Graph-based prediction of Protein-protein interactions with attributed signed graph embedding

Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning method...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 21; no. 1; pp. 1 - 16
Main Authors: Yang, Fang, Fan, Kunjie, Song, Dandan, Lin, Huakang
Format: Journal Article
Language:English
Published: London BioMed Central 21.07.2020
BioMed Central Ltd
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila , Escherichia coli ( E. coli ), and Caenorhabditis elegans ( C. elegan ) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli , C.elegan , and Drosophila .
AbstractList Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila.
Abstract Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila.
Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila. Keywords: Protein-protein interaction, Representation learning, Network embedding, Variational graph auto-encoder
Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila.
Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction. Results Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila , Escherichia coli ( E. coli ), and Caenorhabditis elegans ( C. elegan ) datasets. Conclusion Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli , C.elegan , and Drosophila .
Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction.BACKGROUNDProtein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming and expensive, it is important to develop automated computational methods to better predict PPIs. Various machine learning methods have been proposed, including a deep learning technique which is sequence-based that has achieved promising results. However, it only focuses on sequence information while ignoring the structural information of PPI networks. Structural information of PPI networks such as their degree, position, and neighboring nodes in a graph has been proved to be informative in PPI prediction.Facing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets.RESULTSFacing the challenge of representing graph information, we introduce an improved graph representation learning method. Our model can study PPI prediction based on both sequence information and graph structure. Moreover, our study takes advantage of a representation learning model and employs a graph-based deep learning method for PPI prediction, which shows superiority over existing sequence-based methods. Statistically, Our method achieves state-of-the-art accuracy of 99.15% on Human protein reference database (HPRD) dataset and also obtains best results on Database of Interacting Protein (DIP) Human, Drosophila, Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegan) datasets.Here, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila.CONCLUSIONHere, we introduce signed variational graph auto-encoder (S-VGAE), an improved graph representation learning method, to automatically learn to encode graph structure into low-dimensional embeddings. Experimental results demonstrate that our method outperforms other existing sequence-based methods on several datasets. We also prove the robustness of our model for very sparse networks and the generalization for a new dataset that consists of four datasets: HPRD, E.coli, C.elegan, and Drosophila.
ArticleNumber 323
Audience Academic
Author Song, Dandan
Yang, Fang
Lin, Huakang
Fan, Kunjie
Author_xml – sequence: 1
  givenname: Fang
  surname: Yang
  fullname: Yang, Fang
  organization: School of Computer Science and Technology, Beijing Institute of Technology
– sequence: 2
  givenname: Kunjie
  surname: Fan
  fullname: Fan, Kunjie
  organization: Department of Biomedical Informatics, College of Medicine, The Ohio State University
– sequence: 3
  givenname: Dandan
  orcidid: 0000-0002-7239-6900
  surname: Song
  fullname: Song, Dandan
  email: sdd@bit.edu.cn
  organization: School of Computer Science and Technology, Beijing Institute of Technology
– sequence: 4
  givenname: Huakang
  surname: Lin
  fullname: Lin, Huakang
  organization: School of Computer Science and Technology, Beijing Institute of Technology
BookMark eNp9kktv1DAUhSNURB_wB1hFYgOLFL-S2BukqoIyUiUQjyWybOc64ypjD7bD49_jmVTQqVDlxbXs7xz7Xp3T6sgHD1X1HKNzjHn3OmHCW9EgghpEO9Y1_FF1glmPG4JRe3Rnf1ydpnSDEO45ap9Ux5R0gvYCnVTfrqLarhutEgz1NsLgTHbB18HWH2PI4HyzXWrtfIao9tep_unyulY5R6fnXKTJjb6UcedWw0bDMDg_Pq0eWzUleHZbz6qv795-uXzfXH-4Wl1eXDemwzw3zChtKQPNOeWCt3zo2MCUUgKEZha3veW9IoR1CJixWJDSVIdoay1nhmB6Vq0W3yGoG7mNbqPibxmUk_uDEEepYnZmAkmw0Nh0PWo1YRqEMIhpqrGwTFkkVPF6s3htZ72BwYDPUU0Hpoc33q3lGH7Invak72gxeHlrEMP3GVKWG5cMTJPyEOYkCSOl6xbTHfriHnoT5ujLqApFW8RbRO5QoyoNOG9DedfsTOVFR7FABWKFOv8PVdYAG2dKcqwr5weCVweCwmT4lUc1pyRXnz8dsmRhTQwpRbB_54GR3IVRLmGUJYxyH0bJi4jfExmX1S4_5WduelhKF2kq7_gR4r_BPKD6A72P8kc
CitedBy_id crossref_primary_10_1038_s41598_023_31612_w
crossref_primary_10_3390_ijms22189983
crossref_primary_10_3390_biom12091246
crossref_primary_10_1109_ACCESS_2021_3119569
crossref_primary_10_1002_prot_26577
crossref_primary_10_1186_s13059_022_02739_2
crossref_primary_10_1109_TCBB_2023_3248797
crossref_primary_10_1016_j_csbj_2023_01_028
crossref_primary_10_1016_j_compbiomed_2024_108669
crossref_primary_10_3390_ijms23137033
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1002_widm_1451
crossref_primary_10_1093_bib_bbab521
crossref_primary_10_1186_s12864_024_10299_x
crossref_primary_10_1016_j_compbiomed_2022_106471
crossref_primary_10_1186_s12859_024_05690_0
crossref_primary_10_1016_j_eswa_2024_125030
crossref_primary_10_1109_TCYB_2021_3126434
crossref_primary_10_1186_s12859_024_05973_6
crossref_primary_10_1038_s41580_025_00857_w
crossref_primary_10_1109_TC_2025_3541141
crossref_primary_10_3390_ijms25115870
crossref_primary_10_1093_bib_bbad261
crossref_primary_10_1016_j_csbj_2022_12_006
crossref_primary_10_1038_s41598_024_78954_7
crossref_primary_10_1109_TNB_2023_3251192
crossref_primary_10_1007_s10489_024_06223_1
crossref_primary_10_1109_TCBB_2024_3486216
crossref_primary_10_3390_e23060643
crossref_primary_10_1002_wcms_1618
crossref_primary_10_1093_bib_bbad020
crossref_primary_10_1186_s12859_022_04811_x
crossref_primary_10_1145_3714407
crossref_primary_10_1016_j_elerap_2023_101326
crossref_primary_10_1186_s12859_022_04624_y
crossref_primary_10_1016_j_procs_2022_09_261
crossref_primary_10_1038_s41598_024_72784_3
crossref_primary_10_3390_molecules27186135
crossref_primary_10_1080_13658816_2025_2455075
crossref_primary_10_3389_frai_2023_1256352
crossref_primary_10_1186_s12859_022_04910_9
crossref_primary_10_1038_s41598_022_12201_9
crossref_primary_10_1080_17460441_2021_1910673
crossref_primary_10_1007_s11633_024_1510_8
crossref_primary_10_1007_s42979_024_03644_0
crossref_primary_10_1016_j_csbj_2022_08_070
crossref_primary_10_1109_TNSE_2021_3131223
crossref_primary_10_1145_3613449
crossref_primary_10_1016_j_csbj_2022_06_025
crossref_primary_10_1016_j_csbj_2024_06_022
crossref_primary_10_1038_s41551_022_00942_x
crossref_primary_10_1109_TCBB_2021_3123269
crossref_primary_10_1016_j_cmpb_2022_107247
crossref_primary_10_1186_s13321_025_00979_5
crossref_primary_10_3390_s23084168
crossref_primary_10_1089_cmb_2024_0804
crossref_primary_10_3389_fgene_2022_827540
crossref_primary_10_2174_1574893618666230504143647
crossref_primary_10_1016_j_neucom_2021_10_031
crossref_primary_10_1093_bioinformatics_btaf473
crossref_primary_10_1016_j_compbiomed_2023_107588
crossref_primary_10_1186_s12859_022_04942_1
crossref_primary_10_1002_med_21847
crossref_primary_10_1109_TVCG_2024_3456406
crossref_primary_10_1016_j_knosys_2025_113472
crossref_primary_10_1109_TCBB_2022_3157531
crossref_primary_10_59786_bmtj_313
crossref_primary_10_1186_s12859_024_05779_6
crossref_primary_10_1093_bioadv_vbac059
crossref_primary_10_1109_JAS_2021_1004198
crossref_primary_10_31083_KO39497
crossref_primary_10_1007_s12551_022_01038_1
crossref_primary_10_1016_j_compeleceng_2023_108855
crossref_primary_10_1186_s12859_022_05062_6
crossref_primary_10_1038_s42256_022_00469_5
crossref_primary_10_1016_j_compbiomed_2022_106526
crossref_primary_10_1093_femsre_fuad003
crossref_primary_10_1186_s12859_024_06015_x
crossref_primary_10_3390_ijms22062903
crossref_primary_10_1016_j_asoc_2023_110153
crossref_primary_10_1016_j_compenvurbsys_2024_102094
crossref_primary_10_1089_cmb_2021_0316
crossref_primary_10_1007_s11042_024_18738_3
crossref_primary_10_1038_s41598_022_13796_9
crossref_primary_10_3389_fbioe_2022_998298
crossref_primary_10_1109_TCBB_2023_3273567
crossref_primary_10_3389_frai_2024_1424012
Cites_doi 10.1073/pnas.061034498
10.1186/1471-2105-11-144
10.1109/bibe.2007.4375729
10.1038/415180a
10.1016/j.neucom.2018.02.097
10.1038/srep07702
10.1145/2736277.2741093
10.1109/jbhi.2018.2845866
10.1186/1756-0500-3-145
10.1109/BIBE.2007.4375748
10.1186/s12859-017-1700-2
10.1021/pr100618t
10.1016/j.sbi.2015.09.003
10.1021/acs.jcim.7b00028
10.1093/nar/gkz337
10.1016/j.compbiolchem.2016.09.011
10.1089/106652703322756168
10.1155/2014/598129
10.1073/pnas.0607879104
10.1016/j.dib.2016.05.014
10.1016/j.gpb.2017.07.003
10.1093/bioinformatics/btz328
10.1093/bioinformatics/bti721
10.1093/bioinformatics/btq510
10.1038/nbt1116
10.1038/415141a
10.1002/pmic.201200326
10.1002/pmic.200700131
10.1186/1471-2105-8-391
10.1093/bioinformatics/bty573
10.1007/978-1-4939-3145-3_17
10.1155/2015/867516
10.1016/j.jtbi.2011.05.023
ContentType Journal Article
Copyright The Author(s) 2020
COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-020-03646-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 16
ExternalDocumentID oai_doaj_org_article_219b1c6705b24be99c04b3b19f4af09a
PMC7372763
A631900234
10_1186_s12859_020_03646_8
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c618t-4cabf34eb88389858d64d4aaa9e9b4f157f87a22460e4cf1922106035ff84c213
IEDL.DBID K7-
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000554464600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:30:39 EST 2025
Tue Nov 04 01:34:34 EST 2025
Sun Nov 09 13:15:40 EST 2025
Tue Oct 07 05:33:25 EDT 2025
Tue Nov 11 08:10:40 EST 2025
Tue Nov 04 17:12:55 EST 2025
Thu Nov 13 14:21:37 EST 2025
Sat Nov 29 05:40:07 EST 2025
Tue Nov 18 21:55:10 EST 2025
Sat Sep 06 07:27:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Representation learning
Network embedding
Protein-protein interaction
Variational graph auto-encoder
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c618t-4cabf34eb88389858d64d4aaa9e9b4f157f87a22460e4cf1922106035ff84c213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7239-6900
OpenAccessLink https://www.proquest.com/docview/2435085023?pq-origsite=%requestingapplication%
PMID 32693790
PQID 2435085023
PQPubID 44065
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_219b1c6705b24be99c04b3b19f4af09a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7372763
proquest_miscellaneous_2426185133
proquest_journals_2435085023
gale_infotracmisc_A631900234
gale_infotracacademiconefile_A631900234
gale_incontextgauss_ISR_A631900234
crossref_primary_10_1186_s12859_020_03646_8
crossref_citationtrail_10_1186_s12859_020_03646_8
springer_journals_10_1186_s12859_020_03646_8
PublicationCentury 2000
PublicationDate 2020-07-21
PublicationDateYYYYMMDD 2020-07-21
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References S Dohkan (3646_CR16) 2006; 6
3646_CR31
3646_CR30
ZH You (3646_CR15) 2015; 10
3646_CR37
3646_CR33
3646_CR32
3646_CR35
ZH You (3646_CR46) 2013; 14
X Du (3646_CR21) 2017; 57
C Cao (3646_CR19) 2018; 16
XY Pan (3646_CR34) 2010; 9
S Hashemifar (3646_CR23) 2018; 34
3646_CR26
3646_CR25
X Luo (3646_CR8) 2015; 5
3646_CR27
3646_CR22
3646_CR29
RS Wang (3646_CR2) 2007; 8
T Ito (3646_CR3) 2001; 98
Y Guo (3646_CR18) 2010; 3
3646_CR7
J Shen (3646_CR47) 2007; 104
3646_CR17
O Byron (3646_CR10) 2015; 35
3646_CR13
T Berggård (3646_CR1) 2007; 7
AC Gavin (3646_CR4) 2002; 415
YN Zhang (3646_CR36) 2011; 283
B Zagidullin (3646_CR40) 2019; 47
T Sun (3646_CR20) 2017; 18
X Glorot (3646_CR43) 2010
ZH You (3646_CR28) 2010; 26
Y Ho (3646_CR5) 2002; 415
N Srivastava (3646_CR42) 2014; 15
M Hue (3646_CR39) 2010; 11
I Segura-Bedmar (3646_CR41) 2013
3646_CR48
L Zhang (3646_CR24) 2019; 324
3646_CR49
3646_CR44
3646_CR45
M Deng (3646_CR11) 2003; 10
X Lin (3646_CR14) 2013; 13
H Huang (3646_CR6) 2016; 8
XW Chen (3646_CR12) 2005; 21
R Vyas (3646_CR38) 2016; 65
JDJ Han (3646_CR9) 2005; 23
References_xml – volume: 98
  start-page: 4569
  issue: 8
  year: 2001
  ident: 3646_CR3
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.061034498
– volume: 14
  start-page: 10
  issue: 8
  year: 2013
  ident: 3646_CR46
  publication-title: BMC Bioinformatics
– ident: 3646_CR31
– ident: 3646_CR26
– ident: 3646_CR49
– volume: 11
  start-page: 144
  issue: 1
  year: 2010
  ident: 3646_CR39
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-144
– ident: 3646_CR27
  doi: 10.1109/bibe.2007.4375729
– ident: 3646_CR45
– volume: 415
  start-page: 180
  issue: 6868
  year: 2002
  ident: 3646_CR5
  publication-title: Nature
  doi: 10.1038/415180a
– volume: 324
  start-page: 10
  year: 2019
  ident: 3646_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.097
– volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
  year: 2010
  ident: 3646_CR43
– ident: 3646_CR32
– volume: 5
  start-page: 7702
  year: 2015
  ident: 3646_CR8
  publication-title: Sci Rep
  doi: 10.1038/srep07702
– ident: 3646_CR30
  doi: 10.1145/2736277.2741093
– ident: 3646_CR22
  doi: 10.1109/jbhi.2018.2845866
– ident: 3646_CR25
– volume: 3
  start-page: 145
  issue: 1
  year: 2010
  ident: 3646_CR18
  publication-title: BMC Res Notes
  doi: 10.1186/1756-0500-3-145
– ident: 3646_CR13
  doi: 10.1109/BIBE.2007.4375748
– volume: 18
  start-page: 277
  issue: 1
  year: 2017
  ident: 3646_CR20
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1700-2
– volume: 9
  start-page: 4992
  issue: 10
  year: 2010
  ident: 3646_CR34
  publication-title: J Proteome Res
  doi: 10.1021/pr100618t
– ident: 3646_CR29
– volume: 6
  start-page: 515
  issue: 6
  year: 2006
  ident: 3646_CR16
  publication-title: In Silico Biol
– volume: 35
  start-page: 76
  year: 2015
  ident: 3646_CR10
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2015.09.003
– volume: 10
  start-page: 0125811
  issue: 5
  year: 2015
  ident: 3646_CR15
  publication-title: PLoS One
– volume: 57
  start-page: 1499
  issue: 6
  year: 2017
  ident: 3646_CR21
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.7b00028
– volume: 47
  start-page: 43
  year: 2019
  ident: 3646_CR40
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz337
– ident: 3646_CR33
– volume: 65
  start-page: 37
  year: 2016
  ident: 3646_CR38
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2016.09.011
– volume: 10
  start-page: 947
  issue: 6
  year: 2003
  ident: 3646_CR11
  publication-title: J Comput Biol
  doi: 10.1089/106652703322756168
– ident: 3646_CR37
  doi: 10.1155/2014/598129
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 3646_CR42
  publication-title: J Mach Learn Res
– volume: 104
  start-page: 4337
  issue: 11
  year: 2007
  ident: 3646_CR47
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0607879104
– volume: 8
  start-page: 56
  year: 2016
  ident: 3646_CR6
  publication-title: Data Brief
  doi: 10.1016/j.dib.2016.05.014
– volume: 16
  start-page: 17
  issue: 1
  year: 2018
  ident: 3646_CR19
  publication-title: Genomics Proteomics Bioinforma
  doi: 10.1016/j.gpb.2017.07.003
– ident: 3646_CR35
  doi: 10.1093/bioinformatics/btz328
– volume-title: Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013)
  year: 2013
  ident: 3646_CR41
– volume: 21
  start-page: 4394
  issue: 24
  year: 2005
  ident: 3646_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti721
– volume: 26
  start-page: 2744
  issue: 21
  year: 2010
  ident: 3646_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq510
– volume: 23
  start-page: 839
  issue: 7
  year: 2005
  ident: 3646_CR9
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1116
– volume: 415
  start-page: 141
  issue: 6868
  year: 2002
  ident: 3646_CR4
  publication-title: Nature
  doi: 10.1038/415141a
– volume: 13
  start-page: 261
  issue: 2
  year: 2013
  ident: 3646_CR14
  publication-title: Proteomics
  doi: 10.1002/pmic.201200326
– volume: 7
  start-page: 2833
  issue: 16
  year: 2007
  ident: 3646_CR1
  publication-title: Proteomics
  doi: 10.1002/pmic.200700131
– volume: 8
  start-page: 391
  issue: 1
  year: 2007
  ident: 3646_CR2
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-391
– volume: 34
  start-page: 802
  issue: 17
  year: 2018
  ident: 3646_CR23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty573
– ident: 3646_CR7
  doi: 10.1007/978-1-4939-3145-3_17
– ident: 3646_CR17
  doi: 10.1155/2015/867516
– ident: 3646_CR44
– volume: 283
  start-page: 44
  issue: 1
  year: 2011
  ident: 3646_CR36
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2011.05.023
– ident: 3646_CR48
SSID ssj0017805
Score 2.629106
Snippet Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are...
Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are time-consuming...
Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying PPIs are...
Abstract Background Protein-protein interactions (PPIs) are central to many biological processes. Considering that the experimental methods for identifying...
SourceID doaj
pubmedcentral
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Algorithms
Bioinformatics
Biological activity
Biomedical and Life Sciences
Coders
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Datasets
Deep learning
Drosophila
E coli
Embedding
Escherichia coli
Experimental methods
Graph neural networks
Graphical representations
Identification methods
Learning algorithms
Life Sciences
Machine learning
Machine Learning and Artificial Intelligence in Bioinformatics
Methodology
Methodology Article
Microarrays
Network embedding
Neural networks
Predictions
Protein interaction
Protein-protein interaction
Protein-protein interactions
Proteins
Representation learning
Signal transduction
Social networks
Statistical methods
Variational graph auto-encoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kUfAi6xdWV6kieNCwTZumyXEVV70six-wFwlJmrgPtO_x-t6C_70zafu0LurFU6CZ0GZmkplpJr8BeFoH5bQrLOOhFEyUhWPaccVsi9ZZeqVV5VKxiebkRJ2d6dNfSn1RTtgADzww7hBXlONeNkXtSuGC1r4QrnJcR2FjoZNrhF7PFEyN5weE1D9dkVHysOeE08YoVKJzN8nUzAwltP7Le_LlPMnfDkuTDTrehxuj85gfDR99E66E7hZcG8pJfr8Nn98Q-jQjw9TmqzUdwRDb82XMTwmOYdGx1dDmhBKxHu409Dn9i83tZqh9hUMppwObhGWdh28utGTg7sCn49cfX71lY_kE5iVXGya8dbESwSmFXomqVStFK6y1OmgnIq-bqBpLgHJFED6iq4fhnyyqOkYlfMmru7DXLbtwD_IY0Oo7Lq3C8Il771ztgou2QWGGovEZ8Imbxo_Y4lTi4qtJMYaSZpCAQQmYJAGjMni-G7MakDX-Sv2ShLSjJFTs9AB1xYy6Yv6lKxk8IREbwr3oKLHmi932vXn34b05krgXkQMjMng2EsUlzsHb8Z4CcoKgsmaUBzNKXJh-3j1pkhk3ht6U6J4SSmBZZfB4100jKdmtC8st0WBYq6jwTgbNTANn05_3dIvzBA5OZYfQZmTwYtLVny__M3vv_w_2PoDrZVpiDSv5Aext1tvwEK76i82iXz9KC_QHIiA9lA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Ni9UwEB90VfDit1hdpYrgQcM2bZqmx1Vc9bIsuyp7kZCkyfpA-x7te4L_vTNp-6SuCnoqNBPaTuazk_wG4Gnpla1tZhj3uWAizyyrLVfMNOidpVO1KmxsNlEdHqrT0_poPBTWT7vdp5JktNRRrZXc6zlhrTFKd6h2Jpm6CJfQ3SlSx-OTj9vaAaH0T8djfjtv5oIiUv95e3x-j-QvhdLofw6u_9-b34BrY7yZ7g8CchMu-PYWXBk6UH6_DZ_eEGA1I1_WpKuOqja0UukypEeE4LBo2Wq4pgQs0Q3HIPqUft-mZj20y8KptA0ELxH-OvVfrW_IJ96BDwev3796y8aOC8xJrtZMOGNDIbxVCgMZVapGikYYY2pfWxF4WQVVGcKgy7xwAaNDzBhlVpQhKOFyXtyFnXbZ-nuQBo-BguXSKMy4uHPWltbbYCpcf59VLgE-LYJ2Ixw5dcX4omNaoqQe2KaRbTqyTasEnm_nrAYwjr9Sv6S13VISkHa8sezO9KiXGg225U5WWWlzYX1du0xYfO86CBOy2iTwhCRDE1RGS3txzsym7_W7k2O9L9F8UcwjEng2EoUlfoMz49EG5ASha80od2eUqMtuPjwJoB5tSa9zjGgJWDAvEni8HaaZtD-u9csN0WAmrKhXTwLVTHBnnz8faRefI544dSpCN5PAi0l8fz78z-y9_2_kD-BqHjWgYjnfhZ11t_EP4bL7tl703aOowT8AucxB2g
  priority: 102
  providerName: Springer Nature
Title Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
URI https://link.springer.com/article/10.1186/s12859-020-03646-8
https://www.proquest.com/docview/2435085023
https://www.proquest.com/docview/2426185133
https://pubmed.ncbi.nlm.nih.gov/PMC7372763
https://doaj.org/article/219b1c6705b24be99c04b3b19f4af09a
Volume 21
WOSCitedRecordID wos000554464600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfCMCowoIiQewFqdO7DyhDW0wIaqoAzSQkGU79qgESWlaJP577py0U5jYCy-JWp-VOHe-D_v8O0KeZU6awiSaMpdyytPE0MIwSXUF1jm3spBjE4pNiMlEnp4WZb_g1vZplWudGBR11VhcI99Lwa4jvFo6fjX_SbFqFO6u9iU0tsgOS1OGcv5O0M0uAuL1rw_KyHyvZYjWRjFgwt23nMqBMQqY_Rc188Vsyb-2TIMlOrr5v2O4RW70Pmi83wnNbXLF1XfIta4q5e-75OsbBLGmaN-qeL7AnRzkXtz4uERUh1lN5909RrCJRXc0oo1xSTfWy66EFnTF1BC4BUjs2P0wrkI7eY98PDr88Pot7aswUJszuaTcauPH3BkpwbmRmaxyXnGtdeEKwz3LhJdCIy5d4rj14DFCFJkn48x7yS0w5T7ZrpvaPSCxd-A8GJZrCVEYs9aYzDjjtQCZcImwEWFrdijbQ5RjpYzvKoQqMlcdCxWwUAUWKhmRF5s-8w6g41LqA-TyhhLBtcMfzeJM9XNVgRI3zOYiyUzKjSsKm3AD7114rn1S6Ig8RRlRCJ9RY37OmV61rTo-mar9HFQa-kE8Is97It_AGKzujzvAl0DErQHl7oAS5rcdNq-FSfX6pVXnkhSRJ5tm7Ik5c7VrVkgD0bHE-j0REQMRHgx_2FLPvgWMcaxeBKYnIi_Xwn7-8H9_3oeXv-sjcj0Ns0_QlO2S7eVi5R6Tq_bXctYuRmRLnIpwlSOyc3A4KaejsEQyCrN6hGm5JVzL7Au0l8fvy8_wa3ry6Q8HkVRf
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb0SgQEAgDmA1TpzEOSBUHqWrLVUFrdQLMrZjl5UgWTa7oP4pfiMeJ9kqVPTWA6dI8Xg3dubhydjfB_AkNVwVKpKEmpgRFkeKFIpyIksXnTPNC54oTzaR7-zwg4NidwV-92dhcFtl7xO9oy5rjd_I12MX1xFeLU5eTX8QZI3C6mpPodGqxdgc_XIpW_Ny9Na936dxvPlu780W6VgFiM4onxOmpbIJM4pzF6x5ysuMlUxKWZhCMUvT3PJcIs5aZJi2bgXksqIsSlJrOdMxTdzvnoPzLOE5YvWPc7KsWiA_QH8wh2frDUV0OIIJGlb7MsIHwc9zBJyMBCd3Z_5VovWRb_Pq_zZn1-BKt8YON1qjuA4rproBF1vWzaOb8Pk9gnQTjN9lOJ1hpQq1M6xtuIuoFZOKTNtriGAas_boRxPiJ-tQzluKMNcVt764i4f8Ds13ZUpcB9yC_TMZ221YrerK3IHQGrc4UjST3GWZVGulUmWUlbnTeRPlOgDav36hOwh2ZAL5JnwqxjPRqoxwKiO8yggewPNln2kLQHKq9GvUqqUkgof7G_XsUHS-SLggpajO8ihVMVOmKHTElHvuwjJpo0IG8Bh1UiA8SIX7jw7lomnE6NNHsZE5l43rPBbAs07I1m4MWnbHOdxMIKLYQHJtIOn8lx4298orOv_ZiGPNDeDRshl74p7AytQLlHHZP0d-ogDygckMhj9sqSZfPYY6sjO50BrAi964jv_839N79_RnfQiXtvY-bIvt0c74HlyOveXnJKZrsDqfLcx9uKB_zifN7IH3GyF8OWuj-wN4I6b1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB_0_MAXv8XqqVUEHzRc06Zt8nh-rB7Ksngq9yIhSZNzQdul7Qr-92bS7mo9FcSnwmZCm8lMZmZn8huAh7nlWuhEEWpTRliaaCI05URV3joXhgue6dBsopzP-dGRWPx0iz9Uu29SksOdBkRpqvu9VeUGFefFXkcRd41g6IN5tILw03CGYdMgjNcPP2zzCIjYv7kq89t5E3MUUPtPns0n6yV_SZoGWzS79P-ruAwXRz803h8E5wqcsvVVODd0pvx2DT6-RCBrgjauilctZnNwB-PGxQtEdljWZDU8YwScaIfrEV2Mf-vGqh_aaPmpWB7iHwEWO7ZftK3QVl6H97MX7569ImMnBmIKynvCjNIuY1Zz7h0cnvOqYBVTSgkrNHM0Lx0vFWLTJZYZ571GH0kWSZY7x5lJaXYDduqmtjchdtY7EJoWivtIjBqjda6tdqr0cmGT0kRANxsizQhTjt0yPssQrvBCDmyTnm0ysE3yCB5v56wGkI6_Uj_Ffd5SIsB2-KFpj-Wor9If5JqaokxynTJthTAJ0_67hWPKJUJF8AClRCKERo01Osdq3XXy4PCt3C_8sYa-EIvg0UjkGr8Go8YrD54TiLo1odydUHodN9PhjTDK8YzpZOo9XQQcTLMI7m-HcSbWzdW2WSONj5A59vCJoJwI8WT505F6-SngjGMHI29-IniyEeUfL_8ze2_9G_k9OL94PpNvDuavb8OFNChDSVK6Czt9u7Z34Kz52i-79m5Q7O99x02i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph-based+prediction+of+Protein-protein+interactions+with+attributed+signed+graph+embedding&rft.jtitle=BMC+bioinformatics&rft.au=Yang%2C+Fang&rft.au=Fan%2C+Kunjie&rft.au=Song%2C+Dandan&rft.au=Lin%2C+Huakang&rft.date=2020-07-21&rft.pub=Springer+Nature+B.V&rft.eissn=1471-2105&rft.volume=21&rft.spage=1&rft_id=info:doi/10.1186%2Fs12859-020-03646-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon