Prediction of heart disease and classifiers’ sensitivity analysis
Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was perf...
Uložené v:
| Vydané v: | BMC bioinformatics Ročník 21; číslo 1; s. 1 - 18 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
02.07.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases.
Results
It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (
N
= 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases.
Conclusion
Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. |
|---|---|
| AbstractList | Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. Abstract Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN ( N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases.BACKGROUNDHeart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases.It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases.RESULTSIt was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases.Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones.CONCLUSIONDifferent classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. Keywords: Heart disease (HD), Prediction, Classification, K-nearest neighbor, Support vector machine (SVM), Decision tree J48, Feature selection, Sensitivity analysis Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to prevent their patients for such a disease and to save lives. In this paper, a comparative analysis of different classifiers was performed for the classification of the Heart Disease dataset in order to correctly classify and or predict HD cases with minimal attributes. The set contains 76 attributes including the class attribute, for 1025 patients collected from Cleveland, Hungary, Switzerland, and Long Beach, but in this paper, only a subset of 14 attributes are used, and each attribute has a given set value. The algorithms used K- Nearest Neighbor (K-NN), Naive Bayes, Decision tree J48, JRip, SVM, Adaboost, Stochastic Gradient Decent (SGD) and Decision Table (DT) classifiers to show the performance of the selected classifications algorithms to best classify, and or predict, the HD cases. Results It was shown that using different classification algorithms for the classification of the HD dataset gives very promising results in term of the classification accuracy for the K-NN (K = 1), Decision tree J48 and JRip classifiers with accuracy of classification of 99.7073, 98.0488 and 97.2683% respectively. A feature extraction method was performed using Classifier Subset Evaluator on the HD dataset, and results show enhanced performance in term of the classification accuracy for K-NN (N = 1) and Decision Table classifiers to 100 and 93.8537% respectively after using the selected features by only applying a combination of up to 4 attributes instead of 13 attributes for the predication of the HD cases. Conclusion Different classifiers were used and compared to classify the HD dataset, and we concluded the benefit of having a reliable feature selection method for HD disease prediction with using minimal number of attributes instead of having to consider all available ones. |
| ArticleNumber | 278 |
| Audience | Academic |
| Author | Almustafa, Khaled Mohamad |
| Author_xml | – sequence: 1 givenname: Khaled Mohamad orcidid: 0000-0003-2129-7686 surname: Almustafa fullname: Almustafa, Khaled Mohamad email: kalmustafa@psu.edu.sa organization: Department of Information Systems, College of Computer and Information Systems, Prince Sultan University |
| BookMark | eNp9kstu1DAUhiNURC_wAqwisYFFim9xnA1SNeIyUiUQl7XlsY-nHmXi4pNUZMdr8Ho8CZ6ZopIKVZZly_7-3_bxf1oc9bGHonhOyTmlSr5GylTdVoSRinDJZDU9Kk6oaGjFKKmP_pkfF6eIG0Joo0j9pDjmTNK6VeSkWHxK4IIdQuzL6MsrMGkoXUAwCKXpXWk7gxh8gIS_f_4qEXoMQ7gJw5S3TTdhwKfFY286hGe341nx7d3br4sP1eXH98vFxWVlJVVDJVzjW0VrS6WnrgHPWKOYX_ld5056sIp7aUSrxIpbT4wEI5wjqrWWKMvPiuXB10Wz0dcpbE2adDRB7xdiWut8-2A70MapdsVWsq1JK4hSyrSkpUQwAF-7hmavNwev63G1BWehH5LpZqbznT5c6XW80Q3nlHGeDV7eGqT4fQQc9Dagha4zPcQRNROM0JpTUWf0xT10E8eUi7en8h-xmqg7am3yA0LvYz7X7kz1hWRKCka5yNT5f6jcHGyDzfnwIa_PBK9mgswM8GNYmxFRL798nrPqwNoUERN4bcNgdtnIh4ROU6J3wdOH4OkcPL0Pnp6ylN2T_i3lgyJ-EGGG-zWku8I8oPoDoTLrZA |
| CitedBy_id | crossref_primary_10_1080_0954898X_2022_2061062 crossref_primary_10_1097_CRD_0000000000000708 crossref_primary_10_3390_info13080360 crossref_primary_10_1016_j_knosys_2023_110379 crossref_primary_10_3233_JIFS_223048 crossref_primary_10_3390_diagnostics12123067 crossref_primary_10_3390_a16060308 crossref_primary_10_1016_j_imu_2021_100696 crossref_primary_10_3390_healthcare9050547 crossref_primary_10_1016_j_asoc_2022_109293 crossref_primary_10_3390_app11031285 crossref_primary_10_1080_21642583_2024_2420912 crossref_primary_10_1007_s11042_024_19680_0 crossref_primary_10_1007_s42044_023_00138_9 crossref_primary_10_1016_j_eswa_2023_120580 crossref_primary_10_1016_j_iswa_2022_200131 crossref_primary_10_46604_peti_2024_14787 crossref_primary_10_1007_s12559_023_10151_6 crossref_primary_10_1016_j_bspc_2022_104481 crossref_primary_10_1016_j_matpr_2021_01_570 crossref_primary_10_3390_app11188352 crossref_primary_10_1111_exsy_13300 crossref_primary_10_3390_diagnostics13040775 crossref_primary_10_1016_j_bspc_2022_103666 crossref_primary_10_1007_s12652_022_03750_y crossref_primary_10_1016_j_bspc_2025_107849 crossref_primary_10_1080_10255842_2023_2245518 crossref_primary_10_1016_j_compbiomed_2023_107295 crossref_primary_10_1109_ACCESS_2024_3389707 crossref_primary_10_1016_j_heliyon_2021_e06948 crossref_primary_10_1002_cpe_6675 crossref_primary_10_1016_j_medengphy_2022_103825 crossref_primary_10_1016_j_bspc_2025_107723 crossref_primary_10_1007_s42979_023_01711_6 crossref_primary_10_1016_j_compbiolchem_2024_108278 crossref_primary_10_1080_1206212X_2023_2260619 crossref_primary_10_4018_IJACI_300795 crossref_primary_10_4018_IJSI_303582 crossref_primary_10_1007_s11831_024_10194_4 crossref_primary_10_3390_healthcare10061137 crossref_primary_10_1088_1742_6596_2089_1_012025 crossref_primary_10_1007_s11831_024_10075_w crossref_primary_10_1007_s11042_023_17051_9 crossref_primary_10_3390_forecast3010012 crossref_primary_10_1016_j_compbiomed_2022_105959 crossref_primary_10_1016_j_prime_2024_100490 crossref_primary_10_3390_asi5040081 crossref_primary_10_4018_IJDWM_316145 crossref_primary_10_1016_j_imu_2023_101316 crossref_primary_10_1016_j_engappai_2025_110493 crossref_primary_10_1016_j_ibmed_2024_100193 crossref_primary_10_3390_healthcare11030330 crossref_primary_10_1007_s12530_025_09664_2 crossref_primary_10_1038_s41598_021_04649_y |
| Cites_doi | 10.1109/ACCESS.2019.2923707 10.22266/ijies2019.0228.24 10.1007/s00521-018-03980-2 10.1016/j.procs.2017.11.283 10.1016/B978-1-55860-377-6.50023-2 10.1109/CMI.2016.7413789 10.1109/ICICES.2014.7033860 10.1201/b17320 10.21817/ijet/2017/v9i4/170904101 10.1109/ICCUBEA.2017.8463729 10.1016/j.jksuci.2011.09.002 10.1016/j.physa.2017.04.113 10.3390/s19235079 10.1111/exsy.12485 10.1016/j.cmpb.2019.104992 10.1016/j.knosys.2019.104923 10.1109/EMBC.2017.8037381 10.1016/j.patrec.2020.02.010 10.1016/j.procs.2016.05.288 10.1016/j.ijmedinf.2014.10.002 10.1111/exsy.12573 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
| DOI | 10.1186/s12859-020-03626-y |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_ad89b2b6950940888a9091042eef5d71 PMC7331233 A628642134 10_1186_s12859_020_03626_y |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c618t-4d7f9815c16f1d7ef22782fbf2fbf3d6fec83f6a4984b3cf0a6ea4dd089cc08c3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000549873400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:38:00 EDT 2025 Tue Nov 04 01:50:53 EST 2025 Sun Nov 09 14:02:59 EST 2025 Mon Oct 06 18:22:07 EDT 2025 Tue Nov 11 10:12:12 EST 2025 Tue Nov 04 17:40:20 EST 2025 Thu Nov 13 15:34:08 EST 2025 Sat Nov 29 05:40:07 EST 2025 Tue Nov 18 20:58:03 EST 2025 Sat Sep 06 07:27:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Support vector machine (SVM) Feature selection Decision tree J48 Sensitivity analysis Heart disease (HD) Prediction Classification K-nearest neighbor |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c618t-4d7f9815c16f1d7ef22782fbf2fbf3d6fec83f6a4984b3cf0a6ea4dd089cc08c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2129-7686 |
| OpenAccessLink | https://www.proquest.com/docview/2424712508?pq-origsite=%requestingapplication% |
| PMID | 32615980 |
| PQID | 2424712508 |
| PQPubID | 44065 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ad89b2b6950940888a9091042eef5d71 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7331233 proquest_miscellaneous_2420153145 proquest_journals_2424712508 gale_infotracmisc_A628642134 gale_infotracacademiconefile_A628642134 gale_incontextgauss_ISR_A628642134 crossref_citationtrail_10_1186_s12859_020_03626_y crossref_primary_10_1186_s12859_020_03626_y springer_journals_10_1186_s12859_020_03626_y |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-02 |
| PublicationDateYYYYMMDD | 2020-07-02 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | Y Khourdifi (3626_CR1) 2019; 12 AF Otoom (3626_CR12) 2015; 9 S Radhimeenakshi (3626_CR24) 2016 T Tuncer (3626_CR29) 2019; 186 AS Abdullah (3626_CR6) 2012 N Al-milli (3626_CR18) 2013; 56 K Uyar (3626_CR22) 2017; 120 PK Anooj (3626_CR9) 2012; 24 3626_CR28 LJ Muhammad (3626_CR27) 2018; 11 T Karaylan (3626_CR19) 2017; 2017 Y Freund (3626_CR38) 1995 M Abdar (3626_CR32) 2019; 179 JS Sonawane (3626_CR25) 2014 SMS Shah (3626_CR23) 2017; 482 M Fatima (3626_CR11) 2017; 9 3626_CR21 K Vembandasamy (3626_CR13) 2015; 2 E Nasarian (3626_CR26) 2020; 133 RN Kandala (3626_CR30) 2019; 19 A Gavhane (3626_CR5) 2018 W Dai (3626_CR3) 2015; 84 K Saxenab (3626_CR17) 2016; 85 3626_CR35 M Durairaj (3626_CR4) 2015 3626_CR34 3626_CR8 3626_CR37 3626_CR7 3626_CR14 HG Lee (3626_CR15) 2007 3626_CR36 HA Esfahani (3626_CR20) 2017 3626_CR16 V Krishnaiah (3626_CR10) 2016; 136 3626_CR31 S Mohan (3626_CR2) 2016; 4 3626_CR33 |
| References_xml | – start-page: 218 volume-title: “Mining Biosignal Data: Coronary Artery Disease Diagnosis using Linear and Nonlinear Features of HRV,”Pacific-Asia Conference on Knowledge Discovery and Data Mining , Emerging Technologies in Knowledge Discovery and Data Mining year: 2007 ident: 3626_CR15 – volume: 4 start-page: 1 year: 2016 ident: 3626_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923707 – volume: 12 start-page: 242 issue: 1 year: 2019 ident: 3626_CR1 publication-title: Int J Intell Eng Syst doi: 10.22266/ijies2019.0228.24 – ident: 3626_CR7 – ident: 3626_CR33 doi: 10.1007/s00521-018-03980-2 – volume: 120 start-page: 588 year: 2017 ident: 3626_CR22 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.283 – start-page: 1011 volume-title: “Cardiovascular disease detection using a new ensemble classifier”, IEEE 4th international conference on knowledge-based engineering and innovation (KBEI), Tehran year: 2017 ident: 3626_CR20 – ident: 3626_CR37 doi: 10.1016/B978-1-55860-377-6.50023-2 – ident: 3626_CR8 doi: 10.1109/CMI.2016.7413789 – start-page: 1 volume-title: Prediction of heart disease using multilayer perceptron neural network year: 2014 ident: 3626_CR25 doi: 10.1109/ICICES.2014.7033860 – ident: 3626_CR36 doi: 10.1201/b17320 – ident: 3626_CR14 doi: 10.21817/ijet/2017/v9i4/170904101 – start-page: 235 volume-title: Prediction Of Heart Disease Using Back Propagation MLP Algorithm year: 2015 ident: 3626_CR4 – ident: 3626_CR16 doi: 10.1109/ICCUBEA.2017.8463729 – ident: 3626_CR34 – start-page: 22 volume-title: “A Data mining Model for predicting the Coronary Heart Disease using Random Forest Classifier”, Proceedings on International Conference in Recent trends in Computational Methods, Communication and Controls (Icon3c) year: 2012 ident: 3626_CR6 – volume: 24 start-page: 27 issue: 1 year: 2012 ident: 3626_CR9 publication-title: J King Saud Univ Comput Inf Sci doi: 10.1016/j.jksuci.2011.09.002 – volume: 2 start-page: 441 year: 2015 ident: 3626_CR13 publication-title: Eng Technol – volume: 482 start-page: 796 year: 2017 ident: 3626_CR23 publication-title: Physica A doi: 10.1016/j.physa.2017.04.113 – volume: 9 start-page: 143 issue: 1 year: 2015 ident: 3626_CR12 publication-title: Int J Software Eng Appl – volume: 19 start-page: 5079 issue: 23 year: 2019 ident: 3626_CR30 publication-title: Sensors doi: 10.3390/s19235079 – start-page: 1275 volume-title: “Prediction of Heart Disease Using Machine Learning” Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), (Iceca) year: 2018 ident: 3626_CR5 – volume: 56 start-page: 131 issue: 1 year: 2013 ident: 3626_CR18 publication-title: J Theor Appl Inform Technol – ident: 3626_CR31 doi: 10.1111/exsy.12485 – volume: 179 start-page: 104992 year: 2019 ident: 3626_CR32 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2019.104992 – volume: 2017 start-page: 719 year: 2017 ident: 3626_CR19 publication-title: Int Conf Comput Sci Eng (UBMK) Antalya – volume: 186 start-page: 104923 year: 2019 ident: 3626_CR29 publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2019.104923 – ident: 3626_CR21 doi: 10.1109/EMBC.2017.8037381 – volume: 11 start-page: 49 issue: 3 year: 2018 ident: 3626_CR27 publication-title: Sci Technol – volume-title: A decision-theoretic generalization of on-line learning and an application to boosting year: 1995 ident: 3626_CR38 – volume: 133 start-page: 33 year: 2020 ident: 3626_CR26 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2020.02.010 – start-page: 3107 volume-title: Classification and prediction of heart disease risk using data mining techniques of Support Vector Machine and Artificial Neural Network year: 2016 ident: 3626_CR24 – ident: 3626_CR35 – volume: 9 start-page: 1 issue: 01 year: 2017 ident: 3626_CR11 publication-title: J Intell Learn Syst Appl – volume: 85 start-page: 962 year: 2016 ident: 3626_CR17 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.05.288 – volume: 136 start-page: 43 issue: 2 year: 2016 ident: 3626_CR10 publication-title: Int J Comput Appl – volume: 84 start-page: 189 issue: 3 year: 2015 ident: 3626_CR3 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2014.10.002 – ident: 3626_CR28 doi: 10.1111/exsy.12573 |
| SSID | ssj0017805 |
| Score | 2.622935 |
| Snippet | Background
Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care... Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care providers to... Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health care... Abstract Background Heart disease (HD) is one of the most common diseases nowadays, and an early diagnosis of such a disease is a crucial task for many health... |
| SourceID | doaj pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Bayesian analysis Bioinformatics Biomedical and Life Sciences Cardiovascular disease Cardiovascular diseases Classification Classifiers Comparative analysis Computational Biology/Bioinformatics Computer Appl. in Life Sciences Coronary artery disease Datasets Decision tree J48 Decision trees Feature extraction Health care industry Heart disease (HD) Heart diseases High definition television K-nearest neighbor Life Sciences Machine learning Machine Learning and Artificial Intelligence in Bioinformatics Methodology Methodology Article Microarrays Neural networks Performance enhancement Prediction Sensitivity analysis Support vector machine (SVM) Support vector machines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiKcIlCogJA5g1U68sX0sFRVcqoqH1Jvl-AEroSza7CLtrX-jf6-_pB7H2RIq4MIhl3iiJF9mMjPyzDcALxkXVXC2JdIwTqK_pST6dUVUawStgkCfkIZNiONjeXqqTn4Z9YU1YQM98ADcvnFStVXbqMT0FvM1o9DF8cr7MHOpe7yKUc-YTOX9A2TqH1tkZLPfM-RpI5gqJf4Vspm4ocTWf_2ffL1O8rfN0uSDju7CnRw8lgfDQ9-DG767D7eGcZKbB3B4ssRtF4S6XIQSZ1WvyrwDU5rOlRZD5XnA6dcXZ-dlj8Xrw_SIuDyQkzyEL0fvPh--J3lIArENkyvCnQhKspllTWBO-IC9rVVoAx61a4K3sg6N4UrytraBmsYb7hyVyloqbf0IdrpF5x9DGUMzKkIwEWbKWUtbVwuvZspxFrMaOyuAjZhpmxnEcZDFd50yCdnoAWcdcdYJZ70p4PX2mh8Df8Zfpd_ip9hKIvd1OhE1QmeN0P_SiAJe4IfUyG7RYfnMV7Pue_3h00d9gI24HEnsCniVhcIivoM1uRshIoGEWBPJ3YlkND87XR71RWfz7zX23IgYOlJZwPPtMl6JJW2dX6yTTAzFasYjrmKiZ5PXn65082-JAhwnbVZ1XcCbUSOvbv5neJ_8D3ifwu0qGZKI9rQLO6vl2j-Dm_bnat4v95IZXgIUDDPu priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5BAYlL-a1IKSggJA4QYSfe2D6WigouVdUC6s1y_FNWqhK02UXaG6_B6_EkeBxnUSggwSGXeKzE4xnPWDPzDcAzynjprWkKoSkrgr0lRbDrspCN5qT0HG1CbDbBj47E2Zk8TkVh_ZjtPoYk40kd1VrUr3qKWGsFXncihkqxvgrXgrkTqI4npx83sQNE6R_LY347b2KCIlL_5fP4co7kL4HSaH8Ob_3fn9-G7eRv5vuDgNyBK669CzeGDpTre3BwvMBIDe5O3vkc21sv8xS0yXVrc4Pe9dxjw-zvX7_lPea7Dw0nwvCAZ3IfPhy-eX_wtkh9FQpTU7EsmOU-sG1maO2p5c5jOWzpG49PZWvvjKh8rZkUrKmMJ7p2mllLhDSGCFPtwFbbte4B5MGbI9x7zQjiGDWksRV3ciYto-EiZGYZ0JHVyiTQcex9caHi5UPUamCOCsxRkTlqncGLzZzPA-TGX6lf4w5uKBEuO77oFucqaZ_SVsimbGoZ4QLDpV9L9JNY6ZyfWU4zeIr7rxAQo8WMm3O96nv17vRE7WPtLkPcuwyeJyLfhTUYnQoYAicQQ2tCuTehDBprpsOjmKl0YvQKy3R48DaJyODJZhhnYhZc67pVpAneW0VZ4CufiOdk-dORdv4pooZjc86yqjJ4OQrpz4__mb27_0b-EG6WUc55EPc92FouVu4RXDdflvN-8Tjq6Q98EDnh priority: 102 providerName: Springer Nature |
| Title | Prediction of heart disease and classifiers’ sensitivity analysis |
| URI | https://link.springer.com/article/10.1186/s12859-020-03626-y https://www.proquest.com/docview/2424712508 https://www.proquest.com/docview/2420153145 https://pubmed.ncbi.nlm.nih.gov/PMC7331233 https://doaj.org/article/ad89b2b6950940888a9091042eef5d71 |
| Volume | 21 |
| WOSCitedRecordID | wos000549873400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfYBhIv_EcERhUQEg9gLU6c2H5C27SJCVFFHaDCi-XY8aiEktG0SH3ja_D1-CT4HLdTmNgLD4mU3kWpfWff2Xf-HUIvCGWpNbrCXBGKnb1NsLPrAotKsSS1DGyCLzbBxmM-nYoybLh1Ia1yPSf6idq0GvbI9-AYA3PWOOFvzr9jqBoF0dVQQmML7ZA0JaDn7xjeRBEAr399UIYXex0BtDYMCyaPwoJXA2PkMfsvz8yXsyX_Cpl6S3R8-3_bcAfdCj5ovN8rzV10rW7uoRt9VcrVfXRYziF6AxKLWxtDyetFHAI5sWpMrMHjnlkoov3756-4gxz4vgiFI_cYJw_Qx-OjD4dvcai1gHVB-AJTw6zgJNeksMSw2sIR2dRWFq7MFLbWPLOFooLTKtM2UUWtqDEJF1onXGcP0XbTNvUjFDsPL2HWKpoAtlGVVCZjtciFocQtjnQeIbLudKkDEDnUw_gm_YKEF7IXlHSCkl5QchWhV5t3znsYjiu5D0CWG06A0PY_tPMzGUakVIaLKq0K4SEEOedKgO9E07q2uWEkQs9BEySAZDSQhXOmll0nT04nch_O81LAwovQy8BkW9cGrcKhBtcTgKs14NwdcLpRrIfktcrIMIt08kJfIvRsQ4Y3ITOuqdul53EeXUao61c2UNRB84eUZvbVI4lDwc40yyL0eq3SFx__d_c-vvq_PkE3Uz_GmBtqu2h7MV_WT9F1_WMx6-YjtMWmzN_5CO0cHI3LychvhIz82B1B8m3p7mX-xdHLk_flZ_c0Of30B4K5S7I |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VAioX_hGBAgGBOEDUOPHG9gGhUqi6allVUKS9GceO25VQUja7oL3xGrwED8WT4HGSrUJFbz1w2Es8ya6d-fGsZ74P4CmhLLFG5xFXhEYu3saRi-siErlicWIZxgRPNsFGIz4ei_0V-NX1wmBZZecTvaM2lcb_yDewjYG5aBzz18dfI2SNwtPVjkKjUYvdYvHdpWz1q-Fb936fJcn2u4OtnahlFYh0RvgsooZZwclAk8wSwwqLzaCJzS1-UpPZQvPUZooKTvNU21hlhaLGxFxoHXOduudegIvOjzMsIWPjZYJHkB-ga8zh2UZNEB0uwgTNo75Ei17w8xwBpyPB6erMv45ofeTbvva_rdl1uNruscPNxihuwEpR3oTLDevm4hZs7U_xdAo1MqxsiJTes7A9qApVaUKNGcXEIkn47x8_wxpr_BuSDTfcYLjchk_nMoM7sFpWZXEXQreDjZm1isaI3ZTHuUlZIQbCUOKSPz0IgHQvWeoWaB35Pr5In3DxTDaKIZ1iSK8YchHAi-U9xw3MyJnSb1B3lpIIEe4vVNND2XocqQwXeZJnwkMkcs6VwL0hTYrCDgwjATxBzZMIAlJildGhmte1HH78IDexX5ki1l8Az1shW7k5aNU2bbiVQNywnuR6T9J5Kd0f7lRUtl6ylif6GcDj5TDeiZV_ZVHNvYzbsaaEunVlPcPoTb8_Uk6OPFI6EpImaRrAy86ETr7838t77-zf-gjWdg7e78m94Wj3PlxJvH0zZ-brsDqbzosHcEl_m03q6UPvHUL4fN6m9QcmzKMY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BgYoL_4hAgYCQOEDUOPHG9rEUVlSg1YoC6s1y_FNWqpJqk0XaG6_B6_EkeJxkIRSQEIdc4rEij8eZsWbm-wCeEMoyZ3SZcEVo4v1tmni_LhJRKpZmjqFPCGQTbDbjR0di_lMXf6h2H1KSXU8DojRV7e6pcd0R58VuQxB3LcGrT8BTSdbn4QJF0iC8rx9-3OQRELF_aJX57byROwqo_Wf_zWfrJX9JmgZfNL36_6u4Blf6ODTe6wznOpyz1Q241DFTrm_C_nyJGRzctbh2MdJet3GfzIlVZWKNUffCIZH2ty9f4wbr4DsiCj_c4Zzcgg_TV-_3Xyc930KiC8LbhBrmBCcTTQpHDLMO22QzVzp8clM4q3nuCkUFp2WuXaoKq6gxKRdap1znt2Grqit7B2If5aXMOUVTxDcq09LkzIqJMJT4C5KeREAGtUvdg5EjJ8aJDJcSXshOOdIrRwblyHUEzzZzTjsojr9Kv8Dd3EgijHZ4US-PZX8qpTJclFlZiAAjyDlXAuMnmlnrJoaRCB6jLUgEyqiwEudYrZpGHhy-k3vY00sRDy-Cp72Qq_0atOobG7wmEFtrJLkzkvQnWY-HB5OT_Z-kkdi-w3wUmvIIHm2GcSZWx1W2XgUZH9XlhHq9spGpjpY_HqkWnwKaOJJ2ZnkewfPBYH98_M_qvftv4g9he_5yKt8ezN7cg8tZMHnmLX8Httrlyt6Hi_pzu2iWD8Lx_Q7wmUWp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+heart+disease+and+classifiers%E2%80%99+sensitivity+analysis&rft.jtitle=BMC+bioinformatics&rft.au=Almustafa%2C+Khaled+Mohamad&rft.date=2020-07-02&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-020-03626-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_020_03626_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |