Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters

Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 11; H. 1; S. 3221 - 10
Hauptverfasser: Zhang, Hemin, Marty, Frédéric, Xia, Xin, Zi, Yunlong, Bourouina, Tarik, Galayko, Dimitri, Basset, Philippe
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 26.06.2020
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit. Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches.
AbstractList Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit. Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches.
Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit. Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches.
Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders of magnitude improvement of the energy harvesting efficiency by applying a conditioning circuit with self-sustained and automatic hysteresis MEMS micro-plasma switches.
Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit.
Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit.Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy. However, efficient energy management of the generated high-voltage for practical low-voltage applications is still under investigation. Autonomous switches are key elements for improving the harvested energy per mechanical cycle, but they are complicated to implement at such voltages higher than several hundreds of volts. This paper proposes a self-sustained and automatic hysteresis plasma switch made from silicon micromachining, and implemented in a two-stage efficient conditioning circuit for powering low-voltage devices using triboelectric nanogenerators. The hysteresis of this microelectromechanical switch is controllable by topological design and the actuation of the switch combines the principles of micro-discharge and electrostatic pulling, without the need of any power-consuming control electronic circuits. The experimental results indicate that the energy harvesting efficiency is improved by two orders of magnitude compared to the conventional full-wave rectifying circuit.
ArticleNumber 3221
Author Zhang, Hemin
Bourouina, Tarik
Marty, Frédéric
Zi, Yunlong
Galayko, Dimitri
Xia, Xin
Basset, Philippe
Author_xml – sequence: 1
  givenname: Hemin
  orcidid: 0000-0002-1067-1137
  surname: Zhang
  fullname: Zhang, Hemin
  organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris, Department of Engineering, The Nanoscience Centre, University of Cambridge
– sequence: 2
  givenname: Frédéric
  surname: Marty
  fullname: Marty, Frédéric
  organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris
– sequence: 3
  givenname: Xin
  surname: Xia
  fullname: Xia, Xin
  organization: The Chinese University of Hong Kong, Shatin, N.T
– sequence: 4
  givenname: Yunlong
  orcidid: 0000-0002-5133-4057
  surname: Zi
  fullname: Zi, Yunlong
  organization: The Chinese University of Hong Kong, Shatin, N.T
– sequence: 5
  givenname: Tarik
  orcidid: 0000-0003-2342-7149
  surname: Bourouina
  fullname: Bourouina, Tarik
  organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris
– sequence: 6
  givenname: Dimitri
  orcidid: 0000-0002-7056-7489
  surname: Galayko
  fullname: Galayko, Dimitri
  email: dimitri.galayko@sorbonne-universite.fr
  organization: Sorbonne Université, LIP6
– sequence: 7
  givenname: Philippe
  orcidid: 0000-0002-9790-8247
  surname: Basset
  fullname: Basset, Philippe
  email: philippe.basset@esiee.fr
  organization: ESYCOM, Univ Gustave Eiffel, CNRS, CNAM, ESIEE Paris
BackLink https://hal.science/hal-03090276$$DView record in HAL
BookMark eNp9Ustu1DAUjVARfdAfYBWJDSwCfjvZIFXV0FaaigWPreX4kXhI7MHODJq_x2kqoLOoN_a9Pufcc-17Xpz44E1RvIHgAwS4_pgIJIxXAIEKcgCbir4ozhAgMIcIn_x3Pi0uU9qAvHADa0JeFacY0QZSyM6KH6txO4SD810py_vV_ddyO8g0yjL9dpPqSxtiqYLXbnLBz6jedX21D8MkO1P-dN5MTpXGm9gdyl7GvUmTiel18dLKIZnLx_2i-P559e36tlp_ubm7vlpXikE-Va0GmBGpuZRaQsUNwwjb2jZA5RhqgjVkFHBrjLII1hxo3TDdNg2jmqkWXxR3i64OciO20Y0yHkSQTjwkQuyEjNnhYAS0mlhGbWspIJLLRta5ECfI0Na0hGatT4vWdteORivjpyiHJ6JPb7zrRRf2gmOYDdVZ4P0i0B_Rbq_WYs4BDBqAONvDjH33WCyGX7v8aGJ0SZlhkN6EXRKIwBoiTgHO0LdH0E3YRZ-fdUZxDkBDZ0G0oFQMKUVj_zqAQMwTI5aJEXlixMPEiLnl-oik3CTnr84NuuF5Kl6oKdfxnYn_XD3D-gM0PNYD
CitedBy_id crossref_primary_10_1016_j_mattod_2020_11_012
crossref_primary_10_1016_j_nanoen_2022_108030
crossref_primary_10_3390_s23104912
crossref_primary_10_1002_adma_202403361
crossref_primary_10_1109_TPEL_2025_3573803
crossref_primary_10_1002_aenm_202203707
crossref_primary_10_1063_5_0244986
crossref_primary_10_1038_s41378_024_00660_1
crossref_primary_10_1002_admt_202302236
crossref_primary_10_3390_mi15050556
crossref_primary_10_1002_adfm_202415338
crossref_primary_10_1002_adfm_202416944
crossref_primary_10_1002_aenm_202502920
crossref_primary_10_1109_JMEMS_2022_3151909
crossref_primary_10_1016_j_nanoen_2021_106891
crossref_primary_10_1002_aenm_202300557
crossref_primary_10_1088_1361_6439_ac168e
crossref_primary_10_1002_adma_202511283
crossref_primary_10_1109_TPEL_2024_3376536
crossref_primary_10_1016_j_coco_2024_101907
crossref_primary_10_1002_advs_202404253
crossref_primary_10_1039_D4EE02447H
crossref_primary_10_1002_aenm_202201532
crossref_primary_10_1039_D3EE00220A
crossref_primary_10_1016_j_nanoen_2022_107816
crossref_primary_10_1039_D5TA04156B
crossref_primary_10_1016_j_joule_2020_12_023
crossref_primary_10_1002_adma_202506186
crossref_primary_10_3390_nano11112975
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_1002_chem_202400882
crossref_primary_10_1109_JMEMS_2022_3200461
crossref_primary_10_1016_j_nanoen_2023_108686
crossref_primary_10_1038_s41467_020_20045_y
crossref_primary_10_3390_batteries9050281
crossref_primary_10_1021_acsnano_4c15200
crossref_primary_10_1038_s41378_023_00572_6
crossref_primary_10_3788_PI_2023_R04
crossref_primary_10_1063_5_0085850
crossref_primary_10_3390_s22041668
crossref_primary_10_1016_j_mser_2025_100934
crossref_primary_10_1093_nsr_nwac170
crossref_primary_10_1002_aenm_202100050
crossref_primary_10_1088_2631_7990_ad4fca
crossref_primary_10_1002_adfm_202409088
crossref_primary_10_1016_j_nanoen_2021_106757
crossref_primary_10_1002_adfm_202305106
crossref_primary_10_1016_j_nanoen_2023_108616
crossref_primary_10_1039_D4EE00895B
crossref_primary_10_3390_mi11090860
crossref_primary_10_1002_aenm_202103677
crossref_primary_10_1016_j_ymssp_2023_110503
crossref_primary_10_3390_jmse10101348
crossref_primary_10_1557_s43577_025_00860_8
crossref_primary_10_1002_adfm_202103081
crossref_primary_10_1016_j_nanoen_2021_106673
crossref_primary_10_1039_D0SC05145D
crossref_primary_10_1002_admt_202300802
crossref_primary_10_1016_j_nanoen_2022_108042
crossref_primary_10_1016_j_nanoen_2023_109079
crossref_primary_10_1016_j_nanoen_2024_110167
crossref_primary_10_1016_j_nanoen_2022_107196
crossref_primary_10_1016_j_cej_2024_150449
crossref_primary_10_1016_j_joule_2021_03_006
crossref_primary_10_1038_s41378_025_00928_0
crossref_primary_10_1002_smll_202310359
crossref_primary_10_1016_j_apm_2022_11_005
crossref_primary_10_1109_JMEMS_2022_3168323
crossref_primary_10_1038_s41578_022_00441_0
crossref_primary_10_1109_TPEL_2023_3296709
crossref_primary_10_1088_2631_7990_ace669
crossref_primary_10_1016_j_nanoen_2021_106884
crossref_primary_10_1039_D1EE02852A
crossref_primary_10_1039_D5EE00399G
Cites_doi 10.1088/1361-6439/aab514
10.1016/j.nanoen.2012.01.004
10.1016/j.nanoen.2019.104137
10.1016/j.nanoen.2018.06.038
10.1038/s41467-018-07882-8
10.1016/j.nanoen.2018.06.034
10.1088/0960-1317/16/7/034
10.1016/0011-2275(78)90001-2
10.1016/j.nimb.2011.10.053
10.1088/0960-1317/26/12/124004
10.1002/aenm.201702736
10.1088/0960-1317/24/3/035001
10.1038/ncomms12985
10.1002/adma.201402491
10.1063/1.4916232
10.1088/0957-4484/27/29/295302
10.1016/j.surfcoat.2018.11.102
10.1016/j.joule.2017.09.004
10.1088/0022-3727/39/3/R01
10.1126/science.1212741
10.1016/j.nanoen.2017.05.063
10.1088/1742-6596/1407/1/012016
10.1116/1.590609
10.1109/TMECH.2006.886245
10.1016/j.crhy.2016.12.001
10.1109/LED.2014.2387213
10.1126/science.1124005
10.1021/am406005a
10.1088/0960-1317/19/11/115025
10.1088/0960-1317/10/3/321
10.1016/j.nanoen.2019.05.049
10.1063/1.1734974
10.1016/j.nanoen.2018.02.013
10.1039/C8EE00188J
10.1088/1361-6439/aac8cc
10.1088/1361-6463/aab4bc
10.1088/0964-1726/19/4/045003
10.1016/j.apenergy.2018.09.120
10.1016/j.nanoen.2017.11.062
10.1038/nchem.2085
10.1016/j.nanoen.2018.05.011
10.1016/j.nanoen.2017.05.027
10.1038/nature12909
10.1117/12.469740
10.1038/183174a0
10.1109/TED.2011.2128323
10.1109/TRANSDUCERS.2019.8808359
10.1109/TPEL.2018.2815536
10.1016/j.nanoen.2018.02.030
10.1002/9781119007487
10.1016/j.rser.2015.02.021
10.1063/1.3380855
10.1088/0960-1317/13/5/318
10.1126/science.aan3997
10.1109/JIOT.2018.2867722
10.1016/j.nanoen.2017.09.010
10.1109/TED.2014.2377728
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID C6C
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41467-020-17019-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (subscription)
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_1fd4f65fbf504a7a9a88f9742e5beb45
PMC7319968
oai:HAL:hal-03090276v1
10_1038_s41467_020_17019_5
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
1XC
4.4
BAPOH
CAG
COF
EJD
LGEZI
LOTEE
NADUK
NXXTH
VOOES
5PM
ID FETCH-LOGICAL-c617t-bd0364ad7aada1c7e6323f8f90cda11d43d16507feecf21870dd96db9965d6cb3
IEDL.DBID M7P
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544946300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:20:32 EDT 2025
Tue Nov 04 01:43:13 EST 2025
Tue Oct 14 21:03:33 EDT 2025
Sun Nov 09 09:43:03 EST 2025
Tue Oct 07 07:01:46 EDT 2025
Sat Nov 29 06:20:25 EST 2025
Tue Nov 18 20:59:25 EST 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution: http://creativecommons.org/licenses/by
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c617t-bd0364ad7aada1c7e6323f8f90cda11d43d16507feecf21870dd96db9965d6cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7056-7489
0000-0002-9790-8247
0000-0002-5133-4057
0000-0003-2342-7149
0000-0002-1067-1137
0000-0002-9881-2036
OpenAccessLink https://www.proquest.com/docview/2417700951?pq-origsite=%requestingapplication%
PMID 32591516
PQID 2417700951
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1fd4f65fbf504a7a9a88f9742e5beb45
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7319968
hal_primary_oai_HAL_hal_03090276v1
proquest_miscellaneous_2418127503
proquest_journals_2417700951
crossref_primary_10_1038_s41467_020_17019_5
crossref_citationtrail_10_1038_s41467_020_17019_5
springer_journals_10_1038_s41467_020_17019_5
PublicationCentury 2000
PublicationDate 2020-06-26
PublicationDateYYYYMMDD 2020-06-26
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Liu (CR30) 2019; 10
Ghosh (CR57) 2014; 6
Basset (CR22) 2009; 19
Ouanes, Samaali, Galayko, Basset, Najar (CR35) 2019; 62
Wang, Song (CR10) 2006; 312
Cheng (CR54) 2018; 9
Ryu (CR18) 2018; 11
Hinchet (CR27) 2019; 365
Dorzhiev (CR32) 2015; 36
Mallineni, Dong, Behlow, Rao, Podila (CR16) 2018; 8
Hinchet (CR21) 2018; 47
Zhang, Dimitri, Basset (CR39) 2019; 1407
Zhang, Lu, Ghaffarinejad, Basset (CR44) 2018; 51
Lee, Seok, Chun (CR63) 2003; 13
Zhao (CR38) 2017; 41
Tao (CR7) 2019; 359
Zuo, Scully, Shestani, Zhou (CR12) 2015; 19
Chen, Wang (CR15) 2017; 1
Murotani, Suzuki (CR5) 2018; 28
Ramsvik, Calatroni, Reginelli, Taborelli (CR66) 2007; 10
Zhai (CR52) 2018; 231
Ghaffarinejad, Hasani, Galayko, Basset (CR29) 2019; 66
Becker, Schoenbach, Eden (CR55) 2006; 39
Chun (CR24) 2016; 7
Fu (CR11) 2019; 6
Takhedmit, Saddi, Karami, Basset, Cirio (CR33) 2017; 18
Wang (CR23) 2014; 26
CR41
Xu, Bu, Yang, Zhang, Wang (CR25) 2018; 49
Ono, Sim, Esashi (CR48) 2000; 10
Velasquez-Garcia, Guerrera, Niu, Akinwande (CR67) 2011; 58
Allen, Phillips (CR59) 1959; 183
Du, Amaratunga, Seshia (CR9) 2018; 34
Kornbluth, Mathews, Parameswaran, Racz, Velásquez-García (CR56) 2018; 51
Gigan, Chen, Robert, Renard, Marty (CR64) 2002; 4936
Kisliuk (CR51) 1959; 30
Niu (CR43) 2015; 62
Radjenović (CR58) 2012; 279
Xi (CR37) 2017; 37
Chen (CR65) 1999; 17
Yang (CR40) 2018; 46
Guerrera, Akinwande (CR62) 2016; 27
Xia, Fu, Zi (CR46) 2019; 10
Ghaffarinejad (CR28) 2018; 51
Fujita, Kouno, Noguchi, Ueguri (CR60) 1978; 18
Karami, Galayko, Basset (CR45) 2017; 64
Larcher, Tarascon (CR1) 2015; 7
Huskinson (CR3) 2014; 505
Cheng (CR36) 2017; 38
Cheng (CR53) 2018; 44
Honma, Mitsuya, Hashiguchi, Fujita (CR8) 2018; 28
Cheng, Xu, Zheng, Jia, Qin (CR26) 2018; 9
Dunn, Kamath, Tarascon (CR2) 2011; 334
Chen, Yeh, Wang (CR50) 2006; 16
CR68
Basset (CR6) 2014; 24
Zhu, Chen, Zhang, Jing, Wang (CR17) 2019; 5
Go, Pohlman (CR49) 2010; 107
CR20
Niu, Wang, Yi, Zhou, Wang (CR42) 2015; 11
Basset, Kaiser, Legrand, Collard, Buchaillot (CR31) 2007; 12
Almoneef, Ramahi (CR13) 2015; 106
CR61
Zi (CR34) 2016; 11
Akhtar, Rehmani (CR4) 2015; 1
Bae (CR19) 2014; 23
Lu (CR47) 2016; 26
Fan, Tian, Wang (CR14) 2012; 1
J Chen (17019_CR15) 2017; 1
P Basset (17019_CR22) 2009; 19
FR Fan (17019_CR14) 2012; 1
MA Ouanes (17019_CR35) 2019; 62
DB Go (17019_CR49) 2010; 107
K Tao (17019_CR7) 2019; 359
H Fu (17019_CR11) 2019; 6
R Hinchet (17019_CR27) 2019; 365
X Cheng (17019_CR36) 2017; 38
B Lee (17019_CR63) 2003; 13
S Wang (17019_CR23) 2014; 26
L Xu (17019_CR25) 2018; 49
O Gigan (17019_CR64) 2002; 4936
CH Chen (17019_CR50) 2006; 16
F Xi (17019_CR37) 2017; 37
P Basset (17019_CR31) 2007; 12
SS Mallineni (17019_CR16) 2018; 8
H Ryu (17019_CR18) 2018; 11
X Xia (17019_CR46) 2019; 10
YS Kornbluth (17019_CR56) 2018; 51
K Murotani (17019_CR5) 2018; 28
S Niu (17019_CR42) 2015; 11
C Zhai (17019_CR52) 2018; 231
J Cheng (17019_CR54) 2018; 9
L Zuo (17019_CR12) 2015; 19
D Larcher (17019_CR1) 2015; 7
J Chun (17019_CR24) 2016; 7
G Zhu (17019_CR17) 2019; 5
G Cheng (17019_CR53) 2018; 44
Y Lu (17019_CR47) 2016; 26
17019_CR20
TS Almoneef (17019_CR13) 2015; 106
R Hinchet (17019_CR21) 2018; 47
M Radjenović (17019_CR58) 2012; 279
L Chen (17019_CR65) 1999; 17
17019_CR68
KH Becker (17019_CR55) 2006; 39
17019_CR61
P Basset (17019_CR6) 2014; 24
B Huskinson (17019_CR3) 2014; 505
H Takhedmit (17019_CR33) 2017; 18
B Dunn (17019_CR2) 2011; 334
P Kisliuk (17019_CR51) 1959; 30
S Ghosh (17019_CR57) 2014; 6
A Ghaffarinejad (17019_CR28) 2018; 51
H Fujita (17019_CR60) 1978; 18
ZL Wang (17019_CR10) 2006; 312
S Du (17019_CR9) 2018; 34
H Zhang (17019_CR39) 2019; 1407
SA Guerrera (17019_CR62) 2016; 27
Z Zhao (17019_CR38) 2017; 41
F Akhtar (17019_CR4) 2015; 1
J Yang (17019_CR40) 2018; 46
A Karami (17019_CR45) 2017; 64
A Ghaffarinejad (17019_CR29) 2019; 66
H Honma (17019_CR8) 2018; 28
W Liu (17019_CR30) 2019; 10
T Ramsvik (17019_CR66) 2007; 10
T Ono (17019_CR48) 2000; 10
V Dorzhiev (17019_CR32) 2015; 36
Y Zi (17019_CR34) 2016; 11
H Zhang (17019_CR44) 2018; 51
J Bae (17019_CR19) 2014; 23
L Cheng (17019_CR26) 2018; 9
17019_CR41
LF Velasquez-Garcia (17019_CR67) 2011; 58
S Niu (17019_CR43) 2015; 62
KR Allen (17019_CR59) 1959; 183
References_xml – volume: 365
  start-page: 491
  year: 2019
  end-page: 494
  ident: CR27
  article-title: Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology
  publication-title: Science
– volume: 44
  start-page: 208
  year: 2018
  end-page: 216
  ident: CR53
  article-title: Managing and maximizing the output power of a triboelectric nanogenerator by controlled tip–electrode air-discharging and application for UV sensing
  publication-title: Nano Energy
– volume: 312
  start-page: 242
  year: 2006
  end-page: 246
  ident: CR10
  article-title: Piezoelectric nanogenerators based on zinc oxide nanowire arrays
  publication-title: Science
– ident: CR68
– volume: 27
  start-page: 295302
  year: 2016
  ident: CR62
  article-title: Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates
  publication-title: Nanotechnology
– volume: 5
  year: 2019
  ident: CR17
  article-title: Radial-arrayed rotary electrification for high performance triboelectric generator
  publication-title: Nat. Commun.
– volume: 12
  start-page: 23
  year: 2007
  end-page: 31
  ident: CR31
  article-title: Complete system for wireless powering and remote control of MEMS devices by inductive coupling
  publication-title: IEEE-ASME T. Mech.
– volume: 18
  start-page: 98
  year: 2017
  end-page: 106
  ident: CR33
  article-title: Electrostatic vibration energy harvester with 2.4-GHz Cockcroft–Walton rectenna start-up
  publication-title: C. R. Phys.
– volume: 37
  start-page: 168
  year: 2017
  end-page: 176
  ident: CR37
  article-title: Universal power management strategy for triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 7
  start-page: 19
  year: 2015
  ident: CR1
  article-title: Towards greener and more sustainable batteries for electrical energy storage
  publication-title: Nat. Chem.
– volume: 51
  start-page: 165603
  year: 2018
  ident: CR56
  article-title: Micro sputter with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines
  publication-title: J. Phys. D.
– volume: 10
  year: 2019
  ident: CR30
  article-title: Integrated charge excitation triboelectric nanogenerator
  publication-title: Nat. Commun.
– volume: 6
  start-page: 3099
  year: 2014
  end-page: 3104
  ident: CR57
  article-title: R., Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 663
  year: 2003
  ident: CR63
  article-title: A study on wafer level vacuum packaging for MEMS devices
  publication-title: J. Micromech. Microeng.
– volume: 4936
  start-page: 194
  year: 2002
  end-page: 204
  ident: CR64
  article-title: Fabrication and characterization of resonant SOI micromechanical silicon sensors based on DRIE micromachining, freestanding release process and silicon direct bonding
  publication-title: Proc. SPIE, Nano- Micro Tech: Mat. Proc. Pac. Syst.
– ident: CR61
– volume: 41
  start-page: 351
  year: 2017
  end-page: 358
  ident: CR38
  article-title: Ultrasensitive triboelectric nanogenerator for weak ambient energy with rational unipolar stacking structure and low-loss power management
  publication-title: Nano Energy
– volume: 231
  start-page: 1346
  year: 2018
  end-page: 1353
  ident: CR52
  article-title: An electrostatic discharge based needle-to-needle booster for dramatic performance enhancement of triboelectric nanogenerators
  publication-title: Appl. Energy
– volume: 106
  start-page: 153902
  year: 2015
  ident: CR13
  article-title: Metamaterial electromagnetic energy harvester with near unity efficiency
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: CR14
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
– volume: 11
  year: 2015
  ident: CR42
  article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics
  publication-title: Nat. Commun.
– volume: 107
  start-page: 103303
  year: 2010
  ident: CR49
  article-title: A mathematical model of the modified Paschen’s curve for breakdown in microscale gaps
  publication-title: J. Appl. Phys.
– volume: 30
  start-page: 51
  year: 1959
  end-page: 55
  ident: CR51
  article-title: Electron emission at high fields due to positive ions
  publication-title: J. Appl. Phys.
– volume: 62
  start-page: 465
  year: 2019
  end-page: 474
  ident: CR35
  article-title: A new type of triboelectric nanogenerator with self‐actuated series‐to‐parallel electrical interface based on self‐synchronized mechanical switches for exponential charge accumulation in a capacitor
  publication-title: Nano Energy
– volume: 51
  start-page: 173
  year: 2018
  end-page: 184
  ident: CR28
  article-title: A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 19
  start-page: 045003
  year: 2015
  ident: CR12
  article-title: Design and characterization of an electromagnetic energy harvester for vehicle suspensions
  publication-title: Smart Mater. Struct.
– volume: 19
  start-page: 115025
  year: 2009
  ident: CR22
  article-title: A batch-fabricated and electret-free silicon electrostatic vibration energy harvester
  publication-title: J. Micromech. Microeng.
– volume: 6
  start-page: 1183
  year: 2019
  end-page: 1192
  ident: CR11
  article-title: An event-triggered energy-efficient wireless structural health monitoring system for impact detection in composite airframes
  publication-title: IEEE Internet Things
– volume: 64
  start-page: 227
  year: 2017
  end-page: 240
  ident: CR45
  article-title: Series-parallel charge pump conditioning circuits for electrostatic kinetic energy harvesting
  publication-title: IEEE T. Circuits-I
– volume: 28
  start-page: 064005
  year: 2018
  ident: CR8
  article-title: Toshiyoshi, Improvement of energy conversion effectiveness and maximum output power of electrostatic induction-type MEMS energy harvesters by using symmetric comb-electrode structures
  publication-title: J. Micromech. Microeng.
– volume: 18
  start-page: 195
  year: 1978
  end-page: 200
  ident: CR60
  article-title: Breakdown voltages of gaseous N2 and air from normal to cryogenic temperatures
  publication-title: Cryogenics
– volume: 23
  year: 2014
  ident: CR19
  article-title: Flutter-driven triboelectrification for harvesting wind energy
  publication-title: Nat. Commun.
– volume: 183
  start-page: 174
  year: 1959
  end-page: 175
  ident: CR59
  article-title: Effect of humidity on the spark breakdown voltage
  publication-title: Nature
– volume: 17
  start-page: 638
  year: 1999
  end-page: 641
  ident: CR65
  article-title: Fabrication of tungsten-coated silicon-based gated emitters
  publication-title: J. Vac. Sci. Technol. B.
– volume: 11
  start-page: 2057
  year: 2018
  end-page: 2063
  ident: CR18
  article-title: Sustainable direct current powering a triboelectric nanogenerator via a novel asymmetrical design
  publication-title: Energy Environ. Sci.
– volume: 359
  start-page: 289
  year: 2019
  end-page: 295
  ident: CR7
  article-title: Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting
  publication-title: Surf. Coat. Technol.
– volume: 26
  start-page: 124004
  year: 2016
  ident: CR47
  article-title: A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node
  publication-title: J. Micromech. Microeng.
– volume: 62
  start-page: 641
  year: 2015
  end-page: 647
  ident: CR43
  article-title: Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage
  publication-title: IEEE T. Electron. Dev.
– volume: 58
  start-page: 1783
  year: 2011
  end-page: 1791
  ident: CR67
  article-title: Uniform high-current cathodes using massive arrays of Si field emitters individually controlled by vertical Si ungated FETs—Part 2: Device fabrication and characterization
  publication-title: IEEE T. Electron. Dev.
– volume: 505
  start-page: 195
  year: 2014
  ident: CR3
  article-title: A metal-free organic–inorganic aqueous flow battery
  publication-title: Nature
– volume: 8
  start-page: 1702736
  year: 2018
  ident: CR16
  article-title: A wireless triboelectric nanogenerator
  publication-title: Adv. Energy Mater.
– volume: 36
  start-page: 183
  year: 2015
  end-page: 185
  ident: CR32
  publication-title: IEEE Electron. Device Lett.
– volume: 16
  start-page: 1366
  year: 2006
  ident: CR50
  article-title: Electrical breakdown phenomena for devices with micron separations
  publication-title: J. Micromech. Microeng.
– volume: 34
  start-page: 263
  year: 2018
  end-page: 274
  ident: CR9
  article-title: A cold-startup SSHI rectifier for piezoelectric energy harvesters with increased open-circuit voltage
  publication-title: IEEE T. Power Electr.
– volume: 66
  start-page: 104137
  year: 2019
  ident: CR29
  article-title: Superior performance of half-wave to full-wave rectifier as a power conditioning circuit for Triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 1
  start-page: 480
  year: 2017
  end-page: 521
  ident: CR15
  article-title: Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator
  publication-title: Joule
– volume: 10
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR46
  article-title: A universal standardized method for output capability assessment of nanogenerators
  publication-title: Nat. Commun.
– volume: 39
  start-page: 55
  year: 2006
  end-page: 70
  ident: CR55
  article-title: Microplasmas and applications
  publication-title: J. Phys. D.
– volume: 51
  start-page: 10
  year: 2018
  end-page: 18
  ident: CR44
  article-title: Progressive contact-separate triboelectric nanogenerator based on conductive polyurethane foam regulated with a bennet doubler conditioning circuit
  publication-title: Nano Energy
– volume: 28
  start-page: 104001
  year: 2018
  ident: CR5
  article-title: MEMS electret energy harvester with embedded bistable electrostatic spring for broadband response
  publication-title: J. Micromech. Microeng.
– volume: 10
  start-page: 042001
  year: 2007
  ident: CR66
  article-title: Influence of ambient gases on the dc saturated breakdown field of molybdenum, tungsten, and copper during intense breakdown conditioning
  publication-title: Phys. Rev. Spec. Top.-AC
– volume: 1407
  start-page: 012016
  year: 2019
  ident: CR39
  article-title: A self-sustained energy storage system with an electrostatic automatic switch and a buck dc-dc converter for triboelectric nanogenerators
  publication-title: J. Phys. Conf. Ser.
– volume: 10
  start-page: 445
  year: 2000
  ident: CR48
  article-title: Micro-discharge and electric breakdown in a micro-gap
  publication-title: J. Micromech. Microeng.
– volume: 7
  year: 2016
  ident: CR24
  article-title: Boosted output performance of triboelectric nanogenerator via electric double layer effect
  publication-title: Nat. Commun.
– volume: 49
  start-page: 625
  year: 2018
  end-page: 633
  ident: CR25
  article-title: Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators
  publication-title: Nano Energy
– volume: 334
  start-page: 928
  year: 2011
  end-page: 935
  ident: CR2
  article-title: Electrical energy storage for the grid: a battery of choices
  publication-title: Science
– volume: 1
  start-page: 769
  year: 2015
  end-page: 784
  ident: CR4
  article-title: Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 279
  start-page: 103
  year: 2012
  end-page: 105
  ident: CR58
  article-title: The humidity effect on the breakdown voltage characteristics and the transport parameters of air
  publication-title: Nucl. Instrum. Methods Phys. Res
– volume: 46
  start-page: 220
  year: 2018
  end-page: 228
  ident: CR40
  article-title: Managing and optimizing the output performances of a triboelectric nanogenerator by a self-powered electrostatic vibrator switch
  publication-title: Nano Energy
– volume: 26
  start-page: 6720
  year: 2014
  end-page: 6728
  ident: CR23
  article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized‐air injection: methodology and theoretical understanding
  publication-title: Adv. Mater.
– volume: 38
  start-page: 438
  year: 2017
  end-page: 446
  ident: CR36
  article-title: High efficiency power management and charge boosting strategy for a triboelectric nanogenerator
  publication-title: Nano Energy
– volume: 47
  start-page: 401
  year: 2018
  end-page: 409
  ident: CR21
  article-title: Understanding and modeling of triboelectric-electret nanogenerator
  publication-title: Nano Energy
– volume: 11
  year: 2016
  ident: CR34
  article-title: Effective energy storage from a triboelectric nanogenerator
  publication-title: Nat. Commun.
– volume: 24
  start-page: 035001
  year: 2014
  ident: CR6
  article-title: Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact
  publication-title: J. Micromech. Microeng.
– volume: 9
  year: 2018
  ident: CR26
  article-title: A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed
  publication-title: Nat. Commun.
– ident: CR41
– ident: CR20
– volume: 9
  year: 2018
  ident: CR54
  article-title: Triboelectric microplasma powered by mechanical stimuli
  publication-title: Nat. Commun.
– volume: 28
  start-page: 064005
  year: 2018
  ident: 17019_CR8
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aab514
– volume: 1
  start-page: 328
  year: 2012
  ident: 17019_CR14
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 9
  year: 2018
  ident: 17019_CR26
  publication-title: Nat. Commun.
– volume: 66
  start-page: 104137
  year: 2019
  ident: 17019_CR29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104137
– volume: 51
  start-page: 10
  year: 2018
  ident: 17019_CR44
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.038
– volume: 10
  start-page: 1
  year: 2019
  ident: 17019_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 51
  start-page: 173
  year: 2018
  ident: 17019_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.034
– volume: 23
  year: 2014
  ident: 17019_CR19
  publication-title: Nat. Commun.
– ident: 17019_CR68
– volume: 16
  start-page: 1366
  year: 2006
  ident: 17019_CR50
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/16/7/034
– volume: 18
  start-page: 195
  year: 1978
  ident: 17019_CR60
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(78)90001-2
– volume: 279
  start-page: 103
  year: 2012
  ident: 17019_CR58
  publication-title: Nucl. Instrum. Methods Phys. Res
  doi: 10.1016/j.nimb.2011.10.053
– volume: 26
  start-page: 124004
  year: 2016
  ident: 17019_CR47
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/26/12/124004
– volume: 8
  start-page: 1702736
  year: 2018
  ident: 17019_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702736
– volume: 24
  start-page: 035001
  year: 2014
  ident: 17019_CR6
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/24/3/035001
– volume: 7
  year: 2016
  ident: 17019_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12985
– volume: 26
  start-page: 6720
  year: 2014
  ident: 17019_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402491
– volume: 106
  start-page: 153902
  year: 2015
  ident: 17019_CR13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4916232
– volume: 27
  start-page: 295302
  year: 2016
  ident: 17019_CR62
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/29/295302
– volume: 359
  start-page: 289
  year: 2019
  ident: 17019_CR7
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2018.11.102
– volume: 1
  start-page: 480
  year: 2017
  ident: 17019_CR15
  publication-title: Joule
  doi: 10.1016/j.joule.2017.09.004
– volume: 39
  start-page: 55
  year: 2006
  ident: 17019_CR55
  publication-title: J. Phys. D.
  doi: 10.1088/0022-3727/39/3/R01
– volume: 334
  start-page: 928
  year: 2011
  ident: 17019_CR2
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 38
  start-page: 438
  year: 2017
  ident: 17019_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.063
– volume: 1407
  start-page: 012016
  year: 2019
  ident: 17019_CR39
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1407/1/012016
– volume: 17
  start-page: 638
  year: 1999
  ident: 17019_CR65
  publication-title: J. Vac. Sci. Technol. B.
  doi: 10.1116/1.590609
– volume: 12
  start-page: 23
  year: 2007
  ident: 17019_CR31
  publication-title: IEEE-ASME T. Mech.
  doi: 10.1109/TMECH.2006.886245
– volume: 18
  start-page: 98
  year: 2017
  ident: 17019_CR33
  publication-title: C. R. Phys.
  doi: 10.1016/j.crhy.2016.12.001
– volume: 36
  start-page: 183
  year: 2015
  ident: 17019_CR32
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2014.2387213
– volume: 312
  start-page: 242
  year: 2006
  ident: 17019_CR10
  publication-title: Science
  doi: 10.1126/science.1124005
– volume: 11
  year: 2015
  ident: 17019_CR42
  publication-title: Nat. Commun.
– volume: 6
  start-page: 3099
  year: 2014
  ident: 17019_CR57
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am406005a
– volume: 19
  start-page: 115025
  year: 2009
  ident: 17019_CR22
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/11/115025
– volume: 10
  start-page: 445
  year: 2000
  ident: 17019_CR48
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/10/3/321
– volume: 62
  start-page: 465
  year: 2019
  ident: 17019_CR35
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.05.049
– volume: 30
  start-page: 51
  year: 1959
  ident: 17019_CR51
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1734974
– volume: 10
  year: 2019
  ident: 17019_CR30
  publication-title: Nat. Commun.
– volume: 46
  start-page: 220
  year: 2018
  ident: 17019_CR40
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.013
– volume: 11
  start-page: 2057
  year: 2018
  ident: 17019_CR18
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00188J
– volume: 28
  start-page: 104001
  year: 2018
  ident: 17019_CR5
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aac8cc
– volume: 51
  start-page: 165603
  year: 2018
  ident: 17019_CR56
  publication-title: J. Phys. D.
  doi: 10.1088/1361-6463/aab4bc
– volume: 19
  start-page: 045003
  year: 2015
  ident: 17019_CR12
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/19/4/045003
– volume: 231
  start-page: 1346
  year: 2018
  ident: 17019_CR52
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.120
– volume: 44
  start-page: 208
  year: 2018
  ident: 17019_CR53
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.11.062
– volume: 7
  start-page: 19
  year: 2015
  ident: 17019_CR1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2085
– volume: 49
  start-page: 625
  year: 2018
  ident: 17019_CR25
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.05.011
– volume: 37
  start-page: 168
  year: 2017
  ident: 17019_CR37
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.027
– volume: 505
  start-page: 195
  year: 2014
  ident: 17019_CR3
  publication-title: Nature
  doi: 10.1038/nature12909
– volume: 4936
  start-page: 194
  year: 2002
  ident: 17019_CR64
  publication-title: Proc. SPIE, Nano- Micro Tech: Mat. Proc. Pac. Syst.
  doi: 10.1117/12.469740
– volume: 183
  start-page: 174
  year: 1959
  ident: 17019_CR59
  publication-title: Nature
  doi: 10.1038/183174a0
– volume: 11
  year: 2016
  ident: 17019_CR34
  publication-title: Nat. Commun.
– volume: 9
  year: 2018
  ident: 17019_CR54
  publication-title: Nat. Commun.
– ident: 17019_CR61
– volume: 58
  start-page: 1783
  year: 2011
  ident: 17019_CR67
  publication-title: IEEE T. Electron. Dev.
  doi: 10.1109/TED.2011.2128323
– ident: 17019_CR41
  doi: 10.1109/TRANSDUCERS.2019.8808359
– volume: 64
  start-page: 227
  year: 2017
  ident: 17019_CR45
  publication-title: IEEE T. Circuits-I
– volume: 34
  start-page: 263
  year: 2018
  ident: 17019_CR9
  publication-title: IEEE T. Power Electr.
  doi: 10.1109/TPEL.2018.2815536
– volume: 47
  start-page: 401
  year: 2018
  ident: 17019_CR21
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.030
– volume: 10
  start-page: 042001
  year: 2007
  ident: 17019_CR66
  publication-title: Phys. Rev. Spec. Top.-AC
– ident: 17019_CR20
  doi: 10.1002/9781119007487
– volume: 1
  start-page: 769
  year: 2015
  ident: 17019_CR4
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.02.021
– volume: 5
  year: 2019
  ident: 17019_CR17
  publication-title: Nat. Commun.
– volume: 107
  start-page: 103303
  year: 2010
  ident: 17019_CR49
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3380855
– volume: 13
  start-page: 663
  year: 2003
  ident: 17019_CR63
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/13/5/318
– volume: 365
  start-page: 491
  year: 2019
  ident: 17019_CR27
  publication-title: Science
  doi: 10.1126/science.aan3997
– volume: 6
  start-page: 1183
  year: 2019
  ident: 17019_CR11
  publication-title: IEEE Internet Things
  doi: 10.1109/JIOT.2018.2867722
– volume: 41
  start-page: 351
  year: 2017
  ident: 17019_CR38
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.010
– volume: 62
  start-page: 641
  year: 2015
  ident: 17019_CR43
  publication-title: IEEE T. Electron. Dev.
  doi: 10.1109/TED.2014.2377728
SSID ssj0000391844
Score 2.6034079
Snippet Triboelectric nanogenerators have attracted wide attention due to their promising capabilities of scavenging the ambient environmental mechanical energy....
Conditioning efficiently high-voltage triboelectric nanogenerators for low-voltage applications remains a challenge. Here, the authors demonstrate two orders...
SourceID doaj
pubmedcentral
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3221
SubjectTerms 142/126
147/135
639/166/987
639/4077/4072
Actuation
Circuits
Conditioning
Electric power generation
Electronic circuits
Energy
Energy harvesting
Energy management
Engineering Sciences
High voltages
Humanities and Social Sciences
Hysteresis
Kinetic energy
Micro and nanotechnologies
Microelectromechanical systems
Microelectronics
Micromachining
multidisciplinary
Nanogenerators
Power consumption
Scavenging
Science
Science (multidisciplinary)
Stability
Switches
Voltage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiPIQgbYyiBtYzcPx41iqVj3QComHerP81K6AtNpsF_HvGTvZZVMJuHCMYyfReMbzTcb-BuA1F0zZEBQN0grKvK-psWWk6Kp9wEiOsdrlYhPi4kJeXqoPW6W-0p6wgR54ENxhFT2LvI02tiUzwigjZUQQXIfWBssye2kp1FYwldfgRmHowsZTMmUjD3uW14QULWUKctpOPFEm7Ef_MkvbIbew5u2dkrfSpdkLnT6EByN8JEfDZ-_CndA9gntDQcmfj-HLUMAXhxJDzk_OP5JrRMffDel_zHF6CCJUggGwn4-_YUliK6a4Qi1xWSFfEXHic0nI5wHJzCxWmUehfwKfT08-HZ_RsXICdYhIltT6lF40XhjjTeVE4E3dRJRb6fC68qzxFUIzEUNwEZ28KL1X3FsMflrPnW2ewk531YVnQNDAFbYxieOYi0oyK4KKvq0cR-ffFFCtpajdSCueqlt80zm93Ug9SF6j5HWWvG4LeLMZcz2Qavy197s0OZueiRA7N6Ca6FFN9L_UpIBXOLWTZ5wdvdepLSWZMDjnq6qAvfXM69GUe40QR4iMRAt4ubmNRpgyK6YLVze5j8xM-SgOMdGYyRund7r5LNN5iybtBJcFvF3r1u-X_1kqz_-HVF7A_TpZRMlpzfdgZ7m4Cftw162W835xkE3qFy_fJRY
  priority: 102
  providerName: Directory of Open Access Journals
Title Employing a MEMS plasma switch for conditioning high-voltage kinetic energy harvesters
URI https://link.springer.com/article/10.1038/s41467-020-17019-5
https://www.proquest.com/docview/2417700951
https://www.proquest.com/docview/2418127503
https://hal.science/hal-03090276
https://pubmed.ncbi.nlm.nih.gov/PMC7319968
https://doaj.org/article/1fd4f65fbf504a7a9a88f9742e5beb45
Volume 11
WOSCitedRecordID wos000544946300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYBhIv3CcCozKIN7CWixM7T2hDnYZEq4ibCi-Wr7RiS0vTFfHvOXbSjkxiL7xEqu3YTY597vkOQi8LRktlbUksV4xQY1IiVewIiGpjwZKjNNWh2AQbj_lkUladw63p0io3PDEwajPX3kd-CJKGsaAQvFn8JL5qlI-udiU0dtCeR0lIQ-petfWxePRzTmn3rUyc8cOGBs7gbaYARE7ynjwKsP0gZaY-KfIvjfNqvuSVoGmQRSd3__cp7qE7nRaKj9ptcx_dsPUDdKutS_n7IfrS1gGGtbHEo-HoI16Akn0ucfNrBlTGoOhisKPNrPPmYg96TIDRrYA74R-guMK82IbPCvFULtcBjqF5hD6fDD-9PSVdAQaiQbFZEWV8lFIaJqWRiWa2yNLMcVfGGn4nhmYmAQ2POWu1A12BxcaUhVFgQ-Wm0CrbR7v1vLaPEQY-UUIb5XAf1a7kVDFbOpMnugAdIotQsiGD0B06uS-ScSZClDzjoiWdANKJQDqRR-jV9p5Fi81x7ehjT93tSI-rHRrmy--iO6YicYa6InfK5TGVTJaSw-MymtpcWUVhkhewN3pznB69F77Nx6rAxi_WSYQONsQXHUdoxCXlI_R82w1n2QdoZG3nF2EMD4D78DpYb8v1Vuz31LNpQAVnmU8o5xF6vdmcl4v_-608uf6_PkW3U39Y4oKkxQHaXS0v7DN0U69Xs2Y5QDtswsKVD9De8XBcfRgEp8YgnEO4Vvk36KnejaqvfwCogTks
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH8aHQgufCMKAwyCE1jLhxM7B4QGbGq1tqrEQNvJOLZDK6AtTddp_xR_I89O0tFJ7LYDxziOEzu_9-X3_B7Ay5SzLLc2o1bknDJjIqryoKAoqo1FS46xSPtiE3wwEIeH2XADfjdnYVxYZcMTPaM2U-32yLdR0nDuFYJ3s1_UVY1y3tWmhEYFi317eoImW_m2-xH_76so2ts9-NChdVUBqlFaL2hunOtNGa6UUaHmNo2juBBFFmi8Dg2LTYhqCy-s1QUKQB4Yk6UmR8MgManOYxz3CmwyB_YWbA67_eHRalfH5VsXjNWnc4JYbJfM8yJnpfnU5zRZk4C-UADKtZELw_xLxz0foXnOTeul396t_23dbsPNWs8mOxVh3IENO7kL16rKm6f34EtV6RjnShTp7_Y_kRmaET8VKU_GiGOCqjzRU-fOr_ariUvrTJGVL5D_ku-omuO4xPqDk2Sk5kufcKK8D58vZVIPoDWZTuxDIMgJM2xjAp9jusgEy7nNCpOEOkUtKW5D2Px2qev8664MyA_p4wBiISuoSISK9FCRSRter56ZVdlHLuz93qFp1dNlDvcN0_k3WTMiGRaGFWlS5EUSMMVVpgROl7PIJrnNGQ7yArG4NkZnpyddm_PGBRFPl2EbthqwyZrnlfIMaW14vrqN3Mq5oNTETo99H-FLCuBy8DWIr71x_c5kPPJ5z3nsQuZFG940xHD28n-vyqOLv_UZXO8c9Huy1x3sP4YbkSPUIKVRugWtxfzYPoGrerkYl_OnNa0T-HrZZPIH3YOTBA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4yJeuCMKAwyCJ7CaixM7DwgNtmrTtqoSF028GMcXWgFtabpO-2v8Oo6dpKOT2NseeIzjOLHznZvP8TkAL3LOitLaglpRcsqMSagqI0dRVBuLlhxjiQ7FJni_Lw4Pi8Ea_G7PwviwypYnBkZtJtrvkXdR0nAeFIKua8IiBlu9t9Nf1FeQ8p7WtpxGDZE9e3KM5lv1ZncL__XLJOltf3y_Q5sKA1Sj5J7T0ng3nDJcKaNizW2eJqkTrog0XseGpSZGFYY7a7VDYcgjY4rclGgkZCbXZYrjXoLLHG1MH044yL4s93d85nXBWHNOJ0pFt2KBK3l7LSRBp9mKLAwlA1DCDX1A5l_a7tlYzTMO2yAHezf_5xW8BTca7Zts1uRyG9bs-A5cretxntyFz3X9Y5w3UeRg--ADmaJx8VOR6niE6Cao4BM98U7-eheb-GTPFBn8HLky-Y4KO45LbDhOSYZqtghpKKp78OlCJnUf1seTsX0ABPljgW1M4HNMu0KwktvCmSzWOepOaQfiFgJSN1nZfXGQHzJEB6RC1rCRCBsZYCOzDrxaPjOtc5Kc2_udR9ayp88nHhoms2-yYU8ydoa5PHOlyyKmuCqUwOlyltistCXDQZ4jLlfG2Nncl77N--iihOeLuAMbLfBkwwkreYq6Djxb3kYe5h1TamwnR6GPCIUGcDn4CtxX3rh6ZzwahmzoPPWB9KIDr1vCOH35v1fl4fnf-hSuIW3I_d3-3iO4nniajXKa5BuwPp8d2cdwRS_mo2r2JBA9ga8XTSN_AJEfmmc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Employing+a+MEMS+plasma+switch+for+conditioning+high-voltage+kinetic+energy+harvesters&rft.jtitle=Nature+communications&rft.au=Zhang+Hemin&rft.au=Marty%2C+Fr%C3%A9d%C3%A9ric&rft.au=Xia+Xin&rft.au=Zi+Yunlong&rft.date=2020-06-26&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-17019-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon