
SubjectTerms 45/43
631/114/794
631/208/205
Agriculture
Animal Genetics and Genomics
Association analysis
Biobanks
Biomedical and Life Sciences
Biomedicine
Cancer Research
Case-Control Studies
Chromosomes
Computational biology
Computational Biology - methods
Computer applications
Computer networks
Datasets
Distributed processing
Gene Function
Genome-Wide Association Study - methods
Genomes
Genomics
Genomics - methods
Genotype
Genotypes
Human Genetics
Humans
Learning algorithms
Logistic Models
Machine Learning
Methods
Phenotype
Phenotypes
Population structure
Regression analysis
Regression models
Reproducibility of Results
Statistical analysis
technical-report
Title Computationally efficient whole-genome regression for quantitative and binary traits
URI https://link.springer.com/article/10.1038/s41588-021-00870-7
https://www.ncbi.nlm.nih.gov/pubmed/34017140
https://www.proquest.com/docview/2550309585
https://www.proquest.com/docview/2531233864
Volume 53
WOSCitedRecordID wos000652463200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M7P
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 7X7
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: 8C1
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1546-1718
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014408
  issn: 1061-4036
  databaseCode: M2O
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoC1IvvAtbysogJA4QNX7ETk6oVK3gwHZVCtqb5VcqpDbbbnZB_fd4HO-WVGov5BApyjhy7PHM2PP4EHrneOGpdTYjrCjDBoWbTOfMZ4XROefWGUlNBJuQo1E5mVTjdODWprDKpUyMgtpNLZyR7wbTF7wBwbr9dHGZAWoUeFcThMYa2iA057Awy_1ViAf4LbtUOAH7JHBTbndp5uVuGxRX4BEIUICqbHkme4rppnj-Rz_dcJhGPXT46H__4DF6mCxQvNexzBN0zzdP0YMOk_LqGTrpcB7SGeHZFfaxyETQTfgPYOlmUNX13OOZP-1CaBsc7F58udBNzFcL0hPrxmETE30xQFDM2-fox-HByf6XLEEvZFbQfJ5xQrV3xgsqCRWmqHjuTGVMWRe5s5oYK51wxBvDSa0ps9bYmofNYqmZJjVjW2i9mTb-JcI2XIwS7wl13NWVDm21EaWvwt6UGDlAZDnuyqa65NC3MxX946xU3VypMFcqzpUKbT6s2lx0VTnupH4L06mg3EUD8TSnetG26uvRT7UnhKwqXnFxG9H34x7R-0RUT0MfrU45DOFPoYxWj3KnRxkWre2_XvKISkKjVdcMMkBvVq-hJQTCNX66ABoWbA1WCj5ALzqWXI0A4xHOPh-gj0sevf747cOzfXdfXqFNGpcJhCjvoPX5bOFfo_v29_xXOxuiNTmR8V4O4-Iboo3PB6PxcXj6Ro_gLsd_AW_DNME
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtQw1KoKiF7YKVMKGATiAFFjx-MkB4QqoOqoZUAwoLkZb6mQSqadzFDNT_GNvBcnU1KpvfVArn6OvLzVbyPkuRN9z62zEUv6GRgowkQ6TnzUNzoWwjqTclM3m0iHw2w8zj-vkD9tLgyGVbY8sWbUbmLxjXwLVF_0BoB2-_boOMKuUehdbVtoBLTY84sTMNmqN4P3cL8vON_5MHq3GzVdBSIreTyLBOPaO-MlTxmXpp-L2JncmKzox85qZmzqpGPeGMEKzRNrjS0E2EGZTjQr8AEUWP4V4OMphpCl46WBh37SkHon0S5Dt-hGSGvPtioQlICTGBCBVeDiKO0IwrPi4B95eMZBW8u9nZv_24ndIjcaDZtuB5K4TVZ8eYdcCz03F3fJKPSxaN5ADxfU10U0QPbSE-wVHGHV2l-eTv1BCBEuKej19HiuyzofD6QD1aWjpk5kpthiY1bdI98uZUv3yWo5Kf0DQi18CWfeM-6EK3INc7WRmc_B9mYm7RHW3rOyTd11XNuhqv3_SaYCbijADVXjhoI5r5ZzjkLVkQuhnyH6KCznUWK80IGeV5UafPqutqVM81zkQp4H9PVLB-hlA1RMYI1WNzkasFMsE9aB3OxAAlOy3eEWJ1XDFCt1ipA98nQ5jDMx0K_0kznCJKBLJZkUPbIeSGB5AonA4k4i7pHXLU2c_vz849m4eC1PyPXd0cd9tT8Y7j0ka7wmUQzH3iSrs-ncPyJX7e_Zz2r6uCZ2Sn5cNq38BZrej8w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3JbtNAdFS1gLiwLykFBgTiAFY84_F2QKjQRkRFISot6m2YzRVScdo4ocqv8XW8N7ZTXKm99YCv88aa5a3zNkJeWRE7bqwJWBRnYKAIHagwckGsVSiEsTrl2jebSEej7OAgH6-QP20uDIZVtjzRM2o7MfhG3gfVF70BoN32iyYsYrw1-HB8EmAHKfS0tu00ahTZcYtTMN-q98MtuOvXnA-29z59DpoOA4FJeDgLBOPKWe0SnjKe6DgXodW51lkRh9Yopk1qE8uc1oIVikfGaFMIsIkyFSlW4GMosP-1FJQMoK61j9uj8e7Sh4G9nL2vNUErDZ2k63WSe9avQGwChmJ4BNaEC4O0IxbPC4d_pOM5d62XgoPb__P53SG3Gt2bbtbEcpesuPIeuV5341zcJ3t1h4vmdfRoQZ0vrwFSmZ5iF-EA69n-cnTqDuvg4ZKCxk9P5qr0mXogN6gqLdU-xZli841Z9YDsX8mWHpLVclK6x4Qa-CLOnGPcClvkCuYqnWQuB6uc6bRHWHvn0jQV2XFtR9JHBkSZrPFEAp5IjycS5rxdzjmu65FcCv0SUUlioY8Sr_xQzatKDr9-l5tJkua5yEVyEdC33Q7QmwaomMAajWqyN2CnWECsA7nRgQR2ZbrDLX7Khl1W8gw5e-TFchhnYghg6SZzhIlAy4qyRPTIo5oclicQCSz7JMIeedfSx9nPLz6e9cvX8pzcABKRX4ajnSfkJvfUinHaG2R1Np27p-Sa-T37WU2fNZRPyY-rJpa_xu2Z7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computationally+efficient+whole-genome+regression+for+quantitative+and+binary+traits&rft.jtitle=Nature+genetics&rft.au=Mbatchou%2C+Joelle&rft.au=Barnard%2C+Leland&rft.au=Backman%2C+Joshua&rft.au=Marcketta%2C+Anthony&rft.date=2021-07-01&rft.pub=Nature+Publishing+Group&rft.issn=1061-4036&rft.volume=53&rft.issue=7&rft.spage=1097&rft_id=info:doi/10.1038%2Fs41588-021-00870-7&rft.externalDocID=A667994946
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon