Prediction of heart disease and classifiers’ sensitivity analysis

Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was perf...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 21; číslo 1; s. 1 - 18
Hlavný autor: Almustafa, Khaled Mohamad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 02.07.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN ( N  = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.
AbstractList Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.
Abstract Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.
Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN ( N  = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.
Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases.BACKGROUNDHeart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases.It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases.RESULTSIt was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases.Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.CONCLUSIONDifferent classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.
Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. Keywords: Heart disease (HD), Prediction, Classification, K-nearest neighbor, Support vector machine (SVM), Decision tree J48, Feature selection, Sensitivity analysis
Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.
ArticleNumber 278
Audience Academic
Author Almustafa, Khaled Mohamad
Author_xml – sequence: 1
  givenname: Khaled Mohamad
  orcidid: 0000-0003-2129-7686
  surname: Almustafa
  fullname: Almustafa, Khaled Mohamad
  email: kalmustafa@psu.edu.sa
  organization: Department of Information Systems, College of Computer and Information Systems, Prince Sultan University
BookMark eNp9kstu1DAUhiNURC_wAqwisYFFim9xnA1SNeIyUiUQl7XlsY-nHmXi4pNUZMdr8Ho8CZ6ZopIKVZZly_7-3_bxf1oc9bGHonhOyTmlSr5GylTdVoSRinDJZDU9Kk6oaGjFKKmP_pkfF6eIG0Joo0j9pDjmTNK6VeSkWHxK4IIdQuzL6MsrMGkoXUAwCKXpXWk7gxh8gIS_f_4qEXoMQ7gJw5S3TTdhwKfFY286hGe341nx7d3br4sP1eXH98vFxWVlJVVDJVzjW0VrS6WnrgHPWKOYX_ld5056sIp7aUSrxIpbT4wEI5wjqrWWKMvPiuXB10Wz0dcpbE2adDRB7xdiWut8-2A70MapdsVWsq1JK4hSyrSkpUQwAF-7hmavNwev63G1BWehH5LpZqbznT5c6XW80Q3nlHGeDV7eGqT4fQQc9Dagha4zPcQRNROM0JpTUWf0xT10E8eUi7en8h-xmqg7am3yA0LvYz7X7kz1hWRKCka5yNT5f6jcHGyDzfnwIa_PBK9mgswM8GNYmxFRL798nrPqwNoUERN4bcNgdtnIh4ROU6J3wdOH4OkcPL0Pnp6ylN2T_i3lgyJ-EGGG-zWku8I8oPoDoTLrZA
CitedBy_id crossref_primary_10_1080_0954898X_2022_2061062
crossref_primary_10_1097_CRD_0000000000000708
crossref_primary_10_3390_info13080360
crossref_primary_10_1016_j_knosys_2023_110379
crossref_primary_10_3233_JIFS_223048
crossref_primary_10_3390_diagnostics12123067
crossref_primary_10_3390_a16060308
crossref_primary_10_1016_j_imu_2021_100696
crossref_primary_10_3390_healthcare9050547
crossref_primary_10_1016_j_asoc_2022_109293
crossref_primary_10_3390_app11031285
crossref_primary_10_1080_21642583_2024_2420912
crossref_primary_10_1007_s11042_024_19680_0
crossref_primary_10_1007_s42044_023_00138_9
crossref_primary_10_1016_j_eswa_2023_120580
crossref_primary_10_1016_j_iswa_2022_200131
crossref_primary_10_46604_peti_2024_14787
crossref_primary_10_1007_s12559_023_10151_6
crossref_primary_10_1016_j_bspc_2022_104481
crossref_primary_10_1016_j_matpr_2021_01_570
crossref_primary_10_3390_app11188352
crossref_primary_10_1111_exsy_13300
crossref_primary_10_3390_diagnostics13040775
crossref_primary_10_1016_j_bspc_2022_103666
crossref_primary_10_1007_s12652_022_03750_y
crossref_primary_10_1016_j_bspc_2025_107849
crossref_primary_10_1080_10255842_2023_2245518
crossref_primary_10_1016_j_compbiomed_2023_107295
crossref_primary_10_1109_ACCESS_2024_3389707
crossref_primary_10_1016_j_heliyon_2021_e06948
crossref_primary_10_1002_cpe_6675
crossref_primary_10_1016_j_medengphy_2022_103825
crossref_primary_10_1016_j_bspc_2025_107723
crossref_primary_10_1007_s42979_023_01711_6
crossref_primary_10_1016_j_compbiolchem_2024_108278
crossref_primary_10_1080_1206212X_2023_2260619
crossref_primary_10_4018_IJACI_300795
crossref_primary_10_4018_IJSI_303582
crossref_primary_10_1007_s11831_024_10194_4
crossref_primary_10_3390_healthcare10061137
crossref_primary_10_1088_1742_6596_2089_1_012025
crossref_primary_10_1007_s11831_024_10075_w
crossref_primary_10_1007_s11042_023_17051_9
crossref_primary_10_3390_forecast3010012
crossref_primary_10_1016_j_compbiomed_2022_105959
crossref_primary_10_1016_j_prime_2024_100490
crossref_primary_10_3390_asi5040081
crossref_primary_10_4018_IJDWM_316145
crossref_primary_10_1016_j_imu_2023_101316
crossref_primary_10_1016_j_engappai_2025_110493
crossref_primary_10_1016_j_ibmed_2024_100193
crossref_primary_10_3390_healthcare11030330
crossref_primary_10_1007_s12530_025_09664_2
crossref_primary_10_1038_s41598_021_04649_y
Cites_doi 10.1109/ACCESS.2019.2923707
10.22266/ijies2019.0228.24
10.1007/s00521-018-03980-2
10.1016/j.procs.2017.11.283
10.1016/B978-1-55860-377-6.50023-2
10.1109/CMI.2016.7413789
10.1109/ICICES.2014.7033860
10.1201/b17320
10.21817/ijet/2017/v9i4/170904101
10.1109/ICCUBEA.2017.8463729
10.1016/j.jksuci.2011.09.002
10.1016/j.physa.2017.04.113
10.3390/s19235079
10.1111/exsy.12485
10.1016/j.cmpb.2019.104992
10.1016/j.knosys.2019.104923
10.1109/EMBC.2017.8037381
10.1016/j.patrec.2020.02.010
10.1016/j.procs.2016.05.288
10.1016/j.ijmedinf.2014.10.002
10.1111/exsy.12573
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-03626-y
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 18
ExternalDocumentID oai_doaj_org_article_ad89b2b6950940888a9091042eef5d71
PMC7331233
A628642134
10_1186_s12859_020_03626_y
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c618t-4d7f9815c16f1d7ef22782fbf2fbf3d6fec83f6a4984b3cf0a6ea4dd089cc08c3
IEDL.DBID K7-
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549873400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Fri Oct 03 12:38:00 EDT 2025
Tue Nov 04 01:50:53 EST 2025
Sun Nov 09 14:02:59 EST 2025
Mon Oct 06 18:22:07 EDT 2025
Tue Nov 11 10:12:12 EST 2025
Tue Nov 04 17:40:20 EST 2025
Thu Nov 13 15:34:08 EST 2025
Sat Nov 29 05:40:07 EST 2025
Tue Nov 18 20:58:03 EST 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Support vector machine (SVM)
Feature selection
Decision tree J48
Sensitivity analysis
Heart disease (HD)
Prediction
Classification
K-nearest neighbor
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-4d7f9815c16f1d7ef22782fbf2fbf3d6fec83f6a4984b3cf0a6ea4dd089cc08c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2129-7686
OpenAccessLink https://www.proquest.com/docview/2424712508?pq-origsite=%requestingapplication%
PMID 32615980
PQID 2424712508
PQPubID 44065
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_ad89b2b6950940888a9091042eef5d71
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331233
proquest_miscellaneous_2420153145
proquest_journals_2424712508
gale_infotracmisc_A628642134
gale_infotracacademiconefile_A628642134
gale_incontextgauss_ISR_A628642134
crossref_citationtrail_10_1186_s12859_020_03626_y
crossref_primary_10_1186_s12859_020_03626_y
springer_journals_10_1186_s12859_020_03626_y
PublicationCentury 2000
PublicationDate 2020-07-02
PublicationDateYYYYMMDD 2020-07-02
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References Y Khourdifi (3626_CR1) 2019; 12
AF Otoom (3626_CR12) 2015; 9
S Radhimeenakshi (3626_CR24) 2016
T Tuncer (3626_CR29) 2019; 186
AS Abdullah (3626_CR6) 2012
N Al-milli (3626_CR18) 2013; 56
K Uyar (3626_CR22) 2017; 120
PK Anooj (3626_CR9) 2012; 24
3626_CR28
LJ Muhammad (3626_CR27) 2018; 11
T Karaylan (3626_CR19) 2017; 2017
Y Freund (3626_CR38) 1995
M Abdar (3626_CR32) 2019; 179
JS Sonawane (3626_CR25) 2014
SMS Shah (3626_CR23) 2017; 482
M Fatima (3626_CR11) 2017; 9
3626_CR21
K Vembandasamy (3626_CR13) 2015; 2
E Nasarian (3626_CR26) 2020; 133
RN Kandala (3626_CR30) 2019; 19
A Gavhane (3626_CR5) 2018
W Dai (3626_CR3) 2015; 84
K Saxenab (3626_CR17) 2016; 85
3626_CR35
M Durairaj (3626_CR4) 2015
3626_CR34
3626_CR8
3626_CR37
3626_CR7
3626_CR14
HG Lee (3626_CR15) 2007
3626_CR36
HA Esfahani (3626_CR20) 2017
3626_CR16
V Krishnaiah (3626_CR10) 2016; 136
3626_CR31
S Mohan (3626_CR2) 2016; 4
3626_CR33
References_xml – start-page: 218
  volume-title: “Mining Biosignal Data: Coronary Artery Disease Diagnosis using Linear and Nonlinear Features of HRV,”Pacific-Asia Conference on Knowledge Discovery and Data Mining , Emerging Technologies in Knowledge Discovery and Data Mining
  year: 2007
  ident: 3626_CR15
– volume: 4
  start-page: 1
  year: 2016
  ident: 3626_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923707
– volume: 12
  start-page: 242
  issue: 1
  year: 2019
  ident: 3626_CR1
  publication-title: Int J Intell Eng Syst
  doi: 10.22266/ijies2019.0228.24
– ident: 3626_CR7
– ident: 3626_CR33
  doi: 10.1007/s00521-018-03980-2
– volume: 120
  start-page: 588
  year: 2017
  ident: 3626_CR22
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.283
– start-page: 1011
  volume-title: “Cardiovascular disease detection using a new ensemble classifier”, IEEE 4th international conference on knowledge-based engineering and innovation (KBEI), Tehran
  year: 2017
  ident: 3626_CR20
– ident: 3626_CR37
  doi: 10.1016/B978-1-55860-377-6.50023-2
– ident: 3626_CR8
  doi: 10.1109/CMI.2016.7413789
– start-page: 1
  volume-title: Prediction of heart disease using multilayer perceptron neural network
  year: 2014
  ident: 3626_CR25
  doi: 10.1109/ICICES.2014.7033860
– ident: 3626_CR36
  doi: 10.1201/b17320
– ident: 3626_CR14
  doi: 10.21817/ijet/2017/v9i4/170904101
– start-page: 235
  volume-title: Prediction Of Heart Disease Using Back Propagation MLP Algorithm
  year: 2015
  ident: 3626_CR4
– ident: 3626_CR16
  doi: 10.1109/ICCUBEA.2017.8463729
– ident: 3626_CR34
– start-page: 22
  volume-title: “A Data mining Model for predicting the Coronary Heart Disease using Random Forest Classifier”, Proceedings on International Conference in Recent trends in Computational Methods, Communication and Controls (Icon3c)
  year: 2012
  ident: 3626_CR6
– volume: 24
  start-page: 27
  issue: 1
  year: 2012
  ident: 3626_CR9
  publication-title: J King Saud Univ Comput Inf Sci
  doi: 10.1016/j.jksuci.2011.09.002
– volume: 2
  start-page: 441
  year: 2015
  ident: 3626_CR13
  publication-title: Eng Technol
– volume: 482
  start-page: 796
  year: 2017
  ident: 3626_CR23
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.04.113
– volume: 9
  start-page: 143
  issue: 1
  year: 2015
  ident: 3626_CR12
  publication-title: Int J Software Eng Appl
– volume: 19
  start-page: 5079
  issue: 23
  year: 2019
  ident: 3626_CR30
  publication-title: Sensors
  doi: 10.3390/s19235079
– start-page: 1275
  volume-title: “Prediction of Heart Disease Using Machine Learning” Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), (Iceca)
  year: 2018
  ident: 3626_CR5
– volume: 56
  start-page: 131
  issue: 1
  year: 2013
  ident: 3626_CR18
  publication-title: J Theor Appl Inform Technol
– ident: 3626_CR31
  doi: 10.1111/exsy.12485
– volume: 179
  start-page: 104992
  year: 2019
  ident: 3626_CR32
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2019.104992
– volume: 2017
  start-page: 719
  year: 2017
  ident: 3626_CR19
  publication-title: Int Conf Comput Sci Eng (UBMK) Antalya
– volume: 186
  start-page: 104923
  year: 2019
  ident: 3626_CR29
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2019.104923
– ident: 3626_CR21
  doi: 10.1109/EMBC.2017.8037381
– volume: 11
  start-page: 49
  issue: 3
  year: 2018
  ident: 3626_CR27
  publication-title: Sci Technol
– volume-title: A decision-theoretic generalization of on-line learning and an application to boosting
  year: 1995
  ident: 3626_CR38
– volume: 133
  start-page: 33
  year: 2020
  ident: 3626_CR26
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2020.02.010
– start-page: 3107
  volume-title: Classification and prediction of heart disease risk using data mining techniques of Support Vector Machine and Artificial Neural Network
  year: 2016
  ident: 3626_CR24
– ident: 3626_CR35
– volume: 9
  start-page: 1
  issue: 01
  year: 2017
  ident: 3626_CR11
  publication-title: J Intell Learn Syst Appl
– volume: 85
  start-page: 962
  year: 2016
  ident: 3626_CR17
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.05.288
– volume: 136
  start-page: 43
  issue: 2
  year: 2016
  ident: 3626_CR10
  publication-title: Int J Comput Appl
– volume: 84
  start-page: 189
  issue: 3
  year: 2015
  ident: 3626_CR3
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2014.10.002
– ident: 3626_CR28
  doi: 10.1111/exsy.12573
SSID ssj0017805
Score 2.622935
Snippet Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care...
Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to...
Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care...
Abstract Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Bayesian analysis
Bioinformatics
Biomedical and Life Sciences
Cardiovascular disease
Cardiovascular diseases
Classification
Classifiers
Comparative analysis
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Coronary artery disease
Datasets
Decision tree J48
Decision trees
Feature extraction
Health care industry
Heart disease (HD)
Heart diseases
High definition television
K-nearest neighbor
Life Sciences
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Methodology
Methodology Article
Microarrays
Neural networks
Performance enhancement
Prediction
Sensitivity analysis
Support vector machine (SVM)
Support vector machines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiKcIlCogJA5g1U68sX0sFRVcqoqH1Jvl-AEroSza7CLtrX-jf6-_pB7H2RIq4MIhl3iiJF9mMjPyzDcALxkXVXC2JdIwTqK_pST6dUVUawStgkCfkIZNiONjeXqqTn4Z9YU1YQM98ADcvnFStVXbqMT0FvM1o9DF8cr7MHOpe7yKUc-YTOX9A2TqH1tkZLPfM-RpI5gqJf4Vspm4ocTWf_2ffL1O8rfN0uSDju7CnRw8lgfDQ9-DG767D7eGcZKbB3B4ssRtF4S6XIQSZ1WvyrwDU5rOlRZD5XnA6dcXZ-dlj8Xrw_SIuDyQkzyEL0fvPh--J3lIArENkyvCnQhKspllTWBO-IC9rVVoAx61a4K3sg6N4UrytraBmsYb7hyVyloqbf0IdrpF5x9DGUMzKkIwEWbKWUtbVwuvZspxFrMaOyuAjZhpmxnEcZDFd50yCdnoAWcdcdYJZ70p4PX2mh8Df8Zfpd_ip9hKIvd1OhE1QmeN0P_SiAJe4IfUyG7RYfnMV7Pue_3h00d9gI24HEnsCniVhcIivoM1uRshIoGEWBPJ3YlkND87XR71RWfz7zX23IgYOlJZwPPtMl6JJW2dX6yTTAzFasYjrmKiZ5PXn65082-JAhwnbVZ1XcCbUSOvbv5neJ_8D3ifwu0qGZKI9rQLO6vl2j-Dm_bnat4v95IZXgIUDDPu
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BAYlL-a1IKSggJA4QYSfe2D6WigouVdUC6s1y_FNWqhK02UXaG6_B6_EkeBxnUSggwSGXeKzE4xnPWDPzDcAzynjprWkKoSkrgr0lRbDrspCN5qT0HG1CbDbBj47E2Zk8TkVh_ZjtPoYk40kd1VrUr3qKWGsFXncihkqxvgrXgrkTqI4npx83sQNE6R_LY347b2KCIlL_5fP4co7kL4HSaH8Ob_3fn9-G7eRv5vuDgNyBK669CzeGDpTre3BwvMBIDe5O3vkc21sv8xS0yXVrc4Pe9dxjw-zvX7_lPea7Dw0nwvCAZ3IfPhy-eX_wtkh9FQpTU7EsmOU-sG1maO2p5c5jOWzpG49PZWvvjKh8rZkUrKmMJ7p2mllLhDSGCFPtwFbbte4B5MGbI9x7zQjiGDWksRV3ciYto-EiZGYZ0JHVyiTQcex9caHi5UPUamCOCsxRkTlqncGLzZzPA-TGX6lf4w5uKBEuO77oFucqaZ_SVsimbGoZ4QLDpV9L9JNY6ZyfWU4zeIr7rxAQo8WMm3O96nv17vRE7WPtLkPcuwyeJyLfhTUYnQoYAicQQ2tCuTehDBprpsOjmKl0YvQKy3R48DaJyODJZhhnYhZc67pVpAneW0VZ4CufiOdk-dORdv4pooZjc86yqjJ4OQrpz4__mb27_0b-EG6WUc55EPc92FouVu4RXDdflvN-8Tjq6Q98EDnh
  priority: 102
  providerName: Springer Nature
Title Prediction of heart disease and classifiers’ sensitivity analysis
URI https://link.springer.com/article/10.1186/s12859-020-03626-y
https://www.proquest.com/docview/2424712508
https://www.proquest.com/docview/2420153145
https://pubmed.ncbi.nlm.nih.gov/PMC7331233
https://doaj.org/article/ad89b2b6950940888a9091042eef5d71
Volume 21
WOSCitedRecordID wos000549873400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfYBhIv_EcERhUQEg9gLU6c2H5C27SJCVFFHaDCi-XY8aiEktG0SH3ja_D1-CT4HLdTmNgLD4mU3kWpfWff2Xf-HUIvCGWpNbrCXBGKnb1NsLPrAotKsSS1DGyCLzbBxmM-nYoybLh1Ia1yPSf6idq0GvbI9-AYA3PWOOFvzr9jqBoF0dVQQmML7ZA0JaDn7xjeRBEAr399UIYXex0BtDYMCyaPwoJXA2PkMfsvz8yXsyX_Cpl6S3R8-3_bcAfdCj5ovN8rzV10rW7uoRt9VcrVfXRYziF6AxKLWxtDyetFHAI5sWpMrMHjnlkoov3756-4gxz4vgiFI_cYJw_Qx-OjD4dvcai1gHVB-AJTw6zgJNeksMSw2sIR2dRWFq7MFLbWPLOFooLTKtM2UUWtqDEJF1onXGcP0XbTNvUjFDsPL2HWKpoAtlGVVCZjtciFocQtjnQeIbLudKkDEDnUw_gm_YKEF7IXlHSCkl5QchWhV5t3znsYjiu5D0CWG06A0PY_tPMzGUakVIaLKq0K4SEEOedKgO9E07q2uWEkQs9BEySAZDSQhXOmll0nT04nch_O81LAwovQy8BkW9cGrcKhBtcTgKs14NwdcLpRrIfktcrIMIt08kJfIvRsQ4Y3ITOuqdul53EeXUao61c2UNRB84eUZvbVI4lDwc40yyL0eq3SFx__d_c-vvq_PkE3Uz_GmBtqu2h7MV_WT9F1_WMx6-YjtMWmzN_5CO0cHI3LychvhIz82B1B8m3p7mX-xdHLk_flZ_c0Of30B4K5S7I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VAioX_hGBAgGBOEDUOPHG9gGhUqi6allVUKS9GceO25VQUja7oL3xGrwED8WT4HGSrUJFbz1w2Es8ya6d-fGsZ74P4CmhLLFG5xFXhEYu3saRi-siErlicWIZxgRPNsFGIz4ei_0V-NX1wmBZZecTvaM2lcb_yDewjYG5aBzz18dfI2SNwtPVjkKjUYvdYvHdpWz1q-Fb936fJcn2u4OtnahlFYh0RvgsooZZwclAk8wSwwqLzaCJzS1-UpPZQvPUZooKTvNU21hlhaLGxFxoHXOduudegIvOjzMsIWPjZYJHkB-ga8zh2UZNEB0uwgTNo75Ei17w8xwBpyPB6erMv45ofeTbvva_rdl1uNruscPNxihuwEpR3oTLDevm4hZs7U_xdAo1MqxsiJTes7A9qApVaUKNGcXEIkn47x8_wxpr_BuSDTfcYLjchk_nMoM7sFpWZXEXQreDjZm1isaI3ZTHuUlZIQbCUOKSPz0IgHQvWeoWaB35Pr5In3DxTDaKIZ1iSK8YchHAi-U9xw3MyJnSb1B3lpIIEe4vVNND2XocqQwXeZJnwkMkcs6VwL0hTYrCDgwjATxBzZMIAlJildGhmte1HH78IDexX5ki1l8Az1shW7k5aNU2bbiVQNywnuR6T9J5Kd0f7lRUtl6ylif6GcDj5TDeiZV_ZVHNvYzbsaaEunVlPcPoTb8_Uk6OPFI6EpImaRrAy86ETr7838t77-zf-gjWdg7e78m94Wj3PlxJvH0zZ-brsDqbzosHcEl_m03q6UPvHUL4fN6m9QcmzKMY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BgYoL_4hAgYCQOEDUOPHG9rEUVlSg1YoC6s1y_FNWqpJqk0XaG6_B6_EkeJxkIRSQEIdc4rEij8eZsWbm-wCeEMoyZ3SZcEVo4v1tmni_LhJRKpZmjqFPCGQTbDbjR0di_lMXf6h2H1KSXU8DojRV7e6pcd0R58VuQxB3LcGrT8BTSdbn4QJF0iC8rx9-3OQRELF_aJX57byROwqo_Wf_zWfrJX9JmgZfNL36_6u4Blf6ODTe6wznOpyz1Q241DFTrm_C_nyJGRzctbh2MdJet3GfzIlVZWKNUffCIZH2ty9f4wbr4DsiCj_c4Zzcgg_TV-_3Xyc930KiC8LbhBrmBCcTTQpHDLMO22QzVzp8clM4q3nuCkUFp2WuXaoKq6gxKRdap1znt2Grqit7B2If5aXMOUVTxDcq09LkzIqJMJT4C5KeREAGtUvdg5EjJ8aJDJcSXshOOdIrRwblyHUEzzZzTjsojr9Kv8Dd3EgijHZ4US-PZX8qpTJclFlZiAAjyDlXAuMnmlnrJoaRCB6jLUgEyqiwEudYrZpGHhy-k3vY00sRDy-Cp72Qq_0atOobG7wmEFtrJLkzkvQnWY-HB5OT_Z-kkdi-w3wUmvIIHm2GcSZWx1W2XgUZH9XlhHq9spGpjpY_HqkWnwKaOJJ2ZnkewfPBYH98_M_qvftv4g9he_5yKt8ezN7cg8tZMHnmLX8Httrlyt6Hi_pzu2iWD8Lx_Q7wmUWp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+heart+disease+and+classifiers%E2%80%99+sensitivity+analysis&rft.jtitle=BMC+bioinformatics&rft.au=Almustafa%2C+Khaled+Mohamad&rft.date=2020-07-02&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-03626-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_020_03626_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon