Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection

Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC genomics Ročník 24; číslo 1; s. 1 - 18
Hlavní autoři: Lei, Gang, Zhou, Kun-Hua, Chen, Xue-Jun, Huang, Yue-Qin, Yuan, Xin-Jie, Li, Ge-Ge, Xie, Yuan-Yuan, Fang, Rong
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 20.10.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Témata:
ISSN:1471-2164, 1471-2164
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici . However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P . capsici infection is limited. Methods A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P . capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). Results More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P . capsici with fine regulation by the Ca 2+ - and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P . capsici . Conclusion The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper– P. capsici .
AbstractList Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici . However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P . capsici infection is limited. Methods A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P . capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). Results More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P . capsici with fine regulation by the Ca 2+ - and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P . capsici . Conclusion The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper– P. capsici .
Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited.BACKGROUNDPhytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited.A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi).METHODSA comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi).More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici.RESULTSMore genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici.The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.CONCLUSIONThe candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.
BackgroundPhytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited.MethodsA comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi).ResultsMore genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici.ConclusionThe candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper–P. capsici.
Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca.sup.2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici.
Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. Methods A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). Results More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca.sup.2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. Conclusion The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper-P. capsici. Keywords: Capsicum annuum, Phytophthora capsici, Transcriptome, Metabolome, Salicylic acid, Ca.sup.2+, Flavonoid biosynthesis pathways
Abstract Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management strategies have not been effective in preventing this disease. Therefore, the use of resistant varieties was regarded as an important part of disease management of P. capsici. However, our knowledge of the molecular mechanisms underlying the defense response of pepper roots to P. capsici infection is limited. Methods A comprehensive transcriptome and metabolome approaches were used to dissect the molecular response of pepper to P. capsici infection in the resistant genotype A204 and the susceptible genotype A198 at 0, 24 and 48 hours post-inoculation (hpi). Results More genes and metabolites were induced at 24 hpi in A204 than A198, suggesting the prompt activation of defense responses in the resistant genotype, which can attribute two proteases, subtilisin-like protease and xylem cysteine proteinase 1, involved in pathogen recognition and signal transduction in A204. Further analysis indicated that the resistant genotype responded to P. capsici with fine regulation by the Ca2+- and salicylic acid-mediated signaling pathways, and then activation of downstream defense responses, including cell wall reinforcement and defense-related genes expression and metabolites accumulation. Among them, differentially expressed genes and differentially accumulated metabolites involved in the flavonoid biosynthesis pathways were uniquely activated in the resistant genotype A204 at 24 hpi, indicating a significant role of the flavonoid biosynthesis pathways in pepper resistance to P. capsici. Conclusion The candidate transcripts may provide genetic resources that may be useful in the improvement of Phytophthora root rot-resistant characters of pepper. In addition, the model proposed in this study provides new insight into the defense response against P. capsici in pepper, and enhance our current understanding of the interaction of pepper–P. capsici.
ArticleNumber 626
Audience Academic
Author Huang, Yue-Qin
Lei, Gang
Yuan, Xin-Jie
Chen, Xue-Jun
Fang, Rong
Li, Ge-Ge
Xie, Yuan-Yuan
Zhou, Kun-Hua
Author_xml – sequence: 1
  givenname: Gang
  surname: Lei
  fullname: Lei, Gang
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
– sequence: 2
  givenname: Kun-Hua
  surname: Zhou
  fullname: Zhou, Kun-Hua
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
– sequence: 3
  givenname: Xue-Jun
  surname: Chen
  fullname: Chen, Xue-Jun
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
– sequence: 4
  givenname: Yue-Qin
  surname: Huang
  fullname: Huang, Yue-Qin
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
– sequence: 5
  givenname: Xin-Jie
  surname: Yuan
  fullname: Yuan, Xin-Jie
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
– sequence: 6
  givenname: Ge-Ge
  surname: Li
  fullname: Li, Ge-Ge
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
– sequence: 7
  givenname: Yuan-Yuan
  surname: Xie
  fullname: Xie, Yuan-Yuan
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
– sequence: 8
  givenname: Rong
  surname: Fang
  fullname: Fang, Rong
  email: fangrong2020@163.com
  organization: Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences
BookMark eNp9kktv1DAUhSNURB_wB1hFYgOLFDtxbGeFqorHSJVAUNbWjX0z8SiJg-1pmX-PpykqU6HKC7--cyzfe06zo8lNmGWvKTmnVPL3gZaSs4KUVUEaQatCPMtOKBO0KClnR_-sj7PTEDaEUCHL-kV2XIkkLCk7yW6vPUxBeztHN2IOk8lHjNC6YdnCsAsYco83CAOaPPaYNmF2U8BE6h4mG8bcdfmM84w-987FkEeXf-t30c197J2HXMMcrLa5nTrU0brpZfa8gyHgq_v5LPv56eP15Zfi6uvn1eXFVaE5bWKhZcm04Ro58oZ1XBiKyIyo65I0BDWtgba6RTQgjehMjYSzmlWcMNTENNVZtlp8jYONmr0dwe-UA6vuDpxfK_DR6gEVdJyZmkkAKhhpTaspGEmBEwFt1cjk9WHxmrftiEbjFD0MB6aHN5Pt1drdKEpq2TSiTA5v7x28-7XFENVog8ZhgAndNqhSSpJaKQRP6JtH6MZtferHnmpIchRl_UCtU3dUqq5LD-u9qboQvBGJE1Wizv9DpWFwtDqFqrPp_EDw7kCQmIi_4xq2IajVj--HrFxY7V0IHjulbYR9j9MjdkifV_u0qiWtKqVV3aVViSQtH0n_1vJJUbWIQoKnNfqHwjyh-gMHq_6P
CitedBy_id crossref_primary_10_1186_s12870_025_06742_0
crossref_primary_10_3390_ijms252011068
crossref_primary_10_3390_agronomy15040802
crossref_primary_10_1038_s41598_024_55596_3
crossref_primary_10_3390_ijms26104508
crossref_primary_10_3390_ijms252312593
crossref_primary_10_1016_j_fbio_2024_105662
crossref_primary_10_1016_j_plantsci_2025_112460
crossref_primary_10_3390_agronomy14092035
Cites_doi 10.1016/j.bbrc.2011.10.105
10.3389/fpls.2017.00362
10.1371/journal.ppat.1000301
10.1093/jxb/ery294
10.1006/meth.2001.1262
10.3390/ijms19030665
10.13836/j.jjau.2017090
10.1007/s11103-013-0007-6
10.3389/fpls.2023.1137299
10.1016/j.devcel.2021.03.004
10.1038/s41586-021-03316-6
10.1093/jxb/erv518
10.1104/pp.112.197152
10.1016/j.plaphy.2014.12.001
10.3389/fpls.2020.00183
10.1093/plcell/koac041
10.21203/rs.3.rs-155784/v1
10.1086/333130
10.1007/s11738-017-2565-8
10.1104/pp.113.220780
10.1016/j.micres.2018.04.008
10.3390/ijms160715251
10.1021/acs.jafc.1c00357
10.3390/ijms19020629
10.1128/MMBR.00010-15
10.3389/fpls.2014.00739
10.1371/journal.pone.0059699
10.1111/j.1365-3040.2011.02426.x
10.3389/fpls.2018.00628
10.3390/ijms232416200
10.1093/jxb/eru010
10.3390/ijms21239065
10.1105/tpc.15.00371
10.1038/cdd.2011.37
10.1021/acs.jafc.0c07351
10.1111/mpp.12567
10.1016/j.jplph.2018.12.007
10.1046/j.1365-313x.1996.10020315.x
10.1016/j.gene.2019.144288
10.1007/s00122-004-1633-9
10.1111/nph.14117
10.3390/ijms23126758
10.1023/a:1023001403794
10.1105/tpc.16.00865
10.1038/nature07612
10.1016/j.tplants.2016.07.009
10.1146/annurev.arplant.56.032604.144224
10.3390/plants11192660
10.1016/j.pbi.2014.05.012
10.1093/nar/28.1.27
10.3389/fpls.2015.00544
10.1094/PDIS.1999.83.12.1080
10.1038/nature05286
10.3390/ijms20010048
10.3389/fpls.2020.00219
10.3389/fpls.2015.01217
10.1094/PDIS.2004.88.12.1292
10.3390/genes10070541
10.1038/hortres.2017.22
10.1007/s12088-007-0054-2
10.3390/ijms18081661
10.3390/ijms22168568
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. BioMed Central Ltd., part of Springer Nature.
BioMed Central Ltd., part of Springer Nature 2023
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. BioMed Central Ltd., part of Springer Nature.
– notice: BioMed Central Ltd., part of Springer Nature 2023
DBID C6C
AAYXX
CITATION
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-023-09713-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database




Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 18
ExternalDocumentID oai_doaj_org_article_af64d548aa1740bdbc1ad81a607ab398
PMC10589972
A769700573
10_1186_s12864_023_09713_7
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Jiangxi Province Crop Improved Varieties Joint Project—Excellent germplasm creation of capsicum and breeding of new varieties with high quality and yield
– fundername: China Agriculture Research System
  grantid: CARS-24-G-08
– fundername: Science Foundation for Young Scholars of Jiangxi Province
  grantid: 20202BABL215012; 20212BAB215029
– fundername: Jiangxi Agriculture Research System
  grantid: JXARS-6
– fundername: ;
– fundername: ;
  grantid: JXARS-6
– fundername: ;
  grantid: CARS-24-G-08
– fundername: ;
  grantid: 20202BABL215012; 20212BAB215029
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c619t-c824cd6ce6e694f67d1ee4d7552090ec15a1bcbeeda8d7fd5e064543604ec0d93
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100595900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2164
IngestDate Fri Oct 03 12:51:23 EDT 2025
Tue Nov 04 02:06:28 EST 2025
Thu Oct 02 11:19:01 EDT 2025
Fri Nov 21 21:43:15 EST 2025
Tue Nov 11 11:10:54 EST 2025
Tue Nov 04 18:34:10 EST 2025
Thu Nov 13 16:17:22 EST 2025
Tue Nov 18 22:26:20 EST 2025
Sat Nov 29 01:46:23 EST 2025
Sat Sep 06 07:21:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metabolome
Salicylic acid
Ca
Transcriptome
Flavonoid biosynthesis pathways
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c619t-c824cd6ce6e694f67d1ee4d7552090ec15a1bcbeeda8d7fd5e064543604ec0d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12864-023-09713-7
PMID 37864214
PQID 2890058725
PQPubID 44682
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_af64d548aa1740bdbc1ad81a607ab398
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10589972
proquest_miscellaneous_2880097776
proquest_journals_2890058725
gale_infotracmisc_A769700573
gale_infotracacademiconefile_A769700573
gale_incontextgauss_ISR_A769700573
crossref_citationtrail_10_1186_s12864_023_09713_7
crossref_primary_10_1186_s12864_023_09713_7
springer_journals_10_1186_s12864_023_09713_7
PublicationCentury 2000
PublicationDate 2023-10-20
PublicationDateYYYYMMDD 2023-10-20
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC genomics
PublicationTitleAbbrev BMC Genomics
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References J Figueiredo (9713_CR13) 2018; 19
L Zhang (9713_CR34) 2023; 14
JB Ristaino (9713_CR4) 1999; 83
J Jin (9713_CR27) 2016; 6
ML Campos (9713_CR57) 2018; 69
AV Balakireva (9713_CR58) 2018; 19
CW Lim (9713_CR55) 2015; 16
A Soltabayeva (9713_CR19) 2022; 11
BW Poovaiah (9713_CR44) 2013; 163
LH Leonian (9713_CR1) 1922; 12
9713_CR3
A Martinez-Medina (9713_CR38) 2016; 21
DK Choudhary (9713_CR39) 2007; 47
LG He (9713_CR62) 2017; 39
A Thabuis (9713_CR40) 2004; 109
MB Fernandez (9713_CR15) 2015; 86
S Ali (9713_CR59) 2018; 212–213
J Jin (9713_CR26) 2019; 10
Y Chen (9713_CR56) 2021
S Mou (9713_CR50) 2013; 8
KP Kavi (9713_CR16) 2015; 6
BN Mansfeld (9713_CR31) 2017; 4
DW Barchenger (9713_CR5) 2018; 9
X Wang (9713_CR23) 2013; 81
HX Zhang (9713_CR28) 2020; 11
P Li (9713_CR33) 2021; 69
QM Gao (9713_CR36) 2014; 65
H Zhang (9713_CR29) 2020; 21
PY Huang (9713_CR22) 2016; 67
DF Gomez-Casati (9713_CR32) 2016; 19
S Ali (9713_CR60) 2017; 39
Y Li (9713_CR2) 2020; 728
S Fawke (9713_CR35) 2015; 79
SC Lee (9713_CR54) 2012; 35
JC Misas-Villamil (9713_CR11) 2016; 212
LN Ding (9713_CR10) 2022; 23
N Bouche (9713_CR47) 2005; 56
Y Yang (9713_CR49) 2012; 159
HJ Lee (9713_CR21) 2015; 27
GS Ali (9713_CR46) 2003; 51
YS Kim (9713_CR51) 2017; 29
M Yuan (9713_CR61) 2021; 592
JD Jones (9713_CR7) 2006; 444
L Wang (9713_CR48) 2009; 5
MK Hausbeck (9713_CR6) 2004; 88
Z Liu (9713_CR24) 2017; 18
S Li (9713_CR42) 2019; 233
M Silvia Sebastiani (9713_CR43) 2017; 17
D Aldon (9713_CR45) 2018; 19
H Zhang (9713_CR30) 2019; 20
LN Ding (9713_CR18) 2021; 69
D Wendehenne (9713_CR37) 2014; 20
N Hoffmann (9713_CR17) 2021; 56
L Du (9713_CR52) 2009; 457
H Wan (9713_CR63) 2011; 416
Y Wang (9713_CR53) 2021; 22
S Zhang (9713_CR9) 2022; 23
M Ali (9713_CR25) 2020; 11
A Figueiredo (9713_CR12) 2014; 5
NS Coll (9713_CR14) 2011; 18
M Kanehisa (9713_CR41) 2000; 28
BPM Ngou (9713_CR8) 2022; 34
P Tornero (9713_CR20) 1996; 10
KJ Livak (9713_CR64) 2001; 25
References_xml – volume: 416
  start-page: 24
  issue: 1–2
  year: 2011
  ident: 9713_CR63
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2011.10.105
– volume: 17
  start-page: 362
  year: 2017
  ident: 9713_CR43
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00362
– volume: 5
  start-page: e1000301
  issue: 2
  year: 2009
  ident: 9713_CR48
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000301
– volume: 69
  start-page: 4997
  issue: 21
  year: 2018
  ident: 9713_CR57
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ery294
– volume: 25
  start-page: 402
  issue: 4
  year: 2001
  ident: 9713_CR64
  publication-title: Method
  doi: 10.1006/meth.2001.1262
– volume: 19
  start-page: 665
  issue: 3
  year: 2018
  ident: 9713_CR45
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19030665
– volume: 39
  start-page: 691
  issue: 04
  year: 2017
  ident: 9713_CR62
  publication-title: Acta Agriculturae Universitatis Jiangxiensis
  doi: 10.13836/j.jjau.2017090
– volume: 81
  start-page: 379
  issue: 4–5
  year: 2013
  ident: 9713_CR23
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-013-0007-6
– volume: 14
  start-page: 1137299
  year: 2023
  ident: 9713_CR34
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2023.1137299
– volume: 56
  start-page: 933
  issue: 7
  year: 2021
  ident: 9713_CR17
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2021.03.004
– volume: 592
  start-page: 105
  issue: 7852
  year: 2021
  ident: 9713_CR61
  publication-title: Nature
  doi: 10.1038/s41586-021-03316-6
– volume: 67
  start-page: 1231
  issue: 5
  year: 2016
  ident: 9713_CR22
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv518
– volume: 159
  start-page: 1857
  issue: 4
  year: 2012
  ident: 9713_CR49
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.197152
– volume: 86
  start-page: 137
  year: 2015
  ident: 9713_CR15
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2014.12.001
– volume: 11
  start-page: 183
  year: 2020
  ident: 9713_CR28
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00183
– volume: 34
  start-page: 1447
  issue: 5
  year: 2022
  ident: 9713_CR8
  publication-title: Plant Cell
  doi: 10.1093/plcell/koac041
– year: 2021
  ident: 9713_CR56
  publication-title: PREPRINT (Version 1) Available at Research Square
  doi: 10.21203/rs.3.rs-155784/v1
– volume: 12
  start-page: 401
  issue: 9
  year: 1922
  ident: 9713_CR1
  publication-title: Phytopathology
  doi: 10.1086/333130
– volume: 39
  start-page: 268
  issue: 12
  year: 2017
  ident: 9713_CR60
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-017-2565-8
– volume: 163
  start-page: 531
  issue: 2
  year: 2013
  ident: 9713_CR44
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.220780
– volume: 212–213
  start-page: 29
  year: 2018
  ident: 9713_CR59
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2018.04.008
– volume: 16
  start-page: 15251
  issue: 12
  year: 2015
  ident: 9713_CR55
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms160715251
– ident: 9713_CR3
– volume: 69
  start-page: 6360
  issue: 22
  year: 2021
  ident: 9713_CR33
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.1c00357
– volume: 19
  start-page: 629
  issue: 2
  year: 2018
  ident: 9713_CR58
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19020629
– volume: 79
  start-page: 263
  issue: 3
  year: 2015
  ident: 9713_CR35
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00010-15
– volume: 5
  start-page: 739
  year: 2014
  ident: 9713_CR12
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00739
– volume: 8
  start-page: e59699
  issue: 3
  year: 2013
  ident: 9713_CR50
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0059699
– volume: 35
  start-page: 53
  issue: 1
  year: 2012
  ident: 9713_CR54
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2011.02426.x
– volume: 9
  start-page: 628
  year: 2018
  ident: 9713_CR5
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00628
– volume: 23
  start-page: 16200
  issue: 24
  year: 2022
  ident: 9713_CR10
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms232416200
– volume: 65
  start-page: 1849
  issue: 7
  year: 2014
  ident: 9713_CR36
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eru010
– volume: 21
  start-page: 9065
  issue: 23
  year: 2020
  ident: 9713_CR29
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21239065
– volume: 27
  start-page: 3425
  issue: 12
  year: 2015
  ident: 9713_CR21
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00371
– volume: 18
  start-page: 1247
  issue: 8
  year: 2011
  ident: 9713_CR14
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2011.37
– volume: 69
  start-page: 2965
  issue: 10
  year: 2021
  ident: 9713_CR18
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.0c07351
– volume: 19
  start-page: 1017
  issue: 4
  year: 2018
  ident: 9713_CR13
  publication-title: Mol Plant Pathol
  doi: 10.1111/mpp.12567
– volume: 233
  start-page: 58
  year: 2019
  ident: 9713_CR42
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2018.12.007
– volume: 10
  start-page: 315
  issue: 2
  year: 1996
  ident: 9713_CR20
  publication-title: Plant J
  doi: 10.1046/j.1365-313x.1996.10020315.x
– volume: 728
  start-page: 144288
  year: 2020
  ident: 9713_CR2
  publication-title: Gene
  doi: 10.1016/j.gene.2019.144288
– volume: 109
  start-page: 342
  issue: 2
  year: 2004
  ident: 9713_CR40
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-004-1633-9
– volume: 212
  start-page: 902
  issue: 4
  year: 2016
  ident: 9713_CR11
  publication-title: New Phytol
  doi: 10.1111/nph.14117
– volume: 23
  start-page: 6758
  issue: 12
  year: 2022
  ident: 9713_CR9
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23126758
– volume: 51
  start-page: 803
  issue: 6
  year: 2003
  ident: 9713_CR46
  publication-title: Plant Mol Biol
  doi: 10.1023/a:1023001403794
– volume: 29
  start-page: 2465
  issue: 10
  year: 2017
  ident: 9713_CR51
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00865
– volume: 457
  start-page: 1154
  issue: 7233
  year: 2009
  ident: 9713_CR52
  publication-title: Nature
  doi: 10.1038/nature07612
– volume: 19
  start-page: 89
  year: 2016
  ident: 9713_CR32
  publication-title: Curr Issues Mol Biol
– volume: 21
  start-page: 818
  issue: 10
  year: 2016
  ident: 9713_CR38
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2016.07.009
– volume: 56
  start-page: 435
  issue: 1
  year: 2005
  ident: 9713_CR47
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.56.032604.144224
– volume: 11
  start-page: 2660
  issue: 9
  year: 2022
  ident: 9713_CR19
  publication-title: Plants (Basel)
  doi: 10.3390/plants11192660
– volume: 20
  start-page: 127
  year: 2014
  ident: 9713_CR37
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2014.05.012
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: 9713_CR41
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 6
  start-page: 544
  year: 2015
  ident: 9713_CR16
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.00544
– volume: 83
  start-page: 1080
  issue: 12
  year: 1999
  ident: 9713_CR4
  publication-title: Plant Dis
  doi: 10.1094/PDIS.1999.83.12.1080
– volume: 444
  start-page: 323
  issue: 7717
  year: 2006
  ident: 9713_CR7
  publication-title: Nature
  doi: 10.1038/nature05286
– volume: 20
  start-page: 48
  issue: 1
  year: 2019
  ident: 9713_CR30
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20010048
– volume: 11
  start-page: 219
  year: 2020
  ident: 9713_CR25
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2020.00219
– volume: 6
  start-page: 1217
  year: 2016
  ident: 9713_CR27
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2015.01217
– volume: 88
  start-page: 1292
  issue: 12
  year: 2004
  ident: 9713_CR6
  publication-title: Plant Dis
  doi: 10.1094/PDIS.2004.88.12.1292
– volume: 10
  start-page: 541
  issue: 7
  year: 2019
  ident: 9713_CR26
  publication-title: Genes
  doi: 10.3390/genes10070541
– volume: 4
  start-page: 17022
  year: 2017
  ident: 9713_CR31
  publication-title: Hortic Res
  doi: 10.1038/hortres.2017.22
– volume: 47
  start-page: 289
  issue: 4
  year: 2007
  ident: 9713_CR39
  publication-title: Indian J Microbiol
  doi: 10.1007/s12088-007-0054-2
– volume: 18
  start-page: 1661
  issue: 8
  year: 2017
  ident: 9713_CR24
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18081661
– volume: 22
  start-page: 8568
  issue: 16
  year: 2021
  ident: 9713_CR53
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22168568
SSID ssj0017825
Score 2.48058
Snippet Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current...
Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current management...
Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current...
BackgroundPhytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and current...
Abstract Background Phytophthora root rot caused by the oomycete Phytophthora capsici is the most devastating disease in pepper production worldwide, and...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Animal Genetics and Genomics
Biomedical and Life Sciences
Biosynthesis
Ca2
Calcium ions
Capsicum annuum
Cell death
Cell walls
Control
Cysteine proteinase
Disease
Diseases and pests
Flavonoids
Gene expression
Genes
Genetic aspects
Genetic engineering
Genetic resources
Genomics
Genotype & phenotype
Genotypes
Infections
Inoculation
Kinases
Life Sciences
Metabolism
Metabolites
Metabolome
Metabolomics
Methods
Microarrays
Microbial Genetics and Genomics
Molecular modelling
Pathogens
Peppers
Phytophthora
Phytophthora capsici
Phytophthora diseases
Plant Genetics and Genomics
Plant immunology
Plant resistance
Proteinase
Proteinase 1
Proteins
Proteomics
RNA sequencing
Root rot
Roots
Salicylic acid
Signal transduction
Subtilisin
Transcriptome
Transcriptomes
Vegetables
Xylem
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQCiQuiKcILMggJA4QbR6O7RwXxAouqxUPaW-WH1NaaZtUTQraf8-MkxTCCrhwTD1pk5nxfON6_A1jLxzYstLapQBOp8IFkTpR69R7xCtXeMRAHZtNqNNTfX5en_3S6otqwgZ64EFxR3YhRcC02lrMnTMXnM9t0LmVmbIOv4iiL2Y902Jq3D9A3KumIzJaHnUYhaVIEZ9S4kwqUzWDocjWfzUmX62T_G2zNGLQyW12a0we-fHw0HfYNWjushtDO8nLe-x7BJ4YBto1cNsEvoYerXwxXBL9CHScSJvwEQLH3A8vYo0soCSdAV51a94u-AY2G9hyzKr7jvctP1teEgFBv0SH4d5u6M8QPtVxNffZl5N3n9--T8fGCqnH9VKfel0IH6QHCbIWC6lCDiCCqqgmJgOfVzZ33iF8Wh3UIlRArHailJkAn4W6fMAOmraBh4xLJepCA4ZUFPG2tFaWGQRaCFUiaJuwfNKz8SPrODW_uDBx9aGlGWxj0DYm2saohL3a37MZODf-Kv2GzLeXJL7s-AF6kRm9yPzLixL2nIxviBGjoZKbr3bXdebDp4_mWMlaRd7IhL0chRYtvoO34wkG1ASRaM0kD2eSOGX9fHjyMTOGjM7Qjm9WaVVUCXu2H6Y7qQyugXZHMpoO3iglE6Znvjl7_flIs1pG2vCcOkjWqkjY68mNf_76n_X76H_o9zG7WdDsQ9AvskN20G938IRd99_6Vbd9GufuDxmiSeM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLaggMSFHREoyCAkDmA1i2M7J1QQFVyqEYvUm-VtOiN1kjDJgPrvec-TTBUqeuHo-Fmx_TYvz98j5LUNpiiVsiwEqxi3njPLK8WcA39lcwc-UMVkE_L4WJ2cVLPhwK0bwipHmxgNtW8cnpEf4IVYWiqZl-_bnwyzRuHt6pBC4zq5gSgJRQzdm-1uEcD7leNDGSUOOrDFgjPwUgyRkwomJ84oYvZftsyXoyX_ujKNnujo7v-O4R65M6xB6eFWaO6Ta6F-QG5ts1KePyS_o_-K1qRZBWpqT1ehB2E52xYRxSR0FLGfYAyewhISCjHUNgAlPiVedivazGkb2jasKSzO-472DZ0tzhHHoF-A3FFnWjxToWM4WP2I_Dj69P3jZzbkZ2AOtl09cyrnzgsXRBAVnwvpsxC4lyWG1qTBZaXJrLPghY3ycu7LgOB4vBApDy71VfGY7NVNHZ4QKiSvchXAMgOJM4UxokiDx_1Uyb0yCclGRmk3gJdjDo0zHTcxSugtczUwV0fmapmQt7s27Ra640rqD8j_HSXCbscPzfpUD1qszVxwD30yBjZyqfXWZcarzIhUGgtSnZBXKD0agTVqjNw5NZuu01--fdWHUlQywk8m5M1ANG9gDM4MDyFgJhCLa0K5P6EEzXfT6lHM9GB5On0hYwl5uavGlhhNV4dmgzQK3-9IKRKiJsI9Gf60pl4uIvp4hokoK5kn5N2oBxd___f8Pr26s8_I7RwVE1YFebpP9vr1JjwnN92vftmtX0S1_gOZLVdO
  priority: 102
  providerName: ProQuest
Title Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection
URI https://link.springer.com/article/10.1186/s12864-023-09713-7
https://www.proquest.com/docview/2890058725
https://www.proquest.com/docview/2880097776
https://pubmed.ncbi.nlm.nih.gov/PMC10589972
https://doaj.org/article/af64d548aa1740bdbc1ad81a607ab398
Volume 24
WOSCitedRecordID wos001100595900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2164
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017825
  issn: 1471-2164
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYBhIvfCMCozIIiQeIyIdjO48b2sQeqKIOUHmyHNtdK61J1aSg_ffcuUlRGCDBS6TEZ8W53Ic_7n5HyKvS6TSTsgydK2XISsvCkuUyNAb8VZkY8IHSF5sQ47GcTvOiSwpr-mj3_kjSW2qv1pK_a8CSchaCjwkR9ygNxR45AHcnUR0n5192Zwfg87I-Pea3_QYuyCP1X7fH12Mkfzko9f7n9O7_jfweudPNN-nRVkDukxuuekBubStQXj0k372v8pajXjqqK0uXrgXBuNzeImKJayjiPMHILYXpItz4sFoHlJg2vGiWtJ7RlVut3JrCRLxtaFvTYn6FmAXtHGSMGr3C_RPah35Vj8jn05NP7z-EXS2G0MASqw2NTJix3DjueM5mXNjYOWZFhmE0kTNxpuPSlOBxtbRiZjOHQHgs5RFzJrJ5-pjsV3XlnhDKBcsT6cAKA4nRqdY8jZzFtVPGrNQBifvfo0wHVI71Mi6VX7BIrrYMVcBQ5RmqREDe7PqstjAdf6U-xr--o0SIbf-gXl-oTmOVnnFmYUxaw6ItKm1pYm1lrHkkdAkSHJCXKDMKQTQqjNK50JumUWfnE3UkeC481GRAXndEsxq-wegu6QE4gbhbA8rDASVouRk296KpOivTKDwkjjIpkiwgL3bN2BMj5ypXb5BGYq6OEDwgciDSg88ftlSLuUcaj7HoZC6SgLztJfvn2__M36f_Rv6M3E5QOWBGkESHZL9db9xzctN8axfNekT2xFT4qxyRg-OTcTEZ-Z2TEcbpFvCsOPtYfB15I_ADPZhUdQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELemAYIXvhGBAQaBeIBoSZrYzgNC42NatVFVMKS9Gcd210prEpqUqf8UfyN3TtIpTOxtDzymvqixc3c_X3z3O0JeZlYNEiEy39pM-HFmYj-LU-FrDXiVRRowULhmE3w0EkdH6XiD_O5qYTCtsvOJzlGbQuM38m08EAsSwaPkffnTx65ReLratdBo1GLfrk4hZKveDT_B-30VRbufDz_u-W1XAV9DsFD7WkSxNkxbZlkaTxg3obWx4QkmhARWh4kKM50Bdihh-MQkFind4gELYqsDg-RL4PKvwDYiEi5VcLw-tQC0TbrCHMG2K5BgsQ-o6CNT08DnPfBzPQLOI8H57My_jmgd8u3e-t_W7Da52e6x6U5jFHfIhs3vkmtN183VPXLq8Nl5y2JuqcoNndsajOGkuUSWFltR5LaCNTMUtshw4VKJLUhiqfSsmtNiQktblnZBIfioK1oXdDxdIU9DPQW7olqV-M2Idulu-X3y_VJm_YBs5kVuHxLKeJxGwgLygIhWA6XYILAG48UkNkJ5JOwUQ-qWnB17hJxIF6QJJhtlkqBM0imT5B55s76nbKhJLpT-gPq2lkRacfdDsTiWrZeSasJiA8-kFASqQWYyHSojQsUCrjKwWo-8QG2VSBySY2bSsVpWlRx--yp3OEu5o9f0yOtWaFLAHLRqCz1gJZBrrCe51ZMEz6b7w51ay9azVvJMpz3yfD2Md2K2YG6LJcoIrE_inHlE9IypN_3-SD6bOnb1EBttpjzyyNvO7s7-_d_r--jih31Gru8dfjmQB8PR_mNyI0KnADugKNgim_ViaZ-Qq_pXPasWT51LoeTHZdvjHyextk8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagHOKFGxEoYBASDzRqDsd2HsuxogKtVhRQ3yzHdrordZPVJgvqv2fGSRZCAQnxmHisxJM5PPHMN4Q8L5xOMymL0LlChqywLCxYLkNjwF8ViQEfKH2zCTGdyuPjfPZTFb_Pdh-OJLuaBkRpqtr9lS07FZd8vwGrylkI_iZEDKQ0FBfJJYZNgzBeP_qyPUcA_5cNpTK_nTdyRx61_7xtPp8v-cuhqfdFkxv_v4qb5Hq_D6UHneDcIhdcdZtc6TpTnt0h37wP8xalXjqqK0uXrgWBOe0uEcnENRTxn2AVlsI2Ei58uq0DSiwnXjRLWpd05VYrt6awQW8b2tZ0Nj9DLIN2DrJHjV7hfxU6pIRVd8nnydtPr9-FfY-G0EDo1YZGJsxYbhx3PGclFzZ2jlmRYXpN5Eyc6bgwBXhiLa0obeYQII-lPGLORDZP75Gdqq7cfUK5YHkiHVhnIDE61ZqnkbMYU2XMSh2QePhUyvQA5thH41T5QEZy1TFUAUOVZ6gSAXm5nbPq4Dv-Sv0KJWBLidDb_ka9PlG9JitdcmbhnbSGYC4qbGFibWWseSR0AZIdkGcoPwrBNSrM3jnRm6ZRh0cf1YHgufAQlAF50ROVNazB6L4YAjiBeFwjyt0RJWi_GQ8PYqp669MoPDyOMimSLCBPt8M4EzPqKldvkEZiDY8QPCByJN6j5Y9HqsXcI5DH2IwyF0lA9gYp__H0P_P3wb-RPyFXZ28m6sPh9P1Dci1BPYFNQxLtkp12vXGPyGXztV0068de578D755ZOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+and+metabolome+analyses+revealed+the+response+mechanism+of+pepper+roots+to+Phytophthora+capsici+infection&rft.jtitle=BMC+genomics&rft.au=Lei%2C+Gang&rft.au=Zhou%2C+Kun-Hua&rft.au=Chen%2C+Xue-Jun&rft.au=Huang%2C+Yue-Qin&rft.date=2023-10-20&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-023-09713-7&rft.externalDocID=A769700573
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon