The neural code of reward anticipation in human orbitofrontal cortex

An optimal choice among alternative behavioral options requires precise anticipatory representations of their possible outcomes. A fundamental question is how such anticipated outcomes are represented in the brain. Reward coding at the level of single cells in the orbitofrontal cortex (OFC) follows...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the National Academy of Sciences - PNAS Ročník 107; číslo 13; s. 6010
Hlavní autoři: Kahnt, Thorsten, Heinzle, Jakob, Park, Soyoung Q, Haynes, John-Dylan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 30.03.2010
Témata:
ISSN:1091-6490, 1091-6490
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An optimal choice among alternative behavioral options requires precise anticipatory representations of their possible outcomes. A fundamental question is how such anticipated outcomes are represented in the brain. Reward coding at the level of single cells in the orbitofrontal cortex (OFC) follows a more heterogeneous coding scheme than suggested by studies using functional MRI (fMRI) in humans. Using a combination of multivariate pattern classification and fMRI we show that the reward value of sensory cues can be decoded from distributed fMRI patterns in the OFC. This distributed representation is compatible with previous reports from animal electrophysiology that show that reward is encoded by different neural populations with opposing coding schemes. Importantly, the fMRI patterns representing specific values during anticipation are similar to those that emerge during the receipt of reward. Furthermore, we show that the degree of this coding similarity is related to subjects' ability to use value information to guide behavior. These findings narrow the gap between reward coding in humans and animals and corroborate the notion that value representations in OFC are independent of whether reward is anticipated or actually received.
AbstractList An optimal choice among alternative behavioral options requires precise anticipatory representations of their possible outcomes. A fundamental question is how such anticipated outcomes are represented in the brain. Reward coding at the level of single cells in the orbitofrontal cortex (OFC) follows a more heterogeneous coding scheme than suggested by studies using functional MRI (fMRI) in humans. Using a combination of multivariate pattern classification and fMRI we show that the reward value of sensory cues can be decoded from distributed fMRI patterns in the OFC. This distributed representation is compatible with previous reports from animal electrophysiology that show that reward is encoded by different neural populations with opposing coding schemes. Importantly, the fMRI patterns representing specific values during anticipation are similar to those that emerge during the receipt of reward. Furthermore, we show that the degree of this coding similarity is related to subjects' ability to use value information to guide behavior. These findings narrow the gap between reward coding in humans and animals and corroborate the notion that value representations in OFC are independent of whether reward is anticipated or actually received.
An optimal choice among alternative behavioral options requires precise anticipatory representations of their possible outcomes. A fundamental question is how such anticipated outcomes are represented in the brain. Reward coding at the level of single cells in the orbitofrontal cortex (OFC) follows a more heterogeneous coding scheme than suggested by studies using functional MRI (fMRI) in humans. Using a combination of multivariate pattern classification and fMRI we show that the reward value of sensory cues can be decoded from distributed fMRI patterns in the OFC. This distributed representation is compatible with previous reports from animal electrophysiology that show that reward is encoded by different neural populations with opposing coding schemes. Importantly, the fMRI patterns representing specific values during anticipation are similar to those that emerge during the receipt of reward. Furthermore, we show that the degree of this coding similarity is related to subjects' ability to use value information to guide behavior. These findings narrow the gap between reward coding in humans and animals and corroborate the notion that value representations in OFC are independent of whether reward is anticipated or actually received.An optimal choice among alternative behavioral options requires precise anticipatory representations of their possible outcomes. A fundamental question is how such anticipated outcomes are represented in the brain. Reward coding at the level of single cells in the orbitofrontal cortex (OFC) follows a more heterogeneous coding scheme than suggested by studies using functional MRI (fMRI) in humans. Using a combination of multivariate pattern classification and fMRI we show that the reward value of sensory cues can be decoded from distributed fMRI patterns in the OFC. This distributed representation is compatible with previous reports from animal electrophysiology that show that reward is encoded by different neural populations with opposing coding schemes. Importantly, the fMRI patterns representing specific values during anticipation are similar to those that emerge during the receipt of reward. Furthermore, we show that the degree of this coding similarity is related to subjects' ability to use value information to guide behavior. These findings narrow the gap between reward coding in humans and animals and corroborate the notion that value representations in OFC are independent of whether reward is anticipated or actually received.
Author Haynes, John-Dylan
Park, Soyoung Q
Heinzle, Jakob
Kahnt, Thorsten
Author_xml – sequence: 1
  givenname: Thorsten
  surname: Kahnt
  fullname: Kahnt, Thorsten
  email: kahnt@bccn-berlin.de
  organization: Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, 10115 Berlin, Germany. kahnt@bccn-berlin.de
– sequence: 2
  givenname: Jakob
  surname: Heinzle
  fullname: Heinzle, Jakob
– sequence: 3
  givenname: Soyoung Q
  surname: Park
  fullname: Park, Soyoung Q
– sequence: 4
  givenname: John-Dylan
  surname: Haynes
  fullname: Haynes, John-Dylan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20231475$$D View this record in MEDLINE/PubMed
BookMark eNpNT0tLxDAYDLLiPvTsTXLz1PXLo01ylPUJC17Wc0nThK1sk5qkqP_eoit4mvmGmeGbJZr54C1ClwTWBAS7GbxOa1CESiYn4QQtyHQVFVcw-8fnaJnSGwCoUsIZmlOgjHBRLtDdbm-xt2PUB2xCa3FwONoPHVusfe5MN-jcBY87j_djrz0OselycDH4_BOJ2X6eo1OnD8leHHGFXh_ud5unYvvy-Ly53RamIioX0rTGCD39IBlpZQOlkbLSIBwXXFEhqAUrSkZ0qYlzpOKgpKEtEMMa7gRdoevf3iGG99GmXPddMvZw0N6GMdWCMcm5rNTkvDo6x6a3bT3Ertfxq_4bTr8BVQxcBQ
CitedBy_id crossref_primary_10_1016_j_neuroimage_2017_03_067
crossref_primary_10_1093_cercor_bhu181
crossref_primary_10_3390_brainsci12050665
crossref_primary_10_1080_15248372_2012_689388
crossref_primary_10_1038_tp_2012_113
crossref_primary_10_1162_jocn_a_00470
crossref_primary_10_1073_pnas_1119969109
crossref_primary_10_1523_JNEUROSCI_0351_14_2014
crossref_primary_10_1016_j_neunet_2010_08_002
crossref_primary_10_1016_j_cub_2022_10_037
crossref_primary_10_1093_cercor_bhad025
crossref_primary_10_1073_pnas_1507610113
crossref_primary_10_1038_ijo_2011_125
crossref_primary_10_1371_journal_pbio_1001224
crossref_primary_10_1016_j_neuroimage_2015_12_014
crossref_primary_10_1016_j_neuroimage_2011_12_011
crossref_primary_10_1523_JNEUROSCI_0292_23_2023
crossref_primary_10_1371_journal_pbio_3002732
crossref_primary_10_1016_j_neuroimage_2010_05_058
crossref_primary_10_1093_cercor_bhw113
crossref_primary_10_1016_j_neuron_2015_05_025
crossref_primary_10_1162_jocn_a_01292
crossref_primary_10_1177_1357034X15623363
crossref_primary_10_3389_fnbeh_2024_1409123
crossref_primary_10_1016_j_neuroimage_2017_05_063
crossref_primary_10_1371_journal_pone_0069566
crossref_primary_10_1038_s41562_025_02182_w
crossref_primary_10_1038_ncomms11546
crossref_primary_10_1088_1741_2560_11_2_026019
crossref_primary_10_1016_j_neuroimage_2013_05_104
crossref_primary_10_3389_fnbeh_2015_00144
crossref_primary_10_1016_j_cortex_2014_08_012
crossref_primary_10_1016_j_pain_2014_07_009
crossref_primary_10_1073_pnas_1212218110
crossref_primary_10_1080_23328940_2021_1959288
crossref_primary_10_12688_f1000research_9773_1
crossref_primary_10_1016_j_neuroimage_2016_01_039
crossref_primary_10_12688_f1000research_9773_2
crossref_primary_10_1016_j_jocn_2011_02_003
crossref_primary_10_1016_j_jcps_2011_11_008
crossref_primary_10_1016_j_neubiorev_2015_01_020
crossref_primary_10_1093_cercor_bhw302
crossref_primary_10_1523_JNEUROSCI_0257_12_2012
crossref_primary_10_1038_s41467_022_35654_y
crossref_primary_10_1007_s10071_018_1202_2
crossref_primary_10_1111_nyas_12680
crossref_primary_10_1523_JNEUROSCI_3927_14_2014
crossref_primary_10_1523_JNEUROSCI_4182_14_2015
crossref_primary_10_1162_jocn_a_00697
crossref_primary_10_1371_journal_pone_0199847
crossref_primary_10_1038_s41467_024_49600_7
crossref_primary_10_1073_pnas_1320189111
crossref_primary_10_1016_j_neuron_2015_02_018
crossref_primary_10_1002_hbm_25445
crossref_primary_10_1186_s41235_021_00311_3
crossref_primary_10_1523_JNEUROSCI_3412_11_2011
crossref_primary_10_1038_s41467_020_16202_y
crossref_primary_10_1111_ejn_15787
crossref_primary_10_1007_s11011_018_0360_x
crossref_primary_10_1038_nn_2956
crossref_primary_10_1371_journal_pone_0082534
crossref_primary_10_7554_eLife_06356
crossref_primary_10_1371_journal_pone_0080232
crossref_primary_10_1016_j_pneurobio_2015_04_002
crossref_primary_10_1152_jn_00534_2013
crossref_primary_10_1016_j_bandc_2016_12_003
crossref_primary_10_1111_adb_12221
crossref_primary_10_1016_j_bpsc_2022_11_005
crossref_primary_10_1016_j_neuroimage_2010_11_068
crossref_primary_10_1371_journal_pbio_3003174
crossref_primary_10_1162_jocn_a_02127
crossref_primary_10_3389_fnins_2020_616906
crossref_primary_10_1016_j_drugalcdep_2012_02_020
crossref_primary_10_1093_scan_nsy045
crossref_primary_10_1016_j_dcn_2015_06_002
crossref_primary_10_1016_j_neubiorev_2018_12_021
crossref_primary_10_1152_jn_00839_2016
crossref_primary_10_1016_j_tins_2015_04_002
crossref_primary_10_1016_j_neuroimage_2014_07_036
crossref_primary_10_1016_j_cub_2019_10_063
crossref_primary_10_1097_j_pain_0000000000003619
crossref_primary_10_1016_j_biopsych_2024_11_008
crossref_primary_10_1073_pnas_1503550112
crossref_primary_10_3389_fnhum_2023_1221944
crossref_primary_10_1016_j_neuroimage_2021_118474
crossref_primary_10_1371_journal_pone_0034155
crossref_primary_10_1523_JNEUROSCI_3254_12_2012
crossref_primary_10_1016_j_neuron_2018_06_038
crossref_primary_10_1038_s42003_025_07588_w
crossref_primary_10_1093_brain_awv409
crossref_primary_10_1016_j_neuroimage_2013_07_028
crossref_primary_10_1523_JNEUROSCI_1159_24_2024
crossref_primary_10_1146_annurev_psych_120710_100344
crossref_primary_10_1016_j_bbr_2011_05_004
crossref_primary_10_3389_fnins_2019_00628
crossref_primary_10_1016_j_neuron_2011_08_011
crossref_primary_10_1002_ima_20278
crossref_primary_10_3758_s13415_018_0638_9
crossref_primary_10_1016_j_neuropsychologia_2012_03_006
crossref_primary_10_1002_bdm_2367
crossref_primary_10_1093_cercor_bhac305
crossref_primary_10_1038_ncomms15821
crossref_primary_10_1523_JNEUROSCI_4677_14_2015
crossref_primary_10_1177_1754073916684558
crossref_primary_10_3389_fnbeh_2018_00101
crossref_primary_10_1002_hbm_24047
crossref_primary_10_1093_scan_nsad067
crossref_primary_10_1111_ejn_12625
crossref_primary_10_1002_hbm_25014
crossref_primary_10_1126_sciadv_adv9590
crossref_primary_10_1016_j_neuroimage_2012_09_063
crossref_primary_10_1016_j_neuroimage_2022_119744
crossref_primary_10_1016_j_biopsych_2013_11_013
crossref_primary_10_1038_s41398_020_01115_7
crossref_primary_10_1111_psyp_14660
crossref_primary_10_1146_annurev_psych_022324_042614
crossref_primary_10_1162_jocn_a_00777
crossref_primary_10_1016_j_neuroimage_2012_08_027
crossref_primary_10_1093_cercor_bhr200
crossref_primary_10_1176_appi_ajp_2014_14010076
crossref_primary_10_1038_s41583_024_00893_z
crossref_primary_10_1093_cercor_bhad128
crossref_primary_10_1177_1550059417745934
crossref_primary_10_1523_JNEUROSCI_1712_19_2020
crossref_primary_10_1097_ALN_0000000000002667
crossref_primary_10_1007_s41465_020_00186_0
crossref_primary_10_1038_srep29079
crossref_primary_10_1016_j_crmeth_2022_100296
crossref_primary_10_1016_j_neuron_2011_02_054
crossref_primary_10_1080_15265161_2010_527263
crossref_primary_10_1093_scan_nsx031
crossref_primary_10_3389_fnins_2016_00612
crossref_primary_10_1016_j_nicl_2015_08_015
crossref_primary_10_1080_17470919_2024_2437404
crossref_primary_10_1016_j_neuroimage_2022_119731
crossref_primary_10_1016_j_nicl_2015_01_005
crossref_primary_10_1016_j_bbr_2012_05_005
crossref_primary_10_1016_j_bpsc_2017_07_008
crossref_primary_10_1016_j_neuroimage_2012_07_066
crossref_primary_10_1038_nn_3337
crossref_primary_10_3390_jcm11010061
crossref_primary_10_1038_npp_2013_252
crossref_primary_10_1523_JNEUROSCI_3473_16_2017
crossref_primary_10_1016_j_bbr_2025_115764
crossref_primary_10_3390_ijerph18031123
crossref_primary_10_1111_adb_12302
crossref_primary_10_1016_j_cobeha_2021_03_027
crossref_primary_10_1038_ncomms15964
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.0912838107
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 20231475
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ID FETCH-LOGICAL-c619t-8cdcc7a958831d8b05c886a07f47492772e0e7531a5a1ff164098c2d01c3b4f72
IEDL.DBID 7X8
ISICitedReferencesCount 180
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000276159500058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 13:59:38 EDT 2025
Mon Jul 21 06:03:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c619t-8cdcc7a958831d8b05c886a07f47492772e0e7531a5a1ff164098c2d01c3b4f72
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.0912838107
PMID 20231475
PQID 733844869
PQPubID 23479
ParticipantIDs proquest_miscellaneous_733844869
pubmed_primary_20231475
PublicationCentury 2000
PublicationDate 2010-03-30
PublicationDateYYYYMMDD 2010-03-30
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2010
References 11726774 - Neuroreport. 2001 Dec 4;12(17):3683-7
10195132 - Nat Neurosci. 1998 Jun;1(2):155-9
16633341 - Nature. 2006 May 11;441(7090):223-6
17227855 - Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1377-82
19158302 - J Neurosci. 2009 Jan 21;29(3):765-74
15073380 - Science. 2004 Apr 9;304(5668):307-10
16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30
14657165 - J Neurosci. 2003 Dec 3;23(35):11078-84
19453638 - Eur J Neurosci. 2009 May;29(10):2061-73
11449264 - Nature. 2001 Jul 12;412(6843):150-7
10227292 - Nature. 1999 Apr 22;398(6729):704-8
17417936 - Annu Rev Neurosci. 2007;30:31-56
15852014 - Nat Neurosci. 2005 May;8(5):679-85
8978474 - J Comp Neurol. 1996 Dec 23;376(4):614-30
19396166 - Nat Neurosci. 2009 May;12(5):535-40
10526345 - Nat Neurosci. 1999 Nov;2(11):1032-7
12934011 - Science. 2003 Aug 22;301(5636):1104-7
18195362 - Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):1050-4
16136173 - Nat Rev Neurosci. 2005 Sep;6(9):691-702
18408715 - Nat Neurosci. 2008 May;11(5):543-5
19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85
10024371 - J Neurosci. 1999 Mar 1;19(5):1876-84
11135651 - Nat Neurosci. 2001 Jan;4(1):95-102
18716218 - J Neurosci. 2008 Aug 20;28(34):8590-603
17291759 - Curr Biol. 2007 Feb 20;17(4):323-8
15852013 - Nat Neurosci. 2005 May;8(5):686-91
9054347 - Science. 1997 Mar 14;275(5306):1593-9
7472379 - J Neurophysiol. 1995 Aug;74(2):751-62
16778890 - Nature. 2006 Jun 15;441(7095):876-9
12595181 - Neuroimage. 2003 Feb;18(2):263-72
16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8
11395019 - Neuron. 2001 May;30(2):619-39
17255512 - Science. 2007 Jan 26;315(5811):515-8
10547338 - Neuroimage. 1999 Nov;10(5):607-19
8727405 - J Neurophysiol. 1996 Apr;75(4):1673-86
19759296 - J Neurosci. 2009 Sep 16;29(37):11471-83
9641539 - Trends Neurosci. 1998 Jun;21(6):259-65
11879657 - Neuron. 2002 Feb 28;33(5):815-26
10414988 - J Neurosci. 1999 Aug 1;19(15):6610-4
8734596 - J Neurophysiol. 1996 May;75(5):1970-81
17670960 - J Neurosci. 2007 Aug 1;27(31):8166-9
10731223 - Cereb Cortex. 2000 Mar;10(3):284-94
19605634 - J Neurosci. 2009 Jul 15;29(28):8965-76
16802856 - PLoS Biol. 2006 Jul;4(8):e233
8941953 - Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1413-20
18752411 - J Cogn Neurosci. 2009 Jun;21(6):1162-78
9036851 - Science. 1997 Feb 28;275(5304):1293-5
14622240 - Eur J Neurosci. 2003 Oct;18(7):2069-81
16791142 - Nat Rev Neurosci. 2006 Jul;7(7):523-34
17872386 - Ann N Y Acad Sci. 2007 Dec;1121:254-72
17698988 - Ann N Y Acad Sci. 2007 Dec;1121:320-35
15329401 - J Neurosci. 2004 Aug 25;24(34):7540-8
References_xml – reference: 14657165 - J Neurosci. 2003 Dec 3;23(35):11078-84
– reference: 18752411 - J Cogn Neurosci. 2009 Jun;21(6):1162-78
– reference: 16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8
– reference: 18408715 - Nat Neurosci. 2008 May;11(5):543-5
– reference: 10227292 - Nature. 1999 Apr 22;398(6729):704-8
– reference: 18716218 - J Neurosci. 2008 Aug 20;28(34):8590-603
– reference: 16633341 - Nature. 2006 May 11;441(7090):223-6
– reference: 10195132 - Nat Neurosci. 1998 Jun;1(2):155-9
– reference: 9054347 - Science. 1997 Mar 14;275(5306):1593-9
– reference: 10526345 - Nat Neurosci. 1999 Nov;2(11):1032-7
– reference: 10414988 - J Neurosci. 1999 Aug 1;19(15):6610-4
– reference: 17698988 - Ann N Y Acad Sci. 2007 Dec;1121:320-35
– reference: 8941953 - Philos Trans R Soc Lond B Biol Sci. 1996 Oct 29;351(1346):1413-20
– reference: 19759296 - J Neurosci. 2009 Sep 16;29(37):11471-83
– reference: 16791142 - Nat Rev Neurosci. 2006 Jul;7(7):523-34
– reference: 17670960 - J Neurosci. 2007 Aug 1;27(31):8166-9
– reference: 15073380 - Science. 2004 Apr 9;304(5668):307-10
– reference: 7472379 - J Neurophysiol. 1995 Aug;74(2):751-62
– reference: 18195362 - Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):1050-4
– reference: 19453638 - Eur J Neurosci. 2009 May;29(10):2061-73
– reference: 17291759 - Curr Biol. 2007 Feb 20;17(4):323-8
– reference: 12934011 - Science. 2003 Aug 22;301(5636):1104-7
– reference: 10024371 - J Neurosci. 1999 Mar 1;19(5):1876-84
– reference: 19229240 - Nat Rev Neurosci. 2009 Mar;10(3):173-85
– reference: 9641539 - Trends Neurosci. 1998 Jun;21(6):259-65
– reference: 8734596 - J Neurophysiol. 1996 May;75(5):1970-81
– reference: 15329401 - J Neurosci. 2004 Aug 25;24(34):7540-8
– reference: 8727405 - J Neurophysiol. 1996 Apr;75(4):1673-86
– reference: 11879657 - Neuron. 2002 Feb 28;33(5):815-26
– reference: 9036851 - Science. 1997 Feb 28;275(5304):1293-5
– reference: 17872386 - Ann N Y Acad Sci. 2007 Dec;1121:254-72
– reference: 10547338 - Neuroimage. 1999 Nov;10(5):607-19
– reference: 17255512 - Science. 2007 Jan 26;315(5811):515-8
– reference: 8978474 - J Comp Neurol. 1996 Dec 23;376(4):614-30
– reference: 16136173 - Nat Rev Neurosci. 2005 Sep;6(9):691-702
– reference: 16778890 - Nature. 2006 Jun 15;441(7095):876-9
– reference: 15852014 - Nat Neurosci. 2005 May;8(5):679-85
– reference: 11395019 - Neuron. 2001 May;30(2):619-39
– reference: 11135651 - Nat Neurosci. 2001 Jan;4(1):95-102
– reference: 11449264 - Nature. 2001 Jul 12;412(6843):150-7
– reference: 15852013 - Nat Neurosci. 2005 May;8(5):686-91
– reference: 19396166 - Nat Neurosci. 2009 May;12(5):535-40
– reference: 16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30
– reference: 12595181 - Neuroimage. 2003 Feb;18(2):263-72
– reference: 10731223 - Cereb Cortex. 2000 Mar;10(3):284-94
– reference: 11726774 - Neuroreport. 2001 Dec 4;12(17):3683-7
– reference: 19158302 - J Neurosci. 2009 Jan 21;29(3):765-74
– reference: 14622240 - Eur J Neurosci. 2003 Oct;18(7):2069-81
– reference: 17417936 - Annu Rev Neurosci. 2007;30:31-56
– reference: 17227855 - Proc Natl Acad Sci U S A. 2007 Jan 23;104(4):1377-82
– reference: 16802856 - PLoS Biol. 2006 Jul;4(8):e233
– reference: 19605634 - J Neurosci. 2009 Jul 15;29(28):8965-76
SSID ssj0009580
Score 2.429033
Snippet An optimal choice among alternative behavioral options requires precise anticipatory representations of their possible outcomes. A fundamental question is how...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6010
SubjectTerms Adult
Animals
Decision Making - physiology
Frontal Lobe - physiology
Humans
Magnetic Resonance Imaging
Models, Neurological
Models, Psychological
Photic Stimulation
Psychophysiology
Reaction Time - physiology
Reward
Task Performance and Analysis
Young Adult
Title The neural code of reward anticipation in human orbitofrontal cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/20231475
https://www.proquest.com/docview/733844869
Volume 107
WOSCitedRecordID wos000276159500058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWAMrAA5bN8yQMDDKZ27cb2hBBQMUDVAVC3yHFsiSUpSUH8fM6JW7EgBpYMUSxFpzvfO9_5PYTONct0IrkmgcmFQAqwIaQocZ4agAfCtgdur49yPFbTqZ7E2Zw6jlUu9sRmo85LG87I-xJqKSglEn09eydBNCo0V6OCxirqcEAyYaJLTtUPzl3VkhFoRhKh6YLZR_L-rDD1FbyH5KoYlb_DyybNjLb--YPbaDPiS3zTOkQXrbhiB3VjBNf4ItJMX-6iO_AQHOgs4fNwsR2XHlcuDNFisPZy1hq_FbgR8sNllUH4-8B40Cyp5u5rD72M7p9vH0jUVCAWSqU5UTa3VhowjeIsVxkdWqUSQ6UXUugBYG1HHZQwzAwN8x6KKaqVHeSUWZ4JLwf7aK0oC3eIsGDUUk-V4CoX1GSZlNbkGbdKJ4zlvIfwwlAp-GxoRJjClR91ujRVDx20xk5nLbdGGtTcmZDDo78XH6ONtpXPCacnqOMhXt0pWref87e6Omt8AZ7jydM3kUK8yg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+neural+code+of+reward+anticipation+in+human+orbitofrontal+cortex&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kahnt%2C+Thorsten&rft.au=Heinzle%2C+Jakob&rft.au=Park%2C+Soyoung+Q&rft.au=Haynes%2C+John-Dylan&rft.date=2010-03-30&rft.eissn=1091-6490&rft.volume=107&rft.issue=13&rft.spage=6010&rft_id=info:doi/10.1073%2Fpnas.0912838107&rft_id=info%3Apmid%2F20231475&rft_id=info%3Apmid%2F20231475&rft.externalDocID=20231475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon