Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning method...
Saved in:
| Published in: | BMC bioinformatics Vol. 21; no. 1; pp. 1 - 16 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
21.07.2020
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction.
Results
Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human,
Drosophila
, Escherichia coli (
E. coli
), and Caenorhabditis elegans (
C. elegan
) datasets.
Conclusion
Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD,
E.coli
,
C.elegan
, and
Drosophila
. |
|---|---|
| AbstractList | Abstract Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila. Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila. Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila. Keywords: Protein-protein interaction, Representation learning, Network embedding, Variational graph auto-encoder Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila. Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila , Escherichia coli ( E. coli ), and Caenorhabditis elegans ( C. elegan ) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli , C.elegan , and Drosophila . Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction.BACKGROUNDProtein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction.Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets.RESULTSFacing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets.Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila.CONCLUSIONHere, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila. |
| ArticleNumber | 323 |
| Audience | Academic |
| Author | Song, Dandan Yang, Fang Lin, Huakang Fan, Kunjie |
| Author_xml | – sequence: 1 givenname: Fang surname: Yang fullname: Yang, Fang organization: School of Computer Science and Technology, Beijing Institute of Technology – sequence: 2 givenname: Kunjie surname: Fan fullname: Fan, Kunjie organization: Department of Biomedical Informatics, College of Medicine, The Ohio State University – sequence: 3 givenname: Dandan orcidid: 0000-0002-7239-6900 surname: Song fullname: Song, Dandan email: sdd@bit.edu.cn organization: School of Computer Science and Technology, Beijing Institute of Technology – sequence: 4 givenname: Huakang surname: Lin fullname: Lin, Huakang organization: School of Computer Science and Technology, Beijing Institute of Technology |
| BookMark | eNp9kktv1DAUhSNURB_wB1hFYgOLFL-S2BukqoIyUiUQjyWybOc64ypjD7bD49_jmVTQqVDlxbXs7xz7Xp3T6sgHD1X1HKNzjHn3OmHCW9EgghpEO9Y1_FF1glmPG4JRe3Rnf1ydpnSDEO45ap9Ux5R0gvYCnVTfrqLarhutEgz1NsLgTHbB18HWH2PI4HyzXWrtfIao9tep_unyulY5R6fnXKTJjb6UcedWw0bDMDg_Pq0eWzUleHZbz6qv795-uXzfXH-4Wl1eXDemwzw3zChtKQPNOeWCt3zo2MCUUgKEZha3veW9IoR1CJixWJDSVIdoay1nhmB6Vq0W3yGoG7mNbqPibxmUk_uDEEepYnZmAkmw0Nh0PWo1YRqEMIhpqrGwTFkkVPF6s3htZ72BwYDPUU0Hpoc33q3lGH7Invak72gxeHlrEMP3GVKWG5cMTJPyEOYkCSOl6xbTHfriHnoT5ujLqApFW8RbRO5QoyoNOG9DedfsTOVFR7FABWKFOv8PVdYAG2dKcqwr5weCVweCwmT4lUc1pyRXnz8dsmRhTQwpRbB_54GR3IVRLmGUJYxyH0bJi4jfExmX1S4_5WduelhKF2kq7_gR4r_BPKD6A72P8kc |
| CitedBy_id | crossref_primary_10_1038_s41598_023_31612_w crossref_primary_10_3390_ijms22189983 crossref_primary_10_3390_biom12091246 crossref_primary_10_1109_ACCESS_2021_3119569 crossref_primary_10_1002_prot_26577 crossref_primary_10_1186_s13059_022_02739_2 crossref_primary_10_1109_TCBB_2023_3248797 crossref_primary_10_1016_j_csbj_2023_01_028 crossref_primary_10_1016_j_compbiomed_2024_108669 crossref_primary_10_3390_ijms23137033 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_1002_widm_1451 crossref_primary_10_1093_bib_bbab521 crossref_primary_10_1186_s12864_024_10299_x crossref_primary_10_1016_j_compbiomed_2022_106471 crossref_primary_10_1186_s12859_024_05690_0 crossref_primary_10_1016_j_eswa_2024_125030 crossref_primary_10_1109_TCYB_2021_3126434 crossref_primary_10_1186_s12859_024_05973_6 crossref_primary_10_1038_s41580_025_00857_w crossref_primary_10_1109_TC_2025_3541141 crossref_primary_10_3390_ijms25115870 crossref_primary_10_1093_bib_bbad261 crossref_primary_10_1016_j_csbj_2022_12_006 crossref_primary_10_1038_s41598_024_78954_7 crossref_primary_10_1109_TNB_2023_3251192 crossref_primary_10_1007_s10489_024_06223_1 crossref_primary_10_1109_TCBB_2024_3486216 crossref_primary_10_3390_e23060643 crossref_primary_10_1002_wcms_1618 crossref_primary_10_1093_bib_bbad020 crossref_primary_10_1186_s12859_022_04811_x crossref_primary_10_1145_3714407 crossref_primary_10_1016_j_elerap_2023_101326 crossref_primary_10_1186_s12859_022_04624_y crossref_primary_10_1016_j_procs_2022_09_261 crossref_primary_10_1038_s41598_024_72784_3 crossref_primary_10_3390_molecules27186135 crossref_primary_10_1080_13658816_2025_2455075 crossref_primary_10_3389_frai_2023_1256352 crossref_primary_10_1186_s12859_022_04910_9 crossref_primary_10_1038_s41598_022_12201_9 crossref_primary_10_1080_17460441_2021_1910673 crossref_primary_10_1007_s11633_024_1510_8 crossref_primary_10_1007_s42979_024_03644_0 crossref_primary_10_1016_j_csbj_2022_08_070 crossref_primary_10_1109_TNSE_2021_3131223 crossref_primary_10_1145_3613449 crossref_primary_10_1016_j_csbj_2022_06_025 crossref_primary_10_1016_j_csbj_2024_06_022 crossref_primary_10_1038_s41551_022_00942_x crossref_primary_10_1109_TCBB_2021_3123269 crossref_primary_10_1016_j_cmpb_2022_107247 crossref_primary_10_1186_s13321_025_00979_5 crossref_primary_10_3390_s23084168 crossref_primary_10_1089_cmb_2024_0804 crossref_primary_10_3389_fgene_2022_827540 crossref_primary_10_2174_1574893618666230504143647 crossref_primary_10_1016_j_neucom_2021_10_031 crossref_primary_10_1093_bioinformatics_btaf473 crossref_primary_10_1016_j_compbiomed_2023_107588 crossref_primary_10_1186_s12859_022_04942_1 crossref_primary_10_1002_med_21847 crossref_primary_10_1109_TVCG_2024_3456406 crossref_primary_10_1016_j_knosys_2025_113472 crossref_primary_10_1109_TCBB_2022_3157531 crossref_primary_10_59786_bmtj_313 crossref_primary_10_1186_s12859_024_05779_6 crossref_primary_10_1093_bioadv_vbac059 crossref_primary_10_1109_JAS_2021_1004198 crossref_primary_10_31083_KO39497 crossref_primary_10_1007_s12551_022_01038_1 crossref_primary_10_1016_j_compeleceng_2023_108855 crossref_primary_10_1186_s12859_022_05062_6 crossref_primary_10_1038_s42256_022_00469_5 crossref_primary_10_1016_j_compbiomed_2022_106526 crossref_primary_10_1093_femsre_fuad003 crossref_primary_10_1186_s12859_024_06015_x crossref_primary_10_3390_ijms22062903 crossref_primary_10_1016_j_asoc_2023_110153 crossref_primary_10_1016_j_compenvurbsys_2024_102094 crossref_primary_10_1089_cmb_2021_0316 crossref_primary_10_1007_s11042_024_18738_3 crossref_primary_10_1038_s41598_022_13796_9 crossref_primary_10_3389_fbioe_2022_998298 crossref_primary_10_1109_TCBB_2023_3273567 crossref_primary_10_3389_frai_2024_1424012 |
| Cites_doi | 10.1073/pnas.061034498 10.1186/1471-2105-11-144 10.1109/bibe.2007.4375729 10.1038/415180a 10.1016/j.neucom.2018.02.097 10.1038/srep07702 10.1145/2736277.2741093 10.1109/jbhi.2018.2845866 10.1186/1756-0500-3-145 10.1109/BIBE.2007.4375748 10.1186/s12859-017-1700-2 10.1021/pr100618t 10.1016/j.sbi.2015.09.003 10.1021/acs.jcim.7b00028 10.1093/nar/gkz337 10.1016/j.compbiolchem.2016.09.011 10.1089/106652703322756168 10.1155/2014/598129 10.1073/pnas.0607879104 10.1016/j.dib.2016.05.014 10.1016/j.gpb.2017.07.003 10.1093/bioinformatics/btz328 10.1093/bioinformatics/bti721 10.1093/bioinformatics/btq510 10.1038/nbt1116 10.1038/415141a 10.1002/pmic.201200326 10.1002/pmic.200700131 10.1186/1471-2105-8-391 10.1093/bioinformatics/bty573 10.1007/978-1-4939-3145-3_17 10.1155/2015/867516 10.1016/j.jtbi.2011.05.023 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2020 – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1186/s12859-020-03646-8 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_219b1c6705b24be99c04b3b19f4af09a PMC7372763 A631900234 10_1186_s12859_020_03646_8 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c618t-4cabf34eb88389858d64d4aaa9e9b4f157f87a22460e4cf1922106035ff84c213 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 109 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554464600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Mon Nov 10 04:30:39 EST 2025 Tue Nov 04 01:34:34 EST 2025 Sun Nov 09 13:15:40 EST 2025 Tue Oct 07 05:33:25 EDT 2025 Tue Nov 11 08:10:40 EST 2025 Tue Nov 04 17:12:55 EST 2025 Thu Nov 13 14:21:37 EST 2025 Sat Nov 29 05:40:07 EST 2025 Tue Nov 18 21:55:10 EST 2025 Sat Sep 06 07:27:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Representation learning Network embedding Protein-protein interaction Variational graph auto-encoder |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c618t-4cabf34eb88389858d64d4aaa9e9b4f157f87a22460e4cf1922106035ff84c213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7239-6900 |
| OpenAccessLink | https://doaj.org/article/219b1c6705b24be99c04b3b19f4af09a |
| PMID | 32693790 |
| PQID | 2435085023 |
| PQPubID | 44065 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_219b1c6705b24be99c04b3b19f4af09a pubmedcentral_primary_oai_pubmedcentral_nih_gov_7372763 proquest_miscellaneous_2426185133 proquest_journals_2435085023 gale_infotracmisc_A631900234 gale_infotracacademiconefile_A631900234 gale_incontextgauss_ISR_A631900234 crossref_primary_10_1186_s12859_020_03646_8 crossref_citationtrail_10_1186_s12859_020_03646_8 springer_journals_10_1186_s12859_020_03646_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-21 |
| PublicationDateYYYYMMDD | 2020-07-21 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | S Dohkan (3646_CR16) 2006; 6 3646_CR31 3646_CR30 ZH You (3646_CR15) 2015; 10 3646_CR37 3646_CR33 3646_CR32 3646_CR35 ZH You (3646_CR46) 2013; 14 X Du (3646_CR21) 2017; 57 C Cao (3646_CR19) 2018; 16 XY Pan (3646_CR34) 2010; 9 S Hashemifar (3646_CR23) 2018; 34 3646_CR26 3646_CR25 X Luo (3646_CR8) 2015; 5 3646_CR27 3646_CR22 3646_CR29 RS Wang (3646_CR2) 2007; 8 T Ito (3646_CR3) 2001; 98 Y Guo (3646_CR18) 2010; 3 3646_CR7 J Shen (3646_CR47) 2007; 104 3646_CR17 O Byron (3646_CR10) 2015; 35 3646_CR13 T Berggård (3646_CR1) 2007; 7 AC Gavin (3646_CR4) 2002; 415 YN Zhang (3646_CR36) 2011; 283 B Zagidullin (3646_CR40) 2019; 47 T Sun (3646_CR20) 2017; 18 X Glorot (3646_CR43) 2010 ZH You (3646_CR28) 2010; 26 Y Ho (3646_CR5) 2002; 415 N Srivastava (3646_CR42) 2014; 15 M Hue (3646_CR39) 2010; 11 I Segura-Bedmar (3646_CR41) 2013 3646_CR48 L Zhang (3646_CR24) 2019; 324 3646_CR49 3646_CR44 3646_CR45 M Deng (3646_CR11) 2003; 10 X Lin (3646_CR14) 2013; 13 H Huang (3646_CR6) 2016; 8 XW Chen (3646_CR12) 2005; 21 R Vyas (3646_CR38) 2016; 65 JDJ Han (3646_CR9) 2005; 23 |
| References_xml | – volume: 98 start-page: 4569 issue: 8 year: 2001 ident: 3646_CR3 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.061034498 – volume: 14 start-page: 10 issue: 8 year: 2013 ident: 3646_CR46 publication-title: BMC Bioinformatics – ident: 3646_CR31 – ident: 3646_CR26 – ident: 3646_CR49 – volume: 11 start-page: 144 issue: 1 year: 2010 ident: 3646_CR39 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-144 – ident: 3646_CR27 doi: 10.1109/bibe.2007.4375729 – ident: 3646_CR45 – volume: 415 start-page: 180 issue: 6868 year: 2002 ident: 3646_CR5 publication-title: Nature doi: 10.1038/415180a – volume: 324 start-page: 10 year: 2019 ident: 3646_CR24 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.097 – volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics year: 2010 ident: 3646_CR43 – ident: 3646_CR32 – volume: 5 start-page: 7702 year: 2015 ident: 3646_CR8 publication-title: Sci Rep doi: 10.1038/srep07702 – ident: 3646_CR30 doi: 10.1145/2736277.2741093 – ident: 3646_CR22 doi: 10.1109/jbhi.2018.2845866 – ident: 3646_CR25 – volume: 3 start-page: 145 issue: 1 year: 2010 ident: 3646_CR18 publication-title: BMC Res Notes doi: 10.1186/1756-0500-3-145 – ident: 3646_CR13 doi: 10.1109/BIBE.2007.4375748 – volume: 18 start-page: 277 issue: 1 year: 2017 ident: 3646_CR20 publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1700-2 – volume: 9 start-page: 4992 issue: 10 year: 2010 ident: 3646_CR34 publication-title: J Proteome Res doi: 10.1021/pr100618t – ident: 3646_CR29 – volume: 6 start-page: 515 issue: 6 year: 2006 ident: 3646_CR16 publication-title: In Silico Biol – volume: 35 start-page: 76 year: 2015 ident: 3646_CR10 publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2015.09.003 – volume: 10 start-page: 0125811 issue: 5 year: 2015 ident: 3646_CR15 publication-title: PLoS One – volume: 57 start-page: 1499 issue: 6 year: 2017 ident: 3646_CR21 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.7b00028 – volume: 47 start-page: 43 year: 2019 ident: 3646_CR40 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz337 – ident: 3646_CR33 – volume: 65 start-page: 37 year: 2016 ident: 3646_CR38 publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2016.09.011 – volume: 10 start-page: 947 issue: 6 year: 2003 ident: 3646_CR11 publication-title: J Comput Biol doi: 10.1089/106652703322756168 – ident: 3646_CR37 doi: 10.1155/2014/598129 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 3646_CR42 publication-title: J Mach Learn Res – volume: 104 start-page: 4337 issue: 11 year: 2007 ident: 3646_CR47 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0607879104 – volume: 8 start-page: 56 year: 2016 ident: 3646_CR6 publication-title: Data Brief doi: 10.1016/j.dib.2016.05.014 – volume: 16 start-page: 17 issue: 1 year: 2018 ident: 3646_CR19 publication-title: Genomics Proteomics Bioinforma doi: 10.1016/j.gpb.2017.07.003 – ident: 3646_CR35 doi: 10.1093/bioinformatics/btz328 – volume-title: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013) year: 2013 ident: 3646_CR41 – volume: 21 start-page: 4394 issue: 24 year: 2005 ident: 3646_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti721 – volume: 26 start-page: 2744 issue: 21 year: 2010 ident: 3646_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq510 – volume: 23 start-page: 839 issue: 7 year: 2005 ident: 3646_CR9 publication-title: Nat Biotechnol doi: 10.1038/nbt1116 – volume: 415 start-page: 141 issue: 6868 year: 2002 ident: 3646_CR4 publication-title: Nature doi: 10.1038/415141a – volume: 13 start-page: 261 issue: 2 year: 2013 ident: 3646_CR14 publication-title: Proteomics doi: 10.1002/pmic.201200326 – volume: 7 start-page: 2833 issue: 16 year: 2007 ident: 3646_CR1 publication-title: Proteomics doi: 10.1002/pmic.200700131 – volume: 8 start-page: 391 issue: 1 year: 2007 ident: 3646_CR2 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-8-391 – volume: 34 start-page: 802 issue: 17 year: 2018 ident: 3646_CR23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty573 – ident: 3646_CR7 doi: 10.1007/978-1-4939-3145-3_17 – ident: 3646_CR17 doi: 10.1155/2015/867516 – ident: 3646_CR44 – volume: 283 start-page: 44 issue: 1 year: 2011 ident: 3646_CR36 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2011.05.023 – ident: 3646_CR48 |
| SSID | ssj0017805 |
| Score | 2.629106 |
| Snippet | Background
Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are... Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming... Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are... Abstract Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying... |
| SourceID | doaj pubmedcentral proquest gale crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Bioinformatics Biological activity Biomedical and Life Sciences Coders Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Datasets Deep learning Drosophila E coli Embedding Escherichia coli Experimental methods Graph neural networks Graphical representations Identification methods Learning algorithms Life Sciences Machine learning Machine Learning and Artificial Intelligence in Bioinformatics Methodology Methodology Article Microarrays Network embedding Neural networks Predictions Protein interaction Protein-protein interaction Protein-protein interactions Proteins Representation learning Signal transduction Social networks Statistical methods Variational graph auto-encoder |
| SummonAdditionalLinks | – databaseName: Computer Science Database dbid: K7- link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9UwEA66KvjiXayuUkXwQcM2bZrLk6ziqgjL4gX2RUKSJusBbY-n5wj-e2fS9ix1cV98KjSTtunckszkG0Ke6mCtqKOlIoC6cZBg6qxmtKmitJaxyKuYik3Iw0N1fKyPxg23fkyrnGxiMtRN53GPfK8Ev47wamX1cvmTYtUojK6OJTQukkusLBnK-QdJt1EExOufDsoosdczRGujuGDC6JugauaMEmb_Wct8Nlvyr5Bp8kQH1_93DDfItXEOmu8PQnOTXAjtLXJlqEr5-zb5-hZBrCn6tyZfrjCSg9zLu5gfIarDoqXL4Zoj2MRqOBrR57ilm9v1UEILumJqCFwSJHYefrjQoJ-8Q74cvPn8-h0dqzBQL5haU-6tixUPTimY3KhaNYI33Fqrg3Y8slpGJS3i0hWB-wgzRlhFiqKqY1TcA1Pukp22a8M9koMzjK6JhXCN5tIHrRp4Qi1tAKEolM8Im9hh_AhRjpUyvpu0VFHCDCw0wEKTWGhURp5v-ywHgI5zqV8hl7eUCK6dbnSrEzPqqgEj7pgXsqhdyV3Q2hfcVY7pyG0stM3IE5QRg_AZLebnnNhN35v3nz6afQEmDedBPCPPRqLYwRi8HY87wJ9AxK0Z5e6MEvTbz5snYTKjfenNqSRl5PG2GXtizlwbug3SwOpYYf2ejMiZCM-GP29pF98SxjhWLwLFzciLSdhPX_7v33v__G99QK6WSfskLdku2VmvNuEhuex_rRf96lHS3T_dAUun priority: 102 providerName: ProQuest – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BAYkLb0RoiwJC4gBW48Rx7GOpKHCpqhZQL8iyHbusBMkq2UXi39fjJItCAQlOkdbjPMbz8s74G4Dn0mnNS68Jd0HdWJBgYrSkpC58pTWlnhU-Npuojo7E2Zk8Hg-F9VO1-5SSjJY6qrXgez1FrDWC2x3MnXEirsK14O4EquPJ6adN7gBR-qfjMb-dN3NBEan_sj2-XCP5S6I0-p_D2__35nfg1hhvpvuDgNyFK665BzeGDpQ_7sPntwhYTdCX1emyw6wNrlTa-vQYERwWDVkO1xSBJbrhGESf4t-3qV4N7bLCVCwDCZcIf526b8bV6BMfwMfDNx8O3pGx4wKxnIoVYVYbXzBnhAiBjChFzVnNtNbSScM8LSsvKo0YdJlj1ofoMOwYeVaU3gtmc1o8hK2mbdwjSIPj86b2GTe1ZJV1UtThDmWlXRCATNgE6LQIyo5w5NgV46uK2xLB1cA2FdimItuUSODlZs5yAOP4K_VrXNsNJQJpxx_a7lyNeqmCwTbU8iorTc6Mk9JmzBSGSs-0z6RO4BlKhkKojAZrcc71uu_V-9MTtc-D-cKYhyXwYiTybfgGq8ejDYETiK41o9yZUQZdtvPhSQDVaEt6lYeIFoEF8yKBp5thnIn1cY1r10gTdsICe_UkUM0Ed_b585Fm8SXiiWOnoqCkCbyaxPfnw__M3sf_Rr4NN_OoARXJ6Q5srbq124Xr9vtq0XdPogZfALggQkM priority: 102 providerName: Springer Nature |
| Title | Graph-based prediction of Protein-protein interactions with attributed signed graph embedding |
| URI | https://link.springer.com/article/10.1186/s12859-020-03646-8 https://www.proquest.com/docview/2435085023 https://www.proquest.com/docview/2426185133 https://pubmed.ncbi.nlm.nih.gov/PMC7372763 https://doaj.org/article/219b1c6705b24be99c04b3b19f4af09a |
| Volume | 21 |
| WOSCitedRecordID | wos000554464600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96KvgifmL1XKoIPmi4fqRJ-ngnd3qIS9lTWQUJSZrognaX7a7gf-9M2q7WQ33xJaWbyW47H5nJZvIbQh6XTmteeE25A3NjoMHU6DKlde6F1mnqWe5DsQkxncr5vKx-KfWFOWEdPHDHuAOwKJNaLpLCZMy4srQJM7lJS8-0T8oQGkHUMyym-v0DROofjshIftCmiNNGcamE-26cypEbCmj95-fk83mSv22WBh90cp1c64PH-LB76BvkgmtukitdOcnvt8jHF4g-TdEx1fFqjVswyPZ46eMK4RgWDV111xhRItbdmYY2xv9iY73pal_BUMzpgEvAso7dV-NqdHC3yduT4zfPX9K-fAK1PJUbyqw2PmfOSAlRiSxkzVnNtNalKw3zaSG8FBoB5RLHrIdQD5Z_PMkL7yWzWZrfIXvNsnF3SQxezJvaJ9zUJRPWlbKGbyiEdiDNRNqIpAM3le2xxbHExRcV1hiSq04CCiSgggSUjMjT3ZhVh6zxV-ojFNKOElGxwwegK6rXFfUvXYnIIxSxQtyLBhNrPult26rTs5k65DAXYQDDIvKkJ_JLeAer-3MKwAmEyhpR7o8owTDtuHvQJNVPDK3KIDxFlMAsj8jDXTeOxGS3xi23SAPLWomFdyIiRho4ev1xT7P4HMDBsewQWFxEng26-vPH_8zee_-DvffJ1SyYmKBZuk_2Nuute0Au22-bRbuekItiLkIrJ-TS0fG0mk2C0UL7StAJZt1W0FbFB-ivTl9X7-FudvbuB4GYRvk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0SgQEAgDmA1D8d2DgiVR-lqS1VBK_WCjO3YZSVIls0uqH-K34gnj61CRW89cIq0Hmdj55sZO7a_D-BJbpVimVOEWe9u1COYaJXHpEgdVyqOHU1dIzbBd3bEwUG-uwK_-7MwuK2yj4lNoC4qg9_I1xOf15FeLUlfTX8QVI3C1dVeQqOFxdge_fJTtvrl6K1_v0-TZPPd3pst0qkKEMNiMSfUKO1SarUQPlmLTBSMFlQpldtcUxdn3AmukGctstQ4PwLysyIWpZlzgpokTv19z8F5mgqOXP1jTparFqgP0B_MEWy9jpEdjuAEDVf7GBGD5NdoBJzMBCd3Z_61RNtkvs2r_1ufXYMr3Rg73Gid4jqs2PIGXGxVN49uwuf3SNJNMH8X4XSGK1WIzrBy4S6yVkxKMm2vIZJpzNqjH3WIn6xDNW8lwnxV3PriLw3ld2i_a1vgOOAW7J9J227DalmV9g6EPtk7XbiI6SKn3NhcFP4OGVfWgz4SJoC4f_3SdBTsqATyTTZTMcFkCxnpISMbyEgRwPNlnWlLQHKq9WtE1dISycObH6rZoexikfRJSseG8SjTCdU2z01Edarj3FHlolwF8BgxKZEepMT9R4dqUddy9Omj3GA-ZOM4jwbwrDNylW-DUd1xDt8TyCg2sFwbWPr4ZYbFPXhlFz9reYzcAB4ti7Em7gksbbVAGz_7F6hPFAAfuMyg-cOScvK14VBHdSYfmAJ40TvX8Z__u3vvnv6sD-HS1t6Hbbk92hnfg8tJ4_mcJPEarM5nC3sfLpif80k9e9DEjRC-nLXT_QEj4ade |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXv8XqqVUEHzRc06Zp8nh-rB7Ksngq9yIhSZNzQdtluyv435tJu6v1VBCfCptJSyYzmZmdyW8AHkqnNS-9JtwFdWNBgonRkpK68JXWlHpW-NhsoppOxdGRnP10iz9Wu29Skv2dBkRpalZ7i9r3Ki74XkcRd41g6IN5NE7EaTjDsGkQxuuHH7Z5BETs31yV-e28kTmKqP0nz-aT9ZK_JE2jLZpc-v9VXIaLgx-a7veCcwVOueYqnOs7U367Bh9fIpA1QRtXp4slZnNwB9PWpzNEdpg3ZNE_UwScWPbXI7oU_9ZN9apvoxWmYnlIeERY7NR9Ma5GW3kd3k9evHv2igydGIjlVKwIs9r4gjkjRHBwRClqzmqmtZZOGuZpWXlRacSmyxyzPniNIZLkWVF6L5jNaXEDdpq2cTchDQbRm9pn3NSSVdZJUYc3lJV2QTAyYROgmw1RdoApx24Zn1UMVwRXPdtUYJuKbFMigcfbOYsepOOv1E9xn7eUCLAdf2iXx2rQVxUOckMtr7LS5Mw4KW3GTGGo9Ez7TOoEHqCUKITQaLBG51ivu04dHL5V-zwca-gLsQQeDUS-DWuwerjyEDiBqFsjyt0RZdBxOx7eCKMazphO5cHTRcDBvEjg_nYYZ2LdXOPaNdKECFlgD58EqpEQj5Y_HmnmnyLOOHYwCsqbwJONKP_4-J_Ze-vfyO_B-dnziXpzMH19Gy7kURkqktNd2Fkt1-4OnLVfV_NueTcq9neN1k4L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-based+prediction+of+Protein-protein+interactions+with+attributed+signed+graph+embedding&rft.jtitle=BMC+bioinformatics&rft.au=Fang+Yang&rft.au=Kunjie+Fan&rft.au=Dandan+Song&rft.au=Huakang+Lin&rft.date=2020-07-21&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs12859-020-03646-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_219b1c6705b24be99c04b3b19f4af09a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |