lifex-ep: a robust and efficient software for cardiac electrophysiology simulations

Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 24; no. 1; pp. 1 - 38
Main Authors: Africa, Pasquale Claudio, Piersanti, Roberto, Regazzoni, Francesco, Bucelli, Michele, Salvador, Matteo, Fedele, Marco, Pagani, Stefano, Dede’, Luca, Quarteroni, Alfio
Format: Journal Article
Language:English
Published: London BioMed Central 13.10.2023
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. Results This work introduces life x -ep , a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. life x -ep employs the monodomain equation to model the heart’s electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, life x -ep integrates the generation of myocardial fibers based on Laplace–Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within life x -fiber . As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying life x -ep , along with comprehensive implementation details and instructions for users. life x -ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of life x -ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. Conclusions life x -ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. life x -ep represents a valuable tool for conducting in silico patient-specific simulations.
AbstractList Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. This work introduces [formula omitted]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [formula omitted]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [formula omitted]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [formula omitted]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [formula omitted]-ep, along with comprehensive implementation details and instructions for users. [formula omitted]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [formula omitted]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. [formula omitted]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [formula omitted]-ep represents a valuable tool for conducting in silico patient-specific simulations.
Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. Results This work introduces [formula omitted]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [formula omitted]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [formula omitted]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [formula omitted]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [formula omitted]-ep, along with comprehensive implementation details and instructions for users. [formula omitted]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [formula omitted]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. Conclusions [formula omitted]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [formula omitted]-ep represents a valuable tool for conducting in silico patient-specific simulations. Keywords: Cardiac electrophysiology, Computational cardiology, High-performance computing, Mathematical modeling, Finite element method
BackgroundSimulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community.ResultsThis work introduces \(\texttt {life}^{\text{x}}\)-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. \(\texttt {life}^{\text{x}}\)-ep employs the monodomain equation to model the heart’s electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, \(\texttt {life}^{\text{x}}\)-ep integrates the generation of myocardial fibers based on Laplace–Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within \(\texttt {life}^{\text{x}}\)-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying \(\texttt {life}^{\text{x}}\)-ep, along with comprehensive implementation details and instructions for users. \(\texttt {life}^{\text{x}}\)-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of \(\texttt {life}^{\text{x}}\)-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files.Conclusions\(\texttt {life}^{\text{x}}\)-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. \(\texttt {life}^{\text{x}}\)-ep represents a valuable tool for conducting in silico patient-specific simulations.
Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. Results This work introduces life x -ep , a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. life x -ep employs the monodomain equation to model the heart’s electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, life x -ep integrates the generation of myocardial fibers based on Laplace–Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within life x -fiber . As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying life x -ep , along with comprehensive implementation details and instructions for users. life x -ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of life x -ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. Conclusions life x -ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. life x -ep represents a valuable tool for conducting in silico patient-specific simulations.
Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community.BACKGROUNDSimulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community.This work introduces [Formula: see text]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [Formula: see text]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [Formula: see text]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [Formula: see text]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [Formula: see text]-ep, along with comprehensive implementation details and instructions for users. [Formula: see text]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [Formula: see text]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files.RESULTSThis work introduces [Formula: see text]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [Formula: see text]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [Formula: see text]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [Formula: see text]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [Formula: see text]-ep, along with comprehensive implementation details and instructions for users. [Formula: see text]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [Formula: see text]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files.[Formula: see text]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [Formula: see text]-ep represents a valuable tool for conducting in silico patient-specific simulations.CONCLUSIONS[Formula: see text]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [Formula: see text]-ep represents a valuable tool for conducting in silico patient-specific simulations.
Abstract Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. Results This work introduces $$\texttt {life}^{\text{x}}$$ life x -ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. $$\texttt {life}^{\text{x}}$$ life x -ep employs the monodomain equation to model the heart’s electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, $$\texttt {life}^{\text{x}}$$ life x -ep integrates the generation of myocardial fibers based on Laplace–Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within $$\texttt {life}^{\text{x}}$$ life x -fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying $$\texttt {life}^{\text{x}}$$ life x -ep, along with comprehensive implementation details and instructions for users. $$\texttt {life}^{\text{x}}$$ life x -ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of $$\texttt {life}^{\text{x}}$$ life x -ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. Conclusions $$\texttt {life}^{\text{x}}$$ life x -ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. $$\texttt {life}^{\text{x}}$$ life x -ep represents a valuable tool for conducting in silico patient-specific simulations.
ArticleNumber 389
Audience Academic
Author Pagani, Stefano
Quarteroni, Alfio
Africa, Pasquale Claudio
Regazzoni, Francesco
Salvador, Matteo
Dede’, Luca
Bucelli, Michele
Fedele, Marco
Piersanti, Roberto
Author_xml – sequence: 1
  givenname: Pasquale Claudio
  surname: Africa
  fullname: Africa, Pasquale Claudio
  organization: MOX, Department of Mathematics, Politecnico di Milano, mathLab, Mathematics Area, SISSA International School for Advanced Studies
– sequence: 2
  givenname: Roberto
  surname: Piersanti
  fullname: Piersanti, Roberto
  email: roberto.piersanti@polimi.it
  organization: MOX, Department of Mathematics, Politecnico di Milano
– sequence: 3
  givenname: Francesco
  surname: Regazzoni
  fullname: Regazzoni, Francesco
  organization: MOX, Department of Mathematics, Politecnico di Milano
– sequence: 4
  givenname: Michele
  surname: Bucelli
  fullname: Bucelli, Michele
  organization: MOX, Department of Mathematics, Politecnico di Milano
– sequence: 5
  givenname: Matteo
  surname: Salvador
  fullname: Salvador, Matteo
  organization: MOX, Department of Mathematics, Politecnico di Milano, Institute for Computational and Mathematical Engineering, Stanford University
– sequence: 6
  givenname: Marco
  surname: Fedele
  fullname: Fedele, Marco
  organization: MOX, Department of Mathematics, Politecnico di Milano
– sequence: 7
  givenname: Stefano
  surname: Pagani
  fullname: Pagani, Stefano
  organization: MOX, Department of Mathematics, Politecnico di Milano
– sequence: 8
  givenname: Luca
  surname: Dede’
  fullname: Dede’, Luca
  organization: MOX, Department of Mathematics, Politecnico di Milano
– sequence: 9
  givenname: Alfio
  surname: Quarteroni
  fullname: Quarteroni, Alfio
  organization: MOX, Department of Mathematics, Politecnico di Milano, Institute of Mathematics, École Polytechnique Fédérale de Lausanne
BookMark eNp9kl9rFDEUxQep2D_6BXwa8EUfpuYmmUnGFynF1oWCYPU53Mkk0yyzkzXJ1O63N90t1i1SQkhIfufc5HKOi4PJT6Yo3gI5BZDNxwhU1m1FKKtIXQOr5IviCLiAigKpD_7ZHxbHMS4JASFJ_ao4ZEJSyak8Kq5HZ81dZdafSiyD7-aYSpz60ljrtDNTKqO36TcGU1ofSo2hd6hLMxqdgl_fbKLzox82ZXSrecTk_BRfFy8tjtG8eVhPip8XX36cf62uvl0uzs-uKt1AmyrQTStqNNgJjZxIypAQ0pO6Ex3TWlDWSyJrKzPNgVhB6hZalm-5JaiRnRSLnW_vcanWwa0wbJRHp7YHPgwKQ3J6NIqxVjJoRAu8413XIxUcgHHsayKhqbPX553Xeu5Wptf55wHHPdP9m8ndqMHfqtxdAYyy7PD-wSH4X7OJSa1c1GYccTJ-jopKIVielGb03RN06ecw5V5tKS4lAH-kBsw_cJP1ubC-N1VnopGCM9mKTJ3-h8qjNyunc2Csy-d7gg97gswkc5cGnGNUi-vv-yzdsTr4GIOxfxsCRN1nUO0yqHIG1TaDSmaRfCLSLm2TkV_mxuelbCeNuc40mPDYmGdUfwCi--4P
CitedBy_id crossref_primary_10_1371_journal_pone_0303674
crossref_primary_10_1016_j_camwa_2024_04_014
crossref_primary_10_1145_3748817
crossref_primary_10_1016_j_compbiomed_2025_109774
crossref_primary_10_1016_j_cma_2025_118001
crossref_primary_10_1098_rsta_2023_0384
crossref_primary_10_1137_24M1643888
crossref_primary_10_1016_j_cma_2024_117077
crossref_primary_10_1016_j_compbiomed_2024_109529
crossref_primary_10_1007_s10237_024_01878_8
crossref_primary_10_1142_S0218202525500125
crossref_primary_10_1145_3716310
crossref_primary_10_1016_j_compbiomed_2025_110975
crossref_primary_10_1016_j_jcp_2024_112885
Cites_doi 10.1016/j.cma.2020.113468
10.1007/s00791-003-0101-4
10.1016/j.hrthm.2020.05.034
10.1016/j.jcp.2024.112885
10.1016/j.softx.2022.101252
10.1016/j.jcp.2022.111084
10.1016/j.compbiomed.2022.106143
10.1371/journal.pcbi.1002970
10.1016/j.media.2021.102080
10.1080/10255842.2013.795556
10.1016/j.pbiomolbio.2007.07.012
10.1007/978-3-319-49316-9
10.1161/CIRCEP.121.010253
10.1038/s41598-023-41312-0
10.1038/s41569-018-0104-y
10.3389/fphys.2021.787082
10.1038/ncomms11437
10.1016/j.jtbi.2008.03.029
10.1093/europace/euac116
10.1371/journal.pone.0263639
10.1515/jnma-2021-0081
10.1007/s10013-022-00595-y
10.1152/ajpheart.1998.275.1.H301
10.1002/cnm.3767
10.1016/j.pbiomolbio.2020.06.007
10.1002/cnm.3678
10.1007/s13239-023-00665-3
10.4208/cicp.OA-2021-0243
10.1016/j.jocs.2015.12.007
10.1017/9781108616096
10.1161/CIRCEP.120.008912
10.1016/j.euromechsol.2014.04.001
10.1016/j.compbiomed.2021.105203
10.1016/j.hrthm.2020.06.028
10.1152/ajpheart.00109.2006
10.1093/eurheartj/ehaa159
10.3934/dcdss.2022052
10.1093/cvr/cvw073
10.1007/978-3-030-88892-3_25
10.1007/978-3-319-05789-7_21
10.1002/cnm.1438
10.1113/jphysiol.1962.sp006849
10.1016/j.media.2022.102483
10.3389/fphys.2021.673612
10.1016/j.jcp.2017.06.020
10.1186/s12859-023-05260-w
10.1016/j.jcp.2023.112326
10.1016/j.jacep.2022.01.019
10.1016/j.cpc.2023.109039
10.1101/2023.03.19.533094
10.1002/cnm.3435
10.1007/s10915-022-02001-8
10.1016/0960-0779(95)00089-5
10.1016/j.cma.2022.114607
10.3389/fphys.2018.01910
10.3934/mine.2023026
10.1016/j.apnum.2021.11.009
10.1016/j.cma.2023.115983
10.1016/S0008-6363(99)00034-6
10.1016/j.cmpb.2021.106223
10.1093/bioinformatics/btn390
10.1016/j.jcp.2022.111083
10.1016/j.euromechsol.2013.10.009
10.1002/cnm.3783
10.1007/978-3-319-04801-7
10.1007/s00259-021-05667-8
10.3389/fphys.2021.708435
10.1038/s41551-018-0282-2
10.1016/j.compbiomed.2021.104674
10.1113/jphysiol.1952.sp004764
10.1016/j.jcp.2023.111984
10.3389/fphys.2014.00511
10.1007/s10237-021-01421-z
10.1007/s10439-021-02825-9
ContentType Journal Article
Copyright The Author(s) 2023
COPYRIGHT 2023 BioMed Central Ltd.
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. BioMed Central Ltd., part of Springer Nature.
BioMed Central Ltd., part of Springer Nature 2023
Copyright_xml – notice: The Author(s) 2023
– notice: COPYRIGHT 2023 BioMed Central Ltd.
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. BioMed Central Ltd., part of Springer Nature.
– notice: BioMed Central Ltd., part of Springer Nature 2023
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-023-05513-8
DatabaseName Springer Nature OA/Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 38
ExternalDocumentID oai_doaj_org_article_33983167914b4bbda2741134ad508165
PMC10571323
A768743897
10_1186_s12859_023_05513_8
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GrantInformation_xml – fundername: H2020 Excellent Science
  grantid: 740132; 740132; 740132; 740132; 740132; 740132; 740132; 740132; 740132
  funderid: http://dx.doi.org/10.13039/100010662
– fundername: ;
  grantid: 740132; 740132; 740132; 740132; 740132; 740132; 740132; 740132; 740132
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c619t-1c6975aeab7ca40823a000d05b7b3cc723d8085f8619410f7059193b7b4f0aca3
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001129863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:53:35 EDT 2025
Tue Nov 04 02:06:25 EST 2025
Fri Sep 05 12:00:58 EDT 2025
Tue Oct 07 05:30:52 EDT 2025
Sat Nov 29 14:14:41 EST 2025
Sat Nov 29 10:52:18 EST 2025
Wed Nov 26 11:19:01 EST 2025
Tue Nov 18 22:13:30 EST 2025
Sat Nov 29 05:40:15 EST 2025
Sat Sep 06 07:27:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Finite element method
Primary 92-04
secondary 35-04
High-performance computing
Mathematical modeling
68N30
65M60
65Y05
Cardiac electrophysiology
Computational cardiology
92C50
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c619t-1c6975aeab7ca40823a000d05b7b3cc723d8085f8619410f7059193b7b4f0aca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/33983167914b4bbda2741134ad508165
PMID 37828428
PQID 2877488114
PQPubID 44065
PageCount 38
ParticipantIDs doaj_primary_oai_doaj_org_article_33983167914b4bbda2741134ad508165
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10571323
proquest_miscellaneous_2877387722
proquest_journals_2877488114
gale_infotracmisc_A768743897
gale_infotracacademiconefile_A768743897
gale_incontextgauss_ISR_A768743897
crossref_primary_10_1186_s12859_023_05513_8
crossref_citationtrail_10_1186_s12859_023_05513_8
springer_journals_10_1186_s12859_023_05513_8
PublicationCentury 2000
PublicationDate 2023-10-13
PublicationDateYYYYMMDD 2023-10-13
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2023
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References A Bueno-Orovio (5513_CR43) 2008; 253
M Fedele (5513_CR24) 2023; 410
PC Africa (5513_CR19) 2023; 478
K Gillette (5513_CR68) 2021; 71
HJ Arevalo (5513_CR9) 2016; 7
KH ten Tusscher (5513_CR44) 2006; 291
GJ Tortora (5513_CR1) 2008
5513_CR16
PC Franzone (5513_CR41) 2014
5513_CR18
5513_CR11
HJ Arevalo (5513_CR49) 2016; 7
A Prakosa (5513_CR10) 2018; 2
DF Richards (5513_CR61) 2013; 16
M Vázquez (5513_CR62) 2016; 14
5513_CR14
R Piersanti (5513_CR27) 2022; 391
S Rossi (5513_CR53) 2014; 48
RH Clayton (5513_CR57) 2020; 378
W Schroeder (5513_CR79) 2006
R Piersanti (5513_CR85) 2022; 391
M Peirlinck (5513_CR75) 2021; 12
A Frontera (5513_CR47) 2022; 8
G Plank (5513_CR58) 2021; 208
R Klabunde (5513_CR3) 2011
E Sung (5513_CR72) 2020; 13
M Bucelli (5513_CR37) 2023; 39
L Cicci (5513_CR21) 2022; 93
CH Roney (5513_CR73) 2022; 15
P Pathmanathan (5513_CR52) 2011; 27
A Quarteroni (5513_CR50) 2010
E Vigmond (5513_CR65) 2008; 96
PC Africa (5513_CR13) 2022; 20
RR Aliev (5513_CR42) 1996; 7
J Corral-Acero (5513_CR7) 2020; 41
CH Roney (5513_CR82) 2022; 15
B Baillargeon (5513_CR63) 2014; 48
5513_CR87
5513_CR81
G Del Corso (5513_CR88) 2022; 457
L Cicci (5513_CR23) 2022; 5
AM Katz (5513_CR2) 2010
A Neic (5513_CR67) 2017; 346
5513_CR83
K Gillette (5513_CR71) 2021; 49
A Zingaro (5513_CR29) 2022; 15
M Courtemanche (5513_CR45) 1998; 275
SA Niederer (5513_CR84) 2011; 369
5513_CR4
R Piersanti (5513_CR17) 2021; 373
5513_CR38
5513_CR39
M Bucelli (5513_CR36) 2022; 32
5513_CR33
S Zahid (5513_CR48) 2016; 110
C Lloyd (5513_CR59) 2008; 24
5513_CR77
5513_CR34
5513_CR78
5513_CR35
A Quarteroni (5513_CR51) 2017
AL Hodgkin (5513_CR54) 1952; 117
5513_CR30
5513_CR31
N Chamakuri (5513_CR89) 2022; 173
A Quarteroni (5513_CR5) 2019
5513_CR32
GR Mirams (5513_CR60) 2013; 9
5513_CR76
M Fedele (5513_CR80) 2021; 37
5513_CR70
F Margara (5513_CR74) 2021; 159
M Courtemanche (5513_CR66) 1999; 42
D Noble (5513_CR55) 1962; 160
FO Campos (5513_CR12) 2022; 80
PC Africa (5513_CR15) 2023; 24
J Cooper (5513_CR86) 2015; 5
SA Niederer (5513_CR6) 2019; 16
M Salvador (5513_CR25) 2021; 136
5513_CR26
5513_CR28
5513_CR22
M Peirlinck (5513_CR8) 2021; 20
A Frontera (5513_CR46) 2020; 17
5513_CR69
5513_CR20
GT Lines (5513_CR56) 2003; 5
5513_CR64
A Zingaro (5513_CR40) 2023; 13
References_xml – volume: 373
  year: 2021
  ident: 5513_CR17
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113468
– volume: 5
  start-page: 215
  year: 2003
  ident: 5513_CR56
  publication-title: Comput Vis Sci
  doi: 10.1007/s00791-003-0101-4
– volume: 17
  start-page: 1719
  issue: 10
  year: 2020
  ident: 5513_CR46
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2020.05.034
– ident: 5513_CR30
  doi: 10.1016/j.jcp.2024.112885
– volume: 20
  year: 2022
  ident: 5513_CR13
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2022.101252
– volume: 457
  year: 2022
  ident: 5513_CR88
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2022.111084
– ident: 5513_CR28
  doi: 10.1016/j.compbiomed.2022.106143
– ident: 5513_CR81
– volume: 9
  start-page: 1002970
  issue: 3
  year: 2013
  ident: 5513_CR60
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002970
– volume: 71
  year: 2021
  ident: 5513_CR68
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102080
– volume: 16
  start-page: 802
  issue: 7
  year: 2013
  ident: 5513_CR61
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2013.795556
– volume: 96
  start-page: 3
  issue: 1–3
  year: 2008
  ident: 5513_CR65
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2007.07.012
– volume-title: Numerical models for differential problems
  year: 2017
  ident: 5513_CR51
  doi: 10.1007/978-3-319-49316-9
– volume: 15
  issue: 2
  year: 2022
  ident: 5513_CR82
  publication-title: Circ Arrhythmia Electrophysiol
  doi: 10.1161/CIRCEP.121.010253
– volume: 13
  start-page: 14220
  year: 2023
  ident: 5513_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-41312-0
– volume: 16
  start-page: 100
  year: 2019
  ident: 5513_CR6
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-018-0104-y
– ident: 5513_CR31
  doi: 10.3389/fphys.2021.787082
– volume: 7
  start-page: 11437
  issue: 1
  year: 2016
  ident: 5513_CR49
  publication-title: Nat Commun
  doi: 10.1038/ncomms11437
– volume: 253
  start-page: 544
  issue: 3
  year: 2008
  ident: 5513_CR43
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.03.029
– ident: 5513_CR70
  doi: 10.1093/europace/euac116
– ident: 5513_CR76
  doi: 10.1371/journal.pone.0263639
– ident: 5513_CR14
  doi: 10.1515/jnma-2021-0081
– ident: 5513_CR32
  doi: 10.1007/s10013-022-00595-y
– volume: 275
  start-page: 301
  issue: 1
  year: 1998
  ident: 5513_CR45
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.1998.275.1.H301
– ident: 5513_CR35
  doi: 10.1002/cnm.3767
– volume: 159
  start-page: 58
  year: 2021
  ident: 5513_CR74
  publication-title: Prog Biophys Mol Biol
  doi: 10.1016/j.pbiomolbio.2020.06.007
– volume: 39
  start-page: 3678
  issue: 3
  year: 2023
  ident: 5513_CR37
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.3678
– ident: 5513_CR4
– ident: 5513_CR33
  doi: 10.1007/s13239-023-00665-3
– volume: 32
  start-page: 1217
  issue: 5
  year: 2022
  ident: 5513_CR36
  publication-title: Commun Comput Phys
  doi: 10.4208/cicp.OA-2021-0243
– volume: 14
  start-page: 15
  year: 2016
  ident: 5513_CR62
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2015.12.007
– volume-title: Mathematical modelling of the human cardiovascular system: data, numerical approximation
  year: 2019
  ident: 5513_CR5
  doi: 10.1017/9781108616096
– volume: 13
  start-page: 8912
  issue: 12
  year: 2020
  ident: 5513_CR72
  publication-title: Circ Arrhythmia Electrophysiol
  doi: 10.1161/CIRCEP.120.008912
– volume: 48
  start-page: 38
  year: 2014
  ident: 5513_CR63
  publication-title: Eur J Mech A Solids
  doi: 10.1016/j.euromechsol.2014.04.001
– volume: 7
  start-page: 11437
  year: 2016
  ident: 5513_CR9
  publication-title: Nat Commun
  doi: 10.1038/ncomms11437
– ident: 5513_CR20
  doi: 10.1016/j.compbiomed.2021.105203
– ident: 5513_CR11
  doi: 10.1016/j.hrthm.2020.06.028
– volume: 291
  start-page: 1088
  year: 2006
  ident: 5513_CR44
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00109.2006
– volume: 41
  start-page: 4556
  issue: 48
  year: 2020
  ident: 5513_CR7
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehaa159
– volume: 15
  start-page: 2391
  issue: 8
  year: 2022
  ident: 5513_CR29
  publication-title: Discrete Contin Dyn Syst S
  doi: 10.3934/dcdss.2022052
– volume: 110
  start-page: 443
  issue: 3
  year: 2016
  ident: 5513_CR48
  publication-title: Cardiovasc Res
  doi: 10.1093/cvr/cvw073
– ident: 5513_CR64
  doi: 10.1007/978-3-030-88892-3_25
– ident: 5513_CR77
– ident: 5513_CR87
  doi: 10.1007/978-3-319-05789-7_21
– volume: 27
  start-page: 1751
  issue: 11
  year: 2011
  ident: 5513_CR52
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.1438
– volume: 15
  issue: 2
  year: 2022
  ident: 5513_CR73
  publication-title: Circ Arrhythmia Electrophysiol
  doi: 10.1161/CIRCEP.121.010253
– volume: 160
  start-page: 317
  issue: 2
  year: 1962
  ident: 5513_CR55
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1962.sp006849
– volume-title: Principles of anatomy and physiology
  year: 2008
  ident: 5513_CR1
– volume: 80
  year: 2022
  ident: 5513_CR12
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2022.102483
– ident: 5513_CR18
  doi: 10.3389/fphys.2021.673612
– volume: 346
  start-page: 191
  year: 2017
  ident: 5513_CR67
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2017.06.020
– volume: 378
  start-page: 20190335
  issue: 2173
  year: 2020
  ident: 5513_CR57
  publication-title: Philos Trans R Soc Math Phys Eng Sci
– volume: 24
  start-page: 143
  issue: 1
  year: 2023
  ident: 5513_CR15
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-023-05260-w
– ident: 5513_CR38
  doi: 10.1016/j.jcp.2023.112326
– volume: 8
  start-page: 561
  issue: 5
  year: 2022
  ident: 5513_CR47
  publication-title: JACC Clin Electrophysiol
  doi: 10.1016/j.jacep.2022.01.019
– ident: 5513_CR16
  doi: 10.1016/j.cpc.2023.109039
– volume-title: Physiology of the heart
  year: 2010
  ident: 5513_CR2
– volume: 369
  start-page: 4331
  issue: 1954
  year: 2011
  ident: 5513_CR84
  publication-title: Philos Trans R Soc Math Phys Eng Sci
– ident: 5513_CR34
  doi: 10.1101/2023.03.19.533094
– volume: 37
  start-page: 3435
  issue: 4
  year: 2021
  ident: 5513_CR80
  publication-title: Int J Numer Methods Biomed Eng
  doi: 10.1002/cnm.3435
– volume: 93
  start-page: 57
  issue: 2
  year: 2022
  ident: 5513_CR21
  publication-title: J Sci Comput
  doi: 10.1007/s10915-022-02001-8
– volume: 7
  start-page: 293
  issue: 3
  year: 1996
  ident: 5513_CR42
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/0960-0779(95)00089-5
– volume: 391
  year: 2022
  ident: 5513_CR27
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114607
– ident: 5513_CR69
  doi: 10.3389/fphys.2018.01910
– volume: 5
  start-page: 1
  issue: 2
  year: 2022
  ident: 5513_CR23
  publication-title: Math Eng
  doi: 10.3934/mine.2023026
– volume: 173
  start-page: 295
  year: 2022
  ident: 5513_CR89
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2021.11.009
– volume: 410
  year: 2023
  ident: 5513_CR24
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2023.115983
– volume: 42
  start-page: 477
  issue: 2
  year: 1999
  ident: 5513_CR66
  publication-title: Cardiovasc Res
  doi: 10.1016/S0008-6363(99)00034-6
– ident: 5513_CR83
– volume: 208
  year: 2021
  ident: 5513_CR58
  publication-title: Comput Methods Progr Biomed
  doi: 10.1016/j.cmpb.2021.106223
– volume: 24
  start-page: 2122
  year: 2008
  ident: 5513_CR59
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn390
– ident: 5513_CR26
  doi: 10.1016/j.jcp.2022.111083
– volume: 48
  start-page: 129
  year: 2014
  ident: 5513_CR53
  publication-title: Eurp J Mech-A/Solids
  doi: 10.1016/j.euromechsol.2013.10.009
– ident: 5513_CR22
  doi: 10.1002/cnm.3783
– ident: 5513_CR78
– volume-title: Mathematical cardiac electrophysiology
  year: 2014
  ident: 5513_CR41
  doi: 10.1007/978-3-319-04801-7
– ident: 5513_CR39
  doi: 10.1007/s00259-021-05667-8
– volume: 12
  year: 2021
  ident: 5513_CR75
  publication-title: Front Physiol
  doi: 10.3389/fphys.2021.708435
– volume: 2
  start-page: 732
  year: 2018
  ident: 5513_CR10
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0282-2
– volume-title: Cardiovascular physiology concepts
  year: 2011
  ident: 5513_CR3
– volume: 391
  year: 2022
  ident: 5513_CR85
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114607
– volume-title: Numerical mathematics
  year: 2010
  ident: 5513_CR50
– volume: 136
  year: 2021
  ident: 5513_CR25
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104674
– volume: 117
  start-page: 500
  issue: 4
  year: 1952
  ident: 5513_CR54
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1952.sp004764
– volume: 478
  year: 2023
  ident: 5513_CR19
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2023.111984
– volume: 5
  start-page: 511
  year: 2015
  ident: 5513_CR86
  publication-title: Front Physiol
  doi: 10.3389/fphys.2014.00511
– volume-title: The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics
  year: 2006
  ident: 5513_CR79
– volume: 20
  start-page: 803
  year: 2021
  ident: 5513_CR8
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-021-01421-z
– volume: 49
  start-page: 3143
  year: 2021
  ident: 5513_CR71
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-021-02825-9
SSID ssj0017805
Score 2.5476735
Snippet Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for...
Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for...
Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for...
BackgroundSimulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for...
Abstract Background Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Arrhythmia
Bioinformatics
Biomedical and Life Sciences
Cardiac arrhythmia
Cardiac electrophysiology
Cardiac function
Cardiac muscle
Cardiology
Cardiomyocytes
Care and treatment
Computational Biology/Bioinformatics
Computational cardiology
Computer Appl. in Life Sciences
Computer applications
Computer simulation
Diagnosis
Dirichlet problem
Electrocardiography
Electrophysiology
Fibers
Finite element method
Heart
High-performance computing
Life Sciences
Mathematical modeling
Mathematical models
Microarrays
Numerical analysis
Numerical methods
Ordinary differential equations
Partial differential equations
Propagation
Robustness (mathematics)
Simulation
Simulation methods
Software
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggNQLb0SgIIOQOIDVxE7WDhdUEBVcqoqC1Jvl2E5ZqSTbeJfHv2fG62wVKnrhkEs8SezMeDy2x99HyAtQc1OKNmfccJygWM5M2XrmwD4q4YStjI1kE_LgQB0f14dpwS2ktMrRJ0ZH7XqLa-S7ENlLMDYI398uzhiyRuHuaqLQuEquIUoCj6l7h5tdBMTrHw_KqNluKBCtjcEoxXLkNWFqMhhFzP6LnvlituRfW6ZxJNq_9b9tuE1uphiU7q2N5g654ru75MaalfL3PXJ0Om_9L-YXb6ihQ9-swpKazlEf0SagejSA7_5pBk8h4qU22piliVAnLpXEN9Ew_57IwcJ98nX_w5f3H1niXmAWplRLVthZLSvjTSOtQVJqYcB5urxqZCOslVw4BdFaq3AVpMhbCWEaxIJQWra5sUY8IFtd3_mHhPrCNU7VyhrpSsElhBS18fABUTaVK0RGilEJ2iZgcuTHONVxgqJmeq04DYrTUXFaZeTV5pnFGpbjUul3qNuNJEJqxxv9cKJTD9VC1AphAeqibMqmcQaBfQpRGlchOUmVkedoGRpBMzrMyjkxqxD0p6PPeg_mbBJp5GVGXiahtoc2WJMOOcCfQJytieTORBJ6tZ0Wjyakk1cJ-tx-MvJsU4xPYqZc5_vVWkbAxXlG1MRwJ82flnTzbxFZHEmfC8FBJa9HGz__-r__76PLK_uYbHPsdJgHJHbI1nJY-Sfkuv2xnIfhaeyyfwDja0be
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaggMSFNyJQkEFIHMAiiZO1w60gKrhUqAuoN8uvlJVKUsW7PP49M46zKBSQ4LCXeLxJxuPxTDz-PkIewzCbirc5K3WJCYotma5azxzYR80dt7W2kWxCHBzIo6PmXToUFqZq92lLMnrqOK3l4nkoEGuNwRrDcmQlYfI8uQDLnUTChsPlx-3eAaL0T8djfttvtgRFpP6z_vhsjeQvG6Vx_dm_-n9Pfo1cSfEm3RsN5Do557sb5NLIQPn9JlmerFr_jfnTF1TToTebsKa6c9RHZAl4KBrAT3_Vg6cQ3VIb7cnSRJ4TP4vEf6Jh9TkRgYVb5MP-6_ev3rDEs8AspE9rVthFI2rttRFWIwE11-AoXV4bYbi1ouROQmTWSvziUeStgJAM4j5ordpcW81vk52u7_wdQn3hjJONtFq4ipcCwodGe7gBr0ztCp6RYlK9sgmEHLkwTlRMRuRCjcpSoCwVlaVkRp5u-5yOEBx_lX6JI7qVRPjseKEfjlWajYrzRiIEQFNUpjLGaQTxKXilXY1EJHVGHqE9KATI6LAC51hvQlBvl4dqD_IzgZTxIiNPklDbwztYnQ40gCYQU2smuTuThBls582T2ankQYKCTFaAc4V0NSMPt83YE6viOt9vRhkOv7LMiJyZ6-z15y3d6lNEEUeC54KXMCTPJqv9efc_6_fuv4nfI5dLNHysAeK7ZGc9bPx9ctF-Wa_C8CBO3B_Pizzx
  priority: 102
  providerName: Springer Nature
Title lifex-ep: a robust and efficient software for cardiac electrophysiology simulations
URI https://link.springer.com/article/10.1186/s12859-023-05513-8
https://www.proquest.com/docview/2877488114
https://www.proquest.com/docview/2877387722
https://pubmed.ncbi.nlm.nih.gov/PMC10571323
https://doaj.org/article/33983167914b4bbda2741134ad508165
Volume 24
WOSCitedRecordID wos001129863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK Contemporary (1997 - Present)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMQL4lNkjMogJB7AWhIntcPbhjYxIaqoBVR4sfwVqLSlU9Py8d9z5ySFMAEvPNRS60vSnM_nu-T8-xHyBIbZZLyKWapTTFBsynRWeebAPnLuuM21DWQTYjKR83lR_kL1hTVhLTxwq7h9zguJu7WLJDOZMU4j3krCM-1y5IwI6KWxKPpkqnt_gEj9_RYZOd5vEsRpY7A-sRgZTZgcLEMBrf-iT75YJ_nby9KwBh3fJDe64JEetH_6Frnk69vkWksn-f0OmZ0uKv-N-fMXVNPV0myaNdW1oz7ARMDZaQNO96teeQqhKrXBOCztmHDCM45wJtoszjpWr-YueXd89PblK9aRJjALudCaJXZciFx7bYTVyCbNNXg9F-dGGG6tSLmTEGZVEh9fJHElIL6CIA56syrWVvN7ZKde1v4-oT5xxslCWi1cxlMBsUChPVyAZyZ3CY9I0utQ2Q5RHIktTlXILORYtXpXoHcV9K5kRJ5tjzlv8TT-Kn2IQ7OVRCzs8ANYiOosRP3LQiLyGAdWIdpFjeU0n_SmadTJbKoOINkSyP8uIvK0E6qWcA9Wd7sTQBMIkDWQ3BtIwnS0w-7eflTnDhoFaakATwm5Z0QebbvxSCxxq_1y08pw-KRpROTA7ga3P-ypF58DJDiyNSc8hSF53pvoz6v_Wb-7_0O_D8j1FGcWlvnwPbKzXm38Q3LVflkvmtWIXBZzEVo5IlcOjybldBTmKrSvBRthsW0JbZl_hP7y5E35Ab5NZ-9_AM-cP9g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGFNyJQwCAQB7CaxMnaQUKoPKqutqwQbaXejGM7ZaWSLJtdSv8Uv5EZJ9kqVPTWA9d48rA9M56Jx99HyDOY5jzhRchiHWOCYmKmk8IxC_qRcstNqo0nmxDjsdzfzz6vkN_dWRgsq-x8onfUtjL4j3wdInsBygbh-9vpD4asUbi72lFoNGoxcsdHkLLVb4YfYH6fx_Hmx933W6xlFWAGkoU5i8wgE6l2OhdGI90y1-AWbJjmIufGiJhbCXFIITG_j8JCQAACUQ60JkWojebw3AvkYsKlQLsaCbbctUB-gO5gjhys1xGiwzFYFVmIPCpM9hY_zxFweiU4XZ351xatX_k2r_9vY3aDXGtjbLrRGMVNsuLKW-Ryw7p5fJvsHE4K94u56Wuq6azKF_Wc6tJS59E0YDhoDWvTkZ45ChE9Nd6GDG0Jg_yvIP8kWk--t-Rn9R2ydy49uktWy6p09wh1kc2tzKTRwiY8FhAyZdrBC3iSpzbiAYm6SVemBV5H_o9D5RMwOVCNoihQFOUVRcmAvFzeM21gR86Ufoe6tJREyHB_oZodqNYDKc4zibAHWZTkSZ5bjcBFEU-0TZF8JQ3IU9REhaAgJVYdHehFXavhzhe1ATkpRJoyEwF50QoVFfTB6PYQB4wE4oj1JNd6kuC1TL-5U1nVes1anehrQJ4sm_FOrAQsXbVoZMD0RBwHRPYMpdf9fks5-eaR05HUOuIxTMmrzqZO3v7v8b1_9sc-Jle2dj9tq-3hePSAXI3R4LHmia-R1fls4R6SS-bnfFLPHnl3QcnX87a1P2erodw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPMSFNyJQwCAkDmA1iZO1w608VlSgVcUC6s3yK-1KbbJKsjz-PTNOdiEUkBCHXOJxLI9nbE88_j5CHsMwm4yXMUt1igGKTZnOSs8c2EfOHbe5toFsQsxm8uCg2P_pFn_Idl8fSfZ3GhClqep2lq7sXVxOdtoEcdcYrDcsRoYSJs-Scxkm0mO8Pv-0OUdAxP71VZnf1hstRwG1__TcfDpf8pdD07AWTa_8fy-uksvDPpTu9oZzjZzx1XVyoWem_HaDzI8Xpf_K_PI51bSpzartqK4c9QFxApqgLczfX3TjKex6qQ12ZulAqhN-l4Qv0XZxMhCEtTfJx-nrDy_fsIF_gVkIqzqW2Ekhcu21EVYjMTXXMIG6ODfCcGtFyp0ElZcS_4QkcSlgqwb7QSjNylhbzW-Rraqu_G1CfeKMk4W0WriMpwK2FYX20ADPTO4SHpFkPQzKDuDkyJFxrEKQIieqV5YCZamgLCUj8nRTZ9lDc_xV-gWO7kYSYbXDi7o5VIOXKs4LidAARZKZzBinEdwn4Zl2ORKU5BF5hLahEDijwsycQ71qW7U3f692IW4TSCUvIvJkECpr6IPVw0UH0ARibY0kt0eS4Nl2XLw2QTXMLK2CCFfApAthbEQeboqxJmbLVb5e9TIcnjSNiByZ7qj745JqcRTQxZH4OeEpDMmztQX_aP3P-r3zb-IPyMX9V1P1bm_29i65lKIPYJoQ3yZbXbPy98h5-7lbtM394M_fAQvTSLk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=lifex-ep%3A+a+robust+and+efficient+software+for+cardiac+electrophysiology+simulations&rft.jtitle=BMC+bioinformatics&rft.au=Pasquale+Claudio+Africa&rft.au=Roberto+Piersanti&rft.au=Francesco+Regazzoni&rft.au=Michele+Bucelli&rft.date=2023-10-13&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=38&rft_id=info:doi/10.1186%2Fs12859-023-05513-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_33983167914b4bbda2741134ad508165
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon