An empirical Bayesian solution to the source reconstruction problem in EEG
Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the br...
Uložené v:
| Vydané v: | NeuroImage (Orlando, Fla.) Ročník 24; číslo 4; s. 997 - 1011 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
15.02.2005
Elsevier Limited Academic Press Inc Elsevier Science |
| Predmet: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional “Weighted Minimum Norm” (WMN) solution in terms of hierarchical linear models. An “Expectation-Maximisation” (EM) algorithm is used to obtain a “Restricted Maximum Likelihood” (ReML) estimate of the hyperparameters, before estimating the “Maximum a Posteriori” solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the “classic” WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting. |
|---|---|
| AbstractList | Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional “Weighted Minimum Norm” (WMN) solution in terms of hierarchical linear models. An “Expectation-Maximisation” (EM) algorithm is used to obtain a “Restricted Maximum Likelihood” (ReML) estimate of the hyperparameters, before estimating the “Maximum a Posteriori” solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the “classic” WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting. Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional "Weighted Minimum Norm" (WMN) solution in terms of hierarchical linear models. An "Expectation-Maximisation" (EM) algorithm is used to obtain a "Restricted Maximum Likelihood" (ReML) estimate of the hyperparameters, before estimating the "Maximum a Posteriori" solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the "classic" WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting.Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional "Weighted Minimum Norm" (WMN) solution in terms of hierarchical linear models. An "Expectation-Maximisation" (EM) algorithm is used to obtain a "Restricted Maximum Likelihood" (ReML) estimate of the hyperparameters, before estimating the "Maximum a Posteriori" solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the "classic" WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting. Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional "Weighted Minimum Norm" (WMN) solution in terms of hierarchical linear models. An "Expectation-Maximisation" (EM) algorithm is used to obtain a "Restricted Maximum Likelihood" (ReML) estimate of the hyperparameters, before estimating the "Maximum a Posteriori" solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the "classic" WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting. (C) 2004 Elsevier Inc. All rights reserved. |
| Author | Maquet, Pierre Phillips, Christophe Rugg, Michael D. Mattout, Jeremie Friston, Karl J. |
| Author_xml | – sequence: 1 givenname: Christophe surname: Phillips fullname: Phillips, Christophe email: c.phillips@ulg.ac.be organization: Centre de Recherches du Cyclotron, B30, Université de Liège, Liège 4000, Belgium – sequence: 2 givenname: Jeremie surname: Mattout fullname: Mattout, Jeremie organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London, UK – sequence: 3 givenname: Michael D. surname: Rugg fullname: Rugg, Michael D. organization: Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92717, USA – sequence: 4 givenname: Pierre surname: Maquet fullname: Maquet, Pierre organization: Centre de Recherches du Cyclotron, B30, Université de Liège, Liège 4000, Belgium – sequence: 5 givenname: Karl J. surname: Friston fullname: Friston, Karl J. organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15670677$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhiNURD_gL6BISNyy-CNx4guirZZSVIkLnEe2M7t4cezFTirtv69DCkh7aU8ee9557JnX58WJDx6LoqRkRQkVH3Yrj1MMdlBbXDFC6ny8Ipy8KM4okU0lm5adzHHDq45SeVqcp7QjhEhad6-KU9qIloi2PSu-XvoSh72N1ihXXqkDJqt8mYKbRht8OYZy_Il5P0WDZUQTfBrjZP4k9zFoh0Npfble37wuXm6US_jmcb0ofnxef7_-Ut19u7m9vryrjKBirLAmdcsYl1wQprQRmhCuUHMtdMM3pFV9ZzreCmFqSjllTPbI-q6WWm96ivyiYAvXWdwihKgt3DMIyi7x5LagDGgExkQHmdTKXPR-Kcpv_j1hGmGwyaBzymOYEoiWd0zKJgvfHQl3uXefGwLaENGRmnGaVW8fVZMesId9zF7EA_wdbBZ8XAQmhpQibsDYUc1TG6OyDiiB2UnYwX8nYXZyzmQnM6A7Avy74-nSq6UUswv3FiMkY9Eb7G02cIQ-2OdAPh1BjLN-_iW_8PA8xANWgtNR |
| CitedBy_id | crossref_primary_10_1016_j_tics_2009_11_008 crossref_primary_10_1016_j_neuroimage_2013_09_008 crossref_primary_10_1002_ima_22370 crossref_primary_10_1007_s13534_011_0002_2 crossref_primary_10_1016_j_asoc_2011_07_004 crossref_primary_10_1016_j_neuroimage_2010_09_087 crossref_primary_10_1371_journal_pone_0055969 crossref_primary_10_1002_hbm_21473 crossref_primary_10_1088_0031_9155_57_7_1937 crossref_primary_10_1002_dneu_22570 crossref_primary_10_3389_fpsyt_2021_731387 crossref_primary_10_1088_0266_5611_25_11_115012 crossref_primary_10_1088_1741_2560_5_2_010 crossref_primary_10_1016_j_neuroimage_2013_09_002 crossref_primary_10_1007_s10548_022_00891_3 crossref_primary_10_1016_j_neuroimage_2020_117468 crossref_primary_10_1109_TNSRE_2008_2010475 crossref_primary_10_1109_TBME_2017_2739824 crossref_primary_10_1111_j_1469_8986_2011_01320_x crossref_primary_10_1016_j_neuroimage_2011_12_027 crossref_primary_10_1111_ane_12253 crossref_primary_10_1073_pnas_0807933106 crossref_primary_10_3389_fnins_2018_00297 crossref_primary_10_1007_s10339_013_0568_y crossref_primary_10_1016_j_neuroimage_2008_06_013 crossref_primary_10_1016_j_physa_2015_03_087 crossref_primary_10_1016_j_jneumeth_2012_09_017 crossref_primary_10_1016_j_neuroimage_2011_12_012 crossref_primary_10_1016_j_neuroimage_2012_04_017 crossref_primary_10_3389_fnins_2015_00284 crossref_primary_10_1007_s11357_023_00836_z crossref_primary_10_1109_TBME_2007_913986 crossref_primary_10_1111_ejn_12254 crossref_primary_10_1007_s11571_008_9038_0 crossref_primary_10_1016_j_neuroimage_2007_07_046 crossref_primary_10_1111_j_1528_1167_2010_02521_x crossref_primary_10_1016_j_neuroimage_2014_02_022 crossref_primary_10_1142_S0219635212500203 crossref_primary_10_1016_j_neuroimage_2008_02_006 crossref_primary_10_1016_j_neuroimage_2009_06_083 crossref_primary_10_1016_j_neuroimage_2007_10_003 crossref_primary_10_1016_j_neuroimage_2017_04_038 crossref_primary_10_1016_j_neuroimage_2008_06_022 crossref_primary_10_1093_brain_awr243 crossref_primary_10_1002_hbm_21098 crossref_primary_10_1371_journal_pone_0024642 crossref_primary_10_1093_brain_awq183 crossref_primary_10_1126_scitranslmed_3006294 crossref_primary_10_1016_j_neuroimage_2007_09_048 crossref_primary_10_1088_1741_2560_8_3_036008 crossref_primary_10_1109_TBME_2014_2312713 crossref_primary_10_1016_j_biopsycho_2005_12_002 crossref_primary_10_1109_TBME_2012_2195001 crossref_primary_10_1016_j_jneumeth_2018_11_006 crossref_primary_10_1002_hbm_20956 crossref_primary_10_1016_j_neuroimage_2009_04_063 crossref_primary_10_1155_2010_329436 crossref_primary_10_1016_j_neuroimage_2008_02_059 crossref_primary_10_1016_j_neuroimage_2014_02_033 crossref_primary_10_1016_j_jspi_2011_04_020 crossref_primary_10_1016_j_neuroimage_2009_04_062 crossref_primary_10_1089_brain_2016_0462 crossref_primary_10_1016_j_cmpb_2019_04_017 crossref_primary_10_1016_j_neuroimage_2007_08_013 crossref_primary_10_1109_TMAG_2006_871635 crossref_primary_10_21105_joss_08103 crossref_primary_10_1038_srep37065 crossref_primary_10_1152_jn_00707_2011 crossref_primary_10_1002_hbm_21117 crossref_primary_10_1073_pnas_1523266113 crossref_primary_10_1016_j_clinph_2017_02_004 crossref_primary_10_1016_j_jneumeth_2018_08_006 crossref_primary_10_1088_2057_1976_1_1_015002 crossref_primary_10_1111_psyp_12505 crossref_primary_10_1016_j_neuroimage_2005_10_037 crossref_primary_10_1109_TNSRE_2009_2015196 crossref_primary_10_1155_2007_67613 crossref_primary_10_1088_0031_9155_51_23_004 crossref_primary_10_1016_j_neuroimage_2009_09_026 crossref_primary_10_1109_TMI_2012_2236567 crossref_primary_10_1016_j_neuroimage_2012_11_013 crossref_primary_10_1109_TSP_2015_2403277 crossref_primary_10_1155_2008_857459 crossref_primary_10_1140_epjp_i2012_12140_9 crossref_primary_10_1016_j_clinph_2006_03_031 crossref_primary_10_1093_nc_niaf033 crossref_primary_10_1109_TSP_2007_894265 crossref_primary_10_1002_hbm_20214 crossref_primary_10_1162_NECO_a_00236 crossref_primary_10_1016_j_neuroimage_2014_06_076 crossref_primary_10_1002_hbm_20570 crossref_primary_10_1016_j_compbiomed_2024_108871 crossref_primary_10_3389_fnins_2021_552666 crossref_primary_10_1186_s12888_016_0747_3 crossref_primary_10_1016_j_neuroimage_2017_03_030 crossref_primary_10_1109_TBME_2008_2008637 crossref_primary_10_1109_TMI_2013_2271486 crossref_primary_10_1007_s10548_011_0187_9 crossref_primary_10_1016_j_neuroimage_2009_02_026 crossref_primary_10_1016_j_clinph_2009_01_011 crossref_primary_10_1016_j_neuroimage_2010_01_024 crossref_primary_10_1016_j_neuroimage_2011_11_020 crossref_primary_10_1016_j_neuroimage_2007_04_054 crossref_primary_10_1002_wics_1339 crossref_primary_10_1016_j_neuroimage_2009_06_048 crossref_primary_10_1371_journal_pone_0051985 crossref_primary_10_1016_j_neuroimage_2018_03_048 crossref_primary_10_1016_j_neuroimage_2010_11_037 crossref_primary_10_1155_2011_852961 crossref_primary_10_1016_j_neuroimage_2009_10_011 crossref_primary_10_1002_hbm_22935 crossref_primary_10_7554_eLife_19113 crossref_primary_10_1016_j_dsp_2016_09_010 crossref_primary_10_1016_j_neuroimage_2017_01_029 crossref_primary_10_1007_s11517_006_0142_1 crossref_primary_10_1155_2016_3979547 crossref_primary_10_1109_RBME_2008_2008233 crossref_primary_10_1016_j_neuroimage_2007_07_026 crossref_primary_10_1109_MSP_2017_2699226 crossref_primary_10_1016_j_neuroimage_2013_11_004 crossref_primary_10_1371_journal_pone_0176835 crossref_primary_10_1016_j_sigpro_2011_01_012 crossref_primary_10_1016_j_neuroimage_2006_08_035 crossref_primary_10_1371_journal_pone_0019482 crossref_primary_10_1523_JNEUROSCI_3012_14_2014 |
| Cites_doi | 10.1016/S1053-8119(03)00169-1 10.1016/0167-8760(84)90014-X 10.1137/1034115 10.1093/biomet/58.3.545 10.1016/0013-4694(89)90180-6 10.1016/0013-4694(79)90215-3 10.1023/A:1026607118642 10.1006/nimg.1999.0454 10.1098/rsta.1970.0005 10.1002/(SICI)1097-0193(1999)7:3<161::AID-HBM2>3.0.CO;2-# 10.1007/BF02512476 10.1093/biomet/61.2.383 10.1109/TBME.1981.324817 10.1006/nimg.2002.1143 10.1016/0013-4694(94)90193-7 10.1016/S0987-7053(05)80405-8 10.2307/2286796 10.1088/0266-5611/6/4/005 10.1006/nimg.2002.1175 10.1097/00004691-199905000-00003 10.1109/10.664200 10.1088/0031-9155/32/1/004 10.2307/2287835 10.1016/0013-4694(81)91430-9 10.1006/nimg.2002.1090 10.1002/andp.18531650603 10.1006/nimg.2000.0616 10.1109/10.736746 |
| ContentType | Journal Article |
| Copyright | 2004 Elsevier Inc. Copyright Elsevier Limited Feb 15, 2005 |
| Copyright_xml | – notice: 2004 Elsevier Inc. – notice: Copyright Elsevier Limited Feb 15, 2005 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 JLOSS Q33 |
| DOI | 10.1016/j.neuroimage.2004.10.030 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 1011 |
| ExternalDocumentID | oai_orbi_ulg_ac_be_2268_37679 3244752411 15670677 10_1016_j_neuroimage_2004_10_030 S1053811904006238 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- ~HD 3V. 6I. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 LCYCR NCXOZ RIG ZA5 9DU AAYXX AFFHD CITATION 0SF ALIPV CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 JLOSS Q33 |
| ID | FETCH-LOGICAL-c616t-e404722393602abc6b003aeb3b6b53f07ad8c83766c41131229de2d849bbfd1e3 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226788100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Sat Nov 29 01:28:08 EST 2025 Sun Nov 09 12:31:43 EST 2025 Sat Nov 01 15:20:51 EDT 2025 Wed Feb 19 01:43:18 EST 2025 Sat Nov 29 01:54:04 EST 2025 Tue Nov 18 21:16:28 EST 2025 Fri Feb 23 02:31:39 EST 2024 Tue Oct 14 19:29:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Source reconstruction Restricted maximum likelihood (ReML) solution Expectation-maximisation (EM) procedure EEG Distributed solution |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c616t-e404722393602abc6b003aeb3b6b53f07ad8c83766c41131229de2d849bbfd1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 scopus-id:2-s2.0-12844268707 |
| ORCID | 0000-0003-3106-3357 0000-0002-4990-425X |
| OpenAccessLink | https://orbi.uliege.be/handle/2268/37679 |
| PMID | 15670677 |
| PQID | 1506804231 |
| PQPubID | 2031077 |
| PageCount | 15 |
| ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_37679 proquest_miscellaneous_67382995 proquest_journals_1506804231 pubmed_primary_15670677 crossref_citationtrail_10_1016_j_neuroimage_2004_10_030 crossref_primary_10_1016_j_neuroimage_2004_10_030 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2004_10_030 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2004_10_030 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-02-15 |
| PublicationDateYYYYMMDD | 2005-02-15 |
| PublicationDate_xml | – month: 02 year: 2005 text: 2005-02-15 day: 15 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2005 |
| Publisher | Elsevier Inc Elsevier Limited Academic Press Inc Elsevier Science |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Academic Press Inc Elsevier Science |
| References | Scherg, Ebersole (bib32) 1994; 24 Nunez (bib19) 1981 Grave de Peralta Menendez, Gonzalez Andino (bib10) 1998; 45 Friston, Penny, Phillips, Kiebel, Hinton, Ashburner (bib8) 2002; 16 Ary, Klein, Fender (bib2) 1981; 28 Cuffin, Cohen (bib5) 1979; 47 Pascual-Marqui (bib22) 1999; 1 Hämäläinen, Ilmoniemi (bib12) 1994; 32 Pascual-Marqui (bib21) 1998 Patterson, Thompson (bib24) 1971; 58 Rivière, Papadopoulos-Orfanos, Régis, Mangin (bib29) 2000; 11 Uutela, Hämäläinen, Somersalo (bib36) 1999; 10 Miltner, Braun, Johnson, Simpson, Ruchkni (bib18) 1994; 91 Dempster, Rubin, Tsutakawa (bib6) 1981 Pascual-Marqui, Michel, Lehmann (bib23) 1994; 18 Phillips, Rugg, Friston (bib27) 2002; 17 Rivière, Papadopoulos-Orfanos (bib30) 2003 Pascual-Marqui (bib20) 1995; vol. 6 Perrin, Pernier, Bertrand, Echallier (bib25) 1989; 72 Hansen (bib13) 1992; 34 Desmedt, Cheron (bib7) 1981; 52 Polhemus Fastrak. 2003. 40 Hercules Dr., P.O. Box 560, Colchester, VT 05446, USA. Wellcome Department of Cognitive Neurology, 2002. Backus, Gilbert (bib3) 1970; 266 Maldjian, Laurienti, Kraft, Burdette (bib17) 2003; 19 Phillips, Rugg, Friston (bib26) 2002; 16 Statistical Parametric Mapping, SPM2. Gonzalez Andino, Blanke, Lantz, Thut, Grave de Peralta Menendez (bib9) 2001; 3 Grave de Peralta Menendez, Gonzalez Andino (bib11) 1999; 7 Harville (bib14) 1974; 61 . von Helmholtz, Hermann, L.F., 1853. Ueber einige Gesetze der Vertheilung elektrischer Ströme in köperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie, 89, 211–233, 354_377. Aine, Huang, Stephen, Christner (bib1) 2000; 12 Sarvas (bib31) 1987; 32 Scherg, Bast, Berg (bib33) 1999; 16 Brooks, Ahmad, MacLeod, Maratos (bib4) 1999; 46 Spinelli, Gonzalez Andino, Lantz, Seeck, Michel (bib34) 2000; 13 Harville (bib15) 1977; 72 Ioannides, Bolton, Clarke (bib16) 1990; 6 Tikhonov, Arsenin (bib35) 1977 Perrin (10.1016/j.neuroimage.2004.10.030_bib25) 1989; 72 Brooks (10.1016/j.neuroimage.2004.10.030_bib4) 1999; 46 Phillips (10.1016/j.neuroimage.2004.10.030_bib26) 2002; 16 Harville (10.1016/j.neuroimage.2004.10.030_bib14) 1974; 61 Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib21) 1998 Maldjian (10.1016/j.neuroimage.2004.10.030_bib17) 2003; 19 Backus (10.1016/j.neuroimage.2004.10.030_bib3) 1970; 266 Nunez (10.1016/j.neuroimage.2004.10.030_bib19) 1981 Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib23) 1994; 18 Desmedt (10.1016/j.neuroimage.2004.10.030_bib7) 1981; 52 10.1016/j.neuroimage.2004.10.030_bib28 Rivière (10.1016/j.neuroimage.2004.10.030_bib30) 2003 Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib22) 1999; 1 Harville (10.1016/j.neuroimage.2004.10.030_bib15) 1977; 72 Spinelli (10.1016/j.neuroimage.2004.10.030_bib34) 2000; 13 Gonzalez Andino (10.1016/j.neuroimage.2004.10.030_bib9) 2001; 3 Rivière (10.1016/j.neuroimage.2004.10.030_bib29) 2000; 11 Tikhonov (10.1016/j.neuroimage.2004.10.030_bib35) 1977 Scherg (10.1016/j.neuroimage.2004.10.030_bib32) 1994; 24 Cuffin (10.1016/j.neuroimage.2004.10.030_bib5) 1979; 47 Patterson (10.1016/j.neuroimage.2004.10.030_bib24) 1971; 58 Phillips (10.1016/j.neuroimage.2004.10.030_bib27) 2002; 17 Sarvas (10.1016/j.neuroimage.2004.10.030_bib31) 1987; 32 Hämäläinen (10.1016/j.neuroimage.2004.10.030_bib12) 1994; 32 Aine (10.1016/j.neuroimage.2004.10.030_bib1) 2000; 12 Friston (10.1016/j.neuroimage.2004.10.030_bib8) 2002; 16 Grave de Peralta Menendez (10.1016/j.neuroimage.2004.10.030_bib11) 1999; 7 Grave de Peralta Menendez (10.1016/j.neuroimage.2004.10.030_bib10) 1998; 45 Ary (10.1016/j.neuroimage.2004.10.030_bib2) 1981; 28 Miltner (10.1016/j.neuroimage.2004.10.030_bib18) 1994; 91 Dempster (10.1016/j.neuroimage.2004.10.030_bib6) 1981 Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib20) 1995; vol. 6 Ioannides (10.1016/j.neuroimage.2004.10.030_bib16) 1990; 6 Hansen (10.1016/j.neuroimage.2004.10.030_bib13) 1992; 34 Scherg (10.1016/j.neuroimage.2004.10.030_bib33) 1999; 16 Uutela (10.1016/j.neuroimage.2004.10.030_bib36) 1999; 10 10.1016/j.neuroimage.2004.10.030_bib38 10.1016/j.neuroimage.2004.10.030_bib37 |
| References_xml | – year: 2003 ident: bib30 article-title: BrainVisa – volume: 266 start-page: 123 year: 1970 end-page: 192 ident: bib3 article-title: Uniqueness in the inversion of inaccurate gross earth data publication-title: Philos. Trans. R. Soc. – year: 1981 ident: bib19 article-title: Electric Fields of the Brain: The Neurophysics of EEG – volume: 13 start-page: 115 year: 2000 end-page: 125 ident: bib34 article-title: Electromagnetic inverse solutions in anatomically constrained spherical head models publication-title: Brain Topogr. – year: 1977 ident: bib35 article-title: Solutions of Ill-Posed Problems – volume: 12 start-page: 159 year: 2000 end-page: 172 ident: bib1 article-title: Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources publication-title: NeuroImage – volume: 16 start-page: 678 year: 2002 end-page: 695 ident: bib26 article-title: Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints publication-title: NeuroImage – reference: . Statistical Parametric Mapping, SPM2. – year: 1998 ident: bib21 article-title: Low Resolution Brain Electromagnetic Tomography (LORETA) – volume: 11 year: 2000 ident: bib29 article-title: A structural browser of brain anatomy publication-title: NeuroImage – volume: 34 start-page: 561 year: 1992 end-page: 580 ident: bib13 article-title: Analysis of discrete Ill-posed problems by means of the L-curve publication-title: SIAM Rev. – volume: 46 start-page: 3 year: 1999 end-page: 17 ident: bib4 article-title: Inverse electrocardiography by simultaneous imposition of multiple constraints publication-title: IEEE Trans. Biomed. Eng. – volume: 1 start-page: 75 year: 1999 end-page: 86 ident: bib22 article-title: Review of methods for solving the EEG inverse problem publication-title: Int. J. Bioelectromagn. – volume: 72 start-page: 320 year: 1977 end-page: 338 ident: bib15 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: J. Am. Stat. Assoc. – volume: 47 start-page: 132 year: 1979 end-page: 146 ident: bib5 article-title: Comparison of the magnetoencephalogram and electroencephalogram publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 24 start-page: 51 year: 1994 end-page: 60 ident: bib32 article-title: Brain source imaging of focal and multifocal epileptiform EEG activity publication-title: Clin. Neurophysiol. – reference: Polhemus Fastrak. 2003. 40 Hercules Dr., P.O. Box 560, Colchester, VT 05446, USA. – volume: vol. 6 start-page: 16 year: 1995 end-page: 28 ident: bib20 article-title: Reply to comments by M. Hämäläinen, R. Ilmoniemi and P. Nunez publication-title: Source Localization: Continuing Discussion of the Inverse Prolem – volume: 18 start-page: 49 year: 1994 end-page: 65 ident: bib23 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. – volume: 17 start-page: 287 year: 2002 end-page: 301 ident: bib27 article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem publication-title: NeuroImage – reference: Wellcome Department of Cognitive Neurology, 2002. – volume: 72 start-page: 184 year: 1989 end-page: 187 ident: bib25 article-title: Spherical splines for scalp potential and current density mapping publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 32 start-page: 11 year: 1987 end-page: 22 ident: bib31 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. – volume: 3 year: 2001 ident: bib9 article-title: The use of functional constraints for the neuroelectromagnetic inverse problem: Alternatives and caveats publication-title: Int. J. Bioelectromagn. – volume: 16 start-page: 465 year: 2002 end-page: 483 ident: bib8 article-title: Classical and Bayesian inference in neuroimaging: theory publication-title: NeuroImage – volume: 45 start-page: 440 year: 1998 end-page: 448 ident: bib10 article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem publication-title: IEEE Trans. Biomed. Eng. – volume: 16 start-page: 214 year: 1999 end-page: 224 ident: bib33 article-title: Multiple source analysis of interictal spikes: goals, requirements, and clinical value publication-title: J. Clin. Neurophysiol. – volume: 58 start-page: 545 year: 1971 end-page: 554 ident: bib24 article-title: Recovery of inter-block information when block sizes are unequal publication-title: Biometrika – volume: 32 start-page: 35 year: 1994 end-page: 42 ident: bib12 article-title: Interpreting magnetic fields of the brain: minimum norm estimates publication-title: Med. Biol. Eng. Comput. – volume: 7 start-page: 161 year: 1999 end-page: 165 ident: bib11 article-title: Backus and Gilbert method for vector fields publication-title: Hum. Brain Mapp. – volume: 61 start-page: 383 year: 1974 end-page: 385 ident: bib14 article-title: Bayesian inference for variance components using only error contrasts publication-title: Biometrika – volume: 19 start-page: 1233 year: 2003 end-page: 1239 ident: bib17 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fmri data sets publication-title: NeuroImage – start-page: 341 year: 1981 end-page: 353 ident: bib6 article-title: Estimation in covariance component models publication-title: J. Am. Stat. Assoc. – reference: von Helmholtz, Hermann, L.F., 1853. Ueber einige Gesetze der Vertheilung elektrischer Ströme in köperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie, 89, 211–233, 354_377. – volume: 10 start-page: 173 year: 1999 end-page: 180 ident: bib36 article-title: Visualization of magnetoencephalographic data using minimum current estimates publication-title: NeuroImage – volume: 6 start-page: 523 year: 1990 end-page: 543 ident: bib16 article-title: Continuous probabilistic solutions to the biomagnetic inverse problem publication-title: Inverse Probl. – volume: 28 start-page: 447 year: 1981 end-page: 452 ident: bib2 article-title: Location of sources of evoked scalp potentials: corrections for skull and scalp thickness publication-title: IEEE Trans. Biomed. Eng. – volume: 52 start-page: 553 year: 1981 end-page: 570 ident: bib7 article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components publication-title: Electroencephalogr. Clin. Neurophysiol. – reference: . – volume: 91 start-page: 295 year: 1994 end-page: 310 ident: bib18 article-title: A test of brain electrical source analysis (BESA): a simulation study publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 19 start-page: 1233 year: 2003 ident: 10.1016/j.neuroimage.2004.10.030_bib17 article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fmri data sets publication-title: NeuroImage doi: 10.1016/S1053-8119(03)00169-1 – volume: 18 start-page: 49 year: 1994 ident: 10.1016/j.neuroimage.2004.10.030_bib23 article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain publication-title: Int. J. Psychophysiol. doi: 10.1016/0167-8760(84)90014-X – ident: 10.1016/j.neuroimage.2004.10.030_bib38 – volume: 34 start-page: 561 year: 1992 ident: 10.1016/j.neuroimage.2004.10.030_bib13 article-title: Analysis of discrete Ill-posed problems by means of the L-curve publication-title: SIAM Rev. doi: 10.1137/1034115 – volume: 58 start-page: 545 year: 1971 ident: 10.1016/j.neuroimage.2004.10.030_bib24 article-title: Recovery of inter-block information when block sizes are unequal publication-title: Biometrika doi: 10.1093/biomet/58.3.545 – volume: 72 start-page: 184 year: 1989 ident: 10.1016/j.neuroimage.2004.10.030_bib25 article-title: Spherical splines for scalp potential and current density mapping publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(89)90180-6 – ident: 10.1016/j.neuroimage.2004.10.030_bib28 – volume: 47 start-page: 132 year: 1979 ident: 10.1016/j.neuroimage.2004.10.030_bib5 article-title: Comparison of the magnetoencephalogram and electroencephalogram publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(79)90215-3 – volume: 13 start-page: 115 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2004.10.030_bib34 article-title: Electromagnetic inverse solutions in anatomically constrained spherical head models publication-title: Brain Topogr. doi: 10.1023/A:1026607118642 – volume: 3 issue: 1 year: 2001 ident: 10.1016/j.neuroimage.2004.10.030_bib9 article-title: The use of functional constraints for the neuroelectromagnetic inverse problem: Alternatives and caveats publication-title: Int. J. Bioelectromagn. – volume: vol. 6 start-page: 16 year: 1995 ident: 10.1016/j.neuroimage.2004.10.030_bib20 article-title: Reply to comments by M. Hämäläinen, R. Ilmoniemi and P. Nunez – volume: 10 start-page: 173 year: 1999 ident: 10.1016/j.neuroimage.2004.10.030_bib36 article-title: Visualization of magnetoencephalographic data using minimum current estimates publication-title: NeuroImage doi: 10.1006/nimg.1999.0454 – volume: 266 start-page: 123 year: 1970 ident: 10.1016/j.neuroimage.2004.10.030_bib3 article-title: Uniqueness in the inversion of inaccurate gross earth data publication-title: Philos. Trans. R. Soc. doi: 10.1098/rsta.1970.0005 – volume: 7 start-page: 161 year: 1999 ident: 10.1016/j.neuroimage.2004.10.030_bib11 article-title: Backus and Gilbert method for vector fields publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)7:3<161::AID-HBM2>3.0.CO;2-# – year: 1977 ident: 10.1016/j.neuroimage.2004.10.030_bib35 – volume: 32 start-page: 35 year: 1994 ident: 10.1016/j.neuroimage.2004.10.030_bib12 article-title: Interpreting magnetic fields of the brain: minimum norm estimates publication-title: Med. Biol. Eng. Comput. doi: 10.1007/BF02512476 – year: 2003 ident: 10.1016/j.neuroimage.2004.10.030_bib30 – volume: 61 start-page: 383 year: 1974 ident: 10.1016/j.neuroimage.2004.10.030_bib14 article-title: Bayesian inference for variance components using only error contrasts publication-title: Biometrika doi: 10.1093/biomet/61.2.383 – volume: 11 issue: 8 year: 2000 ident: 10.1016/j.neuroimage.2004.10.030_bib29 article-title: A structural browser of brain anatomy publication-title: NeuroImage – volume: 28 start-page: 447 issue: 6 year: 1981 ident: 10.1016/j.neuroimage.2004.10.030_bib2 article-title: Location of sources of evoked scalp potentials: corrections for skull and scalp thickness publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1981.324817 – year: 1998 ident: 10.1016/j.neuroimage.2004.10.030_bib21 – volume: 16 start-page: 678 year: 2002 ident: 10.1016/j.neuroimage.2004.10.030_bib26 article-title: Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints publication-title: NeuroImage doi: 10.1006/nimg.2002.1143 – volume: 91 start-page: 295 year: 1994 ident: 10.1016/j.neuroimage.2004.10.030_bib18 article-title: A test of brain electrical source analysis (BESA): a simulation study publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(94)90193-7 – year: 1981 ident: 10.1016/j.neuroimage.2004.10.030_bib19 – volume: 24 start-page: 51 year: 1994 ident: 10.1016/j.neuroimage.2004.10.030_bib32 article-title: Brain source imaging of focal and multifocal epileptiform EEG activity publication-title: Clin. Neurophysiol. doi: 10.1016/S0987-7053(05)80405-8 – volume: 72 start-page: 320 year: 1977 ident: 10.1016/j.neuroimage.2004.10.030_bib15 article-title: Maximum likelihood approaches to variance component estimation and to related problems publication-title: J. Am. Stat. Assoc. doi: 10.2307/2286796 – volume: 6 start-page: 523 issue: 4 year: 1990 ident: 10.1016/j.neuroimage.2004.10.030_bib16 article-title: Continuous probabilistic solutions to the biomagnetic inverse problem publication-title: Inverse Probl. doi: 10.1088/0266-5611/6/4/005 – volume: 17 start-page: 287 year: 2002 ident: 10.1016/j.neuroimage.2004.10.030_bib27 article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem publication-title: NeuroImage doi: 10.1006/nimg.2002.1175 – volume: 16 start-page: 214 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2004.10.030_bib33 article-title: Multiple source analysis of interictal spikes: goals, requirements, and clinical value publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199905000-00003 – volume: 45 start-page: 440 issue: 4 year: 1998 ident: 10.1016/j.neuroimage.2004.10.030_bib10 article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.664200 – volume: 32 start-page: 11 year: 1987 ident: 10.1016/j.neuroimage.2004.10.030_bib31 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – start-page: 341 year: 1981 ident: 10.1016/j.neuroimage.2004.10.030_bib6 article-title: Estimation in covariance component models publication-title: J. Am. Stat. Assoc. doi: 10.2307/2287835 – volume: 52 start-page: 553 issue: 6 year: 1981 ident: 10.1016/j.neuroimage.2004.10.030_bib7 article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(81)91430-9 – volume: 16 start-page: 465 year: 2002 ident: 10.1016/j.neuroimage.2004.10.030_bib8 article-title: Classical and Bayesian inference in neuroimaging: theory publication-title: NeuroImage doi: 10.1006/nimg.2002.1090 – volume: 1 start-page: 75 issue: 1 year: 1999 ident: 10.1016/j.neuroimage.2004.10.030_bib22 article-title: Review of methods for solving the EEG inverse problem publication-title: Int. J. Bioelectromagn. – ident: 10.1016/j.neuroimage.2004.10.030_bib37 doi: 10.1002/andp.18531650603 – volume: 12 start-page: 159 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2004.10.030_bib1 article-title: Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources publication-title: NeuroImage doi: 10.1006/nimg.2000.0616 – volume: 46 start-page: 3 year: 1999 ident: 10.1016/j.neuroimage.2004.10.030_bib4 article-title: Inverse electrocardiography by simultaneous imposition of multiple constraints publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.736746 |
| SSID | ssj0009148 |
| Score | 2.247711 |
| Snippet | Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear... |
| SourceID | liege proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 997 |
| SubjectTerms | Algorithms Bayes Theorem Bayesian analysis Distributed solution EEG Electroencephalography - statistics & numerical data Evoked Potentials, Somatosensory - physiology Expectation-maximisation (EM) procedure Humans Image Processing, Computer-Assisted - statistics & numerical data Inverse problems Likelihood Functions Magnetic Resonance Imaging Neurosciences & behavior Neurosciences & comportement Restricted maximum likelihood (ReML) solution Sciences sociales & comportementales, psychologie Social & behavioral sciences, psychology Source reconstruction Standard deviation |
| Title | An empirical Bayesian solution to the source reconstruction problem in EEG |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811904006238 https://dx.doi.org/10.1016/j.neuroimage.2004.10.030 https://www.ncbi.nlm.nih.gov/pubmed/15670677 https://www.proquest.com/docview/1506804231 https://www.proquest.com/docview/67382995 https://orbi.uliege.be/handle/2268/37679 |
| Volume | 24 |
| WOSCitedRecordID | wos000226788100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251014 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251014 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251014 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database (ProQuest) customDbUrl: eissn: 1095-9572 dateEnd: 20251014 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BihAvjO9lG8MPvKFAnQ_HEQ-oQxkwqVWFQOqbFTvuFNQl3dpN4r_fneO0L4Aq8eJEcS5S7PP5zj7_fgBv0S5WcaRtaC2GKMl8WIZ5VskwnpPDURqdlB3ZRDaZyNksn_oFt5VPq-xtojPUVWtojfwDIeFJSuLgn5ZXIbFG0e6qp9C4DwOizSY9z2bZFnSXJ91RuDQOJee5z-Tp8rscXmR9iaPWRYnvKceLcqH_PD0NFrSH_Xc31E1HZ_v_-yNP4LF3RNmo05yncM82z-Dh2G-1P4fzUcPs5bJ2ECLstPxt6bgl61WVrVuGviPrFv-Zi6s3WLTM09SwumFF8eUF_Dwrfnz-GnrihdAILtahTRyGZJzHYhiV2gga-yWG3VroFHsxKytpMLIVwiScxzyK8spGlUxyrecVt_FL2Gvaxh4AI_h9nfBhXs0z9NWkFFqirMG4LuVWmACyvr2V8ajkRI6xUH362S-17SkizUyoBnsqAL6RXHbIHDvI5H2Xqv7kKdpKhdPHDrIfN7LeO-m8jh2l3zkNUu21rtVtpAjW293fLC5UaZTG1yMhFaHr5AEc97qjvE1Zqa3iBPBmU43WgLZ4ysa2NyvK0pPoYKQBvOq0c9s0qcgILfDw358-gkcOnJYob9Jj2EPFsa_hgbld16vrEze8XClPYDD6VszO8XpaTKbf8ek4GlOZTe8AGNkytQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qLYJueEMNhc4CVsglM7bHY1UIFUhpaROxKFJ3g2c8QUapHZq0qD_Vb-TesZ1sAGXTBbtIzrX8uE_PmXMAXmJeLCJhXOgcjijxqJeHWVqoMBpRw5FbE-eN2EQ6HKqTk-zLClx1e2EIVtnlRJ-oi9rSN_I3xISnCMTB301-hqQaRaurnYRG4xaH7vIXjmzTtwcf8f2-EmKvf_xhP2xVBUIruZyFLvYEiVEWyZ7IjZXk2DnOlEaaBC8xzQtlcWyT0sacR1yIrHCiUHFmzKjgLsLz3oC1GCshKSYMxGBB8svjZutdEoWK86xFDjV4Ms9PWZ5ilvBT6TZhygh7_edyuDamNfO_t72-_O3d_d8e3D240zbabLeJjPuw4qoHcGvQQgkewufdirnTSekpUtj7_NLRdlLWhSKb1Qx7Y9YsbjD_3WDOtctaGR5WVqzf__QIvl7LnTyG1aqu3AYwkhcwMe9lxSjFXlQpaRTaWpxbE-6kDSDt3q-2Les6iX-MdQev-6EXnkGioDEdQc8IgM8tJw3zyBI2WedCuttZi7VAY3lcwnZnbtt2X01XtaT1a--xuj4zpb4QmmjL_e_z8XedW23w70IqTexBWQCbna_qNmdO9cJRA9iaH8ZsR0tYeeXq8ymhEBU2UEkAT5poWDyaRKbEhvj036fegtv7x4MjfXQwPHwG656Il-R9kk1YRSdyz-GmvZiV07MXPrQZfLvukPgNvzCIgA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VBFVceD8Mhe4BTsg068d6LYRQSxMohShCIPW2eNfrylVqhyYt6l_j1zFjr5MLoFx64GbJHsuPb2Zndr_9BuA5xsU8DLT1rcUSJSoGmZ8mufTDghKOzOgoa5tNJOOxPDpKJxvwq9sLQ7TKLiY2gTqvDc2R75ASniQSB98pHC1isj96O_vhUwcpWmnt2mm0EDm0lz-xfJu_OdjHf_0iCEbDr-8--K7DgG8EFwvfRo1YYpiGYhBk2ggCeYb1pRY6xsdNslwaLOGEMBHnIQ-CNLdBLqNU6yLnNsT7XoN-EmLR04P-3nA8-bKS_OVRuxEvDn3Jeep4RC27rFGrLE8xZjQ16itimBET-8-DY39KK-h_T4KbwXB063_-jLfhpkvB2W7rM3dgw1Z3YfOzIxncg4-7FbOns7IRT2F72aWljaasc1K2qBlmzaxd9mDNjMJShZe5Bj2srNhw-P4-fLuSN3kAvaqu7CNg1HhAR3yQ5kWCWaqUQku0NVjRxtwK40HS_WtlnB47tQWZqo54d6JWKKF2oRGdQZR4wJeWs1aTZA2btIOT6vbc4iihcOBcw_b10tblZW2-tab1ywa9qj7TpboIFAmaN8fn02OVGaXx8kBIRbpCqQdbHW6Vi6ZztQKtB9vL0xgHaXErq2x9Pid-osTUKvbgYesZq08Ti4R0Eh__-9bbsImeoD4djA-fwI1GoZf6_sRb0EMM2adw3VwsyvnZM-fnDL5ftU_8BkelkqM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+Bayesian+solution+to+the+source+reconstruction+problem+in+EEG&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Phillips%2C+Christophe&rft.au=Mattout%2C+Jeremie&rft.au=Rugg%2C+Michael+D&rft.au=Maquet%2C+Pierre&rft.date=2005-02-15&rft.issn=1053-8119&rft.volume=24&rft.issue=4&rft.spage=997&rft_id=info:doi/10.1016%2Fj.neuroimage.2004.10.030&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |