Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters
Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous...
Saved in:
| Published in: | Nature communications Vol. 11; no. 1; pp. 3221 - 10 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
26.06.2020
Nature Publishing Group Nature Portfolio |
| Subjects: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit.
Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches. |
|---|---|
| AbstractList | Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit. Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches. Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit. Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches. Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches. Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit. Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit.Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit. |
| ArticleNumber | 3221 |
| Author | Zhang, Hemin Bourouina, Tarik Marty, Frédéric Zi, Yunlong Galayko, Dimitri Xia, Xin Basset, Philippe |
| Author_xml | – sequence: 1 givenname: Hemin orcidid: 0000-0002-1067-1137 surname: Zhang fullname: Zhang, Hemin organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris, Department of Engineering, The Nanoscience Centre, University of Cambridge – sequence: 2 givenname: Frédéric surname: Marty fullname: Marty, Frédéric organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris – sequence: 3 givenname: Xin surname: Xia fullname: Xia, Xin organization: The Chinese University of Hong Kong, Shatin, N.T – sequence: 4 givenname: Yunlong orcidid: 0000-0002-5133-4057 surname: Zi fullname: Zi, Yunlong organization: The Chinese University of Hong Kong, Shatin, N.T – sequence: 5 givenname: Tarik orcidid: 0000-0003-2342-7149 surname: Bourouina fullname: Bourouina, Tarik organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris – sequence: 6 givenname: Dimitri orcidid: 0000-0002-7056-7489 surname: Galayko fullname: Galayko, Dimitri email: dimitri.galayko@sorbonne-universite.fr organization: Sorbonne Université, LIP6 – sequence: 7 givenname: Philippe orcidid: 0000-0002-9790-8247 surname: Basset fullname: Basset, Philippe email: philippe.basset@esiee.fr organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris |
| BackLink | https://hal.science/hal-03090276$$DView record in HAL |
| BookMark | eNp9Ustu1DAUjVARfdAfYBWJDSwCfjvZIFXV0FaaigWPreX4kXhI7MHODJq_x2kqoLOoN_a9Pufcc-17Xpz44E1RvIHgAwS4_pgIJIxXAIEKcgCbir4ozhAgMIcIn_x3Pi0uU9qAvHADa0JeFacY0QZSyM6KH6txO4SD810py_vV_ddyO8g0yjL9dpPqSxtiqYLXbnLBz6jedX21D8MkO1P-dN5MTpXGm9gdyl7GvUmTiel18dLKIZnLx_2i-P559e36tlp_ubm7vlpXikE-Va0GmBGpuZRaQsUNwwjb2jZA5RhqgjVkFHBrjLII1hxo3TDdNg2jmqkWXxR3i64OciO20Y0yHkSQTjwkQuyEjNnhYAS0mlhGbWspIJLLRta5ECfI0Na0hGatT4vWdteORivjpyiHJ6JPb7zrRRf2gmOYDdVZ4P0i0B_Rbq_WYs4BDBqAONvDjH33WCyGX7v8aGJ0SZlhkN6EXRKIwBoiTgHO0LdH0E3YRZ-fdUZxDkBDZ0G0oFQMKUVj_zqAQMwTI5aJEXlixMPEiLnl-oik3CTnr84NuuF5Kl6oKdfxnYn_XD3D-gM0PNYD |
| CitedBy_id | crossref_primary_10_1016_j_mattod_2020_11_012 crossref_primary_10_1016_j_nanoen_2022_108030 crossref_primary_10_3390_s23104912 crossref_primary_10_1002_adma_202403361 crossref_primary_10_1109_TPEL_2025_3573803 crossref_primary_10_1002_aenm_202203707 crossref_primary_10_1063_5_0244986 crossref_primary_10_1038_s41378_024_00660_1 crossref_primary_10_1002_admt_202302236 crossref_primary_10_3390_mi15050556 crossref_primary_10_1002_adfm_202415338 crossref_primary_10_1002_adfm_202416944 crossref_primary_10_1002_aenm_202502920 crossref_primary_10_1109_JMEMS_2022_3151909 crossref_primary_10_1016_j_nanoen_2021_106891 crossref_primary_10_1002_aenm_202300557 crossref_primary_10_1088_1361_6439_ac168e crossref_primary_10_1002_adma_202511283 crossref_primary_10_1109_TPEL_2024_3376536 crossref_primary_10_1016_j_coco_2024_101907 crossref_primary_10_1002_advs_202404253 crossref_primary_10_1039_D4EE02447H crossref_primary_10_1002_aenm_202201532 crossref_primary_10_1039_D3EE00220A crossref_primary_10_1016_j_nanoen_2022_107816 crossref_primary_10_1039_D5TA04156B crossref_primary_10_1016_j_joule_2020_12_023 crossref_primary_10_1002_adma_202506186 crossref_primary_10_3390_nano11112975 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_1002_chem_202400882 crossref_primary_10_1109_JMEMS_2022_3200461 crossref_primary_10_1016_j_nanoen_2023_108686 crossref_primary_10_1038_s41467_020_20045_y crossref_primary_10_3390_batteries9050281 crossref_primary_10_1021_acsnano_4c15200 crossref_primary_10_1038_s41378_023_00572_6 crossref_primary_10_3788_PI_2023_R04 crossref_primary_10_1063_5_0085850 crossref_primary_10_3390_s22041668 crossref_primary_10_1016_j_mser_2025_100934 crossref_primary_10_1093_nsr_nwac170 crossref_primary_10_1002_aenm_202100050 crossref_primary_10_1088_2631_7990_ad4fca crossref_primary_10_1002_adfm_202409088 crossref_primary_10_1016_j_nanoen_2021_106757 crossref_primary_10_1002_adfm_202305106 crossref_primary_10_1016_j_nanoen_2023_108616 crossref_primary_10_1039_D4EE00895B crossref_primary_10_3390_mi11090860 crossref_primary_10_1002_aenm_202103677 crossref_primary_10_1016_j_ymssp_2023_110503 crossref_primary_10_3390_jmse10101348 crossref_primary_10_1557_s43577_025_00860_8 crossref_primary_10_1002_adfm_202103081 crossref_primary_10_1016_j_nanoen_2021_106673 crossref_primary_10_1039_D0SC05145D crossref_primary_10_1002_admt_202300802 crossref_primary_10_1016_j_nanoen_2022_108042 crossref_primary_10_1016_j_nanoen_2023_109079 crossref_primary_10_1016_j_nanoen_2024_110167 crossref_primary_10_1016_j_nanoen_2022_107196 crossref_primary_10_1016_j_cej_2024_150449 crossref_primary_10_1016_j_joule_2021_03_006 crossref_primary_10_1038_s41378_025_00928_0 crossref_primary_10_1002_smll_202310359 crossref_primary_10_1016_j_apm_2022_11_005 crossref_primary_10_1109_JMEMS_2022_3168323 crossref_primary_10_1038_s41578_022_00441_0 crossref_primary_10_1109_TPEL_2023_3296709 crossref_primary_10_1088_2631_7990_ace669 crossref_primary_10_1016_j_nanoen_2021_106884 crossref_primary_10_1039_D1EE02852A crossref_primary_10_1039_D5EE00399G |
| Cites_doi | 10.1088/1361-6439/aab514 10.1016/j.nanoen.2012.01.004 10.1016/j.nanoen.2019.104137 10.1016/j.nanoen.2018.06.038 10.1038/s41467-018-07882-8 10.1016/j.nanoen.2018.06.034 10.1088/0960-1317/16/7/034 10.1016/0011-2275(78)90001-2 10.1016/j.nimb.2011.10.053 10.1088/0960-1317/26/12/124004 10.1002/aenm.201702736 10.1088/0960-1317/24/3/035001 10.1038/ncomms12985 10.1002/adma.201402491 10.1063/1.4916232 10.1088/0957-4484/27/29/295302 10.1016/j.surfcoat.2018.11.102 10.1016/j.joule.2017.09.004 10.1088/0022-3727/39/3/R01 10.1126/science.1212741 10.1016/j.nanoen.2017.05.063 10.1088/1742-6596/1407/1/012016 10.1116/1.590609 10.1109/TMECH.2006.886245 10.1016/j.crhy.2016.12.001 10.1109/LED.2014.2387213 10.1126/science.1124005 10.1021/am406005a 10.1088/0960-1317/19/11/115025 10.1088/0960-1317/10/3/321 10.1016/j.nanoen.2019.05.049 10.1063/1.1734974 10.1016/j.nanoen.2018.02.013 10.1039/C8EE00188J 10.1088/1361-6439/aac8cc 10.1088/1361-6463/aab4bc 10.1088/0964-1726/19/4/045003 10.1016/j.apenergy.2018.09.120 10.1016/j.nanoen.2017.11.062 10.1038/nchem.2085 10.1016/j.nanoen.2018.05.011 10.1016/j.nanoen.2017.05.027 10.1038/nature12909 10.1117/12.469740 10.1038/183174a0 10.1109/TED.2011.2128323 10.1109/TRANSDUCERS.2019.8808359 10.1109/TPEL.2018.2815536 10.1016/j.nanoen.2018.02.030 10.1002/9781119007487 10.1016/j.rser.2015.02.021 10.1063/1.3380855 10.1088/0960-1317/13/5/318 10.1126/science.aan3997 10.1109/JIOT.2018.2867722 10.1016/j.nanoen.2017.09.010 10.1109/TED.2014.2377728 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | C6C AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1038/s41467-020-17019-5 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_1fd4f65fbf504a7a9a88f9742e5beb45 PMC7319968 oai:HAL:hal-03090276v1 10_1038_s41467_020_17019_5 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 1XC 4.4 BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH VOOES 5PM |
| ID | FETCH-LOGICAL-c617t-bd0364ad7aada1c7e6323f8f90cda11d43d16507feecf21870dd96db9965d6cb3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544946300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:20:32 EDT 2025 Tue Nov 04 01:43:13 EST 2025 Tue Oct 14 21:03:33 EDT 2025 Sun Nov 09 09:43:03 EST 2025 Tue Oct 07 07:01:46 EDT 2025 Sat Nov 29 06:20:25 EST 2025 Tue Nov 18 20:59:25 EST 2025 Fri Feb 21 02:40:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c617t-bd0364ad7aada1c7e6323f8f90cda11d43d16507feecf21870dd96db9965d6cb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7056-7489 0000-0002-9790-8247 0000-0002-5133-4057 0000-0003-2342-7149 0000-0002-1067-1137 0000-0002-9881-2036 |
| OpenAccessLink | https://www.proquest.com/docview/2417700951?pq-origsite=%requestingapplication% |
| PMID | 32591516 |
| PQID | 2417700951 |
| PQPubID | 546298 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1fd4f65fbf504a7a9a88f9742e5beb45 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319968 hal_primary_oai_HAL_hal_03090276v1 proquest_miscellaneous_2418127503 proquest_journals_2417700951 crossref_primary_10_1038_s41467_020_17019_5 crossref_citationtrail_10_1038_s41467_020_17019_5 springer_journals_10_1038_s41467_020_17019_5 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-26 |
| PublicationDateYYYYMMDD | 2020-06-26 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Liu (CR30) 2019; 10 Ghosh (CR57) 2014; 6 Basset (CR22) 2009; 19 Ouanes, Samaali, Galayko, Basset, Najar (CR35) 2019; 62 Wang, Song (CR10) 2006; 312 Cheng (CR54) 2018; 9 Ryu (CR18) 2018; 11 Hinchet (CR27) 2019; 365 Dorzhiev (CR32) 2015; 36 Mallineni, Dong, Behlow, Rao, Podila (CR16) 2018; 8 Hinchet (CR21) 2018; 47 Zhang, Dimitri, Basset (CR39) 2019; 1407 Zhang, Lu, Ghaffarinejad, Basset (CR44) 2018; 51 Lee, Seok, Chun (CR63) 2003; 13 Zhao (CR38) 2017; 41 Tao (CR7) 2019; 359 Zuo, Scully, Shestani, Zhou (CR12) 2015; 19 Chen, Wang (CR15) 2017; 1 Murotani, Suzuki (CR5) 2018; 28 Ramsvik, Calatroni, Reginelli, Taborelli (CR66) 2007; 10 Zhai (CR52) 2018; 231 Ghaffarinejad, Hasani, Galayko, Basset (CR29) 2019; 66 Becker, Schoenbach, Eden (CR55) 2006; 39 Chun (CR24) 2016; 7 Fu (CR11) 2019; 6 Takhedmit, Saddi, Karami, Basset, Cirio (CR33) 2017; 18 Wang (CR23) 2014; 26 CR41 Xu, Bu, Yang, Zhang, Wang (CR25) 2018; 49 Ono, Sim, Esashi (CR48) 2000; 10 Velasquez-Garcia, Guerrera, Niu, Akinwande (CR67) 2011; 58 Allen, Phillips (CR59) 1959; 183 Du, Amaratunga, Seshia (CR9) 2018; 34 Kornbluth, Mathews, Parameswaran, Racz, Velásquez-García (CR56) 2018; 51 Gigan, Chen, Robert, Renard, Marty (CR64) 2002; 4936 Kisliuk (CR51) 1959; 30 Niu (CR43) 2015; 62 Radjenović (CR58) 2012; 279 Xi (CR37) 2017; 37 Chen (CR65) 1999; 17 Yang (CR40) 2018; 46 Guerrera, Akinwande (CR62) 2016; 27 Xia, Fu, Zi (CR46) 2019; 10 Ghaffarinejad (CR28) 2018; 51 Fujita, Kouno, Noguchi, Ueguri (CR60) 1978; 18 Karami, Galayko, Basset (CR45) 2017; 64 Larcher, Tarascon (CR1) 2015; 7 Huskinson (CR3) 2014; 505 Cheng (CR36) 2017; 38 Cheng (CR53) 2018; 44 Honma, Mitsuya, Hashiguchi, Fujita (CR8) 2018; 28 Cheng, Xu, Zheng, Jia, Qin (CR26) 2018; 9 Dunn, Kamath, Tarascon (CR2) 2011; 334 Chen, Yeh, Wang (CR50) 2006; 16 CR68 Basset (CR6) 2014; 24 Zhu, Chen, Zhang, Jing, Wang (CR17) 2019; 5 Go, Pohlman (CR49) 2010; 107 CR20 Niu, Wang, Yi, Zhou, Wang (CR42) 2015; 11 Basset, Kaiser, Legrand, Collard, Buchaillot (CR31) 2007; 12 Almoneef, Ramahi (CR13) 2015; 106 CR61 Zi (CR34) 2016; 11 Akhtar, Rehmani (CR4) 2015; 1 Bae (CR19) 2014; 23 Lu (CR47) 2016; 26 Fan, Tian, Wang (CR14) 2012; 1 J Chen (17019_CR15) 2017; 1 P Basset (17019_CR22) 2009; 19 FR Fan (17019_CR14) 2012; 1 MA Ouanes (17019_CR35) 2019; 62 DB Go (17019_CR49) 2010; 107 K Tao (17019_CR7) 2019; 359 H Fu (17019_CR11) 2019; 6 R Hinchet (17019_CR27) 2019; 365 X Cheng (17019_CR36) 2017; 38 B Lee (17019_CR63) 2003; 13 S Wang (17019_CR23) 2014; 26 L Xu (17019_CR25) 2018; 49 O Gigan (17019_CR64) 2002; 4936 CH Chen (17019_CR50) 2006; 16 F Xi (17019_CR37) 2017; 37 P Basset (17019_CR31) 2007; 12 SS Mallineni (17019_CR16) 2018; 8 H Ryu (17019_CR18) 2018; 11 X Xia (17019_CR46) 2019; 10 YS Kornbluth (17019_CR56) 2018; 51 K Murotani (17019_CR5) 2018; 28 S Niu (17019_CR42) 2015; 11 C Zhai (17019_CR52) 2018; 231 J Cheng (17019_CR54) 2018; 9 L Zuo (17019_CR12) 2015; 19 D Larcher (17019_CR1) 2015; 7 J Chun (17019_CR24) 2016; 7 G Zhu (17019_CR17) 2019; 5 G Cheng (17019_CR53) 2018; 44 Y Lu (17019_CR47) 2016; 26 17019_CR20 TS Almoneef (17019_CR13) 2015; 106 R Hinchet (17019_CR21) 2018; 47 M Radjenović (17019_CR58) 2012; 279 L Chen (17019_CR65) 1999; 17 17019_CR68 KH Becker (17019_CR55) 2006; 39 17019_CR61 P Basset (17019_CR6) 2014; 24 B Huskinson (17019_CR3) 2014; 505 H Takhedmit (17019_CR33) 2017; 18 B Dunn (17019_CR2) 2011; 334 P Kisliuk (17019_CR51) 1959; 30 S Ghosh (17019_CR57) 2014; 6 A Ghaffarinejad (17019_CR28) 2018; 51 H Fujita (17019_CR60) 1978; 18 ZL Wang (17019_CR10) 2006; 312 S Du (17019_CR9) 2018; 34 H Zhang (17019_CR39) 2019; 1407 SA Guerrera (17019_CR62) 2016; 27 Z Zhao (17019_CR38) 2017; 41 F Akhtar (17019_CR4) 2015; 1 J Yang (17019_CR40) 2018; 46 A Karami (17019_CR45) 2017; 64 A Ghaffarinejad (17019_CR29) 2019; 66 H Honma (17019_CR8) 2018; 28 W Liu (17019_CR30) 2019; 10 T Ramsvik (17019_CR66) 2007; 10 T Ono (17019_CR48) 2000; 10 V Dorzhiev (17019_CR32) 2015; 36 Y Zi (17019_CR34) 2016; 11 H Zhang (17019_CR44) 2018; 51 J Bae (17019_CR19) 2014; 23 L Cheng (17019_CR26) 2018; 9 17019_CR41 LF Velasquez-Garcia (17019_CR67) 2011; 58 S Niu (17019_CR43) 2015; 62 KR Allen (17019_CR59) 1959; 183 |
| References_xml | – volume: 365 start-page: 491 year: 2019 end-page: 494 ident: CR27 article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology publication-title: Science – volume: 44 start-page: 208 year: 2018 end-page: 216 ident: CR53 article-title: Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip–electrode air-discharging and application for UV sensing publication-title: Nano Energy – volume: 312 start-page: 242 year: 2006 end-page: 246 ident: CR10 article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays publication-title: Science – ident: CR68 – volume: 27 start-page: 295302 year: 2016 ident: CR62 article-title: Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates publication-title: Nanotechnology – volume: 5 year: 2019 ident: CR17 article-title: Radial-arrayed rotary electrification for high performance triboelectric generator publication-title: Nat. Commun. – volume: 12 start-page: 23 year: 2007 end-page: 31 ident: CR31 article-title: Complete system for wireless powering and remote control of MEMS devices by inductive coupling publication-title: IEEE-ASME T. Mech. – volume: 18 start-page: 98 year: 2017 end-page: 106 ident: CR33 article-title: Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up publication-title: C. R. Phys. – volume: 37 start-page: 168 year: 2017 end-page: 176 ident: CR37 article-title: Universal power management strategy for triboelectric nanogenerator publication-title: Nano Energy – volume: 7 start-page: 19 year: 2015 ident: CR1 article-title: Towards greener and more sustainable batteries for electrical energy storage publication-title: Nat. Chem. – volume: 51 start-page: 165603 year: 2018 ident: CR56 article-title: Micro sputter with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines publication-title: J. Phys. D. – volume: 10 year: 2019 ident: CR30 article-title: Integrated charge excitation triboelectric nanogenerator publication-title: Nat. Commun. – volume: 6 start-page: 3099 year: 2014 end-page: 3104 ident: CR57 article-title: R., Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 663 year: 2003 ident: CR63 article-title: A study on wafer level vacuum packaging for MEMS devices publication-title: J. Micromech. Microeng. – volume: 4936 start-page: 194 year: 2002 end-page: 204 ident: CR64 article-title: Fabrication and characterization of resonant SOI micromechanical silicon sensors based on DRIE micromachining, freestanding release process and silicon direct bonding publication-title: Proc. SPIE, Nano- Micro Tech: Mat. Proc. Pac. Syst. – ident: CR61 – volume: 41 start-page: 351 year: 2017 end-page: 358 ident: CR38 article-title: Ultrasensitive triboelectric nanogenerator for weak ambient energy with rational unipolar stacking structure and low-loss power management publication-title: Nano Energy – volume: 231 start-page: 1346 year: 2018 end-page: 1353 ident: CR52 article-title: An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators publication-title: Appl. Energy – volume: 106 start-page: 153902 year: 2015 ident: CR13 article-title: Metamaterial electromagnetic energy harvester with near unity efficiency publication-title: Appl. Phys. Lett. – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: CR14 article-title: Flexible triboelectric generator publication-title: Nano Energy – volume: 11 year: 2015 ident: CR42 article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics publication-title: Nat. Commun. – volume: 107 start-page: 103303 year: 2010 ident: CR49 article-title: A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps publication-title: J. Appl. Phys. – volume: 30 start-page: 51 year: 1959 end-page: 55 ident: CR51 article-title: Electron emission at high fields due to positive ions publication-title: J. Appl. Phys. – volume: 62 start-page: 465 year: 2019 end-page: 474 ident: CR35 article-title: A new type of triboelectric nanogenerator with self‐actuated series‐to‐parallel electrical interface based on self‐synchronized mechanical switches for exponential charge accumulation in a capacitor publication-title: Nano Energy – volume: 51 start-page: 173 year: 2018 end-page: 184 ident: CR28 article-title: A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator publication-title: Nano Energy – volume: 19 start-page: 045003 year: 2015 ident: CR12 article-title: Design and characterization of an electromagnetic energy harvester for vehicle suspensions publication-title: Smart Mater. Struct. – volume: 19 start-page: 115025 year: 2009 ident: CR22 article-title: A batch-fabricated and electret-free silicon electrostatic vibration energy harvester publication-title: J. Micromech. Microeng. – volume: 6 start-page: 1183 year: 2019 end-page: 1192 ident: CR11 article-title: An event-triggered energy-efficient wireless structural health monitoring system for impact detection in composite airframes publication-title: IEEE Internet Things – volume: 64 start-page: 227 year: 2017 end-page: 240 ident: CR45 article-title: Series-parallel charge pump conditioning circuits for electrostatic kinetic energy harvesting publication-title: IEEE T. Circuits-I – volume: 28 start-page: 064005 year: 2018 ident: CR8 article-title: Toshiyoshi, Improvement of energy conversion effectiveness and maximum output power of electrostatic induction-type MEMS energy harvesters by using symmetric comb-electrode structures publication-title: J. Micromech. Microeng. – volume: 18 start-page: 195 year: 1978 end-page: 200 ident: CR60 article-title: Breakdown voltages of gaseous N2 and air from normal to cryogenic temperatures publication-title: Cryogenics – volume: 23 year: 2014 ident: CR19 article-title: Flutter-driven triboelectrification for harvesting wind energy publication-title: Nat. Commun. – volume: 183 start-page: 174 year: 1959 end-page: 175 ident: CR59 article-title: Effect of humidity on the spark breakdown voltage publication-title: Nature – volume: 17 start-page: 638 year: 1999 end-page: 641 ident: CR65 article-title: Fabrication of tungsten-coated silicon-based gated emitters publication-title: J. Vac. Sci. Technol. B. – volume: 11 start-page: 2057 year: 2018 end-page: 2063 ident: CR18 article-title: Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design publication-title: Energy Environ. Sci. – volume: 359 start-page: 289 year: 2019 end-page: 295 ident: CR7 article-title: Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting publication-title: Surf. Coat. Technol. – volume: 26 start-page: 124004 year: 2016 ident: CR47 article-title: A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node publication-title: J. Micromech. Microeng. – volume: 62 start-page: 641 year: 2015 end-page: 647 ident: CR43 article-title: Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage publication-title: IEEE T. Electron. Dev. – volume: 58 start-page: 1783 year: 2011 end-page: 1791 ident: CR67 article-title: Uniform high-current cathodes using massive arrays of Si field emitters individually controlled by vertical Si ungated FETs—Part 2: Device fabrication and characterization publication-title: IEEE T. Electron. Dev. – volume: 505 start-page: 195 year: 2014 ident: CR3 article-title: A metal-free organic–inorganic aqueous flow battery publication-title: Nature – volume: 8 start-page: 1702736 year: 2018 ident: CR16 article-title: A wireless triboelectric nanogenerator publication-title: Adv. Energy Mater. – volume: 36 start-page: 183 year: 2015 end-page: 185 ident: CR32 publication-title: IEEE Electron. Device Lett. – volume: 16 start-page: 1366 year: 2006 ident: CR50 article-title: Electrical breakdown phenomena for devices with micron separations publication-title: J. Micromech. Microeng. – volume: 34 start-page: 263 year: 2018 end-page: 274 ident: CR9 article-title: A cold-startup SSHI rectifier for piezoelectric energy harvesters with increased open-circuit voltage publication-title: IEEE T. Power Electr. – volume: 66 start-page: 104137 year: 2019 ident: CR29 article-title: Superior performance of half-wave to full-wave rectifier as a power conditioning circuit for Triboelectric nanogenerators publication-title: Nano Energy – volume: 1 start-page: 480 year: 2017 end-page: 521 ident: CR15 article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator publication-title: Joule – volume: 10 start-page: 1 year: 2019 end-page: 9 ident: CR46 article-title: A universal standardized method for output capability assessment of nanogenerators publication-title: Nat. Commun. – volume: 39 start-page: 55 year: 2006 end-page: 70 ident: CR55 article-title: Microplasmas and applications publication-title: J. Phys. D. – volume: 51 start-page: 10 year: 2018 end-page: 18 ident: CR44 article-title: Progressive contact-separate triboelectric nanogenerator based on conductive polyurethane foam regulated with a bennet doubler conditioning circuit publication-title: Nano Energy – volume: 28 start-page: 104001 year: 2018 ident: CR5 article-title: MEMS electret energy harvester with embedded bistable electrostatic spring for broadband response publication-title: J. Micromech. Microeng. – volume: 10 start-page: 042001 year: 2007 ident: CR66 article-title: Influence of ambient gases on the dc saturated breakdown field of molybdenum, tungsten, and copper during intense breakdown conditioning publication-title: Phys. Rev. Spec. Top.-AC – volume: 1407 start-page: 012016 year: 2019 ident: CR39 article-title: A self-sustained energy storage system with an electrostatic automatic switch and a buck dc-dc converter for triboelectric nanogenerators publication-title: J. Phys. Conf. Ser. – volume: 10 start-page: 445 year: 2000 ident: CR48 article-title: Micro-discharge and electric breakdown in a micro-gap publication-title: J. Micromech. Microeng. – volume: 7 year: 2016 ident: CR24 article-title: Boosted output performance of triboelectric nanogenerator via electric double layer effect publication-title: Nat. Commun. – volume: 49 start-page: 625 year: 2018 end-page: 633 ident: CR25 article-title: Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators publication-title: Nano Energy – volume: 334 start-page: 928 year: 2011 end-page: 935 ident: CR2 article-title: Electrical energy storage for the grid: a battery of choices publication-title: Science – volume: 1 start-page: 769 year: 2015 end-page: 784 ident: CR4 article-title: Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review publication-title: Renew. Sustain. Energy Rev. – volume: 279 start-page: 103 year: 2012 end-page: 105 ident: CR58 article-title: The humidity effect on the breakdown voltage characteristics and the transport parameters of air publication-title: Nucl. Instrum. Methods Phys. Res – volume: 46 start-page: 220 year: 2018 end-page: 228 ident: CR40 article-title: Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch publication-title: Nano Energy – volume: 26 start-page: 6720 year: 2014 end-page: 6728 ident: CR23 article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized‐air injection: methodology and theoretical understanding publication-title: Adv. Mater. – volume: 38 start-page: 438 year: 2017 end-page: 446 ident: CR36 article-title: High efficiency power management and charge boosting strategy for a triboelectric nanogenerator publication-title: Nano Energy – volume: 47 start-page: 401 year: 2018 end-page: 409 ident: CR21 article-title: Understanding and modeling of triboelectric-electret nanogenerator publication-title: Nano Energy – volume: 11 year: 2016 ident: CR34 article-title: Effective energy storage from a triboelectric nanogenerator publication-title: Nat. Commun. – volume: 24 start-page: 035001 year: 2014 ident: CR6 article-title: Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact publication-title: J. Micromech. Microeng. – volume: 9 year: 2018 ident: CR26 article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed publication-title: Nat. Commun. – ident: CR41 – ident: CR20 – volume: 9 year: 2018 ident: CR54 article-title: Triboelectric microplasma powered by mechanical stimuli publication-title: Nat. Commun. – volume: 28 start-page: 064005 year: 2018 ident: 17019_CR8 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aab514 – volume: 1 start-page: 328 year: 2012 ident: 17019_CR14 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 9 year: 2018 ident: 17019_CR26 publication-title: Nat. Commun. – volume: 66 start-page: 104137 year: 2019 ident: 17019_CR29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104137 – volume: 51 start-page: 10 year: 2018 ident: 17019_CR44 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.038 – volume: 10 start-page: 1 year: 2019 ident: 17019_CR46 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 51 start-page: 173 year: 2018 ident: 17019_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.034 – volume: 23 year: 2014 ident: 17019_CR19 publication-title: Nat. Commun. – ident: 17019_CR68 – volume: 16 start-page: 1366 year: 2006 ident: 17019_CR50 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/16/7/034 – volume: 18 start-page: 195 year: 1978 ident: 17019_CR60 publication-title: Cryogenics doi: 10.1016/0011-2275(78)90001-2 – volume: 279 start-page: 103 year: 2012 ident: 17019_CR58 publication-title: Nucl. Instrum. Methods Phys. Res doi: 10.1016/j.nimb.2011.10.053 – volume: 26 start-page: 124004 year: 2016 ident: 17019_CR47 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/26/12/124004 – volume: 8 start-page: 1702736 year: 2018 ident: 17019_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702736 – volume: 24 start-page: 035001 year: 2014 ident: 17019_CR6 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/24/3/035001 – volume: 7 year: 2016 ident: 17019_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms12985 – volume: 26 start-page: 6720 year: 2014 ident: 17019_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.201402491 – volume: 106 start-page: 153902 year: 2015 ident: 17019_CR13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916232 – volume: 27 start-page: 295302 year: 2016 ident: 17019_CR62 publication-title: Nanotechnology doi: 10.1088/0957-4484/27/29/295302 – volume: 359 start-page: 289 year: 2019 ident: 17019_CR7 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2018.11.102 – volume: 1 start-page: 480 year: 2017 ident: 17019_CR15 publication-title: Joule doi: 10.1016/j.joule.2017.09.004 – volume: 39 start-page: 55 year: 2006 ident: 17019_CR55 publication-title: J. Phys. D. doi: 10.1088/0022-3727/39/3/R01 – volume: 334 start-page: 928 year: 2011 ident: 17019_CR2 publication-title: Science doi: 10.1126/science.1212741 – volume: 38 start-page: 438 year: 2017 ident: 17019_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.063 – volume: 1407 start-page: 012016 year: 2019 ident: 17019_CR39 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1407/1/012016 – volume: 17 start-page: 638 year: 1999 ident: 17019_CR65 publication-title: J. Vac. Sci. Technol. B. doi: 10.1116/1.590609 – volume: 12 start-page: 23 year: 2007 ident: 17019_CR31 publication-title: IEEE-ASME T. Mech. doi: 10.1109/TMECH.2006.886245 – volume: 18 start-page: 98 year: 2017 ident: 17019_CR33 publication-title: C. R. Phys. doi: 10.1016/j.crhy.2016.12.001 – volume: 36 start-page: 183 year: 2015 ident: 17019_CR32 publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2014.2387213 – volume: 312 start-page: 242 year: 2006 ident: 17019_CR10 publication-title: Science doi: 10.1126/science.1124005 – volume: 11 year: 2015 ident: 17019_CR42 publication-title: Nat. Commun. – volume: 6 start-page: 3099 year: 2014 ident: 17019_CR57 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am406005a – volume: 19 start-page: 115025 year: 2009 ident: 17019_CR22 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/11/115025 – volume: 10 start-page: 445 year: 2000 ident: 17019_CR48 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/10/3/321 – volume: 62 start-page: 465 year: 2019 ident: 17019_CR35 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.05.049 – volume: 30 start-page: 51 year: 1959 ident: 17019_CR51 publication-title: J. Appl. Phys. doi: 10.1063/1.1734974 – volume: 10 year: 2019 ident: 17019_CR30 publication-title: Nat. Commun. – volume: 46 start-page: 220 year: 2018 ident: 17019_CR40 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.013 – volume: 11 start-page: 2057 year: 2018 ident: 17019_CR18 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00188J – volume: 28 start-page: 104001 year: 2018 ident: 17019_CR5 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aac8cc – volume: 51 start-page: 165603 year: 2018 ident: 17019_CR56 publication-title: J. Phys. D. doi: 10.1088/1361-6463/aab4bc – volume: 19 start-page: 045003 year: 2015 ident: 17019_CR12 publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/19/4/045003 – volume: 231 start-page: 1346 year: 2018 ident: 17019_CR52 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.120 – volume: 44 start-page: 208 year: 2018 ident: 17019_CR53 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.11.062 – volume: 7 start-page: 19 year: 2015 ident: 17019_CR1 publication-title: Nat. Chem. doi: 10.1038/nchem.2085 – volume: 49 start-page: 625 year: 2018 ident: 17019_CR25 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.05.011 – volume: 37 start-page: 168 year: 2017 ident: 17019_CR37 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.027 – volume: 505 start-page: 195 year: 2014 ident: 17019_CR3 publication-title: Nature doi: 10.1038/nature12909 – volume: 4936 start-page: 194 year: 2002 ident: 17019_CR64 publication-title: Proc. SPIE, Nano- Micro Tech: Mat. Proc. Pac. Syst. doi: 10.1117/12.469740 – volume: 183 start-page: 174 year: 1959 ident: 17019_CR59 publication-title: Nature doi: 10.1038/183174a0 – volume: 11 year: 2016 ident: 17019_CR34 publication-title: Nat. Commun. – volume: 9 year: 2018 ident: 17019_CR54 publication-title: Nat. Commun. – ident: 17019_CR61 – volume: 58 start-page: 1783 year: 2011 ident: 17019_CR67 publication-title: IEEE T. Electron. Dev. doi: 10.1109/TED.2011.2128323 – ident: 17019_CR41 doi: 10.1109/TRANSDUCERS.2019.8808359 – volume: 64 start-page: 227 year: 2017 ident: 17019_CR45 publication-title: IEEE T. Circuits-I – volume: 34 start-page: 263 year: 2018 ident: 17019_CR9 publication-title: IEEE T. Power Electr. doi: 10.1109/TPEL.2018.2815536 – volume: 47 start-page: 401 year: 2018 ident: 17019_CR21 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.030 – volume: 10 start-page: 042001 year: 2007 ident: 17019_CR66 publication-title: Phys. Rev. Spec. Top.-AC – ident: 17019_CR20 doi: 10.1002/9781119007487 – volume: 1 start-page: 769 year: 2015 ident: 17019_CR4 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.02.021 – volume: 5 year: 2019 ident: 17019_CR17 publication-title: Nat. Commun. – volume: 107 start-page: 103303 year: 2010 ident: 17019_CR49 publication-title: J. Appl. Phys. doi: 10.1063/1.3380855 – volume: 13 start-page: 663 year: 2003 ident: 17019_CR63 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/13/5/318 – volume: 365 start-page: 491 year: 2019 ident: 17019_CR27 publication-title: Science doi: 10.1126/science.aan3997 – volume: 6 start-page: 1183 year: 2019 ident: 17019_CR11 publication-title: IEEE Internet Things doi: 10.1109/JIOT.2018.2867722 – volume: 41 start-page: 351 year: 2017 ident: 17019_CR38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.010 – volume: 62 start-page: 641 year: 2015 ident: 17019_CR43 publication-title: IEEE T. Electron. Dev. doi: 10.1109/TED.2014.2377728 |
| SSID | ssj0000391844 |
| Score | 2.6034079 |
| Snippet | Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy.... Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders... |
| SourceID | doaj pubmedcentral hal proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3221 |
| SubjectTerms | 142/126 147/135 639/166/987 639/4077/4072 Actuation Circuits Conditioning Electric power generation Electronic circuits Energy Energy harvesting Energy management Engineering Sciences High voltages Humanities and Social Sciences Hysteresis Kinetic energy Micro and nanotechnologies Microelectromechanical systems Microelectronics Micromachining multidisciplinary Nanogenerators Power consumption Scavenging Science Science (multidisciplinary) Stability Switches Voltage |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiKcIFGQQN7CaxI7tHAtq1UNbIfFQb5af2hUlrTbbrfrvGTvZZVMJuHBM4jz0eTz-xuN8A_BOKGdS6pA6Z2vKY1tSa0VaDiutckmQzeSqJcfy9FSdnbWft0p9pT1hgzzwANxeFT2Pook2NiU30rRGqYgkuA6NDZZn9dJStlvBVPbBrMXQhY9_yZRM7fU8-4QULWUJctpMZqIs2I_zyyxth9zimrd3St5Kl-ZZ6PAhPBjpI9kfPvsR3AndY7g3FJS8eQLfhwK-eCsx5OTg5Au5RHb805D-eo7dQ5ChEgyA_XxchiVJrZiih1qiWyE_kHHic0nI_wOSmVmsso5C_xS-HR58_XREx8oJ1CEjWVLrU3rReGmMN5WTQbCaRcStdHhcec58hdRMxhBcxElelt63wlsMfhovnGXPYKe76MJzIDLWwlSNj455btEn2Rhiya0xtbOxUgVUaxS1G2XFU3WLc53T20zpAXmNyOuMvG4KeL-553IQ1fhr64-pczYtkyB2PoFmokcz0f8ykwLeYtdOnnG0f6zTuZRkwuBcrKoCdtc9r8eh3GukOFJmJlrAm81lHIQps2K6cHGV26islM8KkBOLmbxxeqWbz7Kct2RpJzgC-WFtW79f_mdUXvwPVF7C_TqNiFLQWuzCznJxFV7BXbdazvvF6zykfgHgMyWo priority: 102 providerName: Directory of Open Access Journals |
| Title | Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters |
| URI | https://link.springer.com/article/10.1038/s41467-020-17019-5 https://www.proquest.com/docview/2417700951 https://www.proquest.com/docview/2418127503 https://hal.science/hal-03090276 https://pubmed.ncbi.nlm.nih.gov/PMC7319968 https://doaj.org/article/1fd4f65fbf504a7a9a88f9742e5beb45 |
| Volume | 11 |
| WOSCitedRecordID | wos000544946300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYBhIv3BGBURnEG0TLxbHdJ7ShTkNaq4ibCi-Wr7TaSEvTFfHvOXbcjk5iL7xESuzYST77-Pick-8g9IpyLb3rMNVaFSlx_SxVinpzWKa49oRsMmQtOWWjER-P-3U0uLUxrHItE4OgNjPtbeQHsNIwFhSCt_Ofqc8a5b2rMYXGDtrzLAlFCN2rNzYWz37OCYn_ymQlP2hJkAx-zxSIyNNqaz0KtP2wykx8UORfGufVeMkrTtOwFh3f_d-3uIfuRC0UH3bD5j66YZsH6FaXl_L3Q_SlywMMfWOJh4PhRzwHJfuHxO2vKaCMQdHFsI8202jNxZ70OAVBtwTphM9AcYV2sQ2_FeKJXKwCHUP7CH0-Hnx6d5LGBAypBsVmmSrjvZTSMCmNzDWztCxKxwFQDee5IaXJQcNjzlrtQFdgmTF9ahTsoSpDtSofo91m1tgnCDNXUJlXxunSEAWiTTnrMqKkLLRyOU9QvoZB6MhO7pNknIvgJS-56KATAJ0I0IkqQa8398w7bo5rax95dDc1Pa92uDBbfBdxmorcGeJo5ZSrMiKZ7EsOr8tIYStlFYFGXsLY2Grj5PBU-GveVwV7fLrKE7S_Bl9EidCKS-QT9GJTDHPZO2hkY2cXoQ4PhPtlgtjWkNvqcbukmU4CKzgrfUA5fMg368F52fm_v8rT65_1Gbpd-MmS0bSg-2h3ubiwz9FNvVpO20UP7bAxC0feQ3tHg1H9oReMGr0wD-FYV9-gpH4_rL_-ASG7Ob4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHQheuCMCAwyCJ4iWixOnDwgN2NRqbVWJgbYn4yutgLY0Xaf9KX4jx07S0UnsbQ88NnGd2PnOxT7H3wF4mRdKuNBhqJRMQmrbUShl7rbDIlkoR8gmfNWSHhsMisPD9nADfjdnYVxaZaMTvaLWU-X2yLfR0jDmHYJ3s1-hqxrloqtNCY0KFvvm9ASXbOXb7kf8vq-SZG_34EMnrKsKhAqt9SKU2oXehGZCaBErZvI0SW2Bb6nwd6xpqmN0W5g1Rlk0gCzSup1riQuDTOdKptjvFdikDuwt2Bx2-8Oj1a6O41svKK1P50RpsV1Sr4vcKs1Tn4fZmgX0hQLQro1cGuZfPu75DM1zYVpv_fZu_W_zdhtu1n422akE4w5smMlduFZV3jy9B1-qSsc4ViJIf7f_icxwGfFTkPJkjDgm6MoTNXXh_Gq_mjha5xBV-QL1L_mOrjn2S4w_OElGYr70hBPlffh8KYN6AK3JdGIeAmE2yUWcaatSTSUqb2mNjagUIlHSxkUAcfPZuar5110ZkB_c5wGkBa-gwhEq3EOFZwG8Xv1nVrGPXNj6vUPTqqVjDvcXpvNvvFZEPLaa2jyz0mYRFUy0RYHDZTQxmTSSYicvEItrfXR2etxdc9G4KGH5Mg5gqwEbr3Veyc-QFsDz1W3UVi4EJSZmeuzbFL6kQBoAW4P42hPX70zGI897zlKXMo8T-aYRhrOH_3tWHl38rs_geueg3-O97mD_MdxInKBGeZjkW9BazI_NE7iqlotxOX9ayzqBr5ctJn8AzRqTlg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6V8hAX3qiGAguCE1jxY-11DggV2qhV0ygSD1Vcln02EZCEOE3Vv8avY2Ztp7gSvfXA0fZ6vbv-5rUzO0PIy7zQEl2HodYqCZnrRqFSOW6HRarQmJBN-qolfT4YFIeH3eEa-d2chcGwyoYnekZtphr3yDsgaTj3CkHH1WERw-3eu9mvECtIoae1KadRQWTfnp6A-Va-3duGf_0qSXo7nz7shnWFgVCD5F6EyqAbThoupZGx5jZPk9QVMGIN17FhqYlBheHOWu1AGPLImG5uFBgJmcm1SqHfK-QqBxsTwwmH2dfV_g5mXi8Yq8_pRGnRKZnnSmiv-SToYdaShb5kAEi4EQZk_qXtno_VPOew9XKwd_t_XsE75FatfdOtilzukjU7uUeuV_U4T--TL1X9Y5g3lfRg5-AjnYFx8VPS8mQM6Kag4FM9RSd_tYtNMdlzCAx-AVyZfgeFHfql1h-npCM5X_o0FOUD8vlSJvWQrE-mE7tBKHdJLuPMOJ0apoClK2ddxJSUiVYuLgISNxAQus7KjsVBfggfHZAWooKNANgIDxuRBeT16p1ZlZPkwtbvEVmrlphP3N-Yzo9EzZ5E7AxzeeaUyyImuezKAqbLWWIzZRWDTl4ALlt97G71Bd5DH12U8HwZB2SzAZ6oOWEpzlAXkOerx8DD0DElJ3Z67NsUvtBAGhDegnvri-0nk_HIZ0PnKQbSw0K-aQjj7OP_XpVHF4_1GbkBtCH6e4P9x-RmgjQb5WGSb5L1xfzYPiHX9HIxLudPPdFT8u2yaeQPbY6a-Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+a+MEMS+plasma+switch+for+conditioning+high-voltage+kinetic+energy+harvesters&rft.jtitle=Nature+communications&rft.au=Zhang+Hemin&rft.au=Marty%2C+Fr%C3%A9d%C3%A9ric&rft.au=Xia+Xin&rft.au=Zi+Yunlong&rft.date=2020-06-26&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-17019-5&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |