Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding

Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular ecology Ročník 25; číslo 4; s. 929 - 942
Hlavní autoři: Valentini, Alice, Taberlet, Pierre, Miaud, Claude, Civade, Raphaël, Herder, Jelger, Thomsen, Philip Francis, Bellemain, Eva, Besnard, Aurélien, Coissac, Eric, Boyer, Frédéric, Gaboriaud, Coline, Jean, Pauline, Poulet, Nicolas, Roset, Nicolas, Copp, Gordon H, Geniez, Philippe, Pont, Didier, Argillier, Christine, Baudoin, Jean‐Marc, Peroux, Tiphaine, Crivelli, Alain J, Olivier, Anthony, Acqueberge, Manon, Le Brun, Matthieu, Møller, Peter R, Willerslev, Eske, Dejean, Tony
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Scientific Publications 01.02.2016
Blackwell Publishing Ltd
Wiley
Témata:
ISSN:0962-1083, 1365-294X, 1365-294X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.
AbstractList Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, invitro and insitu. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI=0.90-0.99) vs. 0.58 (CI=0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems. see also the Perspective by Hoffmann, Schubert and Calvignac-Spencer.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems. see also the Perspective by Hoffmann, Schubert and Calvignac‐Spencer
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90-0.99) vs. 0.58 (CI = 0.50-0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA-based approach has the potential to become the next-generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems. see also the Perspective by Hoffmann, Schubert and Calvignac-Spencer
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA ( eDNA ) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 ( CI  = 0.90–0.99) vs. 0.58 ( CI  = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA ‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems. see also the Perspective by Hoffmann, Schubert and Calvignac‐Spencer
Author Civade, Raphaël
Le Brun, Matthieu
Taberlet, Pierre
Herder, Jelger
Pont, Didier
Baudoin, Jean‐Marc
Jean, Pauline
Poulet, Nicolas
Acqueberge, Manon
Miaud, Claude
Coissac, Eric
Copp, Gordon H
Besnard, Aurélien
Olivier, Anthony
Bellemain, Eva
Argillier, Christine
Valentini, Alice
Crivelli, Alain J
Willerslev, Eske
Dejean, Tony
Roset, Nicolas
Boyer, Frédéric
Gaboriaud, Coline
Peroux, Tiphaine
Møller, Peter R
Thomsen, Philip Francis
Geniez, Philippe
Author_xml – sequence: 1
  fullname: Valentini, Alice
– sequence: 2
  fullname: Taberlet, Pierre
– sequence: 3
  fullname: Miaud, Claude
– sequence: 4
  fullname: Civade, Raphaël
– sequence: 5
  fullname: Herder, Jelger
– sequence: 6
  fullname: Thomsen, Philip Francis
– sequence: 7
  fullname: Bellemain, Eva
– sequence: 8
  fullname: Besnard, Aurélien
– sequence: 9
  fullname: Coissac, Eric
– sequence: 10
  fullname: Boyer, Frédéric
– sequence: 11
  fullname: Gaboriaud, Coline
– sequence: 12
  fullname: Jean, Pauline
– sequence: 13
  fullname: Poulet, Nicolas
– sequence: 14
  fullname: Roset, Nicolas
– sequence: 15
  fullname: Copp, Gordon H
– sequence: 16
  fullname: Geniez, Philippe
– sequence: 17
  fullname: Pont, Didier
– sequence: 18
  fullname: Argillier, Christine
– sequence: 19
  fullname: Baudoin, Jean‐Marc
– sequence: 20
  fullname: Peroux, Tiphaine
– sequence: 21
  fullname: Crivelli, Alain J
– sequence: 22
  fullname: Olivier, Anthony
– sequence: 23
  fullname: Acqueberge, Manon
– sequence: 24
  fullname: Le Brun, Matthieu
– sequence: 25
  fullname: Møller, Peter R
– sequence: 26
  fullname: Willerslev, Eske
– sequence: 27
  fullname: Dejean, Tony
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26479867$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01419572$$DView record in HAL
BookMark eNqNkstuEzEUhi1URNPCgheAkdjQxbS-e2YZkl6Q0rCAioqN5XE8wWXGbu2Z0Ox4BJ6RJ8FpLkgIBN5YOv7-X7_POQdgz3lnAHiO4DFK56Q1-hgRiotHYIAIZzku6fUeGMCS4xzBguyDgxhvIEQEM_YE7GNORVlwMQCfpua--_Ht-9w4E1Rnvcta72zng3XzzNeZuutTWWeV9TO7MCHabpn1cfVq3MIG71rjOtVk4-kwa02nKhV0Qt38KXhcqyaaZ5v7EFydnX4YXeSTd-dvR8NJrjniRa4xLUtS0xmiKZ-oNcfaMM4NrCAnRKGiZpgpggumNSxwVUKIdcUrPKsVIRU5BEdr38-qkbfBtiospVdWXgwnclWDiKKSCbxAiX29Zm-Dv-tN7GRrozZNo5zxfZSogCR1UKRE_0RFkTwLQch_oIJzxhCGCX31G3rj--BSfxLFGeScC5qoFxuqr1oz2_1qO7cEnKwBHXyMwdRS2-5hfF1QtpEIytVmyLQZ8mEzfnVpp9ia_onduH-1jVn-HZSXp6OtIl8rbOzM_U6hwheZ0gomP07PJb5kb-j4eixXc3i55mvlpZoHG-XVewwRhxCWkFJOfgKop92_
CitedBy_id crossref_primary_10_1002_edn3_505
crossref_primary_10_1038_s41598_021_97128_3
crossref_primary_10_1111_gcb_14886
crossref_primary_10_1016_j_jhydrol_2023_129692
crossref_primary_10_1093_gigascience_gix104
crossref_primary_10_1111_ddi_13937
crossref_primary_10_3390_app9163272
crossref_primary_10_1038_s41598_022_13412_w
crossref_primary_10_1371_journal_pone_0175186
crossref_primary_10_1016_j_envres_2021_111602
crossref_primary_10_1080_20442041_2018_1494973
crossref_primary_10_1371_journal_pone_0157505
crossref_primary_10_3390_w16060853
crossref_primary_10_1111_bor_12363
crossref_primary_10_3390_d13030112
crossref_primary_10_1038_s41598_018_28424_8
crossref_primary_10_1016_j_ecolind_2021_107698
crossref_primary_10_11614_KSL_2025_58_3_287
crossref_primary_10_1371_journal_pone_0315346
crossref_primary_10_1007_s12595_018_0268_9
crossref_primary_10_3390_biology10111132
crossref_primary_10_1111_2041_210X_12595
crossref_primary_10_1111_fwb_13962
crossref_primary_10_1007_s10530_018_1886_x
crossref_primary_10_3897_mbmg_8_128646
crossref_primary_10_1080_00028487_2016_1243578
crossref_primary_10_1007_s10530_017_1489_y
crossref_primary_10_1016_j_biocon_2025_111371
crossref_primary_10_7717_peerj_15455
crossref_primary_10_1007_s10750_017_3381_2
crossref_primary_10_3390_ani14162433
crossref_primary_10_3389_fevo_2023_1164206
crossref_primary_10_3390_ijms19102931
crossref_primary_10_1038_s41598_017_17150_2
crossref_primary_10_1177_1176934319892284
crossref_primary_10_3389_fmars_2016_00096
crossref_primary_10_1007_s10344_020_01380_3
crossref_primary_10_1002_edn3_517
crossref_primary_10_1002_lol2_10213
crossref_primary_10_1002_edn3_511
crossref_primary_10_1002_edn3_510
crossref_primary_10_1007_s12686_021_01219_2
crossref_primary_10_1139_cjfas_2024_0371
crossref_primary_10_1111_jfb_13151
crossref_primary_10_1016_j_envres_2024_119183
crossref_primary_10_1111_2041_210X_14317
crossref_primary_10_1016_j_tibtech_2016_06_009
crossref_primary_10_1186_s12862_021_01947_x
crossref_primary_10_1002_edn3_520
crossref_primary_10_3390_biology12111446
crossref_primary_10_1002_bies_202200242
crossref_primary_10_1016_j_aquatox_2021_105847
crossref_primary_10_3389_fmars_2022_971939
crossref_primary_10_1007_s12686_016_0550_y
crossref_primary_10_1016_j_envpol_2023_122157
crossref_primary_10_1002_ece3_4552
crossref_primary_10_3390_fishes10070354
crossref_primary_10_3390_w17050661
crossref_primary_10_3389_fenvs_2020_00061
crossref_primary_10_1016_j_marpol_2020_104331
crossref_primary_10_1073_pnas_1815046116
crossref_primary_10_1111_csp2_86
crossref_primary_10_1002_ps_8789
crossref_primary_10_1088_1755_1315_736_1_012054
crossref_primary_10_1016_j_seares_2017_06_001
crossref_primary_10_3390_fishes7050257
crossref_primary_10_1111_1755_0998_12928
crossref_primary_10_1371_journal_pone_0226654
crossref_primary_10_3390_machines12100693
crossref_primary_10_1111_1755_0998_12929
crossref_primary_10_1139_gen_2015_0218
crossref_primary_10_13005_bbra_3199
crossref_primary_10_1111_2041_210X_13485
crossref_primary_10_1371_journal_pone_0226638
crossref_primary_10_5194_bg_20_1277_2023
crossref_primary_10_1111_ecog_05718
crossref_primary_10_1016_j_ecolind_2024_112670
crossref_primary_10_1016_j_oneear_2025_101244
crossref_primary_10_1016_j_marenvres_2023_105893
crossref_primary_10_1111_jbi_14605
crossref_primary_10_1111_faf_12553
crossref_primary_10_3390_d17050320
crossref_primary_10_1111_mec_17031
crossref_primary_10_1002_ldr_3599
crossref_primary_10_1016_j_biocon_2017_09_015
crossref_primary_10_1093_icesjms_fsae152
crossref_primary_10_1007_s10592_019_01161_9
crossref_primary_10_1016_j_marpolbul_2021_112786
crossref_primary_10_1111_cobi_14368
crossref_primary_10_1038_s41598_020_74902_3
crossref_primary_10_1093_icb_icad030
crossref_primary_10_1016_j_scitotenv_2019_135243
crossref_primary_10_1139_gen_2020_0192
crossref_primary_10_3897_mbmg_9_133264
crossref_primary_10_1007_s12562_018_1282_6
crossref_primary_10_1111_1755_0998_12900
crossref_primary_10_1111_1749_4877_12916
crossref_primary_10_1016_j_ecolind_2017_06_024
crossref_primary_10_1111_1440_1703_12542
crossref_primary_10_3389_fcimb_2021_678522
crossref_primary_10_1017_S0376892919000092
crossref_primary_10_1016_j_watres_2018_07_051
crossref_primary_10_1038_s41598_017_12501_5
crossref_primary_10_1080_02705060_2024_2382454
crossref_primary_10_1371_journal_pone_0208592
crossref_primary_10_1111_bjd_19260
crossref_primary_10_1002_edn3_12
crossref_primary_10_1111_1365_2664_13352
crossref_primary_10_1111_jfb_13546
crossref_primary_10_1111_jfb_13549
crossref_primary_10_3897_mbmg_8_115512
crossref_primary_10_1002_edn3_14
crossref_primary_10_1111_1365_2664_13592
crossref_primary_10_3390_ani12060763
crossref_primary_10_3897_BDJ_12_e126744
crossref_primary_10_7717_peerj_19671
crossref_primary_10_1007_s10531_021_02279_4
crossref_primary_10_1002_edn3_19
crossref_primary_10_3390_jof7040258
crossref_primary_10_1038_s41598_024_66912_2
crossref_primary_10_3390_biology14091194
crossref_primary_10_1111_1755_0998_13375
crossref_primary_10_1111_mec_15742
crossref_primary_10_3390_f14101930
crossref_primary_10_1111_ecog_05049
crossref_primary_10_3389_fevo_2022_913279
crossref_primary_10_3389_fmars_2019_00621
crossref_primary_10_1080_03014223_2021_1900299
crossref_primary_10_1111_2041_210X_12994
crossref_primary_10_1002_nafm_10937
crossref_primary_10_1007_s10531_025_03112_y
crossref_primary_10_1016_j_jembe_2017_05_007
crossref_primary_10_1016_j_scitotenv_2020_142622
crossref_primary_10_1111_mam_12136
crossref_primary_10_1371_journal_pone_0195403
crossref_primary_10_1371_journal_pone_0162493
crossref_primary_10_3390_app9173450
crossref_primary_10_1371_journal_pone_0222883
crossref_primary_10_1111_mec_15723
crossref_primary_10_1016_j_chemosphere_2024_143992
crossref_primary_10_1016_j_watres_2018_03_003
crossref_primary_10_1016_j_ecolind_2021_108166
crossref_primary_10_1073_pnas_2307345120
crossref_primary_10_3390_toxins17080424
crossref_primary_10_1111_1755_0998_13356
crossref_primary_10_3390_w16050631
crossref_primary_10_1038_s41598_024_56993_4
crossref_primary_10_1007_s12275_019_9198_0
crossref_primary_10_1098_rsos_180537
crossref_primary_10_1016_j_ecohyd_2024_12_001
crossref_primary_10_1038_s41598_020_60622_1
crossref_primary_10_3897_mbmg_6_85199
crossref_primary_10_1093_biosci_biab027
crossref_primary_10_1093_plankt_fbae052
crossref_primary_10_1371_journal_pone_0187803
crossref_primary_10_1016_j_ecolind_2019_105982
crossref_primary_10_1016_j_ecolind_2024_112290
crossref_primary_10_1111_mec_13535
crossref_primary_10_1016_j_scitotenv_2022_153093
crossref_primary_10_1038_s41598_021_91166_7
crossref_primary_10_1051_bioconf_20249401002
crossref_primary_10_7717_peerj_9764
crossref_primary_10_1002_aqc_4111
crossref_primary_10_1016_j_ijpara_2023_07_005
crossref_primary_10_1186_s13717_023_00463_8
crossref_primary_10_1016_j_scitotenv_2019_04_247
crossref_primary_10_29059_cienciauat_v16i1_1509
crossref_primary_10_1111_1755_0998_13170
crossref_primary_10_1111_mec_13761
crossref_primary_10_1016_j_scitotenv_2021_149724
crossref_primary_10_1111_1755_0998_14028
crossref_primary_10_1007_s11157_019_09501_4
crossref_primary_10_1007_s10530_019_02126_2
crossref_primary_10_3389_fmars_2020_552047
crossref_primary_10_1016_j_fishres_2023_106708
crossref_primary_10_1016_j_ecolind_2025_113651
crossref_primary_10_1371_journal_pcbi_1009581
crossref_primary_10_1038_s41598_022_25274_3
crossref_primary_10_1371_journal_pone_0245314
crossref_primary_10_1016_j_margen_2017_02_006
crossref_primary_10_1016_j_scitotenv_2024_173242
crossref_primary_10_1007_s10201_020_00645_9
crossref_primary_10_1111_jfb_14218
crossref_primary_10_3390_w13131767
crossref_primary_10_1002_aqc_3243
crossref_primary_10_1016_j_chemosphere_2022_134239
crossref_primary_10_1371_journal_pone_0201741
crossref_primary_10_1371_journal_pone_0198717
crossref_primary_10_1007_s10661_021_09000_6
crossref_primary_10_1111_1755_0998_13393
crossref_primary_10_1111_1755_0998_13395
crossref_primary_10_1134_S2079086419060057
crossref_primary_10_1111_1755_0998_13398
crossref_primary_10_1002_ece3_6921
crossref_primary_10_1002_ece3_3898
crossref_primary_10_1111_1755_0998_14009
crossref_primary_10_1007_s00338_023_02375_7
crossref_primary_10_1007_s00427_020_00652_x
crossref_primary_10_1016_j_ecolind_2022_109241
crossref_primary_10_1111_ddi_13253
crossref_primary_10_1038_ncomms14087
crossref_primary_10_3390_w17020246
crossref_primary_10_1002_edn3_70017
crossref_primary_10_1002_edn3_93
crossref_primary_10_3897_mbmg_5_69691
crossref_primary_10_1016_j_jclepro_2017_10_223
crossref_primary_10_1111_mec_15472
crossref_primary_10_1371_journal_pone_0263118
crossref_primary_10_1111_cobi_13802
crossref_primary_10_1016_j_jenvman_2024_121248
crossref_primary_10_1016_j_cosust_2020_08_005
crossref_primary_10_1002_edn3_70028
crossref_primary_10_1016_j_scitotenv_2023_162322
crossref_primary_10_1016_j_jenvman_2017_07_045
crossref_primary_10_1016_j_ufug_2022_127782
crossref_primary_10_3390_genes10110858
crossref_primary_10_1007_s10641_022_01350_5
crossref_primary_10_1111_cobi_13810
crossref_primary_10_1038_s41598_019_39399_5
crossref_primary_10_3389_fevo_2024_1409296
crossref_primary_10_1007_s10641_022_01274_0
crossref_primary_10_3390_jmse12111897
crossref_primary_10_1016_j_jenvrad_2018_04_011
crossref_primary_10_1134_S102279542104013X
crossref_primary_10_1111_mec_14362
crossref_primary_10_3389_fmicb_2020_00844
crossref_primary_10_1111_1755_0998_13861
crossref_primary_10_1002_edn3_72
crossref_primary_10_1093_cz_zoaf049
crossref_primary_10_1111_mec_15698
crossref_primary_10_1002_edn3_70030
crossref_primary_10_1016_j_marenvres_2025_107551
crossref_primary_10_1016_j_pocean_2024_103230
crossref_primary_10_1002_ece3_71544
crossref_primary_10_1016_j_marpol_2017_08_014
crossref_primary_10_1111_mec_70075
crossref_primary_10_1016_j_ecolind_2020_106421
crossref_primary_10_1002_edn3_75
crossref_primary_10_1002_edn3_76
crossref_primary_10_1093_biolinnean_blad106
crossref_primary_10_3390_w14182843
crossref_primary_10_3389_fenvs_2021_617924
crossref_primary_10_1002_ece3_9672
crossref_primary_10_1002_edn3_70047
crossref_primary_10_1002_edn3_70043
crossref_primary_10_1111_mec_15202
crossref_primary_10_1007_s00027_023_00942_2
crossref_primary_10_1016_j_hal_2025_102925
crossref_primary_10_1111_1365_2664_14276
crossref_primary_10_5194_hess_25_735_2021
crossref_primary_10_1007_s10530_024_03306_5
crossref_primary_10_1111_mec_14350
crossref_primary_10_1007_s10530_019_01993_z
crossref_primary_10_1007_s10841_021_00329_4
crossref_primary_10_1007_s10750_024_05476_8
crossref_primary_10_1016_j_foodchem_2018_08_032
crossref_primary_10_1111_mec_15434
crossref_primary_10_3897_mbmg_3_35060
crossref_primary_10_1007_s11694_025_03333_3
crossref_primary_10_1002_edn3_57
crossref_primary_10_1002_edn3_52
crossref_primary_10_1016_j_jenvman_2025_124852
crossref_primary_10_1038_s41598_017_14978_6
crossref_primary_10_1002_edn3_273
crossref_primary_10_1002_edn3_274
crossref_primary_10_1007_s00343_023_3037_1
crossref_primary_10_1002_edn3_499
crossref_primary_10_3897_mbmg_7_103856
crossref_primary_10_1111_acv_12583
crossref_primary_10_1371_journal_pone_0219218
crossref_primary_10_3390_su16198335
crossref_primary_10_1111_2041_210X_12836
crossref_primary_10_3389_fmars_2019_00783
crossref_primary_10_1002_edn3_45
crossref_primary_10_1038_srep40368
crossref_primary_10_1111_ddi_70085
crossref_primary_10_1002_edn3_46
crossref_primary_10_1002_edn3_40
crossref_primary_10_1002_edn3_41
crossref_primary_10_5852_naturae2025a12
crossref_primary_10_1002_edn3_43
crossref_primary_10_1002_edn3_265
crossref_primary_10_1002_edn3_266
crossref_primary_10_3389_fmicb_2022_1079136
crossref_primary_10_1002_eap_2730
crossref_primary_10_1002_edn3_33
crossref_primary_10_1111_1755_0998_13426
crossref_primary_10_3390_d14100797
crossref_primary_10_1111_fwb_13094
crossref_primary_10_3389_fmicb_2018_01392
crossref_primary_10_1016_j_marpolbul_2024_117422
crossref_primary_10_1139_cjfas_2016_0306
crossref_primary_10_3390_biology12091245
crossref_primary_10_1002_edn3_38
crossref_primary_10_1111_mec_15646
crossref_primary_10_1002_ece3_7057
crossref_primary_10_1111_1755_0998_13430
crossref_primary_10_1002_edn3_70001
crossref_primary_10_1029_2024JF008028
crossref_primary_10_1111_mec_15644
crossref_primary_10_1186_s12859_019_2663_2
crossref_primary_10_1002_edn3_23
crossref_primary_10_1016_j_scitotenv_2025_180110
crossref_primary_10_1002_edn3_24
crossref_primary_10_1371_journal_pone_0262015
crossref_primary_10_1111_fwb_70087
crossref_primary_10_1002_edn3_26
crossref_primary_10_1051_kmae_2017023
crossref_primary_10_1002_edn3_285
crossref_primary_10_7717_peerj_11030
crossref_primary_10_1002_edn3_224
crossref_primary_10_1002_edn3_467
crossref_primary_10_1002_edn3_225
crossref_primary_10_1002_edn3_70098
crossref_primary_10_1007_s10530_017_1545_7
crossref_primary_10_1111_1755_0998_13803
crossref_primary_10_1111_1755_0998_12956
crossref_primary_10_1016_j_scitotenv_2022_161365
crossref_primary_10_1002_edn3_232
crossref_primary_10_1016_j_ecolind_2024_111966
crossref_primary_10_1002_ecs2_3941
crossref_primary_10_1111_2041_210X_13276
crossref_primary_10_7717_peerj_3228
crossref_primary_10_1007_s11356_025_36202_z
crossref_primary_10_1111_eva_12694
crossref_primary_10_1002_edn3_456
crossref_primary_10_1002_ece3_2186
crossref_primary_10_1007_s11252_024_01557_7
crossref_primary_10_1038_s41598_020_67452_1
crossref_primary_10_1016_j_margen_2017_11_003
crossref_primary_10_1002_edn3_221
crossref_primary_10_1002_edn3_462
crossref_primary_10_1007_s00425_023_04267_0
crossref_primary_10_3389_fmars_2022_987774
crossref_primary_10_1139_cjfas_2016_0101
crossref_primary_10_3389_fmars_2024_1462123
crossref_primary_10_1002_edn3_489
crossref_primary_10_1038_s41598_018_34294_x
crossref_primary_10_1002_ece3_8972
crossref_primary_10_1088_1755_1315_819_1_012045
crossref_primary_10_5334_cstp_803
crossref_primary_10_1111_cobi_13183
crossref_primary_10_1016_j_ecolind_2021_107649
crossref_primary_10_1111_1755_0998_12934
crossref_primary_10_1002_edn3_253
crossref_primary_10_1002_edn3_254
crossref_primary_10_2989_16085914_2023_2282493
crossref_primary_10_1016_j_limno_2022_126005
crossref_primary_10_1002_edn3_494
crossref_primary_10_3390_ani13061002
crossref_primary_10_3389_fmars_2017_00107
crossref_primary_10_1016_j_foodcont_2024_110663
crossref_primary_10_1002_edn3_238
crossref_primary_10_1002_edn3_479
crossref_primary_10_1002_ps_8093
crossref_primary_10_1002_ece3_4387
crossref_primary_10_1139_gen_2015_0191
crossref_primary_10_1002_ece3_7658
crossref_primary_10_1016_j_scitotenv_2018_08_370
crossref_primary_10_1111_1755_0998_12940
crossref_primary_10_7717_peerj_14993
crossref_primary_10_1038_s41598_022_19954_3
crossref_primary_10_1111_1755_0998_12942
crossref_primary_10_1002_edn3_484
crossref_primary_10_1111_afe_12628
crossref_primary_10_1002_edn3_481
crossref_primary_10_1002_edn3_480
crossref_primary_10_1016_j_heliyon_2023_e17102
crossref_primary_10_3390_d15050631
crossref_primary_10_1002_edn3_423
crossref_primary_10_3389_fenvs_2022_952414
crossref_primary_10_3897_BDJ_11_e97484
crossref_primary_10_1111_mec_16364
crossref_primary_10_7717_peerj_15431
crossref_primary_10_1038_s41598_024_60762_8
crossref_primary_10_3390_d16080495
crossref_primary_10_1016_j_marpolbul_2025_117763
crossref_primary_10_1007_s00227_023_04205_4
crossref_primary_10_3389_fmars_2019_00373
crossref_primary_10_22201_ib_20078706e_2023_94_4855
crossref_primary_10_7717_peerj_12157
crossref_primary_10_1002_ece3_9850
crossref_primary_10_1051_kmae_2020006
crossref_primary_10_1002_edn3_411
crossref_primary_10_1002_edn3_70063
crossref_primary_10_1002_edn3_70072
crossref_primary_10_1111_1755_0998_13855
crossref_primary_10_1186_s12862_024_02265_8
crossref_primary_10_1016_j_envpol_2020_115472
crossref_primary_10_1111_1755_0998_13617
crossref_primary_10_1002_edn3_5
crossref_primary_10_1002_bit_28592
crossref_primary_10_7717_peerj_4747
crossref_primary_10_1002_edn3_9
crossref_primary_10_1002_edn3_8
crossref_primary_10_1016_j_ecolind_2023_111222
crossref_primary_10_1016_j_scitotenv_2021_149175
crossref_primary_10_1002_edn3_202
crossref_primary_10_1002_eap_2335
crossref_primary_10_1002_edn3_70079
crossref_primary_10_1038_s41598_024_71398_z
crossref_primary_10_1002_edn3_70077
crossref_primary_10_1007_s10452_025_10178_x
crossref_primary_10_1002_edn3_70075
crossref_primary_10_1007_s10750_020_04260_8
crossref_primary_10_3390_genes11030296
crossref_primary_10_1111_1755_0998_12738
crossref_primary_10_1002_edn3_437
crossref_primary_10_1002_edn3_434
crossref_primary_10_3389_fevo_2021_629217
crossref_primary_10_1002_edn3_433
crossref_primary_10_1002_edn3_435
crossref_primary_10_1111_mec_14395
crossref_primary_10_1038_s41598_020_73648_2
crossref_primary_10_1007_s10750_018_3593_0
crossref_primary_10_1111_1755_0998_12740
crossref_primary_10_1002_edn3_70095
crossref_primary_10_1016_j_foodcont_2020_107348
crossref_primary_10_1139_cjfas_2021_0215
crossref_primary_10_1111_1755_0998_13839
crossref_primary_10_3897_mbmg_2_30457
crossref_primary_10_1002_edn3_200
crossref_primary_10_1002_edn3_443
crossref_primary_10_1111_rec_13033
crossref_primary_10_3390_ani14111519
crossref_primary_10_1111_faf_12601
crossref_primary_10_2108_zs180172
crossref_primary_10_1007_s00338_024_02566_w
crossref_primary_10_1371_journal_pone_0225409
crossref_primary_10_1002_lom3_10237
crossref_primary_10_3390_biology13020073
crossref_primary_10_1038_s41598_021_90598_5
crossref_primary_10_1371_journal_pone_0236540
crossref_primary_10_3390_molecules27175674
crossref_primary_10_1002_aqc_4033
crossref_primary_10_1111_jfb_70054
crossref_primary_10_3389_fpls_2021_679428
crossref_primary_10_1111_jfb_70056
crossref_primary_10_3897_mbmg_9_137772
crossref_primary_10_1002_tafs_10352
crossref_primary_10_1016_j_marenvres_2025_107094
crossref_primary_10_3390_ani11071966
crossref_primary_10_1111_fwb_12981
crossref_primary_10_1016_j_ecolind_2022_108966
crossref_primary_10_1016_j_biocon_2019_108225
crossref_primary_10_1002_aqc_70112
crossref_primary_10_1016_j_marpolbul_2023_115430
crossref_primary_10_1016_j_scitotenv_2018_11_247
crossref_primary_10_1111_1365_2664_13404
crossref_primary_10_1088_1755_1315_1408_1_012009
crossref_primary_10_3389_fevo_2020_00276
crossref_primary_10_1371_journal_pone_0165252
crossref_primary_10_1139_cjfas_2020_0315
crossref_primary_10_1002_edn3_407
crossref_primary_10_1002_edn3_403
crossref_primary_10_1093_biosci_biae036
crossref_primary_10_1002_aqc_4250
crossref_primary_10_1111_1755_0998_13069
crossref_primary_10_1002_aqc_3163
crossref_primary_10_3897_mbmg_7_94298
crossref_primary_10_1007_s12686_020_01165_5
crossref_primary_10_3389_fmars_2024_1394984
crossref_primary_10_1016_j_jenvman_2021_114415
crossref_primary_10_3389_fmars_2024_1289589
crossref_primary_10_1016_j_scitotenv_2019_135314
crossref_primary_10_1371_journal_pone_0272660
crossref_primary_10_1007_s12237_023_01287_7
crossref_primary_10_1016_j_envres_2024_120050
crossref_primary_10_1016_j_ocecoaman_2023_106625
crossref_primary_10_3389_fmars_2023_1113322
crossref_primary_10_1016_j_foreco_2020_118120
crossref_primary_10_3390_fishes10050209
crossref_primary_10_1007_s00300_023_03221_w
crossref_primary_10_1038_s41598_024_75176_9
crossref_primary_10_1002_aqc_4245
crossref_primary_10_1038_sdata_2019_8
crossref_primary_10_1111_1749_4877_12832
crossref_primary_10_1111_2041_210X_14430
crossref_primary_10_3897_BDJ_4_e10671
crossref_primary_10_1371_journal_pone_0224119
crossref_primary_10_1093_zoolinnean_zlac014
crossref_primary_10_1002_ece3_3346
crossref_primary_10_1007_s13127_018_0359_5
crossref_primary_10_1016_j_seares_2024_102507
crossref_primary_10_1016_j_ecolind_2019_105470
crossref_primary_10_1111_2041_210X_70152
crossref_primary_10_1007_s10750_023_05253_z
crossref_primary_10_1007_s12526_020_01093_5
crossref_primary_10_3897_mbmg_6_78181
crossref_primary_10_1002_wat2_1355
crossref_primary_10_1371_journal_pone_0173073
crossref_primary_10_1371_journal_pone_0176343
crossref_primary_10_1038_s41598_019_44402_0
crossref_primary_10_1111_jfb_13294
crossref_primary_10_1111_jfb_14383
crossref_primary_10_1016_j_temicr_2025_100017
crossref_primary_10_1080_19390211_2025_2538487
crossref_primary_10_1038_s42003_019_0330_9
crossref_primary_10_1111_jfb_14176
crossref_primary_10_1016_j_scitotenv_2019_05_316
crossref_primary_10_3389_fevo_2019_00337
crossref_primary_10_3897_mbmg_5_66557
crossref_primary_10_1007_s00027_025_01185_z
crossref_primary_10_1007_s10113_023_02081_8
crossref_primary_10_1016_j_scitotenv_2021_151783
crossref_primary_10_7717_peerj_15127
crossref_primary_10_1098_rsos_160635
crossref_primary_10_1371_journal_pone_0216966
crossref_primary_10_3390_d17070495
crossref_primary_10_1038_s41598_020_71238_w
crossref_primary_10_3390_toxics11110903
crossref_primary_10_1111_mec_17140
crossref_primary_10_1002_ece3_7979
crossref_primary_10_3389_fmicb_2020_00096
crossref_primary_10_1016_j_foodchem_2017_04_178
crossref_primary_10_18307_2025_0409
crossref_primary_10_1002_ece3_8150
crossref_primary_10_3390_ani14172532
crossref_primary_10_1016_j_scitotenv_2020_143809
crossref_primary_10_1111_1755_0998_13485
crossref_primary_10_18307_2025_0404
crossref_primary_10_1111_ddi_13415
crossref_primary_10_18307_2025_0403
crossref_primary_10_3390_genes10060431
crossref_primary_10_1002_eap_2914
crossref_primary_10_3354_meps13994
crossref_primary_10_1017_S0007485323000147
crossref_primary_10_1016_j_jenvman_2025_124531
crossref_primary_10_1016_j_jhazmat_2024_136323
crossref_primary_10_1016_j_tifs_2024_104572
crossref_primary_10_1111_jfd_13165
crossref_primary_10_1016_j_envint_2024_109175
crossref_primary_10_1007_s10750_022_05109_y
crossref_primary_10_1111_1755_0998_14107
crossref_primary_10_1002_ece3_4809
crossref_primary_10_5334_cstp_151
crossref_primary_10_1111_gcb_16533
crossref_primary_10_1016_j_marenvres_2018_12_009
crossref_primary_10_1051_kmae_2024011
crossref_primary_10_3390_insects12020129
crossref_primary_10_1139_gen_2016_0100
crossref_primary_10_3390_app11094070
crossref_primary_10_1038_s42003_019_0696_8
crossref_primary_10_3390_app14062641
crossref_primary_10_1111_aec_70094
crossref_primary_10_1111_mec_13660
crossref_primary_10_1038_s41598_017_01808_y
crossref_primary_10_1111_ddi_13209
crossref_primary_10_1016_j_biocon_2017_10_035
crossref_primary_10_1016_j_envint_2023_107950
crossref_primary_10_1038_s41598_023_48139_9
crossref_primary_10_3390_ani15030355
crossref_primary_10_1016_j_ecoinf_2023_102072
crossref_primary_10_3390_w13081113
crossref_primary_10_1007_s00300_023_03187_9
crossref_primary_10_1016_j_ancene_2025_100481
crossref_primary_10_1016_j_watbs_2025_100423
crossref_primary_10_3389_fevo_2023_1179158
crossref_primary_10_1016_j_jnc_2024_126572
crossref_primary_10_1111_1365_2656_13468
crossref_primary_10_3897_mbmg_6_80416
crossref_primary_10_3390_fishes10050214
crossref_primary_10_1186_s13071_024_06388_1
crossref_primary_10_1016_j_ecoleng_2024_107465
crossref_primary_10_1146_annurev_ecolsys_110617_062306
crossref_primary_10_1038_s41559_016_0004
crossref_primary_10_1038_srep24965
crossref_primary_10_1038_s41598_023_35614_6
crossref_primary_10_1111_ddi_13228
crossref_primary_10_1002_ece3_2667
crossref_primary_10_1007_s00227_017_3147_4
crossref_primary_10_1007_s10530_019_01974_2
crossref_primary_10_1111_ecog_06299
crossref_primary_10_1016_j_jenvman_2023_117217
crossref_primary_10_3389_fmars_2024_1351148
crossref_primary_10_1111_fwb_14331
crossref_primary_10_1016_j_ecolind_2017_10_041
crossref_primary_10_1111_mec_15811
crossref_primary_10_3389_fenvs_2022_725360
crossref_primary_10_1371_journal_pone_0183347
crossref_primary_10_1371_journal_pone_0267667
crossref_primary_10_1016_j_marenvres_2023_106225
crossref_primary_10_1016_j_scitotenv_2025_179194
crossref_primary_10_1002_etc_4001
crossref_primary_10_1002_aqc_4212
crossref_primary_10_1016_j_marpolbul_2017_11_033
crossref_primary_10_1111_fwb_14107
crossref_primary_10_1111_2041_210X_12683
crossref_primary_10_3389_fmars_2023_1257343
crossref_primary_10_3897_BDJ_7_e37518
crossref_primary_10_1016_j_envres_2025_121238
crossref_primary_10_1016_j_scitotenv_2024_172281
crossref_primary_10_1016_j_envres_2025_121474
crossref_primary_10_3897_BDJ_12_e125348
crossref_primary_10_1111_fwb_70002
crossref_primary_10_1016_j_biocon_2016_09_005
crossref_primary_10_1016_j_marpolbul_2025_117609
crossref_primary_10_1111_mec_15594
crossref_primary_10_1111_mec_15597
crossref_primary_10_1111_1755_0998_13525
crossref_primary_10_3390_d14121111
crossref_primary_10_1038_s41598_019_40233_1
crossref_primary_10_1002_edn3_195
crossref_primary_10_3390_su12062360
crossref_primary_10_3389_fmars_2022_965800
crossref_primary_10_1007_s10641_024_01574_7
crossref_primary_10_1371_journal_pone_0283088
crossref_primary_10_1002_edn3_70147
crossref_primary_10_1016_j_marenvres_2025_107401
crossref_primary_10_1002_edn3_70142
crossref_primary_10_1016_j_marenvres_2021_105340
crossref_primary_10_15517_4z83mm52
crossref_primary_10_1016_j_marpolbul_2017_11_042
crossref_primary_10_1038_s41598_023_31410_4
crossref_primary_10_1002_edn3_188
crossref_primary_10_1111_ddi_13142
crossref_primary_10_1016_j_ecolind_2025_113459
crossref_primary_10_1007_s10750_018_3750_5
crossref_primary_10_3390_jof8070737
crossref_primary_10_1002_ece3_6279
crossref_primary_10_1007_s00114_019_1605_1
crossref_primary_10_1371_journal_pone_0158383
crossref_primary_10_1002_edn3_70154
crossref_primary_10_3897_mbmg_6_76534
crossref_primary_10_1007_s10531_022_02459_w
crossref_primary_10_1111_1755_0998_12899
crossref_primary_10_3389_fmars_2019_00674
crossref_primary_10_3390_s20102911
crossref_primary_10_1186_s12862_017_0972_5
crossref_primary_10_3389_fmicb_2018_01474
crossref_primary_10_1016_j_limno_2018_03_001
crossref_primary_10_1111_mec_16659
crossref_primary_10_1007_s10531_020_01980_0
crossref_primary_10_1038_s41598_018_23740_5
crossref_primary_10_1111_fme_12775
crossref_primary_10_1002_ece3_6042
crossref_primary_10_1002_lno_11655
crossref_primary_10_1002_rra_4074
crossref_primary_10_1002_edn3_70167
crossref_primary_10_1139_gen_2018_0071
crossref_primary_10_1016_j_jes_2023_11_008
crossref_primary_10_1038_s41598_021_86731_z
crossref_primary_10_1111_1755_0998_13756
crossref_primary_10_1186_s12302_023_00812_6
crossref_primary_10_1016_j_marpolbul_2017_11_065
crossref_primary_10_1007_s10201_021_00663_1
crossref_primary_10_1111_1440_1703_1062
crossref_primary_10_1080_15627020_2023_2274334
crossref_primary_10_2478_aoas_2022_0073
crossref_primary_10_1111_1755_0998_13568
crossref_primary_10_1038_s41598_021_03733_7
crossref_primary_10_1371_journal_pone_0174842
crossref_primary_10_1371_journal_pone_0170244
crossref_primary_10_1002_edn3_391
crossref_primary_10_3390_fishes10040145
crossref_primary_10_1016_j_dsr2_2017_09_008
crossref_primary_10_1002_edn3_157
crossref_primary_10_1007_s12686_022_01295_y
crossref_primary_10_1111_cobi_13721
crossref_primary_10_3390_fishes9120477
crossref_primary_10_3390_jmse13010060
crossref_primary_10_1016_j_biocon_2024_110788
crossref_primary_10_1002_edn3_136
crossref_primary_10_1016_j_scitotenv_2024_170162
crossref_primary_10_1016_j_scitotenv_2025_179021
crossref_primary_10_1111_mec_16635
crossref_primary_10_1038_s41598_025_14079_9
crossref_primary_10_1111_2041_210X_12951
crossref_primary_10_3897_mbmg_6_89857
crossref_primary_10_1002_edn3_387
crossref_primary_10_1002_edn3_388
crossref_primary_10_1111_jeu_12670
crossref_primary_10_1002_edn3_140
crossref_primary_10_1002_edn3_382
crossref_primary_10_1002_edn3_142
crossref_primary_10_3390_fishes7020070
crossref_primary_10_3389_fmars_2021_668822
crossref_primary_10_1111_geb_13698
crossref_primary_10_1111_1755_0998_13544
crossref_primary_10_1002_edn3_70110
crossref_primary_10_1111_1755_0998_13543
crossref_primary_10_1016_j_envint_2019_105307
crossref_primary_10_1016_j_scitotenv_2019_134704
crossref_primary_10_1111_jfb_14852
crossref_primary_10_1002_edn3_177
crossref_primary_10_1016_j_jenvman_2021_113929
crossref_primary_10_1016_j_marpol_2024_106151
crossref_primary_10_3389_fmicb_2020_01860
crossref_primary_10_3390_toxins15060372
crossref_primary_10_1007_s10530_016_1203_5
crossref_primary_10_1002_edn3_158
crossref_primary_10_1007_s10750_022_04891_z
crossref_primary_10_1002_edn3_70129
crossref_primary_10_1016_j_scitotenv_2021_148810
crossref_primary_10_3390_ijerph19159445
crossref_primary_10_1111_mec_15765
crossref_primary_10_1111_2041_210X_12729
crossref_primary_10_3390_fishes9100418
crossref_primary_10_1002_ece3_4903
crossref_primary_10_1002_rra_4265
crossref_primary_10_1038_s41598_020_70307_4
crossref_primary_10_5598_imafungus_2018_09_01_11
crossref_primary_10_11614_KSL_2025_58_3_308
crossref_primary_10_1002_aqc_3514
crossref_primary_10_1002_ecs2_2500
crossref_primary_10_1371_journal_pone_0179261
crossref_primary_10_1111_jfb_14190
crossref_primary_10_3390_foods9091194
crossref_primary_10_1111_brv_13013
crossref_primary_10_1007_s11258_019_00979_0
crossref_primary_10_1139_cjfas_2023_0234
crossref_primary_10_7717_peerj_16847
crossref_primary_10_1016_j_algal_2023_103340
crossref_primary_10_1371_journal_pone_0285674
crossref_primary_10_3897_mbmg_7_96733
crossref_primary_10_1111_conl_13001
crossref_primary_10_1002_ece3_10681
crossref_primary_10_1002_ece3_9921
crossref_primary_10_1126_scirobotics_add5762
crossref_primary_10_1111_mec_17373
crossref_primary_10_1007_s00521_016_2591_2
crossref_primary_10_1002_edn3_111
crossref_primary_10_1002_edn3_112
crossref_primary_10_1002_edn3_597
crossref_primary_10_1002_edn3_590
crossref_primary_10_1111_brv_13015
crossref_primary_10_1038_s41467_022_30842_2
crossref_primary_10_1007_s10641_022_01320_x
crossref_primary_10_1002_edn3_338
crossref_primary_10_3389_fenvs_2023_1193393
crossref_primary_10_3389_fmars_2021_614394
crossref_primary_10_1016_j_ecss_2024_108824
crossref_primary_10_1016_j_scitotenv_2018_05_002
crossref_primary_10_3390_w15030399
crossref_primary_10_1111_1755_0998_13931
crossref_primary_10_3390_fishes9030086
crossref_primary_10_1002_edn3_584
crossref_primary_10_1002_edn3_342
crossref_primary_10_1002_edn3_586
crossref_primary_10_1002_edn3_340
crossref_primary_10_1111_btp_13009
crossref_primary_10_1111_mec_16023
crossref_primary_10_1111_mec_17355
crossref_primary_10_1002_ece3_4013
crossref_primary_10_1016_j_avrs_2025_100235
crossref_primary_10_1111_mec_14081
crossref_primary_10_1139_cjz_2024_0084
crossref_primary_10_1002_ece3_71823
crossref_primary_10_1002_ece3_71825
crossref_primary_10_1016_j_pecon_2019_11_003
crossref_primary_10_1007_s10750_023_05297_1
crossref_primary_10_3389_fmars_2021_809703
crossref_primary_10_1002_edn3_135
crossref_primary_10_1371_journal_pone_0296310
crossref_primary_10_1002_edn3_370
crossref_primary_10_1002_edn3_130
crossref_primary_10_1007_s00227_025_04609_4
crossref_primary_10_3389_fenvs_2022_929541
crossref_primary_10_1002_edn3_358
crossref_primary_10_1002_aqc_70174
crossref_primary_10_1111_jai_14348
crossref_primary_10_3390_d13070306
crossref_primary_10_3897_BDJ_13_e148863
crossref_primary_10_1016_j_jembe_2016_12_002
crossref_primary_10_1016_j_envres_2022_113798
crossref_primary_10_1002_edn3_366
crossref_primary_10_1002_edn3_305
crossref_primary_10_3897_mbmg_3_33835
crossref_primary_10_1038_s41598_019_48546_x
crossref_primary_10_1002_edn3_70176
crossref_primary_10_3390_d16010029
crossref_primary_10_1002_edn3_70180
crossref_primary_10_3390_w15020308
crossref_primary_10_1038_s42003_017_0005_3
crossref_primary_10_1002_ece3_10014
crossref_primary_10_1016_j_ecoinf_2025_103251
crossref_primary_10_1002_mbo3_780
crossref_primary_10_1002_edn3_70187
crossref_primary_10_1111_1755_0998_12643
crossref_primary_10_1016_j_gecco_2025_e03854
crossref_primary_10_1155_2018_5160254
crossref_primary_10_1016_j_ecolind_2025_114186
crossref_primary_10_1371_journal_pone_0226253
crossref_primary_10_7717_peerj_2444
crossref_primary_10_1016_j_rsma_2025_104013
crossref_primary_10_3897_mbmg_8_126058
crossref_primary_10_1016_j_scitotenv_2023_168174
crossref_primary_10_1016_j_watbs_2022_100007
crossref_primary_10_3389_fmars_2018_00265
crossref_primary_10_3390_jmse12101729
crossref_primary_10_1111_1755_0998_13941
crossref_primary_10_1016_j_tree_2021_03_001
crossref_primary_10_1002_edn3_573
crossref_primary_10_3897_mbmg_5_72371
crossref_primary_10_1002_edn3_332
crossref_primary_10_3390_d16010050
crossref_primary_10_1016_j_dsr_2022_103765
crossref_primary_10_1002_edn3_554
crossref_primary_10_1002_ece3_6482
crossref_primary_10_1002_ece3_10031
crossref_primary_10_1111_mec_17784
crossref_primary_10_1016_j_envpol_2024_123954
crossref_primary_10_3390_w16213063
crossref_primary_10_1016_j_ecolind_2021_107952
crossref_primary_10_1002_nafm_10055
crossref_primary_10_1111_1755_0998_13715
crossref_primary_10_1002_nafm_10054
crossref_primary_10_1111_1755_0998_12628
crossref_primary_10_1016_j_fishres_2017_02_023
crossref_primary_10_3390_ani13101614
crossref_primary_10_3389_fmars_2016_00283
Cites_doi 10.1371/journal.pone.0086175
10.1126/science.303.5656.285
10.1111/fme.12071
10.1111/1755-0998.12188
10.1177/0049124104268644
10.1126/science.1251156
10.1371/journal.pone.0041732
10.1126/science.1246752
10.18637/jss.v043.i10
10.1098/rsbl.2014.0562
10.1002/rrr.3450060209
10.1016/j.biocon.2014.11.018
10.1016/j.biocon.2014.11.019
10.1111/j.1420-9101.2008.01527.x
10.1126/science.1103538
10.1186/1471-2164-11-434
10.1016/j.tree.2011.10.004
10.1556/ComEc.9.2008.2.10
10.1111/j.1365-294X.2011.05403.x
10.1098/rsos.150088
10.1371/journal.pone.0028244
10.1038/nature09678
10.1002/9780470696026.ch1
10.1371/journal.pone.0035868
10.1111/1755‐0998.12428
10.1111/1755‐0998.12433
10.1186/1471-2180-10-189
10.1016/j.biocon.2014.11.029
10.1016/j.envres.2011.02.001
10.1007/s12686-014-0213-9
10.1126/science.289.5482.1139b
10.1111/1365-2664.12262
10.1111/j.1365-2664.2012.02171.x
10.1111/j.1365-294X.2012.05542.x
10.1111/j.1365-294X.2012.05545.x
10.1111/j.1365-2400.2007.00589.x
10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
10.1093/nar/gkl938
10.1111/j.1365-294X.2012.05550.x
10.1007/s10531-013-0573-6
10.1111/1755-0998.12402
10.1093/nar/gkr732
10.1016/j.biocon.2014.11.020
10.1111/j.1365-294X.2011.05418.x
10.1101/gr.849004
10.1038/516158a
10.1577/1548-8659(1985)5<475:RTABTM>2.0.CO;2
10.1073/pnas.77.11.6715
10.1016/S0169-5347(03)00150-2
10.1007/s10750-012-1282-y
ContentType Journal Article
Copyright 2015 John Wiley & Sons Ltd
2015 John Wiley & Sons Ltd.
Copyright © 2016 John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2015 John Wiley & Sons Ltd
– notice: 2015 John Wiley & Sons Ltd.
– notice: Copyright © 2016 John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7QH
7ST
7TM
7U6
7UA
F1W
H95
L.G
7X8
7S9
L.6
1XC
VOOES
DOI 10.1111/mec.13428
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Aqualine
Environment Abstracts
Nucleic Acids Abstracts
Sustainability Science Abstracts
Water Resources Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Nucleic Acids Abstracts
Aqualine
Water Resources Abstracts
Sustainability Science Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic
Entomology Abstracts

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-294X
EndPage 942
ExternalDocumentID oai:HAL:hal-01419572v1
3952652461
26479867
10_1111_mec_13428
MEC13428
ark_67375_WNG_2M5B4DXD_1
US201600090446
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Waterboard Brabantse Delta
– fundername: ONEMA
– fundername: Network Ecological Monitoring (NEM)
– fundername: Parc National du Mercantour
– fundername: STOWA
– fundername: Waterboard de Dommel
– fundername: SPYGEN
– fundername: Waterboard Rijn en Ijssel
– fundername: EDF
– fundername: Waterboard Vallei en Veluwe
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7QH
7ST
7TM
7U6
7UA
F1W
H95
L.G
7X8
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c6168-c24993f4d140137fc62ce566e0b0633a18f525a3285cc082b9002cb6b2dfa33b3
IEDL.DBID DRFUL
ISICitedReferencesCount 863
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370653700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Tue Oct 14 20:55:25 EDT 2025
Fri Sep 05 17:27:29 EDT 2025
Thu Oct 02 10:27:05 EDT 2025
Tue Oct 07 09:56:49 EDT 2025
Wed Aug 13 11:02:21 EDT 2025
Mon Jul 21 05:55:21 EDT 2025
Sat Nov 29 05:23:13 EST 2025
Tue Nov 18 22:19:00 EST 2025
Sun Sep 21 06:24:08 EDT 2025
Tue Nov 11 03:30:22 EST 2025
Wed Dec 27 19:19:40 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords wildlife management
detection probability
environmental DNA
amphibian
monitoring
fish
Environmental DNA
FAUNE AQUATIQUE
aquatic fauna
ADN
LAC
INVENTAIRE FAUNISTIQUE
dna
ichthyology
animal population
Fish
ICHTYOLOGIE
lakes
Wildlife management
Amphibian
Detection probability
Monitoring
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6168-c24993f4d140137fc62ce566e0b0633a18f525a3285cc082b9002cb6b2dfa33b3
Notes http://dx.doi.org/10.1111/mec.13428
STOWA
ark:/67375/WNG-2M5B4DXD-1
Waterboard de Dommel
Waterboard Brabantse Delta
EDF
SPYGEN
ONEMA
Table S1 Amphibian tissue samples used for the reference database construction. Table S2 Fish tissue samples used for the reference database construction. Table S3 Geographical coordinates, sampling date and results of traditional and eDNA metabarcoding surveys for amphibians. Table S4 Location, site characteristics and sampling methods used for eDNA metabarcoding and traditional surveys for the fish comparative study. Table S5 In silico assessment of different primer pairs targeting Batrachia and Teleostei. Table S6 Number of reads obtained from the NGS runs per sample before and after bioinformatic filtering. Table S7 Number of detection events of amphibian species using eDNA metabarcoding and traditional surveys; species detection probability with confidence intervals between brackets for eDNA metabarcoding, traditional surveys and historical data and number of visits required to achieve a 95% chance of species detection. Table S8 Results from the eDNA metabarcoding survey and historical data for fish in control sites (sites 1-4). Table S9 Results from eDNA metabarcoding and traditional surveys for fish in pond ecosystems (sites 5-8). Table S10 Results from eDNA metabarcoding and traditional surveys for fish in ditch ecosystems (sites 9-12). Table S11 Results from eDNA metabarcoding and traditional surveys for fish in lake ecosystems (site 13). Table S12 Results from eDNA metabarcoding and traditional surveys for fish in stream ecosystems in the Netherlands (sites 14-17). Table S13 Results from eDNA metabarcoding and traditional surveys for fish in stream ecosystems in France (sites 18-19). Table S14 Results from eDNA metabarcoding and traditional surveys for fish in river ecosystems (sites 20-23). Table S15 Results from eDNA metabarcoding for fish in the marine ecosystem (site 23).
istex:4D7493F68E343E2BAB7D9DE51124DF4CBF78D950
Parc National du Mercantour
Waterboard Rijn en Ijssel
Network Ecological Monitoring (NEM)
ArticleID:MEC13428
Waterboard Vallei en Veluwe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9642-2827
0000-0003-3672-7167
0000-0001-7507-6729
0000-0002-3554-5954
0000-0002-2289-9761
0000-0002-9255-6174
OpenAccessLink https://hal.science/hal-01419572
PMID 26479867
PQID 1765066674
PQPubID 31465
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01419572v1
proquest_miscellaneous_1803136799
proquest_miscellaneous_1785728733
proquest_miscellaneous_1776655120
proquest_journals_1765066674
pubmed_primary_26479867
crossref_citationtrail_10_1111_mec_13428
crossref_primary_10_1111_mec_13428
wiley_primary_10_1111_mec_13428_MEC13428
istex_primary_ark_67375_WNG_2M5B4DXD_1
fao_agris_US201600090446
PublicationCentury 2000
PublicationDate February 2016
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2016
Publisher Blackwell Scientific Publications
Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Scientific Publications
– name: Blackwell Publishing Ltd
– name: Wiley
References Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Molecular Ecology, 21, 1789-1793.
Monastersky R (2014) Biodiversity: life - a status report. Nature, 516, 158-161.
Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Research, 14, 1188-1190.
Thomsen PF, Kielgast J, Iversen LL et al. (2012a) Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21, 2565-2573.
Mahon AR, Nathan LR, Jerde CL (2014) Meta-genomic surveillance of invasive species in the bait trade. Conservation Genetics Resources, 6, 563-567.
Taberlet P, Coissac E, Pompanon F et al. (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35, e14.
Hudy M (1985) Rainbow trout and brook trout mortality from high voltage AC electrofishing in a controlled environment. North American Journal of Fisheries Management, 5, 475-479.
R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261-304.
Bellemain E, Carlsen T, Brochmann C et al. (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189.
Darling JA, Mahon AR (2011) From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research, 111, 978-988.
Geniez P, Cheylan M (2012) Les amphibiens et les reptiles du Languedoc-Roussillon et régions limitrophes - Atlas biogéographique. Biotope Editions, Mèze, Paris.
Yoccoz NG, Bråthen KA, Gielly L et al. (2012) DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 21, 3647-3655.
European Council (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Office for official publications of the European Communities, Brussels.
Kelly RP, Port JA, Yamahara KM, Crowder LB (2014b) Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE, 9, e86175.
MacKenzie DI, Nichols JD, Lachman GB et al. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences, USA, 77, 6715-6719.
Tréguier A, Paillisson J-M, Dejean T et al. (2014) Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. Journal of Applied Ecology, 51, 871-879.
Harris JD (2003) Can you bank on GenBank? Trends in Ecology & Evolution, 18, 317-319.
Thomsen PF, Kielgast J, Iversen LL et al. (2012b) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE, 7, e41732.
Biggs J, Ewald N, Valentini A et al. (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation, 183, 19-28.
Kéry M, Schmidt BR (2008) Imperfect detection and its consequences for monitoring for conservation. Community Ecology, 9, 207-216.
Coissac E, Riaz T, Puillandre N (2012) Bioinformatic challenges for DNA metabarcoding of plants and animals. Molecular Ecology, 21, 1834-1847.
Deiner K, Walser J-C, Mächler E, Altermatt F (2015) Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation, 183, 53-63.
Roset N, Grenouillet G, Goffaux D, Pont D, Kestemont P (2007) A review of existing fish assemblage indicators and methodologies. Fisheries Management and Ecology, 14, 393-405.
Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE, 6, e28244.
Riaz T, Shehzad W, Viari A et al. (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 39, e145.
Pimm SL, Jenkins CN, Abell R et al. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.
Copp GH, Oliver JM, Peňáz M, Roux AL (1991) Juvenile fishes as functional describers of fluvial ecosystem dynamics: applications on the river Rhône, France. Regulated Rivers: Research & Management, 6, 135-145.
Klymus KE, Richter CA, Chapman DC, Paukert C (2015) Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biological Conservation, 183, 77-84.
Thomsen PF, Willerslev E (2015) Environmental DNA - an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4-18.
Barnosky AD, Matzke N, Tomiya S et al. (2011) Has the Earth's sixth mass extinction already arrived? Nature, 471, 51-57.
Argillier C, Caussé S, Gevrey M et al. (2013) Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia, 704, 193-211.
Evans NT, Olds BP, Turner CR et al. (2015) Quantification of mesocosm fish and amphibian species diversity via eDNA metabarcoding. Molecular Ecology Resources, doi:10.1111/1755-0998.12433.
Allard L, Grenouillet G, Khazraie K et al. (2014) Electrofishing efficiency in low conductivity neotropical streams: towards a non-destructive fish sampling method. Fisheries Management and Ecology, 21, 234-243.
Pompanon F, Deagle BE, Symondson WOC et al. (2012) Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21, 1931-1950.
Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS ONE, 7, e35868.
Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science, 289, 1139.
Wheeler QD, Raven PH, Wilson EO (2004) Taxonomy: impediment or expedient? Science, 303, 285.
Ficetola GT, Coissac E, Zundel S et al. (2010) An in silico approach for the evaluation of DNA barcodes. BMC Genomics, 11, 434.
Dejean T, Valentini A, Miquel C et al. (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology, 49, 953-959.
Kelly RP, Port JA, Yamahara KM et al. (2014a) Harnessing DNA to improve environmental management. Science, 344, 1455-1456.
Schnell IB, Bohmann K, Gilbert MTP (2015) Tag jumps illuminated - reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources, 15, 1289-1303.
Beumer C, Martens P (2013) IUCN and perspectives on biodiversity conservation in a changing world. Biodiversity and Conservation, 22, 3105-3120.
Daan N (2001) The IBTS database: a plea for quality control. ICES CM, 3, 1-5.
Santos AM, Branco M (2012) The quality of name-based species records in databases. Trends in Ecology & Evolution, 27, 6-7.
Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters, 10, 20140562.
Miya M, Sato Y, Fukunaga T et al. (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2, 150088.
Plötner J, Uzzell T, Beerli P et al. (2008) Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. Journal of Evolutionary Biology, 21, 668-681.
Boyer F, Mercier C, Bonin A et al. (2015) obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, doi:10.1111/1755-0998.12428.
De Barba M, Miquel C, Boyer F et al. (2014) DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Molecular Ecology Resources, 14, 306-323.
Stuart SN, Chanson JS, Cox NA et al. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and Abundance. Journal of Statistical Software, 43, 1-23.
2015; 2
2010; 11
2010; 10
2015; 15
2015; 183
2004; 303
2014; 516
2013; 22
2012
1985; 5
2013; 704
2012a; 21
2008; 9
2003; 18
2011; 471
2011; 39
2004; 306
2011; 6
2007; 35
2011; 111
2007; 14
2014; 21
1991; 6
2014b; 9
2004; 33
2000; 289
2000
2002; 83
2004; 14
1980; 77
2014a; 344
2014; 14
2011; 43
2001; 3
2008; 21
2015
2012; 49
2014
2012; 27
2012; 7
2014; 51
2014; 6
2012; 21
2014; 10
2012b; 7
2014; 344
e_1_2_8_28_1
Geniez P (e_1_2_8_24_1) 2012
e_1_2_8_47_1
Hubert WA (e_1_2_8_27_1) 2012
e_1_2_8_26_1
R Core Team (e_1_2_8_41_1) 2014
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
European Council (e_1_2_8_20_1) 2000
Daan N (e_1_2_8_14_1) 2001; 3
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
26876232 - Mol Ecol. 2016 Feb;25(4):846-8
References_xml – reference: Argillier C, Caussé S, Gevrey M et al. (2013) Development of a fish-based index to assess the eutrophication status of European lakes. Hydrobiologia, 704, 193-211.
– reference: Monastersky R (2014) Biodiversity: life - a status report. Nature, 516, 158-161.
– reference: Roset N, Grenouillet G, Goffaux D, Pont D, Kestemont P (2007) A review of existing fish assemblage indicators and methodologies. Fisheries Management and Ecology, 14, 393-405.
– reference: Daan N (2001) The IBTS database: a plea for quality control. ICES CM, 3, 1-5.
– reference: Allard L, Grenouillet G, Khazraie K et al. (2014) Electrofishing efficiency in low conductivity neotropical streams: towards a non-destructive fish sampling method. Fisheries Management and Ecology, 21, 234-243.
– reference: Kelly RP, Port JA, Yamahara KM, Crowder LB (2014b) Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE, 9, e86175.
– reference: Schnell IB, Bohmann K, Gilbert MTP (2015) Tag jumps illuminated - reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources, 15, 1289-1303.
– reference: Tanadini LG, Schmidt BR (2011) Population size influences amphibian detection probability: implications for biodiversity monitoring programs. PLoS ONE, 6, e28244.
– reference: Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS ONE, 7, e35868.
– reference: European Council (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Office for official publications of the European Communities, Brussels.
– reference: Evans NT, Olds BP, Turner CR et al. (2015) Quantification of mesocosm fish and amphibian species diversity via eDNA metabarcoding. Molecular Ecology Resources, doi:10.1111/1755-0998.12433.
– reference: Hudy M (1985) Rainbow trout and brook trout mortality from high voltage AC electrofishing in a controlled environment. North American Journal of Fisheries Management, 5, 475-479.
– reference: Darling JA, Mahon AR (2011) From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research, 111, 978-988.
– reference: Yoccoz NG, Bråthen KA, Gielly L et al. (2012) DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 21, 3647-3655.
– reference: Coissac E, Riaz T, Puillandre N (2012) Bioinformatic challenges for DNA metabarcoding of plants and animals. Molecular Ecology, 21, 1834-1847.
– reference: Santos AM, Branco M (2012) The quality of name-based species records in databases. Trends in Ecology & Evolution, 27, 6-7.
– reference: R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
– reference: Burnham KP, Anderson DR (2004) Multimodel inference understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261-304.
– reference: Tréguier A, Paillisson J-M, Dejean T et al. (2014) Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. Journal of Applied Ecology, 51, 871-879.
– reference: Miya M, Sato Y, Fukunaga T et al. (2015) MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. Royal Society Open Science, 2, 150088.
– reference: Klymus KE, Richter CA, Chapman DC, Paukert C (2015) Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. Biological Conservation, 183, 77-84.
– reference: Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science, 289, 1139.
– reference: Beumer C, Martens P (2013) IUCN and perspectives on biodiversity conservation in a changing world. Biodiversity and Conservation, 22, 3105-3120.
– reference: Biggs J, Ewald N, Valentini A et al. (2015) Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biological Conservation, 183, 19-28.
– reference: Copp GH, Oliver JM, Peňáz M, Roux AL (1991) Juvenile fishes as functional describers of fluvial ecosystem dynamics: applications on the river Rhône, France. Regulated Rivers: Research & Management, 6, 135-145.
– reference: Plötner J, Uzzell T, Beerli P et al. (2008) Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. Journal of Evolutionary Biology, 21, 668-681.
– reference: Mahon AR, Nathan LR, Jerde CL (2014) Meta-genomic surveillance of invasive species in the bait trade. Conservation Genetics Resources, 6, 563-567.
– reference: Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and Abundance. Journal of Statistical Software, 43, 1-23.
– reference: Deagle BE, Jarman SN, Coissac E, Pompanon F, Taberlet P (2014) DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match. Biology Letters, 10, 20140562.
– reference: Barnosky AD, Matzke N, Tomiya S et al. (2011) Has the Earth's sixth mass extinction already arrived? Nature, 471, 51-57.
– reference: Dejean T, Valentini A, Miquel C et al. (2012) Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology, 49, 953-959.
– reference: Harris JD (2003) Can you bank on GenBank? Trends in Ecology & Evolution, 18, 317-319.
– reference: Bellemain E, Carlsen T, Brochmann C et al. (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189.
– reference: Kelly RP, Port JA, Yamahara KM et al. (2014a) Harnessing DNA to improve environmental management. Science, 344, 1455-1456.
– reference: Kéry M, Schmidt BR (2008) Imperfect detection and its consequences for monitoring for conservation. Community Ecology, 9, 207-216.
– reference: Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences, USA, 77, 6715-6719.
– reference: Pimm SL, Jenkins CN, Abell R et al. (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.
– reference: Riaz T, Shehzad W, Viari A et al. (2011) ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Research, 39, e145.
– reference: Thomsen PF, Kielgast J, Iversen LL et al. (2012a) Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology, 21, 2565-2573.
– reference: Thomsen PF, Kielgast J, Iversen LL et al. (2012b) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS ONE, 7, e41732.
– reference: Geniez P, Cheylan M (2012) Les amphibiens et les reptiles du Languedoc-Roussillon et régions limitrophes - Atlas biogéographique. Biotope Editions, Mèze, Paris.
– reference: Taberlet P, Coissac E, Hajibabaei M, Rieseberg LH (2012) Environmental DNA. Molecular Ecology, 21, 1789-1793.
– reference: Boyer F, Mercier C, Bonin A et al. (2015) obitools: a unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources, doi:10.1111/1755-0998.12428.
– reference: Ficetola GT, Coissac E, Zundel S et al. (2010) An in silico approach for the evaluation of DNA barcodes. BMC Genomics, 11, 434.
– reference: Thomsen PF, Willerslev E (2015) Environmental DNA - an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4-18.
– reference: Deiner K, Walser J-C, Mächler E, Altermatt F (2015) Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. Biological Conservation, 183, 53-63.
– reference: De Barba M, Miquel C, Boyer F et al. (2014) DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Molecular Ecology Resources, 14, 306-323.
– reference: Stuart SN, Chanson JS, Cox NA et al. (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
– reference: Pompanon F, Deagle BE, Symondson WOC et al. (2012) Who is eating what: diet assessment using next generation sequencing. Molecular Ecology, 21, 1931-1950.
– reference: Taberlet P, Coissac E, Pompanon F et al. (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35, e14.
– reference: Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Research, 14, 1188-1190.
– reference: Wheeler QD, Raven PH, Wilson EO (2004) Taxonomy: impediment or expedient? Science, 303, 285.
– reference: MacKenzie DI, Nichols JD, Lachman GB et al. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83, 2248-2255.
– volume: 35
  start-page: e14
  year: 2007
  article-title: Power and limitations of the chloroplast L (UAA) intron for plant DNA barcoding
  publication-title: Nucleic Acids Research
– volume: 6
  start-page: 135
  year: 1991
  end-page: 145
  article-title: Juvenile fishes as functional describers of fluvial ecosystem dynamics: applications on the river Rhône, France
  publication-title: Regulated Rivers: Research & Management
– volume: 77
  start-page: 6715
  year: 1980
  end-page: 6719
  article-title: Maternal inheritance of human mitochondrial DNA
  publication-title: Proceedings of the National Academy of Sciences, USA
– year: 2015
  article-title: Quantification of mesocosm fish and amphibian species diversity via eDNA metabarcoding
  publication-title: Molecular Ecology Resources
– volume: 704
  start-page: 193
  year: 2013
  end-page: 211
  article-title: Development of a fish‐based index to assess the eutrophication status of European lakes
  publication-title: Hydrobiologia
– start-page: 223
  year: 2012
  end-page: 265
– volume: 183
  start-page: 4
  year: 2015
  end-page: 18
  article-title: Environmental DNA – an emerging tool in conservation for monitoring past and present biodiversity
  publication-title: Biological Conservation
– volume: 83
  start-page: 2248
  year: 2002
  end-page: 2255
  article-title: Estimating site occupancy rates when detection probabilities are less than one
  publication-title: Ecology
– volume: 7
  start-page: e41732
  year: 2012b
  article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples
  publication-title: PLoS ONE
– volume: 21
  start-page: 2565
  year: 2012a
  end-page: 2573
  article-title: Monitoring endangered freshwater biodiversity using environmental DNA
  publication-title: Molecular Ecology
– volume: 21
  start-page: 3647
  year: 2012
  end-page: 3655
  article-title: DNA from soil mirrors plant taxonomic and growth form diversity
  publication-title: Molecular Ecology
– year: 2015
  article-title: obitools: a unix‐inspired software package for DNA metabarcoding
  publication-title: Molecular Ecology Resources
– year: 2014
– volume: 5
  start-page: 475
  year: 1985
  end-page: 479
  article-title: Rainbow trout and brook trout mortality from high voltage AC electrofishing in a controlled environment
  publication-title: North American Journal of Fisheries Management
– volume: 21
  start-page: 1931
  year: 2012
  end-page: 1950
  article-title: Who is eating what: diet assessment using next generation sequencing
  publication-title: Molecular Ecology
– volume: 14
  start-page: 393
  year: 2007
  end-page: 405
  article-title: A review of existing fish assemblage indicators and methodologies
  publication-title: Fisheries Management and Ecology
– volume: 344
  start-page: 1455
  year: 2014a
  end-page: 1456
  article-title: Harnessing DNA to improve environmental management
  publication-title: Science
– volume: 3
  start-page: 1
  year: 2001
  end-page: 5
  article-title: The IBTS database: a plea for quality control
  publication-title: ICES CM
– volume: 516
  start-page: 158
  year: 2014
  end-page: 161
  article-title: Biodiversity: life – a status report
  publication-title: Nature
– volume: 21
  start-page: 234
  year: 2014
  end-page: 243
  article-title: Electrofishing efficiency in low conductivity neotropical streams: towards a non‐destructive fish sampling method
  publication-title: Fisheries Management and Ecology
– volume: 306
  start-page: 1783
  year: 2004
  end-page: 1786
  article-title: Status and trends of amphibian declines and extinctions worldwide
  publication-title: Science
– volume: 111
  start-page: 978
  year: 2011
  end-page: 988
  article-title: From molecules to management: adopting DNA‐based methods for monitoring biological invasions in aquatic environments
  publication-title: Environmental Research
– volume: 14
  start-page: 306
  year: 2014
  end-page: 323
  article-title: DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet
  publication-title: Molecular Ecology Resources
– volume: 18
  start-page: 317
  year: 2003
  end-page: 319
  article-title: Can you bank on GenBank?
  publication-title: Trends in Ecology & Evolution
– volume: 21
  start-page: 668
  year: 2008
  end-page: 681
  article-title: Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs
  publication-title: Journal of Evolutionary Biology
– volume: 471
  start-page: 51
  year: 2011
  end-page: 57
  article-title: Has the Earth's sixth mass extinction already arrived?
  publication-title: Nature
– volume: 289
  start-page: 1139
  year: 2000
  article-title: Ancient DNA: do it right or not at all
  publication-title: Science
– volume: 2
  start-page: 150088
  year: 2015
  article-title: MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species
  publication-title: Royal Society Open Science
– volume: 183
  start-page: 53
  year: 2015
  end-page: 63
  article-title: Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA
  publication-title: Biological Conservation
– volume: 15
  start-page: 1289
  year: 2015
  end-page: 1303
  article-title: Tag jumps illuminated – reducing sequence‐to‐sample misidentifications in metabarcoding studies
  publication-title: Molecular Ecology Resources
– volume: 6
  start-page: e28244
  year: 2011
  article-title: Population size influences amphibian detection probability: implications for biodiversity monitoring programs
  publication-title: PLoS ONE
– volume: 6
  start-page: 563
  year: 2014
  end-page: 567
  article-title: Meta‐genomic surveillance of invasive species in the bait trade
  publication-title: Conservation Genetics Resources
– volume: 7
  start-page: e35868
  year: 2012
  article-title: Estimation of fish biomass using environmental DNA
  publication-title: PLoS ONE
– volume: 22
  start-page: 3105
  year: 2013
  end-page: 3120
  article-title: IUCN and perspectives on biodiversity conservation in a changing world
  publication-title: Biodiversity and Conservation
– year: 2000
– volume: 303
  start-page: 285
  year: 2004
  article-title: Taxonomy: impediment or expedient?
  publication-title: Science
– volume: 21
  start-page: 1789
  year: 2012
  end-page: 1793
  article-title: Environmental DNA
  publication-title: Molecular Ecology
– volume: 21
  start-page: 1834
  year: 2012
  end-page: 1847
  article-title: Bioinformatic challenges for DNA metabarcoding of plants and animals
  publication-title: Molecular Ecology
– volume: 183
  start-page: 77
  year: 2015
  end-page: 84
  article-title: Quantification of eDNA shedding rates from invasive bighead carp and silver carp
  publication-title: Biological Conservation
– start-page: 3
  year: 2000
  end-page: 13
– year: 2012
– volume: 183
  start-page: 19
  year: 2015
  end-page: 28
  article-title: Using eDNA to develop a national citizen science‐based monitoring programme for the great crested newt ( )
  publication-title: Biological Conservation
– volume: 9
  start-page: 207
  year: 2008
  end-page: 216
  article-title: Imperfect detection and its consequences for monitoring for conservation
  publication-title: Community Ecology
– volume: 33
  start-page: 261
  year: 2004
  end-page: 304
  article-title: Multimodel inference understanding AIC and BIC in model selection
  publication-title: Sociological Methods & Research
– volume: 10
  start-page: 189
  year: 2010
  article-title: ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases
  publication-title: BMC Microbiology
– volume: 11
  start-page: 434
  year: 2010
  article-title: An in silico approach for the evaluation of DNA barcodes
  publication-title: BMC Genomics
– volume: 49
  start-page: 953
  year: 2012
  end-page: 959
  article-title: Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog
  publication-title: Journal of Applied Ecology
– volume: 51
  start-page: 871
  year: 2014
  end-page: 879
  article-title: Environmental DNA surveillance for invertebrate species: advantages and technical limitations to detect invasive crayfish in freshwater ponds
  publication-title: Journal of Applied Ecology
– volume: 39
  start-page: e145
  year: 2011
  article-title: ecoPrimers: inference of new DNA barcode markers from whole genome sequence analysis
  publication-title: Nucleic Acids Research
– volume: 10
  start-page: 20140562
  year: 2014
  article-title: DNA metabarcoding and the cytochrome c oxidase subunit I marker: not a perfect match
  publication-title: Biology Letters
– volume: 43
  start-page: 1
  year: 2011
  end-page: 23
  article-title: Unmarked: an R package for fitting hierarchical models of wildlife occurrence and Abundance
  publication-title: Journal of Statistical Software
– volume: 14
  start-page: 1188
  year: 2004
  end-page: 1190
  article-title: WebLogo: a sequence logo generator
  publication-title: Genome Research
– volume: 27
  start-page: 6
  year: 2012
  end-page: 7
  article-title: The quality of name‐based species records in databases
  publication-title: Trends in Ecology & Evolution
– volume: 344
  start-page: 1246752
  year: 2014
  article-title: The biodiversity of species and their rates of extinction, distribution, and protection
  publication-title: Science
– volume: 9
  start-page: e86175
  year: 2014b
  article-title: Using environmental DNA to census marine fishes in a large mesocosm
  publication-title: PLoS ONE
– ident: e_1_2_8_30_1
  doi: 10.1371/journal.pone.0086175
– ident: e_1_2_8_55_1
  doi: 10.1126/science.303.5656.285
– ident: e_1_2_8_2_1
  doi: 10.1111/fme.12071
– ident: e_1_2_8_16_1
  doi: 10.1111/1755-0998.12188
– ident: e_1_2_8_9_1
  doi: 10.1177/0049124104268644
– volume-title: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy
  year: 2000
  ident: e_1_2_8_20_1
– ident: e_1_2_8_29_1
  doi: 10.1126/science.1251156
– ident: e_1_2_8_53_1
  doi: 10.1371/journal.pone.0041732
– ident: e_1_2_8_38_1
  doi: 10.1126/science.1246752
– ident: e_1_2_8_23_1
  doi: 10.18637/jss.v043.i10
– ident: e_1_2_8_17_1
  doi: 10.1098/rsbl.2014.0562
– ident: e_1_2_8_12_1
  doi: 10.1002/rrr.3450060209
– ident: e_1_2_8_18_1
  doi: 10.1016/j.biocon.2014.11.018
– ident: e_1_2_8_51_1
  doi: 10.1016/j.biocon.2014.11.019
– ident: e_1_2_8_39_1
  doi: 10.1111/j.1420-9101.2008.01527.x
– start-page: 223
  volume-title: Fisheries Techniques
  year: 2012
  ident: e_1_2_8_27_1
– ident: e_1_2_8_46_1
  doi: 10.1126/science.1103538
– ident: e_1_2_8_22_1
  doi: 10.1186/1471-2164-11-434
– ident: e_1_2_8_44_1
  doi: 10.1016/j.tree.2011.10.004
– ident: e_1_2_8_31_1
  doi: 10.1556/ComEc.9.2008.2.10
– ident: e_1_2_8_40_1
  doi: 10.1111/j.1365-294X.2011.05403.x
– ident: e_1_2_8_36_1
  doi: 10.1098/rsos.150088
– ident: e_1_2_8_50_1
  doi: 10.1371/journal.pone.0028244
– ident: e_1_2_8_4_1
  doi: 10.1038/nature09678
– ident: e_1_2_8_35_1
  doi: 10.1002/9780470696026.ch1
– ident: e_1_2_8_49_1
  doi: 10.1371/journal.pone.0035868
– ident: e_1_2_8_8_1
  doi: 10.1111/1755‐0998.12428
– ident: e_1_2_8_21_1
  doi: 10.1111/1755‐0998.12433
– ident: e_1_2_8_5_1
  doi: 10.1186/1471-2180-10-189
– ident: e_1_2_8_7_1
  doi: 10.1016/j.biocon.2014.11.029
– ident: e_1_2_8_15_1
  doi: 10.1016/j.envres.2011.02.001
– ident: e_1_2_8_34_1
  doi: 10.1007/s12686-014-0213-9
– ident: e_1_2_8_11_1
  doi: 10.1126/science.289.5482.1139b
– ident: e_1_2_8_54_1
  doi: 10.1111/1365-2664.12262
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1365-2664.2012.02171.x
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2014
  ident: e_1_2_8_41_1
– ident: e_1_2_8_48_1
  doi: 10.1111/j.1365-294X.2012.05542.x
– ident: e_1_2_8_56_1
– volume: 3
  start-page: 1
  year: 2001
  ident: e_1_2_8_14_1
  article-title: The IBTS database: a plea for quality control
  publication-title: ICES CM
– ident: e_1_2_8_57_1
  doi: 10.1111/j.1365-294X.2012.05545.x
– ident: e_1_2_8_43_1
  doi: 10.1111/j.1365-2400.2007.00589.x
– ident: e_1_2_8_33_1
  doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– ident: e_1_2_8_47_1
  doi: 10.1093/nar/gkl938
– ident: e_1_2_8_10_1
  doi: 10.1111/j.1365-294X.2012.05550.x
– ident: e_1_2_8_6_1
  doi: 10.1007/s10531-013-0573-6
– volume-title: Les amphibiens et les reptiles du Languedoc‐Roussillon et régions limitrophes – Atlas biogéographique
  year: 2012
  ident: e_1_2_8_24_1
– ident: e_1_2_8_45_1
  doi: 10.1111/1755-0998.12402
– ident: e_1_2_8_42_1
  doi: 10.1093/nar/gkr732
– ident: e_1_2_8_32_1
  doi: 10.1016/j.biocon.2014.11.020
– ident: e_1_2_8_52_1
  doi: 10.1111/j.1365-294X.2011.05418.x
– ident: e_1_2_8_13_1
  doi: 10.1101/gr.849004
– ident: e_1_2_8_37_1
  doi: 10.1038/516158a
– ident: e_1_2_8_28_1
  doi: 10.1577/1548-8659(1985)5<475:RTABTM>2.0.CO;2
– ident: e_1_2_8_25_1
  doi: 10.1073/pnas.77.11.6715
– ident: e_1_2_8_26_1
  doi: 10.1016/S0169-5347(03)00150-2
– ident: e_1_2_8_3_1
  doi: 10.1007/s10750-012-1282-y
– reference: 26876232 - Mol Ecol. 2016 Feb;25(4):846-8
SSID ssj0013255
Score 2.6714835
Snippet Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for...
SourceID hal
proquest
pubmed
crossref
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 929
SubjectTerms amphibian
Amphibians
Amphibians - classification
Amphibians - genetics
Animals
Aquatic ecosystems
Biodiversity
Biodiversity and Ecology
Conservation biology
Deoxyribonucleic acid
detection probability
DNA
DNA Barcoding, Taxonomic - methods
DNA Primers
DNA, Mitochondrial - genetics
Ecological studies
Ecosystem
Environmental DNA
Environmental Monitoring
Environmental Sciences
fish
Fishes - classification
Fishes - genetics
Fresh Water
freshwater
monitoring
Oceans
Oceans and Seas
probability
Rare species
sequence analysis
surveys
Water analysis
Water sampling
wildlife management
Title Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding
URI https://api.istex.fr/ark:/67375/WNG-2M5B4DXD-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.13428
https://www.ncbi.nlm.nih.gov/pubmed/26479867
https://www.proquest.com/docview/1765066674
https://www.proquest.com/docview/1776655120
https://www.proquest.com/docview/1785728733
https://www.proquest.com/docview/1803136799
https://hal.science/hal-01419572
Volume 25
WOSCitedRecordID wos000370653700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfWFiRe-A8LjCkghHjJtNiJ7YinsrbsYasQUFHxYjmOXSZoA203sTc-Ap-RT8Kd80edNCYkXqqoOSvJ-e78u_jyO0Keu1Q7WAd5lMDpKEk0jySkIZHVusg0LaQttG82IcZjOZ1mb7fIq-ZbmIofon3hhp7h4zU6uM5XG04-t2YvZoCeO6RHwW7TLukN3o0mRxubCL7pKYB0CtFGsppYCAt52sEXlqOO0yX8fsaSyB5q-cdluPMijPXr0OjWfz3BbXKzhp9hv7KXO2TLLu6S61VDynM4GnoS6_N75NMYovbvn79mnpYaZy-ce_fH94Bh6UL9HUnCTZiflEVT2xFiFf0s3Ph4Dq41GPfDuV1j6YApcaW8Tyaj4YeDw6juwxAZHnMZGUjRMuaSwidjwhlOjQUYaPdzADhMx9KlNNWMytQYgBR5BmHW5DynhdOM5ewB6S7Khd0mIbi8c9Yi7RlAl1zmSZoybTKXCJZZ7gLyspkOZWqScuyV8VU1yQooTXmlBeRZK_qtYua4TGgb5lTpGURMNXlPkU8PUCXuYsN4mOh2KNJsH_aPFP6Hxa9ZKuhZHJAX3g5aMb38gqVwIlUfx28UPU5fJ4PpQIHgTmMoqo4CKxULwL-QH4okIE_b0-C_uCmjF7Y8RRnBOcBWun-VjIS7kYKxK2QksnBykWUBeVgZanvTAHpFJrkA7Xp7_Lu-1PHwwB88-nfRx-QG6rUqZd8h3fXy1D4h18zZ-mS13CUdMZW7tWv-AWt0Nsk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELe2FQQv_IcFBgSEEC9BS5zYjsRLWVuKaCMEq1bxYjmOXSZoA103sTc-Ap-RT8Kd80edNCYkXqqoOavp-e78O_vyO0Ke2URZWAdZEMPtII4VCwSkIYFRqkhVVAhTKNdsgmeZmE7T9xvkVfMuTMUP0W64oWe4eI0OjhvSa14-N_plSAE-b5JODGYE9t3pfRhMRmunCK7rKaD0CMKNoDWzEFbytIPPrEebVpXw-RlrIjuo5h_nAc-zONYtRIPr__cXbpBrNQD1u5XF3CQbZnGLXK5aUp7CVd_RWJ_eJp8yiNu_f_6aOWJqnD9_7gIA7gT6pfXVd6QJ135-WBZNdYePdfQzf-31OfitXtb152aFxQO6xLXyDpkM-vt7w6DuxBBoFjIRaEjSUmrjwqVj3GoWaQNA0OzmAHGoCoVNokTRSCRaA6jIUwi0Omd5VFhFaU7vkq1FuTDbxAent9YYJD4D8JKLPE4SqnRqY05Tw6xHXjTzIXVNU47dMr7KJl0BpUmnNI88bUW_Vdwc5wltw6RKNYOYKScfI2TUA1yJ59gwHma6HYpE28PuSOJ3WP6aJjw6CT3y3BlCK6aWX7AYjifyIHsjo3HyOu5NexIEdxpLkXUcOJIhBwQMGSKPPfKkvQ0ejMcyamHKY5ThjAFwjXYvkhHwNIJTeoGMQB5OxtPUI_cqS20fGmAvTwXjoF1nkH_Xlxz399zF_X8XfUyuDPfHIzl6m717QK6ijqvC9h2ytVoem4fkkj5ZHR4tH9Ue-getsznR
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9tLSBe-A8rDAgIIV6C1jixHYmXsrYM0UUTMFHxYjmOXSZoM7puYm98BD4jn4Q7J406aUxIvFRRc1aS8935d_HldwDPXKIdroM8jPF0GMeahxLTkNBqXaQ6KqQttG82IbJMjsfp3hq8Wn4LU_FDNC_cyDN8vCYHt4eFW_HyqTUvuwzh8zq0Y2oi04J2__1wf7Syi-C7niJKjzDcSFYzC1ElTzP4zHq07nSJv1-oJrJNav5xHvA8i2P9QjS8_n-PcAOu1QA06FUWcxPW7OwWXK5aUp7i0cDTWJ_ehs8Zxu3fP39NPDE1zV8w9QGA3gQGpQv0d6IJN0F-UBbL6o6A6ugnwcrnc3itftYLpnZBxQOmpLXyDuwPBx-3d8K6E0NoeJfL0GCSljIXFz4dE87wyFgEgnYrR4jDdFe6JEo0i2RiDIKKPMVAa3KeR4XTjOXsLrRm5cxuQIBO75y1RHyG4CWXeZwkTJvUxYKllrsOvFjOhzI1TTl1y_imlukKKk15pXXgaSN6WHFznCe0gZOq9ARjptr_EBGjHuJK2sfG8TjTzVAi2t7pjRT9R-WvaSKik24HnntDaMT0_CsVw4lEfcreqGg3eR33x32FgptLS1F1HDhSXYEIGDNEEXfgSXMaPZi2ZfTMlsckIzhH4BptXSQj8W6kYOwCGUk8nFykaQfuVZba3DTCXpFKLlC73iD_ri-1O9j2B_f_XfQxXNnrD9XobfbuAVwlFVd17ZvQWsyP7UO4ZE4WB0fzR7WD_gHi_TlM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Next-generation+monitoring+of+aquatic+biodiversity+using+environmental+DNA+metabarcoding&rft.jtitle=Molecular+ecology&rft.au=Valentini%2C+Alice&rft.au=Taberlet%2C+Pierre&rft.au=Miaud%2C+Claude&rft.au=Civade%2C+Rapha%C3%ABl&rft.date=2016-02-01&rft.eissn=1365-294X&rft.volume=25&rft.issue=4&rft.spage=929&rft_id=info:doi/10.1111%2Fmec.13428&rft_id=info%3Apmid%2F26479867&rft.externalDocID=26479867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon