An empirical Bayesian solution to the source reconstruction problem in EEG

Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the br...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NeuroImage (Orlando, Fla.) Ročník 24; číslo 4; s. 997 - 1011
Hlavní autori: Phillips, Christophe, Mattout, Jeremie, Rugg, Michael D., Maquet, Pierre, Friston, Karl J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 15.02.2005
Elsevier Limited
Academic Press Inc Elsevier Science
Predmet:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional “Weighted Minimum Norm” (WMN) solution in terms of hierarchical linear models. An “Expectation-Maximisation” (EM) algorithm is used to obtain a “Restricted Maximum Likelihood” (ReML) estimate of the hyperparameters, before estimating the “Maximum a Posteriori” solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the “classic” WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting.
AbstractList Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional “Weighted Minimum Norm” (WMN) solution in terms of hierarchical linear models. An “Expectation-Maximisation” (EM) algorithm is used to obtain a “Restricted Maximum Likelihood” (ReML) estimate of the hyperparameters, before estimating the “Maximum a Posteriori” solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the “classic” WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting.
Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional "Weighted Minimum Norm" (WMN) solution in terms of hierarchical linear models. An "Expectation-Maximisation" (EM) algorithm is used to obtain a "Restricted Maximum Likelihood" (ReML) estimate of the hyperparameters, before estimating the "Maximum a Posteriori" solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the "classic" WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting.Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional "Weighted Minimum Norm" (WMN) solution in terms of hierarchical linear models. An "Expectation-Maximisation" (EM) algorithm is used to obtain a "Restricted Maximum Likelihood" (ReML) estimate of the hyperparameters, before estimating the "Maximum a Posteriori" solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the "classic" WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting.
Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear solutions do not assume a fixed number of active sources and rest on a discretised fully 3D representation of the electrical activity of the brain. The ensuing inverse problem is underdetermined and constraints or priors are required to ensure the uniqueness of the solution. In a Bayesian framework, the conditional expectation of the source distribution, given the data, is attained by carefully balancing the minimisation of the residuals induced by noise and the improbability of the estimates as determined by their priors. This balance is specified by hyperparameters that control the relative importance of fitting and conforming to various constraints. Here we formulate the conventional "Weighted Minimum Norm" (WMN) solution in terms of hierarchical linear models. An "Expectation-Maximisation" (EM) algorithm is used to obtain a "Restricted Maximum Likelihood" (ReML) estimate of the hyperparameters, before estimating the "Maximum a Posteriori" solution itself. This procedure can be considered a generalisation of previous work that encompasses multiple constraints. Our approach was compared with the "classic" WMN and Maximum Smoothness solutions, using a simplified 2D source model with synthetic noisy data. The ReML solution was assessed with four types of source location priors: no priors, accurate priors, inaccurate priors, and both accurate and inaccurate priors. The ReML approach proved useful as: (1) The regularisation (or influence of the a priori source covariance) increased as the noise level increased. (2) The localisation error (LE) was negligible when accurate location priors were used. (3) When accurate and inaccurate location priors were used simultaneously, the solution was not influenced by the inaccurate priors. The ReML solution was then applied to real somatosensory-evoked responses to illustrate the application in an empirical setting. (C) 2004 Elsevier Inc. All rights reserved.
Author Maquet, Pierre
Phillips, Christophe
Rugg, Michael D.
Mattout, Jeremie
Friston, Karl J.
Author_xml – sequence: 1
  givenname: Christophe
  surname: Phillips
  fullname: Phillips, Christophe
  email: c.phillips@ulg.ac.be
  organization: Centre de Recherches du Cyclotron, B30, Université de Liège, Liège 4000, Belgium
– sequence: 2
  givenname: Jeremie
  surname: Mattout
  fullname: Mattout, Jeremie
  organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London, UK
– sequence: 3
  givenname: Michael D.
  surname: Rugg
  fullname: Rugg, Michael D.
  organization: Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92717, USA
– sequence: 4
  givenname: Pierre
  surname: Maquet
  fullname: Maquet, Pierre
  organization: Centre de Recherches du Cyclotron, B30, Université de Liège, Liège 4000, Belgium
– sequence: 5
  givenname: Karl J.
  surname: Friston
  fullname: Friston, Karl J.
  organization: Wellcome Department of Imaging Neuroscience, Institute of Neurology, University College London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15670677$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNURD_gL6BISNyy-CNx4guirZZSVIkLnEe2M7t4cezFTirtv69DCkh7aU8ee9557JnX58WJDx6LoqRkRQkVH3Yrj1MMdlBbXDFC6ny8Ipy8KM4okU0lm5adzHHDq45SeVqcp7QjhEhad6-KU9qIloi2PSu-XvoSh72N1ihXXqkDJqt8mYKbRht8OYZy_Il5P0WDZUQTfBrjZP4k9zFoh0Npfble37wuXm6US_jmcb0ofnxef7_-Ut19u7m9vryrjKBirLAmdcsYl1wQprQRmhCuUHMtdMM3pFV9ZzreCmFqSjllTPbI-q6WWm96ivyiYAvXWdwihKgt3DMIyi7x5LagDGgExkQHmdTKXPR-Kcpv_j1hGmGwyaBzymOYEoiWd0zKJgvfHQl3uXefGwLaENGRmnGaVW8fVZMesId9zF7EA_wdbBZ8XAQmhpQibsDYUc1TG6OyDiiB2UnYwX8nYXZyzmQnM6A7Avy74-nSq6UUswv3FiMkY9Eb7G02cIQ-2OdAPh1BjLN-_iW_8PA8xANWgtNR
CitedBy_id crossref_primary_10_1016_j_tics_2009_11_008
crossref_primary_10_1016_j_neuroimage_2013_09_008
crossref_primary_10_1002_ima_22370
crossref_primary_10_1007_s13534_011_0002_2
crossref_primary_10_1016_j_asoc_2011_07_004
crossref_primary_10_1016_j_neuroimage_2010_09_087
crossref_primary_10_1371_journal_pone_0055969
crossref_primary_10_1002_hbm_21473
crossref_primary_10_1088_0031_9155_57_7_1937
crossref_primary_10_1002_dneu_22570
crossref_primary_10_3389_fpsyt_2021_731387
crossref_primary_10_1088_0266_5611_25_11_115012
crossref_primary_10_1088_1741_2560_5_2_010
crossref_primary_10_1016_j_neuroimage_2013_09_002
crossref_primary_10_1007_s10548_022_00891_3
crossref_primary_10_1016_j_neuroimage_2020_117468
crossref_primary_10_1109_TNSRE_2008_2010475
crossref_primary_10_1109_TBME_2017_2739824
crossref_primary_10_1111_j_1469_8986_2011_01320_x
crossref_primary_10_1016_j_neuroimage_2011_12_027
crossref_primary_10_1111_ane_12253
crossref_primary_10_1073_pnas_0807933106
crossref_primary_10_3389_fnins_2018_00297
crossref_primary_10_1007_s10339_013_0568_y
crossref_primary_10_1016_j_neuroimage_2008_06_013
crossref_primary_10_1016_j_physa_2015_03_087
crossref_primary_10_1016_j_jneumeth_2012_09_017
crossref_primary_10_1016_j_neuroimage_2011_12_012
crossref_primary_10_1016_j_neuroimage_2012_04_017
crossref_primary_10_3389_fnins_2015_00284
crossref_primary_10_1007_s11357_023_00836_z
crossref_primary_10_1109_TBME_2007_913986
crossref_primary_10_1111_ejn_12254
crossref_primary_10_1007_s11571_008_9038_0
crossref_primary_10_1016_j_neuroimage_2007_07_046
crossref_primary_10_1111_j_1528_1167_2010_02521_x
crossref_primary_10_1016_j_neuroimage_2014_02_022
crossref_primary_10_1142_S0219635212500203
crossref_primary_10_1016_j_neuroimage_2008_02_006
crossref_primary_10_1016_j_neuroimage_2009_06_083
crossref_primary_10_1016_j_neuroimage_2007_10_003
crossref_primary_10_1016_j_neuroimage_2017_04_038
crossref_primary_10_1016_j_neuroimage_2008_06_022
crossref_primary_10_1093_brain_awr243
crossref_primary_10_1002_hbm_21098
crossref_primary_10_1371_journal_pone_0024642
crossref_primary_10_1093_brain_awq183
crossref_primary_10_1126_scitranslmed_3006294
crossref_primary_10_1016_j_neuroimage_2007_09_048
crossref_primary_10_1088_1741_2560_8_3_036008
crossref_primary_10_1109_TBME_2014_2312713
crossref_primary_10_1016_j_biopsycho_2005_12_002
crossref_primary_10_1109_TBME_2012_2195001
crossref_primary_10_1016_j_jneumeth_2018_11_006
crossref_primary_10_1002_hbm_20956
crossref_primary_10_1016_j_neuroimage_2009_04_063
crossref_primary_10_1155_2010_329436
crossref_primary_10_1016_j_neuroimage_2008_02_059
crossref_primary_10_1016_j_neuroimage_2014_02_033
crossref_primary_10_1016_j_jspi_2011_04_020
crossref_primary_10_1016_j_neuroimage_2009_04_062
crossref_primary_10_1089_brain_2016_0462
crossref_primary_10_1016_j_cmpb_2019_04_017
crossref_primary_10_1016_j_neuroimage_2007_08_013
crossref_primary_10_1109_TMAG_2006_871635
crossref_primary_10_21105_joss_08103
crossref_primary_10_1038_srep37065
crossref_primary_10_1152_jn_00707_2011
crossref_primary_10_1002_hbm_21117
crossref_primary_10_1073_pnas_1523266113
crossref_primary_10_1016_j_clinph_2017_02_004
crossref_primary_10_1016_j_jneumeth_2018_08_006
crossref_primary_10_1088_2057_1976_1_1_015002
crossref_primary_10_1111_psyp_12505
crossref_primary_10_1016_j_neuroimage_2005_10_037
crossref_primary_10_1109_TNSRE_2009_2015196
crossref_primary_10_1155_2007_67613
crossref_primary_10_1088_0031_9155_51_23_004
crossref_primary_10_1016_j_neuroimage_2009_09_026
crossref_primary_10_1109_TMI_2012_2236567
crossref_primary_10_1016_j_neuroimage_2012_11_013
crossref_primary_10_1109_TSP_2015_2403277
crossref_primary_10_1155_2008_857459
crossref_primary_10_1140_epjp_i2012_12140_9
crossref_primary_10_1016_j_clinph_2006_03_031
crossref_primary_10_1093_nc_niaf033
crossref_primary_10_1109_TSP_2007_894265
crossref_primary_10_1002_hbm_20214
crossref_primary_10_1162_NECO_a_00236
crossref_primary_10_1016_j_neuroimage_2014_06_076
crossref_primary_10_1002_hbm_20570
crossref_primary_10_1016_j_compbiomed_2024_108871
crossref_primary_10_3389_fnins_2021_552666
crossref_primary_10_1186_s12888_016_0747_3
crossref_primary_10_1016_j_neuroimage_2017_03_030
crossref_primary_10_1109_TBME_2008_2008637
crossref_primary_10_1109_TMI_2013_2271486
crossref_primary_10_1007_s10548_011_0187_9
crossref_primary_10_1016_j_neuroimage_2009_02_026
crossref_primary_10_1016_j_clinph_2009_01_011
crossref_primary_10_1016_j_neuroimage_2010_01_024
crossref_primary_10_1016_j_neuroimage_2011_11_020
crossref_primary_10_1016_j_neuroimage_2007_04_054
crossref_primary_10_1002_wics_1339
crossref_primary_10_1016_j_neuroimage_2009_06_048
crossref_primary_10_1371_journal_pone_0051985
crossref_primary_10_1016_j_neuroimage_2018_03_048
crossref_primary_10_1016_j_neuroimage_2010_11_037
crossref_primary_10_1155_2011_852961
crossref_primary_10_1016_j_neuroimage_2009_10_011
crossref_primary_10_1002_hbm_22935
crossref_primary_10_7554_eLife_19113
crossref_primary_10_1016_j_dsp_2016_09_010
crossref_primary_10_1016_j_neuroimage_2017_01_029
crossref_primary_10_1007_s11517_006_0142_1
crossref_primary_10_1155_2016_3979547
crossref_primary_10_1109_RBME_2008_2008233
crossref_primary_10_1016_j_neuroimage_2007_07_026
crossref_primary_10_1109_MSP_2017_2699226
crossref_primary_10_1016_j_neuroimage_2013_11_004
crossref_primary_10_1371_journal_pone_0176835
crossref_primary_10_1016_j_sigpro_2011_01_012
crossref_primary_10_1016_j_neuroimage_2006_08_035
crossref_primary_10_1371_journal_pone_0019482
crossref_primary_10_1523_JNEUROSCI_3012_14_2014
Cites_doi 10.1016/S1053-8119(03)00169-1
10.1016/0167-8760(84)90014-X
10.1137/1034115
10.1093/biomet/58.3.545
10.1016/0013-4694(89)90180-6
10.1016/0013-4694(79)90215-3
10.1023/A:1026607118642
10.1006/nimg.1999.0454
10.1098/rsta.1970.0005
10.1002/(SICI)1097-0193(1999)7:3<161::AID-HBM2>3.0.CO;2-#
10.1007/BF02512476
10.1093/biomet/61.2.383
10.1109/TBME.1981.324817
10.1006/nimg.2002.1143
10.1016/0013-4694(94)90193-7
10.1016/S0987-7053(05)80405-8
10.2307/2286796
10.1088/0266-5611/6/4/005
10.1006/nimg.2002.1175
10.1097/00004691-199905000-00003
10.1109/10.664200
10.1088/0031-9155/32/1/004
10.2307/2287835
10.1016/0013-4694(81)91430-9
10.1006/nimg.2002.1090
10.1002/andp.18531650603
10.1006/nimg.2000.0616
10.1109/10.736746
ContentType Journal Article
Copyright 2004 Elsevier Inc.
Copyright Elsevier Limited Feb 15, 2005
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: Copyright Elsevier Limited Feb 15, 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
JLOSS
Q33
DOI 10.1016/j.neuroimage.2004.10.030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
ProQuest One Psychology

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 1011
ExternalDocumentID oai_orbi_ulg_ac_be_2268_37679
3244752411
15670677
10_1016_j_neuroimage_2004_10_030
S1053811904006238
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
~HD
3V.
6I.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
LCYCR
NCXOZ
RIG
ZA5
9DU
AAYXX
AFFHD
CITATION
0SF
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
JLOSS
Q33
ID FETCH-LOGICAL-c616t-e404722393602abc6b003aeb3b6b53f07ad8c83766c41131229de2d849bbfd1e3
IEDL.DBID 7X7
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226788100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Sat Nov 29 01:28:08 EST 2025
Sun Nov 09 12:31:43 EST 2025
Sat Nov 01 15:20:51 EDT 2025
Wed Feb 19 01:43:18 EST 2025
Sat Nov 29 01:54:04 EST 2025
Tue Nov 18 21:16:28 EST 2025
Fri Feb 23 02:31:39 EST 2024
Tue Oct 14 19:29:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Source reconstruction
Restricted maximum likelihood (ReML) solution
Expectation-maximisation (EM) procedure
EEG
Distributed solution
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c616t-e404722393602abc6b003aeb3b6b53f07ad8c83766c41131229de2d849bbfd1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
scopus-id:2-s2.0-12844268707
ORCID 0000-0003-3106-3357
0000-0002-4990-425X
OpenAccessLink https://orbi.uliege.be/handle/2268/37679
PMID 15670677
PQID 1506804231
PQPubID 2031077
PageCount 15
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_37679
proquest_miscellaneous_67382995
proquest_journals_1506804231
pubmed_primary_15670677
crossref_citationtrail_10_1016_j_neuroimage_2004_10_030
crossref_primary_10_1016_j_neuroimage_2004_10_030
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2004_10_030
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2004_10_030
PublicationCentury 2000
PublicationDate 2005-02-15
PublicationDateYYYYMMDD 2005-02-15
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-02-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2005
Publisher Elsevier Inc
Elsevier Limited
Academic Press Inc Elsevier Science
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Academic Press Inc Elsevier Science
References Scherg, Ebersole (bib32) 1994; 24
Nunez (bib19) 1981
Grave de Peralta Menendez, Gonzalez Andino (bib10) 1998; 45
Friston, Penny, Phillips, Kiebel, Hinton, Ashburner (bib8) 2002; 16
Ary, Klein, Fender (bib2) 1981; 28
Cuffin, Cohen (bib5) 1979; 47
Pascual-Marqui (bib22) 1999; 1
Hämäläinen, Ilmoniemi (bib12) 1994; 32
Pascual-Marqui (bib21) 1998
Patterson, Thompson (bib24) 1971; 58
Rivière, Papadopoulos-Orfanos, Régis, Mangin (bib29) 2000; 11
Uutela, Hämäläinen, Somersalo (bib36) 1999; 10
Miltner, Braun, Johnson, Simpson, Ruchkni (bib18) 1994; 91
Dempster, Rubin, Tsutakawa (bib6) 1981
Pascual-Marqui, Michel, Lehmann (bib23) 1994; 18
Phillips, Rugg, Friston (bib27) 2002; 17
Rivière, Papadopoulos-Orfanos (bib30) 2003
Pascual-Marqui (bib20) 1995; vol. 6
Perrin, Pernier, Bertrand, Echallier (bib25) 1989; 72
Hansen (bib13) 1992; 34
Desmedt, Cheron (bib7) 1981; 52
Polhemus Fastrak. 2003. 40 Hercules Dr., P.O. Box 560, Colchester, VT 05446, USA.
Wellcome Department of Cognitive Neurology, 2002.
Backus, Gilbert (bib3) 1970; 266
Maldjian, Laurienti, Kraft, Burdette (bib17) 2003; 19
Phillips, Rugg, Friston (bib26) 2002; 16
Statistical Parametric Mapping, SPM2.
Gonzalez Andino, Blanke, Lantz, Thut, Grave de Peralta Menendez (bib9) 2001; 3
Grave de Peralta Menendez, Gonzalez Andino (bib11) 1999; 7
Harville (bib14) 1974; 61
.
von Helmholtz, Hermann, L.F., 1853. Ueber einige Gesetze der Vertheilung elektrischer Ströme in köperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie, 89, 211–233, 354_377.
Aine, Huang, Stephen, Christner (bib1) 2000; 12
Sarvas (bib31) 1987; 32
Scherg, Bast, Berg (bib33) 1999; 16
Brooks, Ahmad, MacLeod, Maratos (bib4) 1999; 46
Spinelli, Gonzalez Andino, Lantz, Seeck, Michel (bib34) 2000; 13
Harville (bib15) 1977; 72
Ioannides, Bolton, Clarke (bib16) 1990; 6
Tikhonov, Arsenin (bib35) 1977
Perrin (10.1016/j.neuroimage.2004.10.030_bib25) 1989; 72
Brooks (10.1016/j.neuroimage.2004.10.030_bib4) 1999; 46
Phillips (10.1016/j.neuroimage.2004.10.030_bib26) 2002; 16
Harville (10.1016/j.neuroimage.2004.10.030_bib14) 1974; 61
Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib21) 1998
Maldjian (10.1016/j.neuroimage.2004.10.030_bib17) 2003; 19
Backus (10.1016/j.neuroimage.2004.10.030_bib3) 1970; 266
Nunez (10.1016/j.neuroimage.2004.10.030_bib19) 1981
Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib23) 1994; 18
Desmedt (10.1016/j.neuroimage.2004.10.030_bib7) 1981; 52
10.1016/j.neuroimage.2004.10.030_bib28
Rivière (10.1016/j.neuroimage.2004.10.030_bib30) 2003
Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib22) 1999; 1
Harville (10.1016/j.neuroimage.2004.10.030_bib15) 1977; 72
Spinelli (10.1016/j.neuroimage.2004.10.030_bib34) 2000; 13
Gonzalez Andino (10.1016/j.neuroimage.2004.10.030_bib9) 2001; 3
Rivière (10.1016/j.neuroimage.2004.10.030_bib29) 2000; 11
Tikhonov (10.1016/j.neuroimage.2004.10.030_bib35) 1977
Scherg (10.1016/j.neuroimage.2004.10.030_bib32) 1994; 24
Cuffin (10.1016/j.neuroimage.2004.10.030_bib5) 1979; 47
Patterson (10.1016/j.neuroimage.2004.10.030_bib24) 1971; 58
Phillips (10.1016/j.neuroimage.2004.10.030_bib27) 2002; 17
Sarvas (10.1016/j.neuroimage.2004.10.030_bib31) 1987; 32
Hämäläinen (10.1016/j.neuroimage.2004.10.030_bib12) 1994; 32
Aine (10.1016/j.neuroimage.2004.10.030_bib1) 2000; 12
Friston (10.1016/j.neuroimage.2004.10.030_bib8) 2002; 16
Grave de Peralta Menendez (10.1016/j.neuroimage.2004.10.030_bib11) 1999; 7
Grave de Peralta Menendez (10.1016/j.neuroimage.2004.10.030_bib10) 1998; 45
Ary (10.1016/j.neuroimage.2004.10.030_bib2) 1981; 28
Miltner (10.1016/j.neuroimage.2004.10.030_bib18) 1994; 91
Dempster (10.1016/j.neuroimage.2004.10.030_bib6) 1981
Pascual-Marqui (10.1016/j.neuroimage.2004.10.030_bib20) 1995; vol. 6
Ioannides (10.1016/j.neuroimage.2004.10.030_bib16) 1990; 6
Hansen (10.1016/j.neuroimage.2004.10.030_bib13) 1992; 34
Scherg (10.1016/j.neuroimage.2004.10.030_bib33) 1999; 16
Uutela (10.1016/j.neuroimage.2004.10.030_bib36) 1999; 10
10.1016/j.neuroimage.2004.10.030_bib38
10.1016/j.neuroimage.2004.10.030_bib37
References_xml – year: 2003
  ident: bib30
  article-title: BrainVisa
– volume: 266
  start-page: 123
  year: 1970
  end-page: 192
  ident: bib3
  article-title: Uniqueness in the inversion of inaccurate gross earth data
  publication-title: Philos. Trans. R. Soc.
– year: 1981
  ident: bib19
  article-title: Electric Fields of the Brain: The Neurophysics of EEG
– volume: 13
  start-page: 115
  year: 2000
  end-page: 125
  ident: bib34
  article-title: Electromagnetic inverse solutions in anatomically constrained spherical head models
  publication-title: Brain Topogr.
– year: 1977
  ident: bib35
  article-title: Solutions of Ill-Posed Problems
– volume: 12
  start-page: 159
  year: 2000
  end-page: 172
  ident: bib1
  article-title: Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources
  publication-title: NeuroImage
– volume: 16
  start-page: 678
  year: 2002
  end-page: 695
  ident: bib26
  article-title: Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints
  publication-title: NeuroImage
– reference: . Statistical Parametric Mapping, SPM2.
– year: 1998
  ident: bib21
  article-title: Low Resolution Brain Electromagnetic Tomography (LORETA)
– volume: 11
  year: 2000
  ident: bib29
  article-title: A structural browser of brain anatomy
  publication-title: NeuroImage
– volume: 34
  start-page: 561
  year: 1992
  end-page: 580
  ident: bib13
  article-title: Analysis of discrete Ill-posed problems by means of the L-curve
  publication-title: SIAM Rev.
– volume: 46
  start-page: 3
  year: 1999
  end-page: 17
  ident: bib4
  article-title: Inverse electrocardiography by simultaneous imposition of multiple constraints
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 1
  start-page: 75
  year: 1999
  end-page: 86
  ident: bib22
  article-title: Review of methods for solving the EEG inverse problem
  publication-title: Int. J. Bioelectromagn.
– volume: 72
  start-page: 320
  year: 1977
  end-page: 338
  ident: bib15
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: J. Am. Stat. Assoc.
– volume: 47
  start-page: 132
  year: 1979
  end-page: 146
  ident: bib5
  article-title: Comparison of the magnetoencephalogram and electroencephalogram
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 24
  start-page: 51
  year: 1994
  end-page: 60
  ident: bib32
  article-title: Brain source imaging of focal and multifocal epileptiform EEG activity
  publication-title: Clin. Neurophysiol.
– reference: Polhemus Fastrak. 2003. 40 Hercules Dr., P.O. Box 560, Colchester, VT 05446, USA.
– volume: vol. 6
  start-page: 16
  year: 1995
  end-page: 28
  ident: bib20
  article-title: Reply to comments by M. Hämäläinen, R. Ilmoniemi and P. Nunez
  publication-title: Source Localization: Continuing Discussion of the Inverse Prolem
– volume: 18
  start-page: 49
  year: 1994
  end-page: 65
  ident: bib23
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
– volume: 17
  start-page: 287
  year: 2002
  end-page: 301
  ident: bib27
  article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem
  publication-title: NeuroImage
– reference: Wellcome Department of Cognitive Neurology, 2002.
– volume: 72
  start-page: 184
  year: 1989
  end-page: 187
  ident: bib25
  article-title: Spherical splines for scalp potential and current density mapping
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  ident: bib31
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
– volume: 3
  year: 2001
  ident: bib9
  article-title: The use of functional constraints for the neuroelectromagnetic inverse problem: Alternatives and caveats
  publication-title: Int. J. Bioelectromagn.
– volume: 16
  start-page: 465
  year: 2002
  end-page: 483
  ident: bib8
  article-title: Classical and Bayesian inference in neuroimaging: theory
  publication-title: NeuroImage
– volume: 45
  start-page: 440
  year: 1998
  end-page: 448
  ident: bib10
  article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 16
  start-page: 214
  year: 1999
  end-page: 224
  ident: bib33
  article-title: Multiple source analysis of interictal spikes: goals, requirements, and clinical value
  publication-title: J. Clin. Neurophysiol.
– volume: 58
  start-page: 545
  year: 1971
  end-page: 554
  ident: bib24
  article-title: Recovery of inter-block information when block sizes are unequal
  publication-title: Biometrika
– volume: 32
  start-page: 35
  year: 1994
  end-page: 42
  ident: bib12
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med. Biol. Eng. Comput.
– volume: 7
  start-page: 161
  year: 1999
  end-page: 165
  ident: bib11
  article-title: Backus and Gilbert method for vector fields
  publication-title: Hum. Brain Mapp.
– volume: 61
  start-page: 383
  year: 1974
  end-page: 385
  ident: bib14
  article-title: Bayesian inference for variance components using only error contrasts
  publication-title: Biometrika
– volume: 19
  start-page: 1233
  year: 2003
  end-page: 1239
  ident: bib17
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fmri data sets
  publication-title: NeuroImage
– start-page: 341
  year: 1981
  end-page: 353
  ident: bib6
  article-title: Estimation in covariance component models
  publication-title: J. Am. Stat. Assoc.
– reference: von Helmholtz, Hermann, L.F., 1853. Ueber einige Gesetze der Vertheilung elektrischer Ströme in köperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik und Chemie, 89, 211–233, 354_377.
– volume: 10
  start-page: 173
  year: 1999
  end-page: 180
  ident: bib36
  article-title: Visualization of magnetoencephalographic data using minimum current estimates
  publication-title: NeuroImage
– volume: 6
  start-page: 523
  year: 1990
  end-page: 543
  ident: bib16
  article-title: Continuous probabilistic solutions to the biomagnetic inverse problem
  publication-title: Inverse Probl.
– volume: 28
  start-page: 447
  year: 1981
  end-page: 452
  ident: bib2
  article-title: Location of sources of evoked scalp potentials: corrections for skull and scalp thickness
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 52
  start-page: 553
  year: 1981
  end-page: 570
  ident: bib7
  article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– reference: .
– volume: 91
  start-page: 295
  year: 1994
  end-page: 310
  ident: bib18
  article-title: A test of brain electrical source analysis (BESA): a simulation study
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 19
  start-page: 1233
  year: 2003
  ident: 10.1016/j.neuroimage.2004.10.030_bib17
  article-title: An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fmri data sets
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(03)00169-1
– volume: 18
  start-page: 49
  year: 1994
  ident: 10.1016/j.neuroimage.2004.10.030_bib23
  article-title: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/0167-8760(84)90014-X
– ident: 10.1016/j.neuroimage.2004.10.030_bib38
– volume: 34
  start-page: 561
  year: 1992
  ident: 10.1016/j.neuroimage.2004.10.030_bib13
  article-title: Analysis of discrete Ill-posed problems by means of the L-curve
  publication-title: SIAM Rev.
  doi: 10.1137/1034115
– volume: 58
  start-page: 545
  year: 1971
  ident: 10.1016/j.neuroimage.2004.10.030_bib24
  article-title: Recovery of inter-block information when block sizes are unequal
  publication-title: Biometrika
  doi: 10.1093/biomet/58.3.545
– volume: 72
  start-page: 184
  year: 1989
  ident: 10.1016/j.neuroimage.2004.10.030_bib25
  article-title: Spherical splines for scalp potential and current density mapping
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(89)90180-6
– ident: 10.1016/j.neuroimage.2004.10.030_bib28
– volume: 47
  start-page: 132
  year: 1979
  ident: 10.1016/j.neuroimage.2004.10.030_bib5
  article-title: Comparison of the magnetoencephalogram and electroencephalogram
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(79)90215-3
– volume: 13
  start-page: 115
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2004.10.030_bib34
  article-title: Electromagnetic inverse solutions in anatomically constrained spherical head models
  publication-title: Brain Topogr.
  doi: 10.1023/A:1026607118642
– volume: 3
  issue: 1
  year: 2001
  ident: 10.1016/j.neuroimage.2004.10.030_bib9
  article-title: The use of functional constraints for the neuroelectromagnetic inverse problem: Alternatives and caveats
  publication-title: Int. J. Bioelectromagn.
– volume: vol. 6
  start-page: 16
  year: 1995
  ident: 10.1016/j.neuroimage.2004.10.030_bib20
  article-title: Reply to comments by M. Hämäläinen, R. Ilmoniemi and P. Nunez
– volume: 10
  start-page: 173
  year: 1999
  ident: 10.1016/j.neuroimage.2004.10.030_bib36
  article-title: Visualization of magnetoencephalographic data using minimum current estimates
  publication-title: NeuroImage
  doi: 10.1006/nimg.1999.0454
– volume: 266
  start-page: 123
  year: 1970
  ident: 10.1016/j.neuroimage.2004.10.030_bib3
  article-title: Uniqueness in the inversion of inaccurate gross earth data
  publication-title: Philos. Trans. R. Soc.
  doi: 10.1098/rsta.1970.0005
– volume: 7
  start-page: 161
  year: 1999
  ident: 10.1016/j.neuroimage.2004.10.030_bib11
  article-title: Backus and Gilbert method for vector fields
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)7:3<161::AID-HBM2>3.0.CO;2-#
– year: 1977
  ident: 10.1016/j.neuroimage.2004.10.030_bib35
– volume: 32
  start-page: 35
  year: 1994
  ident: 10.1016/j.neuroimage.2004.10.030_bib12
  article-title: Interpreting magnetic fields of the brain: minimum norm estimates
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02512476
– year: 2003
  ident: 10.1016/j.neuroimage.2004.10.030_bib30
– volume: 61
  start-page: 383
  year: 1974
  ident: 10.1016/j.neuroimage.2004.10.030_bib14
  article-title: Bayesian inference for variance components using only error contrasts
  publication-title: Biometrika
  doi: 10.1093/biomet/61.2.383
– volume: 11
  issue: 8
  year: 2000
  ident: 10.1016/j.neuroimage.2004.10.030_bib29
  article-title: A structural browser of brain anatomy
  publication-title: NeuroImage
– volume: 28
  start-page: 447
  issue: 6
  year: 1981
  ident: 10.1016/j.neuroimage.2004.10.030_bib2
  article-title: Location of sources of evoked scalp potentials: corrections for skull and scalp thickness
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1981.324817
– year: 1998
  ident: 10.1016/j.neuroimage.2004.10.030_bib21
– volume: 16
  start-page: 678
  year: 2002
  ident: 10.1016/j.neuroimage.2004.10.030_bib26
  article-title: Anatomically informed basis functions for EEG source localization: combining functional and anatomical constraints
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1143
– volume: 91
  start-page: 295
  year: 1994
  ident: 10.1016/j.neuroimage.2004.10.030_bib18
  article-title: A test of brain electrical source analysis (BESA): a simulation study
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(94)90193-7
– year: 1981
  ident: 10.1016/j.neuroimage.2004.10.030_bib19
– volume: 24
  start-page: 51
  year: 1994
  ident: 10.1016/j.neuroimage.2004.10.030_bib32
  article-title: Brain source imaging of focal and multifocal epileptiform EEG activity
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S0987-7053(05)80405-8
– volume: 72
  start-page: 320
  year: 1977
  ident: 10.1016/j.neuroimage.2004.10.030_bib15
  article-title: Maximum likelihood approaches to variance component estimation and to related problems
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2286796
– volume: 6
  start-page: 523
  issue: 4
  year: 1990
  ident: 10.1016/j.neuroimage.2004.10.030_bib16
  article-title: Continuous probabilistic solutions to the biomagnetic inverse problem
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/6/4/005
– volume: 17
  start-page: 287
  year: 2002
  ident: 10.1016/j.neuroimage.2004.10.030_bib27
  article-title: Systematic regularization of linear inverse solutions of the EEG source localization problem
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1175
– volume: 16
  start-page: 214
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2004.10.030_bib33
  article-title: Multiple source analysis of interictal spikes: goals, requirements, and clinical value
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199905000-00003
– volume: 45
  start-page: 440
  issue: 4
  year: 1998
  ident: 10.1016/j.neuroimage.2004.10.030_bib10
  article-title: A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.664200
– volume: 32
  start-page: 11
  year: 1987
  ident: 10.1016/j.neuroimage.2004.10.030_bib31
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– start-page: 341
  year: 1981
  ident: 10.1016/j.neuroimage.2004.10.030_bib6
  article-title: Estimation in covariance component models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2287835
– volume: 52
  start-page: 553
  issue: 6
  year: 1981
  ident: 10.1016/j.neuroimage.2004.10.030_bib7
  article-title: Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal man: differentiation of widespread N18 and contralateral N20 from the prerolandic P22 and N30 components
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(81)91430-9
– volume: 16
  start-page: 465
  year: 2002
  ident: 10.1016/j.neuroimage.2004.10.030_bib8
  article-title: Classical and Bayesian inference in neuroimaging: theory
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1090
– volume: 1
  start-page: 75
  issue: 1
  year: 1999
  ident: 10.1016/j.neuroimage.2004.10.030_bib22
  article-title: Review of methods for solving the EEG inverse problem
  publication-title: Int. J. Bioelectromagn.
– ident: 10.1016/j.neuroimage.2004.10.030_bib37
  doi: 10.1002/andp.18531650603
– volume: 12
  start-page: 159
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2004.10.030_bib1
  article-title: Multistart algorithms for MEG empirical data analysis reliably characterize locations and time courses of multiple sources
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0616
– volume: 46
  start-page: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2004.10.030_bib4
  article-title: Inverse electrocardiography by simultaneous imposition of multiple constraints
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.736746
SSID ssj0009148
Score 2.247711
Snippet Distributed linear solutions of the EEG source localisation problem are used routinely. In contrast to discrete dipole equivalent models, distributed linear...
SourceID liege
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 997
SubjectTerms Algorithms
Bayes Theorem
Bayesian analysis
Distributed solution
EEG
Electroencephalography - statistics & numerical data
Evoked Potentials, Somatosensory - physiology
Expectation-maximisation (EM) procedure
Humans
Image Processing, Computer-Assisted - statistics & numerical data
Inverse problems
Likelihood Functions
Magnetic Resonance Imaging
Neurosciences & behavior
Neurosciences & comportement
Restricted maximum likelihood (ReML) solution
Sciences sociales & comportementales, psychologie
Social & behavioral sciences, psychology
Source reconstruction
Standard deviation
Title An empirical Bayesian solution to the source reconstruction problem in EEG
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811904006238
https://dx.doi.org/10.1016/j.neuroimage.2004.10.030
https://www.ncbi.nlm.nih.gov/pubmed/15670677
https://www.proquest.com/docview/1506804231
https://www.proquest.com/docview/67382995
https://orbi.uliege.be/handle/2268/37679
Volume 24
WOSCitedRecordID wos000226788100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database (ProQuest)
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251014
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BihAvjO9lG8MPvKFAnQ_HEQ-oQxkwqVWFQOqbFTvuFNQl3dpN4r_fneO0L4Aq8eJEcS5S7PP5zj7_fgBv0S5WcaRtaC2GKMl8WIZ5VskwnpPDURqdlB3ZRDaZyNksn_oFt5VPq-xtojPUVWtojfwDIeFJSuLgn5ZXIbFG0e6qp9C4DwOizSY9z2bZFnSXJ91RuDQOJee5z-Tp8rscXmR9iaPWRYnvKceLcqH_PD0NFrSH_Xc31E1HZ_v_-yNP4LF3RNmo05yncM82z-Dh2G-1P4fzUcPs5bJ2ECLstPxt6bgl61WVrVuGviPrFv-Zi6s3WLTM09SwumFF8eUF_Dwrfnz-GnrihdAILtahTRyGZJzHYhiV2gga-yWG3VroFHsxKytpMLIVwiScxzyK8spGlUxyrecVt_FL2Gvaxh4AI_h9nfBhXs0z9NWkFFqirMG4LuVWmACyvr2V8ajkRI6xUH362S-17SkizUyoBnsqAL6RXHbIHDvI5H2Xqv7kKdpKhdPHDrIfN7LeO-m8jh2l3zkNUu21rtVtpAjW293fLC5UaZTG1yMhFaHr5AEc97qjvE1Zqa3iBPBmU43WgLZ4ysa2NyvK0pPoYKQBvOq0c9s0qcgILfDw358-gkcOnJYob9Jj2EPFsa_hgbld16vrEze8XClPYDD6VszO8XpaTKbf8ek4GlOZTe8AGNkytQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qLYJueEMNhc4CVsglM7bHY1UIFUhpaROxKFJ3g2c8QUapHZq0qD_Vb-TesZ1sAGXTBbtIzrX8uE_PmXMAXmJeLCJhXOgcjijxqJeHWVqoMBpRw5FbE-eN2EQ6HKqTk-zLClx1e2EIVtnlRJ-oi9rSN_I3xISnCMTB301-hqQaRaurnYRG4xaH7vIXjmzTtwcf8f2-EmKvf_xhP2xVBUIruZyFLvYEiVEWyZ7IjZXk2DnOlEaaBC8xzQtlcWyT0sacR1yIrHCiUHFmzKjgLsLz3oC1GCshKSYMxGBB8svjZutdEoWK86xFDjV4Ms9PWZ5ilvBT6TZhygh7_edyuDamNfO_t72-_O3d_d8e3D240zbabLeJjPuw4qoHcGvQQgkewufdirnTSekpUtj7_NLRdlLWhSKb1Qx7Y9YsbjD_3WDOtctaGR5WVqzf__QIvl7LnTyG1aqu3AYwkhcwMe9lxSjFXlQpaRTaWpxbE-6kDSDt3q-2Les6iX-MdQev-6EXnkGioDEdQc8IgM8tJw3zyBI2WedCuttZi7VAY3lcwnZnbtt2X01XtaT1a--xuj4zpb4QmmjL_e_z8XedW23w70IqTexBWQCbna_qNmdO9cJRA9iaH8ZsR0tYeeXq8ymhEBU2UEkAT5poWDyaRKbEhvj036fegtv7x4MjfXQwPHwG656Il-R9kk1YRSdyz-GmvZiV07MXPrQZfLvukPgNvzCIgA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VBFVceD8Mhe4BTsg068d6LYRQSxMohShCIPW2eNfrylVqhyYt6l_j1zFjr5MLoFx64GbJHsuPb2Zndr_9BuA5xsU8DLT1rcUSJSoGmZ8mufTDghKOzOgoa5tNJOOxPDpKJxvwq9sLQ7TKLiY2gTqvDc2R75ASniQSB98pHC1isj96O_vhUwcpWmnt2mm0EDm0lz-xfJu_OdjHf_0iCEbDr-8--K7DgG8EFwvfRo1YYpiGYhBk2ggCeYb1pRY6xsdNslwaLOGEMBHnIQ-CNLdBLqNU6yLnNsT7XoN-EmLR04P-3nA8-bKS_OVRuxEvDn3Jeep4RC27rFGrLE8xZjQ16itimBET-8-DY39KK-h_T4KbwXB063_-jLfhpkvB2W7rM3dgw1Z3YfOzIxncg4-7FbOns7IRT2F72aWljaasc1K2qBlmzaxd9mDNjMJShZe5Bj2srNhw-P4-fLuSN3kAvaqu7CNg1HhAR3yQ5kWCWaqUQku0NVjRxtwK40HS_WtlnB47tQWZqo54d6JWKKF2oRGdQZR4wJeWs1aTZA2btIOT6vbc4iihcOBcw_b10tblZW2-tab1ywa9qj7TpboIFAmaN8fn02OVGaXx8kBIRbpCqQdbHW6Vi6ZztQKtB9vL0xgHaXErq2x9Pid-osTUKvbgYesZq08Ti4R0Eh__-9bbsImeoD4djA-fwI1GoZf6_sRb0EMM2adw3VwsyvnZM-fnDL5ftU_8BkelkqM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+Bayesian+solution+to+the+source+reconstruction+problem+in+EEG&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Phillips%2C+Christophe&rft.au=Mattout%2C+Jeremie&rft.au=Rugg%2C+Michael+D&rft.au=Maquet%2C+Pierre&rft.date=2005-02-15&rft.issn=1053-8119&rft.volume=24&rft.issue=4&rft.spage=997&rft_id=info:doi/10.1016%2Fj.neuroimage.2004.10.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon