Eelbrain, a Python toolkit for time-continuous analysis with temporal response functions

Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:eLife Ročník 12
Hlavní autori: Brodbeck, Christian, Das, Proloy, Gillis, Marlies, Kulasingham, Joshua P, Bhattasali, Shohini, Gaston, Phoebe, Resnik, Philip, Simon, Jonathan Z
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England eLife Science Publications, Ltd 29.11.2023
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Predmet:
ISSN:2050-084X, 2050-084X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs ) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.
AbstractList Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.
Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.
Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using ) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.
Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive structures. For instance, during speech perception, humans transform a continuously varying acoustic signal into phonemes, words, and meaning, and these levels all have distinct but interdependent temporal structures. Time-lagged regression using temporal response functions (TRFs ) has recently emerged as a promising tool for disentangling electrophysiological brain responses related to such complex models of perception. Here, we introduce the Eelbrain Python toolkit, which makes this kind of analysis easy and accessible. We demonstrate its use, using continuous speech as a sample paradigm, with a freely available EEG dataset of audiobook listening. A companion GitHub repository provides the complete source code for the analysis, from raw data to group-level statistics. More generally, we advocate a hypothesis-driven approach in which the experimenter specifies a hierarchy of time-continuous representations that are hypothesized to have contributed to brain responses, and uses those as predictor variables for the electrophysiological signal. This is analogous to a multiple regression problem, but with the addition of a time dimension. TRF analysis decomposes the brain signal into distinct responses associated with the different predictor variables by estimating a multivariate TRF (mTRF), quantifying the influence of each predictor on brain responses as a function of time(-lags). This allows asking two questions about the predictor variables: (1) Is there a significant neural representation corresponding to this predictor variable? And if so, (2) what are the temporal characteristics of the neural response associated with it? Thus, different predictor variables can be systematically combined and evaluated to jointly model neural processing at multiple hierarchical levels. We discuss applications of this approach, including the potential for linking algorithmic/representational theories at different cognitive levels to brain responses through computational models with appropriate linking hypotheses.
Audience Academic
Author Gillis, Marlies
Bhattasali, Shohini
Kulasingham, Joshua P
Resnik, Philip
Das, Proloy
Simon, Jonathan Z
Brodbeck, Christian
Gaston, Phoebe
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0000-0001-8380-639X
  surname: Brodbeck
  fullname: Brodbeck, Christian
– sequence: 2
  givenname: Proloy
  orcidid: 0000-0002-8807-042X
  surname: Das
  fullname: Das, Proloy
– sequence: 3
  givenname: Marlies
  orcidid: 0000-0002-3967-2950
  surname: Gillis
  fullname: Gillis, Marlies
– sequence: 4
  givenname: Joshua P
  surname: Kulasingham
  fullname: Kulasingham, Joshua P
– sequence: 5
  givenname: Shohini
  orcidid: 0000-0002-6767-6529
  surname: Bhattasali
  fullname: Bhattasali, Shohini
– sequence: 6
  givenname: Phoebe
  surname: Gaston
  fullname: Gaston, Phoebe
– sequence: 7
  givenname: Philip
  surname: Resnik
  fullname: Resnik, Philip
– sequence: 8
  givenname: Jonathan Z
  orcidid: 0000-0003-0858-0698
  surname: Simon
  fullname: Simon, Jonathan Z
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38018501$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-201030$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNptks9v0zAcxSM0xMbYiTuKxAUEKbbzw84JVWNApUogfmk3y3G-bl0Su9gOo_89TrvBMi05xHI-79l-fo-TI2MNJMlTjGa0LIs3sNQKZqxEmDxITggqUYZYcXl0a3ycnHm_QfGhBWO4fpQc5wzhUXOSXF5A1zihzetUpJ93YW1NGqztfuqQKuvSoHvIpDVBm8EOPhVGdDuvfXqlwzoN0G-tE13qwG-t8ZCqwcig4_BJ8lCJzsPZ9fc0-f7-4tv5x2z56cPifL7MZIXLkCmGSwIF5KWoJaWtZAqXUqg2J7RSKhfQyJrkBWpaRLGoWdvguiYQD1K2RYvz02Rx8G2t2PCt071wO26F5vsJ61ZcuKBlB5zIAhBGdQ6qKVBZCcQQYbIucENVK1H0yg5e_gq2QzNxe6d_zPdunR44iTb5yL898BHuoZVgQgxjIpv-MXrNV_Y3x4iynNHR4cW1g7O_BvCB99pL6DphIMbNCatLUsVdFhF9fgfd2MHF64hUTVBBGarof2ol4om1UTYuLEdTPqe0xrisGInU7B4qvi30Ot42KB3nJ4KXE8HYCPgTVmLwni--fpmyz26n8i-Om9JFAB8A6az3DhSXOoixNXEXuovp8LHbfN9tvu921Ly6o7mxvY_-CwA7-T0
CitedBy_id crossref_primary_10_1371_journal_pone_0297826
crossref_primary_10_1523_ENEURO_0068_25_2025
crossref_primary_10_1016_j_isci_2024_110247
crossref_primary_10_1038_s41598_024_69602_1
crossref_primary_10_1523_JNEUROSCI_1143_24_2025
crossref_primary_10_1038_s41467_024_48126_2
crossref_primary_10_7554_eLife_97107_3
crossref_primary_10_1088_1741_2552_adfc9c
crossref_primary_10_1523_JNEUROSCI_2294_24_2025
crossref_primary_10_1152_jn_00039_2025
crossref_primary_10_1111_nyas_70033
crossref_primary_10_1523_JNEUROSCI_0374_24_2024
crossref_primary_10_1162_nol_a_00169
crossref_primary_10_1016_j_dcn_2024_101470
crossref_primary_10_1523_ENEURO_0055_25_2025
crossref_primary_10_1162_nol_a_00155
crossref_primary_10_7554_eLife_97107
crossref_primary_10_1162_jocn_a_02214
crossref_primary_10_1162_jocn_a_02302
crossref_primary_10_1371_journal_pcbi_1013244
crossref_primary_10_1016_j_cognition_2025_106080
Cites_doi 10.1002/hbm.1058
10.1016/j.jneumeth.2007.03.024
10.1523/JNEUROSCI.0812-21.2021
10.1093/cercor/bht355
10.1214/07-EJS004
10.1523/JNEUROSCI.1396-16.2016
10.1073/pnas.1922033117
10.1162/jocn_a_01467
10.1016/B978-0-08-041847-6.50054-X
10.5281/zenodo.3509134
10.1016/j.neuroimage.2006.05.054
10.1109/TNSRE.2016.2571900
10.1371/journal.pbio.3000883
10.1016/j.cub.2018.01.080
10.1016/j.neuroimage.2008.03.061
10.3389/fnhum.2016.00604
10.1523/ENEURO.0441-17.2018
10.3389/fnins.2021.705621
10.1016/j.neuroimage.2013.10.027
10.1016/j.neuroimage.2020.117291
10.1080/23273798.2018.1499946
10.1111/j.1460-9568.2009.07055.x
10.1093/acprof:oso/9780195050387.001.0001
10.1046/j.1365-2656.2002.00618.x
10.1016/j.neuroimage.2020.116528
10.1073/pnas.1205381109
10.1152/jn.2001.85.6.2303
10.1016/j.neuroimage.2013.10.054
10.1088/1741-2552/aa66dd
10.1109/TBME.2022.3185005
10.1016/j.cub.2015.08.030
10.1080/23273798.2018.1546882
10.1080/09548980701609235
10.1016/j.neuron.2019.10.019
10.1016/j.cub.2019.04.067
10.7554/eLife.58077
10.1016/j.neuroimage.2018.01.042
10.1016/j.cub.2018.10.042
10.21105/joss.01026
10.1016/j.cophys.2020.07.014
10.1523/JNEUROSCI.2270-13.2013
10.3389/fnins.2018.00262
10.7554/eLife.72056
10.1016/j.neuroimage.2018.10.057
10.1080/net.12.3.289.316
10.1109/TSP.2010.2048103
10.3389/fnins.2021.665767
10.1016/s0010-0277(03)00139-2
10.21437/Interspeech.2017-1386
10.1016/j.neuroimage.2020.117586
10.1109/EMBC.2019.8857953
10.1038/s41586-020-2649-2
10.1016/j.neuroimage.2019.06.029
10.1371/journal.pone.0207741
ContentType Journal Article
Copyright 2023, Brodbeck et al.
COPYRIGHT 2023 eLife Science Publications, Ltd.
2023, Brodbeck et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023, Brodbeck et al 2023 Brodbeck et al
Copyright_xml – notice: 2023, Brodbeck et al.
– notice: COPYRIGHT 2023 eLife Science Publications, Ltd.
– notice: 2023, Brodbeck et al. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023, Brodbeck et al 2023 Brodbeck et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOA
DOI 10.7554/eLife.85012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Health Medical collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_2c4e01093efb4056a08028c941b7fdc0
oai_DiVA_org_liu_201030
PMC10783870
A779115682
38018501
10_7554_eLife_85012
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: T32 DC017703
– fundername: NIH HHS
  grantid: R01 DC014085
– fundername: NIH HHS
  grantid: T32 DC017703
– fundername: NIH HHS
  grantid: R01 DC019394
– fundername: NIDCD NIH HHS
  grantid: R01 DC014085
– fundername: NIDCD NIH HHS
  grantid: R01 DC019394
– fundername: ;
  grantid: BCS 2043903
– fundername: ;
  grantid: R01 DC019394
– fundername: ;
  grantid: MURI N00014-18-1-2670
– fundername: ;
  grantid: SMA 1734892
– fundername: ;
  grantid: IIS 2207770
– fundername: ;
  grantid: R01 DC014085
– fundername: ;
  grantid: T32 DC017703
– fundername: ;
  grantid: SB 1SA0620N
– fundername: ;
  grantid: BCS 1754284
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ABXSW
ADTPV
AOWAS
D8T
DG8
H13
ZZAVC
ID FETCH-LOGICAL-c615t-f8152e4e35a9c77dc8f15cafd3276ff3aebc92340bd071a98db1992e8815d4d13
IEDL.DBID M2P
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001141821100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:53:41 EDT 2025
Tue Nov 04 16:24:30 EST 2025
Tue Nov 04 02:06:15 EST 2025
Sun Nov 09 13:11:40 EST 2025
Tue Oct 07 07:09:15 EDT 2025
Tue Nov 11 11:02:24 EST 2025
Tue Nov 04 18:22:20 EST 2025
Wed Nov 26 11:12:07 EST 2025
Sun Nov 16 02:01:16 EST 2025
Sat Nov 29 06:59:21 EST 2025
Tue Nov 18 21:50:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords STRF
open-source
human
neuroscience
reverse correlation
Human
Language English
License 2023, Brodbeck et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c615t-f8152e4e35a9c77dc8f15cafd3276ff3aebc92340bd071a98db1992e8815d4d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8380-639X
0000-0002-6767-6529
0000-0003-0858-0698
0000-0002-8807-042X
0000-0002-3967-2950
OpenAccessLink https://www.proquest.com/docview/2920478067?pq-origsite=%requestingapplication%
PMID 38018501
PQID 2920478067
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_2c4e01093efb4056a08028c941b7fdc0
swepub_primary_oai_DiVA_org_liu_201030
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10783870
proquest_miscellaneous_2895260284
proquest_journals_2920478067
gale_infotracmisc_A779115682
gale_infotracacademiconefile_A779115682
gale_incontextgauss_ISR_A779115682
pubmed_primary_38018501
crossref_citationtrail_10_7554_eLife_85012
crossref_primary_10_7554_eLife_85012
PublicationCentury 2000
PublicationDate 2023-11-29
PublicationDateYYYYMMDD 2023-11-29
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-29
  day: 29
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2023
Publisher eLife Science Publications, Ltd
eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Science Publications, Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Brodbeck (bib11) 2023
Di Liberto (bib20) 2015; 25
Brodbeck (bib10) 2022; 11
Nichols (bib46) 2002; 15
Crosse (bib13) 2016; 10
Gramfort (bib31) 2014; 86
Alday (bib1) 2019; 34
Crosse (bib15) 2021; 15
Broderick (bib12) 2018; 28
Babadi (bib2) 2010; 58
Weissbart (bib60) 2023
McAuliffe (bib44) 2017
Salverda (bib54) 2003; 90
David (bib19) 2013; 33
Brennan (bib5) 2019; 14
Brodbeck (bib6) 2018; 28
Presacco (bib50) 2019
Fiedler (bib26) 2019; 186
Ding (bib22) 2014; 88
Liberto (bib41) 2021; 227
David (bib18) 2007; 18
Rahman (bib51) 2020; 117
Gillis (bib30) 2021; 41
Maddox (bib42) 2018; 5
Lalor (bib38) 2006; 32
Patterson (bib49) 1992
Maris (bib43) 2007; 164
Etard (bib24) 2019; 200
Nunez (bib47) 2006
Donhauser (bib23) 2020; 105
Hastie (bib34) 2007; 1
Fiedler (bib25) 2017; 14
Ding (bib21) 2012; 109
Smith (bib55) 2009; 44
Harris (bib33) 2020; 585
Miran (bib45) 2018; 12
Biesmans (bib4) 2017; 25
Weissbart (bib59) 2020; 32
Bhattasali (bib3) 2020
Daube (bib17) 2019; 29
Kulasingham (bib36) 2020; 222
Fishbach (bib27) 2001; 85
Theunissen (bib57) 2001; 12
Kulasingham (bib37) 2023; 70
Lalor (bib39) 2010; 31
Brodbeck (bib7) 2018; 172
Brodbeck (bib8) 2020; 18
Vallat (bib58) 2018; 3
Fox (bib28) 2008
Reback (bib53) 2021
R Development Core Team (bib52) 2021
Freckleton (bib29) 2002; 71
Leahy (bib40) 2021; 15
O’Sullivan (bib48) 2015; 25
Sohoglu (bib56) 2020; 9
Heeris (bib35) 2018
Das (bib16) 2020; 211
Brodbeck (bib9) 2020; 18
Crosse (bib14) 2016; 36
Hamilton (bib32) 2020; 35
References_xml – volume: 15
  start-page: 1
  year: 2002
  ident: bib46
  article-title: Nonparametric permutation tests for functional neuroimaging: A primer with examples
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.1058
– volume: 164
  start-page: 177
  year: 2007
  ident: bib43
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– volume: 41
  start-page: 10316
  year: 2021
  ident: bib30
  article-title: Neural markers of speech comprehension: measuring EEG tracking of linguistic speech representations, controlling the speech acoustics
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0812-21.2021
– volume: 25
  start-page: 1697
  year: 2015
  ident: bib48
  article-title: Attentional selection in a cocktail party environment can be decoded from single-trial EEG
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bht355
– volume: 1
  start-page: 1
  year: 2007
  ident: bib34
  article-title: Forward stagewise regression and the monotone lasso
  publication-title: Electronic Journal of Statistics
  doi: 10.1214/07-EJS004
– volume-title: Applied Regression Analysis and Generalized Linear Models
  year: 2008
  ident: bib28
– volume: 36
  start-page: 9888
  year: 2016
  ident: bib14
  article-title: Eye can hear clearly now: inverse effectiveness in natural audiovisual speech processing relies on long-term crossmodal temporal integration
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1396-16.2016
– volume: 117
  start-page: 28442
  year: 2020
  ident: bib51
  article-title: Simple transformations capture auditory input to cortex
  publication-title: PNAS
  doi: 10.1073/pnas.1922033117
– volume: 32
  start-page: 155
  year: 2020
  ident: bib59
  article-title: Cortical tracking of surprisal during continuous speech comprehension
  publication-title: Journal of Cognitive Neuroscience
  doi: 10.1162/jocn_a_01467
– volume-title: Complex Sounds and Auditory ImagesAuditory Physiology and Perception
  year: 1992
  ident: bib49
  doi: 10.1016/B978-0-08-041847-6.50054-X
– volume-title: Zenodo
  year: 2021
  ident: bib53
  article-title: Pandas
  doi: 10.5281/zenodo.3509134
– volume: 32
  start-page: 1549
  year: 2006
  ident: bib38
  article-title: The VESPA: A method for the rapid estimation of A visual evoked potential
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.05.054
– volume: 25
  start-page: 402
  year: 2017
  ident: bib4
  article-title: Auditory-inspired speech envelope extraction methods for improved EEG-based auditory attention detection in a cocktail party scenario
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2571900
– volume: 18
  year: 2020
  ident: bib8
  article-title: Neural speech restoration at the cocktail party: Auditory cortex recovers masked speech of both attended and ignored speakers
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.3000883
– volume: 28
  start-page: 803
  year: 2018
  ident: bib12
  article-title: Electrophysiological correlates of semantic dissimilarity reflect the comprehension of natural, narrative speech
  publication-title: Current Biology
  doi: 10.1016/j.cub.2018.01.080
– volume: 44
  start-page: 83
  year: 2009
  ident: bib55
  article-title: Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.03.061
– volume: 10
  year: 2016
  ident: bib13
  article-title: The multivariate temporal response function (mTRF) Toolbox: A MATLAB toolbox for relating neural signals to continuous stimuli
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2016.00604
– year: 2021
  ident: bib52
  article-title: R: A language and environment for statistical computing
– start-page: 120
  year: 2020
  ident: bib3
  article-title: The Alice Datasets
– volume: 5
  year: 2018
  ident: bib42
  article-title: Auditory brainstem responses to continuous natural speech in human listeners
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0441-17.2018
– volume: 15
  year: 2021
  ident: bib15
  article-title: Linear modeling of neurophysiological responses to speech and other continuous stimuli: methodological considerations for applied research
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2021.705621
– volume: 86
  start-page: 446
  year: 2014
  ident: bib31
  article-title: MNE software for processing MEG and EEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 222
  year: 2020
  ident: bib36
  article-title: High gamma cortical processing of continuous speech in younger and older listeners
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117291
– volume: 35
  start-page: 573
  year: 2020
  ident: bib32
  article-title: The revolution will not be controlled: natural stimuli in speech neuroscience
  publication-title: Language, Cognition and Neuroscience
  doi: 10.1080/23273798.2018.1499946
– volume: 31
  start-page: 189
  year: 2010
  ident: bib39
  article-title: Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution
  publication-title: The European Journal of Neuroscience
  doi: 10.1111/j.1460-9568.2009.07055.x
– volume-title: Electric Fields of the Brain: The Neurophysics of EEG
  year: 2006
  ident: bib47
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 71
  start-page: 542
  year: 2002
  ident: bib29
  article-title: On the misuse of residuals in ecology: regression of residuals vs. multiple regression
  publication-title: Journal of Animal Ecology
  doi: 10.1046/j.1365-2656.2002.00618.x
– volume: 211
  year: 2020
  ident: bib16
  article-title: Neuro-current response functions: A unified approach to MEG source analysis under the continuous stimuli paradigm
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116528
– volume: 109
  start-page: 11854
  year: 2012
  ident: bib21
  article-title: Emergence of neural encoding of auditory objects while listening to competing speakers
  publication-title: PNAS
  doi: 10.1073/pnas.1205381109
– volume: 85
  start-page: 2303
  year: 2001
  ident: bib27
  article-title: Auditory edge detection: A neural model for physiological and psychoacoustical responses to amplitude transients
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.85.6.2303
– volume: 88
  start-page: 41
  year: 2014
  ident: bib22
  article-title: Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.054
– volume: 14
  year: 2017
  ident: bib25
  article-title: Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aa66dd
– volume: 70
  start-page: 88
  year: 2023
  ident: bib37
  article-title: Algorithms for estimating time-locked neural response components in cortical processing of continuous speech
  publication-title: IEEE Transactions on Bio-Medical Engineering
  doi: 10.1109/TBME.2022.3185005
– volume: 25
  start-page: 2457
  year: 2015
  ident: bib20
  article-title: Low-frequency cortical entrainment to speech reflects phoneme-level processing
  publication-title: Current Biology
  doi: 10.1016/j.cub.2015.08.030
– volume: 34
  start-page: 457
  year: 2019
  ident: bib1
  article-title: M/EEG analysis of naturalistic stories: a review from speech to language processing
  publication-title: Language, Cognition and Neuroscience
  doi: 10.1080/23273798.2018.1546882
– volume-title: Software Heritage
  year: 2023
  ident: bib11
  article-title: Alice Dataset for Eelbrain
– volume: 18
  start-page: 191
  year: 2007
  ident: bib18
  article-title: Estimating sparse spectro-temporal receptive fields with natural stimuli
  publication-title: Network
  doi: 10.1080/09548980701609235
– volume: 105
  start-page: 385
  year: 2020
  ident: bib23
  article-title: Two distinct neural timescales for predictive speech processing
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.10.019
– volume: 29
  start-page: 1924
  year: 2019
  ident: bib17
  article-title: Simple acoustic features can explain phoneme-based predictions of cortical responses to speech
  publication-title: Current Biology
  doi: 10.1016/j.cub.2019.04.067
– volume: 9
  year: 2020
  ident: bib56
  article-title: Rapid computations of spectrotemporal prediction error support perception of degraded speech
  publication-title: eLife
  doi: 10.7554/eLife.58077
– volume: 172
  start-page: 162
  year: 2018
  ident: bib7
  article-title: Neural source dynamics of brain responses to continuous stimuli: Speech processing from acoustics to comprehension
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.01.042
– volume: 28
  start-page: 3976
  year: 2018
  ident: bib6
  article-title: Rapid transformation from auditory to linguistic representations of continuous speech
  publication-title: Current Biology
  doi: 10.1016/j.cub.2018.10.042
– volume: 3
  year: 2018
  ident: bib58
  article-title: Pingouin: statistics in Python
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01026
– volume: 18
  start-page: 25
  year: 2020
  ident: bib9
  article-title: Continuous speech processing
  publication-title: Current Opinion in Physiology
  doi: 10.1016/j.cophys.2020.07.014
– volume: 33
  start-page: 19154
  year: 2013
  ident: bib19
  article-title: Integration over multiple timescales in primary auditory cortex
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2270-13.2013
– volume-title: Filterbank Toolkit
  year: 2018
  ident: bib35
  article-title: Gammatone Filterbank Toolkit
– volume-title: GitHub
  year: 2023
  ident: bib60
  article-title: pyEEG
– volume: 12
  year: 2018
  ident: bib45
  article-title: Real-time tracking of selective auditory attention from M/EEG: a bayesian filtering approach
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2018.00262
– volume: 11
  year: 2022
  ident: bib10
  article-title: Parallel processing in speech perception with local and global representations of linguistic context
  publication-title: eLife
  doi: 10.7554/eLife.72056
– volume: 186
  start-page: 33
  year: 2019
  ident: bib26
  article-title: Late cortical tracking of ignored speech facilitates neural selectivity in acoustically challenging conditions
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.057
– volume: 12
  start-page: 289
  year: 2001
  ident: bib57
  article-title: Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli
  publication-title: Network
  doi: 10.1080/net.12.3.289.316
– volume: 58
  start-page: 4013
  year: 2010
  ident: bib2
  article-title: SPARLS: the sparse RLS algorithm
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2010.2048103
– volume: 15
  year: 2021
  ident: bib40
  article-title: An analytical framework of tonal and rhythmic hierarchy in natural music using the multivariate temporal response function
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2021.665767
– volume: 90
  start-page: 51
  year: 2003
  ident: bib54
  article-title: The role of prosodic boundaries in the resolution of lexical embedding in speech comprehension
  publication-title: Cognition
  doi: 10.1016/s0010-0277(03)00139-2
– start-page: 498
  year: 2017
  ident: bib44
  article-title: Montreal forced aligner: trainable text-speech alignment using kaldi
  doi: 10.21437/Interspeech.2017-1386
– volume: 227
  year: 2021
  ident: bib41
  article-title: Neural representation of linguistic feature hierarchy reflects second-language proficiency
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117586
– start-page: 4148
  year: 2019
  ident: bib50
  article-title: Real-time tracking of magnetoencephalographic neuromarkers during a dynamic attention-switching task
  doi: 10.1109/EMBC.2019.8857953
– volume: 585
  start-page: 357
  year: 2020
  ident: bib33
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 200
  start-page: 1
  year: 2019
  ident: bib24
  article-title: Decoding of selective attention to continuous speech from the human auditory brainstem response
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.06.029
– volume: 14
  year: 2019
  ident: bib5
  article-title: Hierarchical structure guides rapid linguistic predictions during naturalistic listening
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0207741
SSID ssj0000748819
Score 2.5280707
Snippet Even though human experience unfolds continuously in time, it is not strictly linear; instead, it entails cascading processes building hierarchical cognitive...
SourceID doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Brain
Brain - physiology
Brain Mapping - methods
Cognitive ability
Computational neuroscience
Electroencephalography
Electroencephalography - methods
Humans
Hypotheses
Information processing
Neural coding
Neuroscience
open-source
Physiological aspects
Python (Programming language)
reverse correlation
Speech
Speech - physiology
Speech perception
Speech Perception - physiology
Statistical analysis
STRF
Time series
Tools and Resources
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kKPgifptaZZWiIMZmk0129_GqLQqlFD_KvS2b_dDQkJO7nND_3plNelyq4Iuv2QlJZiczv0lmfkPIPjcq97DRkJtYn_JSslSWgaeWl54VPBgT6RjOT8TpqZzP1dnWqC-sCRvogQfFHeSWe_x9U_hQA7ioDDaHSqs4q0VwNmbrmVBbyVT0wQIMk6mhIU9AyDzwJ03w72SZsXwSgiJT_5_-eCsgXS-WnFCKxjB0fJfcGfEjnQ33fY_c8N19cmuYKHn5gMyPfFvj1Ie31NCzSyQGoP1i0V40PQV4SnGUfIrl6U23hpyfmpGThOL3WDryVLV0OVTOeophL1rmQ_Lt-Ojr-4_pODwhtQBS-jRIiMye-6I0ygrhrAystCa4IhdVCIXxtQVwx7PaAcowSroaK1E9qK103LHiEdnpFp1_QmguK0jKvMP-LM68Mqxyual45oIpVF0n5M2VPrUdmcVxwEWrIcNA5euofB2Vn5D9jfDPgVDj72KHuDEbEWTBjgfANvRoG_pftpGQl7itGnkuOiyk-W7Wq5X-9OWzngkBbr6sJFzp9SgUFnDX1ox9CfDsSI01kdybSMKLaKfLV9ajR0ew0jgMjAsJmCAhLzbLeCYWt3UetlpDzltCWglAISGPB2PbPHcBCAIVkhA5McOJYqYrXfMj0oQz_EML7jghrwaLnZzzoTmfRWW2zVpjSUSR7f4PnT8lt3PAgdiumas9stMv1_4ZuWl_9c1q-Ty-pb8Bes9C4Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Eelbrain, a Python toolkit for time-continuous analysis with temporal response functions
URI https://www.ncbi.nlm.nih.gov/pubmed/38018501
https://www.proquest.com/docview/2920478067
https://www.proquest.com/docview/2895260284
https://pubmed.ncbi.nlm.nih.gov/PMC10783870
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-201030
https://doaj.org/article/2c4e01093efb4056a08028c941b7fdc0
Volume 12
WOSCitedRecordID wos001141821100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health Medical collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYChIvfH8ERmXQBBIirEmc2HlCHWxi0lZVA6byZDmOPSKqZDQt0v577hy3EEC88OKH-KLEvvN92OffEbLLVB4bYDTEJtqELBVRKFLLQs1SEyXMKuXgGM6O-WQiZrN86jfcWp9WudaJTlGXjcY98j2sqsS4AOX65uJbiFWj8HTVl9DYIgPwbCJM6TqJp5s9FjCPAixedy2Pg-HcM8eVNa9FOoriniFyeP1_auVfzNLvKZM9YFFnjA5v_u8wbpEb3g2l405ubpMrpr5DrnWFKS_vktmBmRdYPOIVVXR6ifgCdNk086_VkoKXS7EifYhZ7lW9alYtVR7ahOK2LvVwV3O66BJwDUXr6QT8Hvl0ePDx7fvQ12AINfg6y9AKMPCGmSRVuea81MJGqVa2TGKeWZsoU2jwEdmoKMFZUbkoC0xoNTDvacnKKLlPtuumNg8JjUUGsZ0p8ZoXi0yuoqyMVcZGpVVJXhQBeblmiNQeoBzrZMwlBCrIPem4Jx33ArK7Ib7ocDn-TraPnN2QIJi2e9AszqVfmzLWzOAJYWJsAf5rpvD-sdA5iwpuSz0KyDOUC4lwGTXm45yrVdvKow-ncsw5WIs0E_ClF57INvDXWvnrDTB2RNjqUe70KGE96373WnKk1yet_Ck2AXm66cY3MUeuNsBqCaFzCtEp-BsBedBJ62bcCTgiOCEBET057k1Mv6euvji08QgPekGrB-R5J_K9d95VZ2M3mfNqJTGzIhk9-vcAHpPrMTiKeJ8zznfI9nKxMk_IVf19WbWLIdniM-5aMSSD_YPJ9HTo9kmGbmljy6EdTI9Opp9_AN79WGQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGAMEL3x-BAQYNkBBhjeMkzgNChW1atVJVY0x9M45jj4iSjCYF9Z_ib-QuSQsBxNseeK3PbW3fp333O0I2uYqZgYOG2EQblwfCc0Vguat5YDyfW6VqOIajYTQaickkHq-R78taGEyrXOrEWlGnhcY78i3sqsQjAcr11ckXF7tG4evqsoVGwxb7ZvENQrby5WAbzvcxY7s7h2_23LargKvBeleuFWCyDDd-oGIdRakW1gu0sqnPotBaX5lEg9fDe0kK5lfFIk0wRdMImJfy1PPhe8-QsxyRxTBVkI1XdzpgjoEqbsoAIzDUW2aYWfNCBD2PdQxf3R_gTyvwixn8PUWzA2RaG7_dy__btl0hl1o3m_YbubhK1kx-jZxvGm8urpPJjpkm2BzjOVV0vED8BFoVxfRTVlHw4mmVfTYuZvFn-byYl1S10C0Ur61pC-c1pbMmwdhQ9A5qAb5B3p_Ksm6S9bzIzW1CmQghdjUplrFxz8TKC1OmQt5LrfLjJHHIsyUDSN0CsGMfkKmEQAy5RdbcImtuccjmivikwR35O9lr5KQVCYKF1x8Us2PZ6h7JNDf4Auobm4B_HiqsrxY65l4S2VT3HPII-VAiHEiO-UbHal6WcvDuQPajCKxhEAr4pactkS3gX2vVlm_A2hFBrEO50aEEfaW7w0tOla2-LOVPNnXIw9UwzsQcwNzAUUsm4gCib_CnHHKrkY7Vun1wtHBDHCI6ctPZmO5Inn2s0dQ9fMgGq-WQJ42IdeZsZ0f9ejOn2Vxi5ojfu_PvBTwgF_YO3w7lcDDav0suMnCKsXaVxRtkvZrNzT1yTn-tsnJ2v1YelHw4bbH7AWVbrz0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWLiAuvB-BBQxaQEKENomTOAeECt2KaktVLbAqJ-M49hJRkqVJQf1r_DpmkrQQQNz2wLUet7U9T3vmG0J2mYxcDQcNsYnSNvO5Y3PfMFsxXzseM1JWcAyH43Ay4bNZNN0i39e1MJhWudaJlaJOcoV35F3sqsRCDsq1a5q0iOlg-Pz4i40dpPCldd1Oo2aRfb36BuFb8Ww0gLN-4LrDvbcvX9lNhwFbgSUvbcPBfGmmPV9GKgwTxY3jK2kSzw0DYzypYwUeEOvFCZhiGfEkxnRNzWFewhLHg-89RbbBJWduh2xPR6-n7zc3PGCcgS6qiwJDMNtdPU6Nfsr9nuO2zGDVLeBPm_CLUfw9YbMFa1qZwuGF_3kTL5LzjQNO-7XEXCJbOrtMztQtOVdXyGxPz2Nsm_GESjpdIbICLfN8_iktKfj3tEw_axvz-9NsmS8LKhtQF4oX2rQB-prTRZ16rCn6DZVoXyXvTmRZ10gnyzN9g1CXBxDV6gQL3JijI-kEiSsD1kuM9KI4tsjjNTMI1UCzY4eQuYAQDTlHVJwjKs6xyO6G-LhGJPk72Qvkqg0JwohXH-SLI9FoJeEqpvFt1NMmBs89kFh5zVXEnDg0iepZ5D7ypECgkAy55Ugui0KM3hyIfhiCnfQDDr_0qCEyOfxrJZvCDlg7You1KHdalKDJVHt4zbWi0aSF-MmyFrm3GcaZmB2YaThq4fLIh7gcPC2LXK8lZbNuD1ww3BCL8JYMtTamPZKlHyucdQefuMGeWeRhLW6tOYP0sF9t5jxdCswp8Xo3_72Au-QsSJsYjyb7t8g5F7xlLGp1ox3SKRdLfZucVl_LtFjcaTQJJR9OWu5-AEE-uYY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eelbrain%2C+a+Python+toolkit+for+time-continuous+analysis+with+temporal+response+functions&rft.jtitle=eLife&rft.au=Brodbeck%2C+Christian&rft.au=Das%2C+Proloy&rft.au=Gillis%2C+Marlies&rft.au=Kulasingham%2C+Joshua+P&rft.date=2023-11-29&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=12&rft_id=info:doi/10.7554%2FeLife.85012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon