Computational comparison of common event-based differential splicing tools: practical considerations for laboratory researchers

Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This repo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 22; H. 1; S. 1 - 15
Hauptverfasser: Muller, Ittai B., Meijers, Stijn, Kampstra, Peter, van Dijk, Steven, van Elswijk, Michel, Lin, Marry, Wojtuszkiewicz, Anna M., Jansen, Gerrit, de Jonge, Robert, Cloos, Jacqueline
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 26.06.2021
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated. Results Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation (β > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 (β < 60%). Conclusions Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.
AbstractList Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated. Results Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation (β > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 (β < 60%). Conclusions Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.
Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated. Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation ([beta] > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 ([beta] < 60%). Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.
Abstract Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated. Results Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation (β > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 (β < 60%). Conclusions Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.
Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated. Results Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation (β > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 (β < 60%). Conclusions Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.
Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated.BACKGROUNDComputational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated.Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation (β > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 (β < 60%).RESULTSLog-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation (β > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 (β < 60%).Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.CONCLUSIONSPrior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events.
Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes. However, common alternative splicing analysis tools differ substantially in their statistical analyses and general performance. This report compares the computational performance (CPU utilization and RAM usage) of three event-level splicing tools; rMATS, MISO, and SUPPA2. Additionally, concordance between tool outputs was investigated. Results Log-linear relations were found between job times and dataset size in all splicing tools and all virtual machine (VM) configurations. MISO had the highest job times for all analyses, irrespective of VM size, while MISO analyses also exceeded maximum CPU utilization on all VM sizes. rMATS and SUPPA2 load averages were relatively low in both size and replicate comparisons, not nearing maximum CPU utilization in the VM simulating the lowest computational power (D2 VM). RAM usage in rMATS and SUPPA2 did not exceed 20% of maximum RAM in both size and replicate comparisons while MISO reached maximum RAM usage in D2 VM analyses for input size. Correlation coefficients of differential splicing analyses showed high correlation ([beta] > 80%) between different tool outputs with the exception of comparisons of retained intron (RI) events between rMATS/MISO and rMATS/SUPPA2 ([beta] < 60%). Conclusions Prior to RNA-seq analyses, users should consider job time, amount of replicates and splice event type of interest to determine the optimal alternative splicing tool. In general, rMATS is superior to both MISO and SUPPA2 in computational performance. Analysis outputs show high concordance between tools, with the exception of RI events. Keywords: Alternative splicing, RNA-sequencing, Computational performance
ArticleNumber 347
Audience Academic
Author Wojtuszkiewicz, Anna M.
de Jonge, Robert
Muller, Ittai B.
Lin, Marry
Kampstra, Peter
van Elswijk, Michel
Cloos, Jacqueline
Meijers, Stijn
Jansen, Gerrit
van Dijk, Steven
Author_xml – sequence: 1
  givenname: Ittai B.
  surname: Muller
  fullname: Muller, Ittai B.
  organization: Department of Clinical Chemistry, Amsterdam UMC – location VUmc
– sequence: 2
  givenname: Stijn
  surname: Meijers
  fullname: Meijers, Stijn
  organization: ORTEC Netherlands
– sequence: 3
  givenname: Peter
  surname: Kampstra
  fullname: Kampstra, Peter
  organization: ORTEC Netherlands
– sequence: 4
  givenname: Steven
  surname: van Dijk
  fullname: van Dijk, Steven
  organization: ORTEC Netherlands
– sequence: 5
  givenname: Michel
  surname: van Elswijk
  fullname: van Elswijk, Michel
  organization: ORTEC Netherlands
– sequence: 6
  givenname: Marry
  surname: Lin
  fullname: Lin, Marry
  organization: Department of Clinical Chemistry, Amsterdam UMC – location VUmc
– sequence: 7
  givenname: Anna M.
  surname: Wojtuszkiewicz
  fullname: Wojtuszkiewicz, Anna M.
  organization: Department of Hematology, Cancer Center Amsterdam, Rm CCA 4.24, Amsterdam UMC – location VUmc
– sequence: 8
  givenname: Gerrit
  surname: Jansen
  fullname: Jansen, Gerrit
  organization: Amsterdam Rheumatology and immunology Center, Amsterdam UMC – location VUmc
– sequence: 9
  givenname: Robert
  surname: de Jonge
  fullname: de Jonge, Robert
  organization: Department of Clinical Chemistry, Amsterdam UMC – location VUmc
– sequence: 10
  givenname: Jacqueline
  orcidid: 0000-0001-9150-8026
  surname: Cloos
  fullname: Cloos, Jacqueline
  email: j.cloos@amsterdamumc.nl
  organization: Department of Hematology, Cancer Center Amsterdam, Rm CCA 4.24, Amsterdam UMC – location VUmc
BookMark eNp9kstq3TAQhk1JaS7tC3Rl6KZdOJVkWZa6KITQy4FAoZe1kHVxdLClU8kOzaqv3vFxSnNCCVpYI33_P9bMnBZHIQZbFC8xOseYs7cZE96IChFcIUpYXYknxQmmLa4IRs3Rvf1xcZrzFiHcctQ8K45rilvKET8pfl_GcTdPavIxqKHUEKnkcwxldEs0ws7e2DBVncrWlMY7ZxPEHui8G7z2oS-nGIf8rtwlpSev9z4he2PT3jeXLqZyUF2EOKbbMtlsVdLXNuXnxVOnhmxf3H3Pih8fP3y__Fxdffm0uby4qjTDHJLThmNTEys0ZYYhpA3qGMGMwjs0wh2irrYtMUwbI3gtRNcIrbkWdeMcauuzYrP6mqi2cpf8qNKtjMrL_UFMvVQJ_n2wknLKuTbMKM0pZUIgZQTjSInaIMIoeL1fvXZzN1qjoRpJDQemhzfBX8s-3khOaoZZAwav7wxS_DnbPMnRZ22HQQUb5yxJQxshCKYL-uoBuo1zglYtVEOgnYzco3oFD_DBRcirF1N5wVpCGMd8qcH5fyhYxo4eOmadh_MDwZsDATCT_TX1as5Zbr59PWT5yuoUc07WSe3XsYIkfpAYyWVo5Tq0EoZW7odWCpCSB9K_pXxUVK-iDHDobfpXmEdUfwCsHf_c
CitedBy_id crossref_primary_10_3390_ijms252212097
crossref_primary_10_1016_j_isci_2025_112612
crossref_primary_10_1002_humu_24394
crossref_primary_10_3390_f15071233
crossref_primary_10_3389_fimmu_2022_1060114
crossref_primary_10_1038_s41596_023_00944_2
crossref_primary_10_3390_ijms24119641
crossref_primary_10_3390_ijms24087425
crossref_primary_10_1007_s10126_023_10196_6
crossref_primary_10_1093_brain_awad329
crossref_primary_10_1038_s41467_024_47107_9
crossref_primary_10_1146_annurev_biodatasci_020722_044021
crossref_primary_10_1016_j_tree_2021_11_010
crossref_primary_10_3389_fmolb_2021_726902
crossref_primary_10_3390_cells11132110
Cites_doi 10.1016/S0021-9258(18)38101-8
10.3791/54714
10.1146/annurev-biochem-060614-034316
10.1093/bioinformatics/btu170
10.3390/cancers10110458
10.1186/s12859-014-0364-4
10.1038/nbt.3122
10.1038/nmeth.4197
10.1042/CS20160211
10.3892/br.2014.407
10.1073/pnas.1419161111
10.1016/S0021-9258(19)70697-8
10.1038/nrm.2017.27
10.1093/bib/bbz126
10.1038/nbt.3519
10.1038/nature07509
10.1182/blood-2008-08-173799
10.1186/s13059-018-1417-1
10.1093/rheumatology/keaa428
10.3390/cancers12030723
10.1186/s13045-015-0158-9
10.1007/978-1-62703-980-2_26
10.1517/17425255.2015.993316
10.1002/ijc.29919
10.1038/nrg2673
10.2174/1389202918666170215125048
10.1016/j.ebiom.2018.12.025
10.3324/haematol.2016.142794
10.1038/nmeth.1528
10.1093/bioinformatics/bts635
10.1038/ng.259
10.1038/aps.2015.43
10.1093/nar/gks666
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2021 BioMed Central Ltd.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2021 BioMed Central Ltd.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-021-04263-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Science in Context
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 15
ExternalDocumentID oai_doaj_org_article_48488cd6dac8446990ad9680a93d0264
PMC8236165
A672268187
10_1186_s12859_021_04263_9
GeographicLocations Netherlands
GeographicLocations_xml – name: Netherlands
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c618t-b4581d32e9c46d600cd0b62164748c01b04f3e72d6cdd98399b59cc8c935ff073
IEDL.DBID RSV
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000668579600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Oct 14 19:08:28 EDT 2025
Tue Nov 04 02:03:01 EST 2025
Sun Nov 09 14:41:33 EST 2025
Mon Oct 06 18:38:23 EDT 2025
Tue Nov 11 10:28:24 EST 2025
Tue Nov 04 17:54:46 EST 2025
Thu Nov 13 14:37:56 EST 2025
Sat Nov 29 05:40:10 EST 2025
Tue Nov 18 22:37:42 EST 2025
Sat Sep 06 07:27:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RNA-sequencing
Computational performance
Alternative splicing
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-b4581d32e9c46d600cd0b62164748c01b04f3e72d6cdd98399b59cc8c935ff073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9150-8026
OpenAccessLink https://link.springer.com/10.1186/s12859-021-04263-9
PMID 34174808
PQID 2552805625
PQPubID 44065
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_48488cd6dac8446990ad9680a93d0264
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8236165
proquest_miscellaneous_2545992145
proquest_journals_2552805625
gale_infotracmisc_A672268187
gale_infotracacademiconefile_A672268187
gale_incontextgauss_ISR_A672268187
crossref_citationtrail_10_1186_s12859_021_04263_9
crossref_primary_10_1186_s12859_021_04263_9
springer_journals_10_1186_s12859_021_04263_9
PublicationCentury 2000
PublicationDate 2021-06-26
PublicationDateYYYYMMDD 2021-06-26
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2021
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References 4263_CR32
4263_CR31
M Stark (4263_CR30) 2009; 113
A Wojtuszkiewicz (4263_CR27) 2015; 8
ET Wang (4263_CR2) 2008; 456
4263_CR18
S Shen (4263_CR19) 2014; 111
A Dobin (4263_CR35) 2013; 29
KQ Le (4263_CR10) 2015; 36
JL Trincado (4263_CR21) 2018; 19
R Liu (4263_CR17) 2014; 15
T Griebel (4263_CR34) 2012; 40
GP Alamancos (4263_CR15) 2014; 1126
A Wojtuszkiewicz (4263_CR13) 2016; 101
Y Katz (4263_CR20) 2010; 7
M Pertea (4263_CR33) 2015; 33
L Ding (4263_CR16) 2017; 18
Y Wang (4263_CR4) 2015; 3
FE Baralle (4263_CR5) 2017; 18
JJ McGuire (4263_CR26) 1995; 7
4263_CR25
Q Pan (4263_CR6) 2008; 40
DD Licatalosi (4263_CR1) 2010; 11
4263_CR28
4263_CR8
IB Muller (4263_CR14) 2021; 60
A Wojtuszkiewicz (4263_CR12) 2015; 11
R Sciarrillo (4263_CR9) 2020; 12
NL Bray (4263_CR24) 2016; 34
D Baralle (4263_CR3) 2017; 131
A Wojtuszkiewicz (4263_CR22) 2016; 138
Y Lee (4263_CR7) 2015; 84
R Sciarrillo (4263_CR11) 2019; 39
R Patro (4263_CR23) 2017; 14
DE McCloskey (4263_CR29) 1991; 266
References_xml – volume: 266
  start-page: 6181
  issue: 10
  year: 1991
  ident: 4263_CR29
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)38101-8
– ident: 4263_CR31
  doi: 10.3791/54714
– ident: 4263_CR25
– volume: 84
  start-page: 291
  year: 2015
  ident: 4263_CR7
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-060614-034316
– ident: 4263_CR32
  doi: 10.1093/bioinformatics/btu170
– ident: 4263_CR8
  doi: 10.3390/cancers10110458
– volume: 15
  start-page: 364
  year: 2014
  ident: 4263_CR17
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-014-0364-4
– volume: 33
  start-page: 290
  issue: 3
  year: 2015
  ident: 4263_CR33
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3122
– volume: 14
  start-page: 417
  issue: 4
  year: 2017
  ident: 4263_CR23
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4197
– volume: 7
  start-page: 535
  issue: 10–11
  year: 1995
  ident: 4263_CR26
  publication-title: Oncol Res
– volume: 131
  start-page: 355
  issue: 5
  year: 2017
  ident: 4263_CR3
  publication-title: Clin Sci (Lond)
  doi: 10.1042/CS20160211
– volume: 3
  start-page: 152
  issue: 2
  year: 2015
  ident: 4263_CR4
  publication-title: Biomed Rep
  doi: 10.3892/br.2014.407
– volume: 111
  start-page: E5593
  issue: 51
  year: 2014
  ident: 4263_CR19
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1419161111
– ident: 4263_CR28
  doi: 10.1016/S0021-9258(19)70697-8
– volume: 18
  start-page: 437
  issue: 7
  year: 2017
  ident: 4263_CR5
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm.2017.27
– ident: 4263_CR18
  doi: 10.1093/bib/bbz126
– volume: 34
  start-page: 525
  issue: 5
  year: 2016
  ident: 4263_CR24
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3519
– volume: 456
  start-page: 470
  issue: 7221
  year: 2008
  ident: 4263_CR2
  publication-title: Nature
  doi: 10.1038/nature07509
– volume: 113
  start-page: 4362
  issue: 18
  year: 2009
  ident: 4263_CR30
  publication-title: Blood
  doi: 10.1182/blood-2008-08-173799
– volume: 19
  start-page: 40
  issue: 1
  year: 2018
  ident: 4263_CR21
  publication-title: Genome Biol
  doi: 10.1186/s13059-018-1417-1
– volume: 60
  start-page: 1273
  issue: 3
  year: 2021
  ident: 4263_CR14
  publication-title: Rheumatology (Oxford)
  doi: 10.1093/rheumatology/keaa428
– volume: 12
  start-page: 723
  issue: 3
  year: 2020
  ident: 4263_CR9
  publication-title: Cancers
  doi: 10.3390/cancers12030723
– volume: 8
  start-page: 61
  year: 2015
  ident: 4263_CR27
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-015-0158-9
– volume: 1126
  start-page: 357
  year: 2014
  ident: 4263_CR15
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-980-2_26
– volume: 11
  start-page: 673
  issue: 5
  year: 2015
  ident: 4263_CR12
  publication-title: Expert Opin Drug Metab Toxicol
  doi: 10.1517/17425255.2015.993316
– volume: 138
  start-page: 1645
  issue: 7
  year: 2016
  ident: 4263_CR22
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29919
– volume: 11
  start-page: 75
  issue: 1
  year: 2010
  ident: 4263_CR1
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2673
– volume: 18
  start-page: 268
  issue: 3
  year: 2017
  ident: 4263_CR16
  publication-title: Curr Genomics
  doi: 10.2174/1389202918666170215125048
– volume: 39
  start-page: 215
  year: 2019
  ident: 4263_CR11
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.12.025
– volume: 101
  start-page: e291
  issue: 7
  year: 2016
  ident: 4263_CR13
  publication-title: Haematologica
  doi: 10.3324/haematol.2016.142794
– volume: 7
  start-page: 1009
  issue: 12
  year: 2010
  ident: 4263_CR20
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1528
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 4263_CR35
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 40
  start-page: 1413
  issue: 12
  year: 2008
  ident: 4263_CR6
  publication-title: Nat Genet
  doi: 10.1038/ng.259
– volume: 36
  start-page: 1212
  issue: 10
  year: 2015
  ident: 4263_CR10
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/aps.2015.43
– volume: 40
  start-page: 10073
  issue: 20
  year: 2012
  ident: 4263_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks666
SSID ssj0017805
Score 2.4436932
Snippet Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced...
Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced genes....
Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially spliced...
Abstract Background Computational tools analyzing RNA-sequencing data have boosted alternative splicing research by identifying and assessing differentially...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Alternative splicing
Analysis
Bioinformatics
Biomedical and Life Sciences
Comparative analysis
Computational biology
Computational Biology/Bioinformatics
Computational performance
Computer Appl. in Life Sciences
Computer applications
Correlation coefficient
Correlation coefficients
Drug resistance
Gene expression
Gene sequencing
Life Sciences
Methods
Microarrays
Research Article
Ribonucleic acid
RNA
RNA splicing
RNA-sequencing
Sequence analysis
Software
Splicing
Statistical analysis
Utilization
Virtual environments
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kUPBF_MTqKVEEHzRcP9PEt1M8FOQQv7i3kE5aPVha2e4K9-S_7kyartZDffFxN5PNdmaS_KaZ_AbgUUcoHFuDksCwkiWmrTR1VspOVbRcYqV9INP59KY-PtYnJ-btL6W-OCdsogeeFHdQanIx9Mo71BS60OLpvFE6dabwFD8EJtC0NnMwFc8PmKl_viKj1cGYMU-b5HQEjhkKaRbbUGDrP78mn8-T_O2wNOxBR1fhSgSP4nD609fgQttfh0tTOcmzG_B9KtEQX-8J3JUYFEPHn8jjRCBskrx3eTEXR6FJvhIjH2TTqGIzDKvxmYjXp8LvTDU9p3d7glCuiK4zrM9EZAtiGHkTPh69_PDilYwFFiSqTNNgZUVwtcjJVqXyBH3Qp43KmWKs1JhmTVp2RVvnXqH3hqCUaSqDqNEUVdfR4nAL9vqhb2-D6BrtmBzMOcN8P7ppvGkY7OVtVtWNSyCb9W0xso9zEYyVDVGIVnaykSUb2WAjaxJ4suvzdeLe-Kv0czbjTpJ5s8MX5E02epP9lzcl8JCdwDIzRs-pN5_ddhzt6_fv7KGqCaoSvqkTeByFuoGeAV28yUCaYDKtheT-QpKmLi6bZ1-zcekYLcV4uWZYWiXwYNfMPTkdrm-HLcuUlTFMMp9AvfDRxeMvW_rTL4E-nEvcZ4p6Pp29-efgf1bvnf-h3rtwOQ-TUMlc7cPeZr1t78FF_LY5Hdf3wxT-AXZvSWM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkLb0SgIIOQOIDVPB2bCyqICiRUVbzUm5WMk1JplZTNLlJP_HVmHGerUNELx8TjJM6Mx5_t8TcAz1tC4dgYlASGlcwxbqQpk1y2qiB3iYV2nkzn-6dyf18fHpqDsOA2hLDKySd6R-165DXyHYK-qebRunhz8lNy1ijeXQ0pNC7DFWZJSH3o3sFmF4H5-qeDMlrtDAmztUkOSuCZQybNbDDynP3nPfP5aMm_tkz9SLR383_bcAtuBAwqdkejuQ2Xmu4OXBuzUp7ehd9jpoewSihwk6lQ9C1f0VOE532SPAQ6MeVYIV-xEAPvh9Nni1XfL4bXIpzC8s8ZU4OOS4SCwLIIFtgvT0UgHWI0eg--7b3_-u6DDHkaJKpE08vyglBvlpLKc-UIQaGLa5UyU1muMU7qOG-zpkydQucMITJTFwZRo8mKtiUfcx-2ur5rHoBoa10xx1hVGaYN0nXtTM2YMW2SoqyrCJJJYRYDiTnn0lhYP5nRyo5KtqRk65VsTQQvN3VORgqPC6Xfsh1sJJl-29_ol0c29Gaba_J76JSrUNN8mkb0yhml48pkjia1eQTP2IosE2x0HMFzVK2HwX788tnuqpIQL8GkMoIXQajtqQ1YhQMR9CeYk2smuT2TJA-A8-LJ3GzwQIM9s7UInm6KuSZH1XVNv2aZvDCGueojKGdGPmv-vKQ7_uFZyDXT9iiq-WrqDmcv__fvfXjxtz6C66nvn0qmahu2Vst18xiu4q_V8bB84nv3H0FEWE0
  priority: 102
  providerName: ProQuest
Title Computational comparison of common event-based differential splicing tools: practical considerations for laboratory researchers
URI https://link.springer.com/article/10.1186/s12859-021-04263-9
https://www.proquest.com/docview/2552805625
https://www.proquest.com/docview/2545992145
https://pubmed.ncbi.nlm.nih.gov/PMC8236165
https://doaj.org/article/48488cd6dac8446990ad9680a93d0264
Volume 22
WOSCitedRecordID wos000668579600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RFiQuvBGBsjIIiQNY3WQTx-bWolZUwCraQrVwsRI7KZVWCdrsIvXEX2fGcRaFAhJcLCUe52GPx5_t8TcAzypE4aZUhiMYFjw245KrNIx5JRI0lyaR1pHpnL5Lp1M5n6vMHwpre2_3fkvSWWrXraXYa0PiWuPkUkC4f8LVFuzgcCcpYMPs5HSzd0As_f3xmN-WGwxBjqn_sj2-7CP5y0apG3-Obv7fl9-CGx5vsv1OQW7DlbK-A9e6CJQXd-F7F9XBrwgys4lKyJqKrlBJmeN44jTcWdbHU0G7sGAt7X3jh7BV0yzaV8yfuHLP6cKAdsuBDIEx89rWLC-YJxgi5HkPPh4dfnj9hvuYDNyIUOLL4gQR7iTC5o2FRbRk7LgQEbGSxdKMw2IcV5Myjaww1ipEX6pIlDHSqElSVWhP7sN23dTlA2BVIXPiE8tzRRRBsiisKggfRmWYpEUeQNg3kzaesJziZiy0m7hIobuK1Vix2lWsVgG82JT52tF1_FX6gFp_I0lU2-5GszzTvufqWKKNM1bY3EicO-PonVsl5DhXE4sT2DiAp6Q7msg0avLWOcvXbauPT2Z6X6SIbhESpQE890JVg_9gcn_4AWuC-LcGkrsDSeztZpjdq6j21qbVOC2MJCHZJIAnm2wqSR50ddmsSSZOlCJe-gDSgWoPfn-YU59_cYzjkih6BJZ82Sv4z5f_uXof_pv4I7geuT4ieCR2YXu1XJeP4ar5tjpvlyPYSuepS-UIdg4Op9ls5BZQMH2b8hE57WaYZslnzM-O32efRs4u_AD14FdT
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGAMELd0RggEEgHsBakziOjYTQuEyrWioEG9qbSexkTKqS0bSgPvGP-I2c4zidwsTe9sBj6uPEds_l8-07hDwpAYWbQhkGYFgwbgYFU2nIWSkScJcmkdaR6XwZp5OJ3N9XH9fI7-4uDB6r7Hyic9S2NrhGvgnQN5IYrZPXR98ZZo3C3dUuhUarFqNi-ROmbM2r4Tv4f59G0fb73bc7zGcVYEaEcs5yngBGiyNoIBcW4r2xg1xEyKvFpRmE-YCXcZFGVhhrFeAHlSfKGGlUnJQlWAS89xw5z2OZol2NUrbatcD8AN3FHCk2mxDZ4RgegsCZSsxUL_i5HAEnI8HJ05l_bdG6yLd99X8bs2vkisfYdKs1iutkrahukItt1s3lTfKrzWThV0GpWWVipHWJT9Bq6nitGIZ4S7scMuALp7TB_X4YJjqv62nzkvpbZu49berTdgmUwmSAegurZ0vqSZUQbd8ie2fS-9tkvaqr4g6hZS4z5FDLMoW0SDLPrcoRE0dFmKR5FpCwUxBtPEk75gqZajdZk0K3SqVBqbRTKq0C8nxV56ilKDlV-g3q3UoS6cXdD_XsQHtvpbkEv26ssJmRnAtALJlVQg4yFVuYtPOAPEat1UggUuEJpYNs0TR6-PmT3hIpIHqAgWlAnnmhsoY-mMxf-ICRQM6xnuRGTxI8nOkXd-qtvYdt9LFuB-TRqhhr4qnBqqgXKMMTpZCLPyBpz6h63e-XVIffHMu6RFoiATVfdOZ3_PF_D-_d09v6kFza2f0w1uPhZHSPXI6cbxAsEhtkfT5bFPfJBfNjftjMHjjPQsnXszbLP7jus7o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeYgLb0SggEFIHKjVPB2bW3msqKhWFYWqNyuxk1JplVSbXaSe-OvMOE4gFJAQx6zHyXoyHn8Tj78BeF4jCjeVMhzBsOCpCSuu8ijltcjQXZpMWkemc7iXz-fy6Ejt_3SK32W7D1uS_ZkGYmlqVtuntu6nuBTbXUS8a5zSCygGSLi6CJdSSqSneP3gcNxHIMb-4ajMb_tNliPH2n_eN5_Pl_xl09StRbMb_z-Km3Dd41C20xvOLbhQNbfhSl-Z8uwOfOurPfgvhcyM1QpZW9MVGi9z3E-clkHLhjor6C8WrKM9cfxTbNW2i-4V8yex3H368qD9Z0KGgJl5K2yXZ8wTDxEivQufZ-8-vXnPfa0GbkQk8WFphsg3ifG1p8IiijI2LEVMbGWpNGFUhmmdVHlshbFWISpTZaaMkUYlWV2jn7kHG03bVPeB1aUsiGesKBRRB8mytKok3BhXUZaXRQDR8Mq08UTmVE9joV1AI4XuFatRsdopVqsAXo59Tnsaj79KvyZLGCWJgtv90C6PtZ_ROpXo-4wVtjASY2pc1QurhAwLlVgMbNMAnpEdaSLZaCiL57hYd53ePfiod0SOqBehUh7ACy9UtzgGU_hDEagJ4uWaSG5OJNELmGnzYK7ae6FOY7gYS0K4WQBPx2bqSZl1TdWuSSbNlCK--gDyiZlPhj9taU6-OCZySdQ9AntuDcb-4-F_Vu-DfxN_Alf338703u78w0O4FrvpIngsNmFjtVxXj-Cy-bo66ZaP3dT_DrIEWkY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+comparison+of+common+event-based+differential+splicing+tools%3A+practical+considerations+for+laboratory+researchers&rft.jtitle=BMC+bioinformatics&rft.au=Muller%2C+Ittai+B&rft.au=Meijers%2C+Stijn&rft.au=Kampstra%2C+Peter&rft.au=van+Dijk%2C+Steven&rft.date=2021-06-26&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-021-04263-9&rft.externalDBID=ISR&rft.externalDocID=A672268187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon