Deep learning based tissue analysis predicts outcome in colorectal cancer

Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue sam...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Scientific reports Ročník 8; číslo 1; s. 3395 - 11
Hlavní autoři: Bychkov, Dmitrii, Linder, Nina, Turkki, Riku, Nordling, Stig, Kovanen, Panu E., Verrill, Clare, Walliander, Margarita, Lundin, Mikael, Haglund, Caj, Lundin, Johan
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 21.02.2018
Nature Publishing Group
Témata:
ISSN:2045-2322, 2045-2322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79–3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28–2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30–2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.
AbstractList Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79–3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28–2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30–2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.
Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79-3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28-2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30-2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we combine convolutional and recurrent architectures to train a deep network to predict colorectal cancer outcome based on images of tumour tissue samples. The novelty of our approach is that we directly predict patient outcome, without any intermediate tissue classification. We evaluate a set of digitized haematoxylin-eosin-stained tumour tissue microarray (TMA) samples from 420 colorectal cancer patients with clinicopathological and outcome data available. The results show that deep learning-based outcome prediction with only small tissue areas as input outperforms (hazard ratio 2.3; CI 95% 1.79-3.03; AUC 0.69) visual histological assessment performed by human experts on both TMA spot (HR 1.67; CI 95% 1.28-2.19; AUC 0.58) and whole-slide level (HR 1.65; CI 95% 1.30-2.15; AUC 0.57) in the stratification into low- and high-risk patients. Our results suggest that state-of-the-art deep learning techniques can extract more prognostic information from the tissue morphology of colorectal cancer than an experienced human observer.
ArticleNumber 3395
Author Turkki, Riku
Lundin, Mikael
Bychkov, Dmitrii
Kovanen, Panu E.
Nordling, Stig
Lundin, Johan
Haglund, Caj
Linder, Nina
Verrill, Clare
Walliander, Margarita
Author_xml – sequence: 1
  givenname: Dmitrii
  surname: Bychkov
  fullname: Bychkov, Dmitrii
  email: dmitrii.bychkov@helsinki.fi
  organization: Institute for Molecular Medicine Finland FIMM, Helsinki Institute for Life Science HiLIFE, University of Helsinki
– sequence: 2
  givenname: Nina
  surname: Linder
  fullname: Linder, Nina
  organization: Institute for Molecular Medicine Finland FIMM, Helsinki Institute for Life Science HiLIFE, University of Helsinki, Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University
– sequence: 3
  givenname: Riku
  orcidid: 0000-0002-8690-6983
  surname: Turkki
  fullname: Turkki, Riku
  organization: Institute for Molecular Medicine Finland FIMM, Helsinki Institute for Life Science HiLIFE, University of Helsinki
– sequence: 4
  givenname: Stig
  surname: Nordling
  fullname: Nordling, Stig
  organization: Department of Pathology, Medicum, University of Helsinki
– sequence: 5
  givenname: Panu E.
  surname: Kovanen
  fullname: Kovanen, Panu E.
  organization: Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital
– sequence: 6
  givenname: Clare
  surname: Verrill
  fullname: Verrill, Clare
  organization: Nuffield Department of Surgical Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford
– sequence: 7
  givenname: Margarita
  surname: Walliander
  fullname: Walliander, Margarita
  organization: Institute for Molecular Medicine Finland FIMM, Helsinki Institute for Life Science HiLIFE, University of Helsinki
– sequence: 8
  givenname: Mikael
  surname: Lundin
  fullname: Lundin, Mikael
  organization: Institute for Molecular Medicine Finland FIMM, Helsinki Institute for Life Science HiLIFE, University of Helsinki
– sequence: 9
  givenname: Caj
  surname: Haglund
  fullname: Haglund, Caj
  organization: Department of Surgery, University of Helsinki and Helsinki University Hospital, Research Programs Unit, Translational Cancer Biology, University of Helsinki
– sequence: 10
  givenname: Johan
  surname: Lundin
  fullname: Lundin, Johan
  organization: Institute for Molecular Medicine Finland FIMM, Helsinki Institute for Life Science HiLIFE, University of Helsinki, Department of Public Health Sciences, Global Health/IHCAR, Karolinska Institutet
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29467373$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-349348$$DView record from Swedish Publication Index (Uppsala universitet)
http://kipublications.ki.se/Default.aspx?queryparsed=id:137722206$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNp9kk1vFSEUhompsR_2D7gwJG5cdJTPGdiYNK0fTZq4UbeEy5y5UrlwhZma_nsZ51bbJpbNIfC8b14O5xDtxRQBoReUvKGEq7dFUKlVQ6hqGO2kavgTdMCIkA3jjO3d2e-j41KuSF2SaUH1M7Rfa9vxjh-gi3OALQ5gc_RxjVe2QI9HX8oE2EYbbooveJuh924sOE2jSxvAPmKXQsrgRhuws9FBfo6eDjYUON7VI_T1w_svZ5-ay88fL85OLxvXUjk2VhDLhHVEq67TrlcUQFO-UgO1gg2gJKXtijBCnNKaUela17tZNYhBS82PULP4ll-wnVZmm_3G5huTrDe7ox91B0Zowomo_Ml_-XP_7dSkvDbTZLjQXKiKv1vwym6gdxDHbMM91f2b6L-bdbo2UjGqRFcNXu8Mcvo5QRnNxhcHIdgIaSqmvqwTjMh2Rl89QK_SlGvXF4roVpGZenk30d8ot59YAbUALqdSMgzG-dGOPs0BfTCUmHlkzDIypo6M-TMyZpayB9Jb90dFfNfRCsc15H-xH1H9Bkuc08o
CitedBy_id crossref_primary_10_1158_1541_7786_MCR_23_0639
crossref_primary_10_3390_jcm8101535
crossref_primary_10_1186_s12885_022_09931_4
crossref_primary_10_1016_j_cmpb_2023_107388
crossref_primary_10_1158_2159_8290_CD_21_0090
crossref_primary_10_1038_s41598_021_81352_y
crossref_primary_10_4240_wjgs_v15_i10_2234
crossref_primary_10_1038_s41416_020_01122_x
crossref_primary_10_1038_s41598_020_67178_0
crossref_primary_10_1109_ACCESS_2025_3550004
crossref_primary_10_1146_annurev_cancerbio_062822_010523
crossref_primary_10_1038_s41571_023_00834_2
crossref_primary_10_3748_wjg_v27_i21_2818
crossref_primary_10_1016_j_media_2019_101549
crossref_primary_10_1016_j_ijmedinf_2020_104122
crossref_primary_10_5528_wjtm_v9_i1_1
crossref_primary_10_1038_s41598_021_81773_9
crossref_primary_10_1016_j_bbcan_2020_188452
crossref_primary_10_1016_j_smim_2020_101411
crossref_primary_10_7717_peerj_6335
crossref_primary_10_1109_TIP_2021_3139229
crossref_primary_10_3390_cancers11121860
crossref_primary_10_1007_s10278_024_01049_2
crossref_primary_10_1007_s11042_023_17740_5
crossref_primary_10_1016_S0140_6736_19_32998_8
crossref_primary_10_1016_j_media_2020_101796
crossref_primary_10_1016_j_canlet_2019_12_007
crossref_primary_10_1109_ACCESS_2020_3005228
crossref_primary_10_1016_j_jpi_2023_100339
crossref_primary_10_3390_diagnostics12092102
crossref_primary_10_1002_path_6263
crossref_primary_10_1016_j_jpi_2023_100335
crossref_primary_10_1186_s12916_021_01942_5
crossref_primary_10_3390_cells10040787
crossref_primary_10_3390_diagnostics13142339
crossref_primary_10_1186_s13073_021_00968_x
crossref_primary_10_1158_2159_8290_CD_23_1199
crossref_primary_10_1016_j_procs_2024_04_229
crossref_primary_10_1088_1361_6560_ac8fde
crossref_primary_10_1016_j_ajpath_2021_04_008
crossref_primary_10_1016_j_compmedimag_2024_102378
crossref_primary_10_1186_s12916_021_01953_2
crossref_primary_10_1016_j_jiixd_2025_05_001
crossref_primary_10_1038_s41597_021_00920_z
crossref_primary_10_3390_diagnostics12051031
crossref_primary_10_4018_IJSKD_326629
crossref_primary_10_1038_s41598_023_42793_9
crossref_primary_10_1136_gutjnl_2020_322880
crossref_primary_10_1007_s10462_023_10621_1
crossref_primary_10_1038_s43856_023_00282_0
crossref_primary_10_3233_THC_213096
crossref_primary_10_1007_s12072_022_10321_y
crossref_primary_10_1038_s41598_021_90444_8
crossref_primary_10_1111_cas_15113
crossref_primary_10_4103_ijpm_ijpm_339_24
crossref_primary_10_1002_cjp2_170
crossref_primary_10_4103_jpi_jpi_29_21
crossref_primary_10_1371_journal_pmed_1002730
crossref_primary_10_1016_j_iswa_2022_200149
crossref_primary_10_3389_fonc_2023_1047556
crossref_primary_10_1016_j_csbj_2022_04_007
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1109_JTEHM_2022_3156851
crossref_primary_10_1007_s10278_025_01527_1
crossref_primary_10_1371_journal_pone_0235783
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_4018_IJSI_309725
crossref_primary_10_3390_cancers11040579
crossref_primary_10_3390_cancers14153707
crossref_primary_10_3390_jcm12020438
crossref_primary_10_3390_ijerph17144979
crossref_primary_10_1016_j_jpi_2023_100357
crossref_primary_10_1111_his_15159
crossref_primary_10_1016_j_compmedimag_2020_101838
crossref_primary_10_1145_3676282
crossref_primary_10_1186_s12859_021_04301_6
crossref_primary_10_1016_j_radonc_2019_06_038
crossref_primary_10_3389_fpubh_2021_694306
crossref_primary_10_1038_s41598_022_07038_1
crossref_primary_10_1007_s11042_021_10769_4
crossref_primary_10_3389_fonc_2022_833978
crossref_primary_10_1111_ajd_14269
crossref_primary_10_3389_fneur_2022_933940
crossref_primary_10_1038_s41598_024_83466_5
crossref_primary_10_3389_fbioe_2019_00246
crossref_primary_10_1016_j_labinv_2025_104101
crossref_primary_10_1158_1078_0432_CCR_19_1495
crossref_primary_10_1177_10732748221095946
crossref_primary_10_1038_s41416_019_0535_1
crossref_primary_10_1007_s00439_022_02439_8
crossref_primary_10_1097_CCO_0000000000001068
crossref_primary_10_2196_21980
crossref_primary_10_1016_j_ibmed_2025_100262
crossref_primary_10_1002_cyto_a_23701
crossref_primary_10_2217_fon_2020_0678
crossref_primary_10_1007_s10528_023_10522_6
crossref_primary_10_1109_TRPMS_2021_3104297
crossref_primary_10_1109_RBME_2018_2825987
crossref_primary_10_1109_JBHI_2023_3267521
crossref_primary_10_1371_journal_pntd_0009831
crossref_primary_10_3390_cancers13030391
crossref_primary_10_1080_21655979_2021_1930333
crossref_primary_10_32604_cmc_2022_026715
crossref_primary_10_1016_j_ajpath_2019_08_014
crossref_primary_10_3390_diagnostics13193115
crossref_primary_10_1111_codi_15235
crossref_primary_10_1016_j_mpdhp_2020_08_004
crossref_primary_10_3389_fbioe_2020_620257
crossref_primary_10_3390_diagnostics14192174
crossref_primary_10_3390_cancers12061423
crossref_primary_10_1155_2020_8427574
crossref_primary_10_3389_fonc_2020_619803
crossref_primary_10_5858_arpa_2019_0390_OA
crossref_primary_10_1016_j_jbo_2024_100644
crossref_primary_10_2147_JMDH_S485724
crossref_primary_10_1016_j_ejca_2021_07_012
crossref_primary_10_1038_s41374_021_00579_5
crossref_primary_10_1136_jclinpath_2020_207351
crossref_primary_10_3390_bdcc7020074
crossref_primary_10_1016_j_jpi_2022_100152
crossref_primary_10_1039_D3NR05648A
crossref_primary_10_1245_s10434_022_11471_x
crossref_primary_10_1109_TMI_2019_2933656
crossref_primary_10_1016_j_imed_2022_03_004
crossref_primary_10_1200_CCI_24_00292
crossref_primary_10_1038_s41598_024_79602_w
crossref_primary_10_7189_jogh_08_020303
crossref_primary_10_1038_s41746_019_0106_0
crossref_primary_10_1155_2022_7496054
crossref_primary_10_3390_diagnostics13142379
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_1016_j_cmpb_2022_106914
crossref_primary_10_1016_j_ejmp_2021_02_024
crossref_primary_10_1007_s13755_023_00264_5
crossref_primary_10_1186_s12967_024_05609_6
crossref_primary_10_1001_jamanetworkopen_2020_3398
crossref_primary_10_1002_cjp2_127
crossref_primary_10_1007_s12105_024_01643_4
crossref_primary_10_3390_cancers13061325
crossref_primary_10_1080_2162402X_2021_1935104
crossref_primary_10_1016_j_lungcan_2020_07_003
crossref_primary_10_1038_s41598_019_53911_x
crossref_primary_10_1016_j_compbiomed_2024_108489
crossref_primary_10_3390_ijms22094394
crossref_primary_10_1038_s41467_021_26643_8
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1109_TRPMS_2021_3066428
crossref_primary_10_1016_j_modpat_2025_100771
crossref_primary_10_1136_jclinpath_2018_205328
crossref_primary_10_1038_s41598_024_84023_w
crossref_primary_10_1038_s41598_023_42357_x
crossref_primary_10_1371_journal_pcbi_1006269
crossref_primary_10_1002_nav_21929
crossref_primary_10_3390_s22187065
crossref_primary_10_1016_j_compbiomed_2022_105520
crossref_primary_10_1016_j_jpi_2022_100001
crossref_primary_10_1038_s41374_020_00514_0
crossref_primary_10_3390_cancers12030603
crossref_primary_10_1109_JBHI_2020_2994970
crossref_primary_10_1007_s00595_021_02380_9
crossref_primary_10_3389_frai_2024_1446693
crossref_primary_10_1016_j_heliyon_2023_e19229
crossref_primary_10_1016_j_procs_2021_01_025
crossref_primary_10_1007_s40031_025_01217_0
crossref_primary_10_1038_s41598_018_37638_9
crossref_primary_10_1515_jib_2024_0052
crossref_primary_10_1038_s41379_021_00894_8
crossref_primary_10_3390_app112210982
crossref_primary_10_1016_j_media_2020_101859
crossref_primary_10_1016_j_annonc_2025_03_006
crossref_primary_10_1002_cac2_12215
crossref_primary_10_1097_CCM_0000000000003419
crossref_primary_10_1371_journal_pone_0305135
crossref_primary_10_1002_path_5310
crossref_primary_10_1016_j_jpi_2023_100311
crossref_primary_10_1186_s12859_020_03544_z
crossref_primary_10_3233_JIFS_219080
crossref_primary_10_1177_0022034519867641
crossref_primary_10_32604_cmc_2023_031037
crossref_primary_10_1016_j_pdpdt_2024_104236
crossref_primary_10_1080_03008207_2020_1828381
crossref_primary_10_1038_s41591_023_02643_7
crossref_primary_10_33808_clinexphealthsci_928246
crossref_primary_10_1016_j_matpr_2020_10_263
crossref_primary_10_1109_ACCESS_2023_3335667
crossref_primary_10_1016_j_compbiomed_2024_108267
crossref_primary_10_1007_s11517_024_03158_0
crossref_primary_10_1038_s44222_023_00096_8
crossref_primary_10_1016_j_ajoms_2022_12_002
crossref_primary_10_1109_ACCESS_2020_3009412
crossref_primary_10_3748_wjg_v27_i16_1664
crossref_primary_10_1186_s12880_024_01480_5
crossref_primary_10_3390_cancers16020430
crossref_primary_10_1016_j_compbiomed_2021_104730
crossref_primary_10_1016_j_critrevonc_2025_104963
crossref_primary_10_1038_s43018_022_00436_4
crossref_primary_10_1007_s10462_021_10058_4
crossref_primary_10_1177_0192623320980674
crossref_primary_10_3389_fonc_2024_1509362
crossref_primary_10_1016_j_heliyon_2024_e37561
crossref_primary_10_1038_s41598_020_58467_9
crossref_primary_10_1186_s13000_021_01085_4
crossref_primary_10_3389_frai_2023_1227091
crossref_primary_10_1016_j_intimp_2024_113325
crossref_primary_10_1109_JBHI_2019_2944977
crossref_primary_10_1136_gutjnl_2023_329512
crossref_primary_10_1016_j_cell_2023_01_035
crossref_primary_10_1016_j_procs_2021_01_049
crossref_primary_10_1007_s10549_019_05281_1
crossref_primary_10_1186_s13036_019_0185_0
crossref_primary_10_1007_s11042_022_11946_9
crossref_primary_10_1007_s11102_019_01026_x
crossref_primary_10_1186_s12859_023_05235_x
crossref_primary_10_3389_fonc_2018_00390
crossref_primary_10_1038_s41598_020_64156_4
crossref_primary_10_1038_s41573_019_0024_5
crossref_primary_10_1097_CCO_0000000000000731
crossref_primary_10_1007_s00109_020_01874_2
crossref_primary_10_3390_ijerph17030790
crossref_primary_10_3389_fonc_2021_565755
crossref_primary_10_1007_s11042_024_19298_2
crossref_primary_10_3389_fonc_2022_925924
crossref_primary_10_3389_fmolb_2022_962743
crossref_primary_10_3390_s22239250
crossref_primary_10_1002_dc_25101
crossref_primary_10_1038_s41423_020_00565_9
crossref_primary_10_1038_s41746_021_00427_2
crossref_primary_10_1016_j_pbiomolbio_2022_08_004
crossref_primary_10_1038_s41591_019_0508_1
crossref_primary_10_3390_cancers13153825
crossref_primary_10_1038_s41597_024_03592_7
crossref_primary_10_1007_s11042_024_18802_y
crossref_primary_10_1109_TPAMI_2023_3269810
crossref_primary_10_1038_s41598_021_83102_6
crossref_primary_10_1038_s42256_018_0004_1
crossref_primary_10_1016_j_artmed_2022_102407
crossref_primary_10_1038_s41598_018_35501_5
crossref_primary_10_3390_diagnostics13101793
crossref_primary_10_1016_j_compbiomed_2022_105680
crossref_primary_10_3390_electronics12020403
crossref_primary_10_1186_s12911_020_01185_z
crossref_primary_10_1002_cac2_12012
crossref_primary_10_1002_INMD_20230013
crossref_primary_10_1038_s41379_021_00859_x
crossref_primary_10_25259_Cytojournal_272_2024
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_3389_fnins_2024_1304191
crossref_primary_10_3390_diagnostics12102430
crossref_primary_10_1080_14789450_2020_1713103
crossref_primary_10_1371_journal_pone_0328033
crossref_primary_10_1053_j_gastro_2022_08_025
crossref_primary_10_1155_acis_6552580
crossref_primary_10_3390_ijms25094715
crossref_primary_10_1080_20961790_2020_1718901
crossref_primary_10_1016_j_eswa_2021_115076
crossref_primary_10_1108_ACI_05_2025_0222
crossref_primary_10_1016_j_ejca_2023_113504
crossref_primary_10_1038_s41598_021_98480_0
crossref_primary_10_3389_fimmu_2022_942945
crossref_primary_10_1186_s12880_025_01844_5
crossref_primary_10_1111_jgh_15403
crossref_primary_10_1016_j_modpat_2024_100562
crossref_primary_10_3390_cancers14153780
crossref_primary_10_1111_odi_15067
crossref_primary_10_3390_diagnostics13101688
crossref_primary_10_1177_11769351241290608
crossref_primary_10_1002_path_5921
crossref_primary_10_1038_s42256_019_0101_9
crossref_primary_10_1016_j_procs_2020_07_018
crossref_primary_10_1155_2021_9025470
crossref_primary_10_3390_jimaging10120297
crossref_primary_10_1186_s13765_020_00548_4
crossref_primary_10_3390_diagnostics12040837
crossref_primary_10_1016_j_compeleceng_2022_108462
crossref_primary_10_1016_j_compmedimag_2021_101863
crossref_primary_10_3390_cancers12113337
crossref_primary_10_1007_s12272_019_01162_9
crossref_primary_10_1002_1873_3468_13043
crossref_primary_10_1093_plphys_kiab178
crossref_primary_10_1016_j_csbj_2022_09_010
crossref_primary_10_1038_s41598_024_76807_x
crossref_primary_10_3389_fgene_2021_684100
crossref_primary_10_1038_s41568_021_00399_1
crossref_primary_10_3389_fonc_2021_734015
crossref_primary_10_1245_s10434_022_12926_x
crossref_primary_10_1016_j_compmedimag_2024_102384
crossref_primary_10_1080_10408363_2018_1536111
crossref_primary_10_1038_s41598_022_07445_4
crossref_primary_10_1038_s41598_025_08166_0
crossref_primary_10_1016_j_media_2020_101915
crossref_primary_10_1038_s41598_024_83267_w
crossref_primary_10_3390_app8122422
crossref_primary_10_3390_cancers14215264
crossref_primary_10_3390_cancers11060756
crossref_primary_10_3390_cancers13195010
crossref_primary_10_3390_ijerph15081596
crossref_primary_10_3390_jcm12082818
crossref_primary_10_1016_j_cmpb_2022_107296
crossref_primary_10_3390_diagnostics11081398
crossref_primary_10_1016_j_compbiomed_2020_104003
crossref_primary_10_1109_TCBB_2021_3062230
crossref_primary_10_1016_j_media_2022_102685
crossref_primary_10_1038_s41568_020_00327_9
crossref_primary_10_1016_j_jvcir_2022_103682
crossref_primary_10_1093_bjsopen_zrae033
crossref_primary_10_3748_wjg_v27_i27_4395
crossref_primary_10_1109_JBHI_2022_3209551
crossref_primary_10_3390_app12199823
crossref_primary_10_1016_j_ajpath_2022_12_003
crossref_primary_10_1371_journal_pone_0272696
crossref_primary_10_29001_2073_8552_2025_40_2_211_217
crossref_primary_10_3390_life11111118
crossref_primary_10_1002_gcc_23177
crossref_primary_10_1109_JBHI_2025_3525647
crossref_primary_10_3748_wjg_v27_i21_2758
crossref_primary_10_1016_j_cmpb_2022_106634
crossref_primary_10_1089_adt_2019_919
crossref_primary_10_1016_j_jcpa_2024_08_001
crossref_primary_10_1038_s41598_022_11009_x
crossref_primary_10_3389_fonc_2024_1424044
crossref_primary_10_1007_s10549_021_06243_2
crossref_primary_10_1038_s41571_019_0252_y
crossref_primary_10_1016_j_measen_2023_100976
crossref_primary_10_1016_j_media_2021_102270
crossref_primary_10_1038_s41597_020_00622_y
crossref_primary_10_1038_s42003_020_01399_x
crossref_primary_10_1016_j_cmpb_2019_06_022
crossref_primary_10_1016_j_euf_2020_12_008
crossref_primary_10_1038_s41374_019_0325_7
crossref_primary_10_1038_s41598_021_85652_1
crossref_primary_10_3748_wjg_v27_i20_2545
crossref_primary_10_1016_j_isci_2024_111605
crossref_primary_10_1177_10935266211059809
crossref_primary_10_1016_j_compag_2021_106016
crossref_primary_10_1038_s41598_023_43211_w
crossref_primary_10_1080_14737140_2023_2286001
crossref_primary_10_1186_s12885_024_13292_5
crossref_primary_10_1088_1742_6596_1288_1_012004
crossref_primary_10_1109_ACCESS_2020_3012130
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1007_s10462_021_10121_0
crossref_primary_10_1038_s41598_018_36047_2
crossref_primary_10_1002_path_5831
crossref_primary_10_1111_his_14779
crossref_primary_10_1097_SCS_0000000000010687
crossref_primary_10_1016_j_semcancer_2018_07_003
crossref_primary_10_1038_s41467_023_37179_4
crossref_primary_10_1016_j_bbe_2021_04_012
crossref_primary_10_1371_journal_pone_0233678
crossref_primary_10_3390_life15040654
crossref_primary_10_1038_s41598_019_54031_2
crossref_primary_10_3390_app12073341
crossref_primary_10_3350_cmh_2021_0394
crossref_primary_10_1038_s41598_025_91420_2
crossref_primary_10_1038_s42256_020_0200_7
crossref_primary_10_1177_09603360211024971
crossref_primary_10_3390_s23094556
crossref_primary_10_1093_mam_ozaf044
crossref_primary_10_3390_cancers12071884
Cites_doi 10.1007/s11263-015-0816-y
10.1016/j.jtho.2016.10.017
10.3748/wjg.v20.i29.9850
10.1080/01621459.1958.10501452
10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
10.1111/j.0006-341X.2000.01134.x
10.1109/TMI.2016.2525803
10.1093/jnci/djw027
10.1016/j.neunet.2014.09.003
10.1038/nature24270
10.1038/nature21056
10.4103/2153-3539.189703
10.1016/S0140-6736(96)11196-X
10.1126/scitranslmed.3002564
10.1038/ncomms12474
10.1053/j.gastro.2014.09.041
10.4103/2153-3539.112693
10.1038/nature14539
10.1016/S1590-8658(11)60590-2
10.1002/path.2527
10.1038/srep26286
10.4103/jpi.jpi_34_17
10.1158/0008-5472.CAN-12-1875
10.1016/j.ejca.2008.10.036
10.1186/1471-2105-15-310
10.1117/1.JMI.1.3.034003
10.1186/1476-4598-4-29
10.1242/jcs.116392
10.1109/TASLP.2016.2520371
10.4103/2153-3539.186902
10.1162/neco.1997.9.1.1
10.1007/978-3-319-10590-1_53
10.1007/978-3-642-15561-1_11
10.1145/1273496.1273592
10.1109/ISBI.2016.7493475
10.1016/j.infsof.2008.09.005
10.1109/ISBI.2016.7493473
10.1111/j.2517-6161.1972.tb00899.x
10.1371/journal.pone.0067863
10.1109/CVPR.2015.7299007
10.1109/CVPR.2016.399
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1038/s41598-018-21758-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_swepub_ki_se_490304
oai_DiVA_org_uu_349348
PMC5821847
29467373
10_1038_s41598_018_21758_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c615t-a40a24ac098779cd81ee913b8f1a42fe85116b0200c899215c6cdca40af4f9593
IEDL.DBID M7P
ISICitedReferencesCount 428
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425590600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 25 03:28:53 EST 2025
Tue Nov 04 16:31:57 EST 2025
Tue Nov 04 01:55:25 EST 2025
Thu Sep 04 17:52:11 EDT 2025
Mon Oct 06 17:27:07 EDT 2025
Mon Jul 21 05:42:02 EDT 2025
Sat Nov 29 04:07:33 EST 2025
Tue Nov 18 22:30:56 EST 2025
Fri Feb 21 02:38:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c615t-a40a24ac098779cd81ee913b8f1a42fe85116b0200c899215c6cdca40af4f9593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8690-6983
OpenAccessLink https://www.proquest.com/docview/2007096807?pq-origsite=%requestingapplication%
PMID 29467373
PQID 2007096807
PQPubID 2041939
PageCount 11
ParticipantIDs swepub_primary_oai_swepub_ki_se_490304
swepub_primary_oai_DiVA_org_uu_349348
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5821847
proquest_miscellaneous_2007420567
proquest_journals_2007096807
pubmed_primary_29467373
crossref_citationtrail_10_1038_s41598_018_21758_3
crossref_primary_10_1038_s41598_018_21758_3
springer_journals_10_1038_s41598_018_21758_3
PublicationCentury 2000
PublicationDate 2018-02-21
PublicationDateYYYYMMDD 2018-02-21
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zeiler, Fergus (CR40) 2013
Silver (CR3) 2017; 550
CR37
Peña (CR26) 2013; 73
CR36
Wang (CR10) 2014; 1
CR34
Bottaci (CR28) 1997; 350
Balkwill, Capasso, Hagemann (CR30) 2012; 125
Schmidhuber (CR1) 2015; 61
Palangi (CR41) 2016; 24
CR6
Janowczyk, Madabhushi (CR7) 2016; 7
Russakovsky (CR35) 2015; 115
CR47
Kaplan, Meier (CR49) 1958; 53
CR44
Pedregosa (CR46) 2011; 12
CR43
Esteva (CR8) 2017; 542
CR42
Cox (CR50) 1972; 34
Luo (CR22) 2017; 12
Turkki, Linder, Kovanen, Pellinen, Lundin (CR12) 2016; 7
Rozek (CR13) 2016; 108
Burke (CR29) 1997; 79
CR14
Sinicrope (CR25) 2015; 148
CR52
CR51
Sirinukunwattana (CR16) 2016; 35
Korbar (CR17) 2017; 8
Cireşan, Giusti, Gambardella, Schmidhuber (CR11) 2013; 8150 LNCS
Hamilton, van Diest, Williams, Gallagher (CR23) 2009; 218
Van Der Maaten, Hinton (CR39) 2008; 9
Beck (CR19) 2011; 3
Lanza, Messerini, Gafà, Risio (CR32) 2011; 43
Roux (CR9) 2013; 4
Wang, Xing, Su, Stromberg, Yang (CR18) 2014; 15
Gulshan (CR4) 2016; 304
Litjens (CR5) 2016; 6
Yu (CR21) 2016; 7
Ahmed (CR27) 2005; 4
LeCun, Bengio, Hinton (CR2) 2015; 521
Venkatraman (CR48) 2000; 56
Linder (CR33) 2009; 45
Sirinukunwattana, Snead (CR15) 2015; 62
CR20
Schneider, Langner (CR31) 2014; 6
Hochreiter, Schmidhuber (CR38) 1997; 9
Maguire, Sheahan (CR24) 2014; 20
Glorot, Bengio (CR45) 2010; 9
H Wang (21758_CR18) 2014; 15
S Hochreiter (21758_CR38) 1997; 9
DR Cox (21758_CR50) 1972; 34
O Russakovsky (21758_CR35) 2015; 115
N Linder (21758_CR33) 2009; 45
21758_CR47
21758_CR43
21758_CR44
21758_CR42
H Palangi (21758_CR41) 2016; 24
ES Venkatraman (21758_CR48) 2000; 56
H Wang (21758_CR10) 2014; 1
K-H Yu (21758_CR21) 2016; 7
L Roux (21758_CR9) 2013; 4
21758_CR36
21758_CR37
AH Beck (21758_CR19) 2011; 3
21758_CR34
A Janowczyk (21758_CR7) 2016; 7
HB Burke (21758_CR29) 1997; 79
D Silver (21758_CR3) 2017; 550
NI Schneider (21758_CR31) 2014; 6
FE Ahmed (21758_CR27) 2005; 4
A Maguire (21758_CR24) 2014; 20
21758_CR6
G Lanza (21758_CR32) 2011; 43
K Sirinukunwattana (21758_CR16) 2016; 35
C Peña (21758_CR26) 2013; 73
LS Rozek (21758_CR13) 2016; 108
K Sirinukunwattana (21758_CR15) 2015; 62
MD Zeiler (21758_CR40) 2013
FR Balkwill (21758_CR30) 2012; 125
A Esteva (21758_CR8) 2017; 542
21758_CR20
X Glorot (21758_CR45) 2010; 9
FA Sinicrope (21758_CR25) 2015; 148
G Litjens (21758_CR5) 2016; 6
LJP Van Der Maaten (21758_CR39) 2008; 9
B Korbar (21758_CR17) 2017; 8
Y LeCun (21758_CR2) 2015; 521
R Turkki (21758_CR12) 2016; 7
X Luo (21758_CR22) 2017; 12
F Pedregosa (21758_CR46) 2011; 12
21758_CR51
21758_CR14
PW Hamilton (21758_CR23) 2009; 218
V Gulshan (21758_CR4) 2016; 304
J Schmidhuber (21758_CR1) 2015; 61
EL Kaplan (21758_CR49) 1958; 53
21758_CR52
DC Cireşan (21758_CR11) 2013; 8150 LNCS
L Bottaci (21758_CR28) 1997; 350
References_xml – volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  ident: CR45
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc. 13th Int. Conf. Artif. Intell. Stat.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: CR35
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 12
  start-page: 501
  year: 2017
  end-page: 509
  ident: CR22
  article-title: Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2016.10.017
– volume: 6
  start-page: 291
  year: 2014
  end-page: 300
  ident: CR31
  article-title: Prognostic stratification of colorectal cancer patients: Current perspectives
  publication-title: Cancer Manag. Res.
– ident: CR51
– volume: 62
  start-page: 1
  year: 2015
  end-page: 1
  ident: CR15
  article-title: & Rajpoot, N. A Stochastic Polygons Model for Glandular Structures in Colon Histology Images
  publication-title: IEEE Trans. Med. Imaging
– volume: 20
  start-page: 9850
  year: 2014
  end-page: 9861
  ident: CR24
  article-title: Controversies in the pathological assessment of colorectal cancer
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i29.9850
– volume: 53
  start-page: 457
  year: 1958
  end-page: 481
  ident: CR49
  article-title: Nonparametric Estimation from Incomplete Observations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 79
  start-page: 857
  year: 1997
  end-page: 862
  ident: CR29
  article-title: Artificial neural networks improve the accuracy of cancer survival prediction
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
– volume: 304
  start-page: 649
  year: 2016
  end-page: 656
  ident: CR4
  article-title: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs
  publication-title: Jama
– volume: 8150 LNCS
  start-page: 411
  year: 2013
  end-page: 418
  ident: CR11
  article-title: Mitosis detection in breast cancer histology images with deep neural networks
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 56
  start-page: 1134
  year: 2000
  end-page: 1138
  ident: CR48
  article-title: A Permutation Test to Compare Receiver Operating Characteristic Curves
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.01134.x
– ident: CR42
– volume: 35
  start-page: 1196
  year: 2016
  end-page: 1206
  ident: CR16
  article-title: Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 108
  start-page: djw027
  year: 2016
  ident: CR13
  article-title: Tumor-Infiltrating Lymphocytes, Crohn’s-Like Lymphoid Reaction, and Survival From Colorectal Cancer
  publication-title: JNCI J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djw027
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR1
  article-title: Deep Learning in Neural Networks: An Overview
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 550
  start-page: 354
  year: 2017
  end-page: 359
  ident: CR3
  article-title: Mastering the game of Go without human knowledge
  publication-title: Nat. Publ. Gr.
  doi: 10.1038/nature24270
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: CR8
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 7
  start-page: 38
  year: 2016
  ident: CR12
  article-title: Antibody-supervised deep learning for quantification of tumor-infiltrating immune cells in hematoxylin and eosin stained breast cancer samples
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.189703
– volume: 350
  start-page: 469
  year: 1997
  end-page: 472
  ident: CR28
  article-title: Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)11196-X
– volume: 3
  start-page: 108ra113
  year: 2011
  end-page: 108ra113
  ident: CR19
  article-title: Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002564
– ident: CR36
– volume: 7
  year: 2016
  ident: CR21
  article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12474
– volume: 148
  start-page: 88
  year: 2015
  end-page: 99
  ident: CR25
  article-title: Molecular Markers Identify Subtypes of Stage III Colon Cancer Associated With Patient Outcomes
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2014.09.041
– volume: 4
  start-page: 8
  year: 2013
  ident: CR9
  article-title: Mitosis detection in breast cancer histological images An ICPR 2012 contest
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.112693
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR43
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  ident: CR50
  article-title: Regression Models and Life-Tables
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 43
  start-page: 344
  year: 2011
  end-page: 355
  ident: CR32
  article-title: Colorectal tumors: The histology report
  publication-title: Dig. Liver Dis.
  doi: 10.1016/S1590-8658(11)60590-2
– ident: CR47
– volume: 218
  start-page: 285
  year: 2009
  end-page: 291
  ident: CR23
  article-title: Do we see what we think we see? The complexities of morphological assessment
  publication-title: J. Pathol.
  doi: 10.1002/path.2527
– volume: 6
  year: 2016
  ident: CR5
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep26286
– volume: 8
  start-page: 30
  year: 2017
  ident: CR17
  article-title: Deep Learning for Classification of Colorectal Polyps on Whole-slide Images
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_34_17
– ident: CR14
– volume: 73
  start-page: 1287 LP
  year: 2013
  end-page: 1297
  ident: CR26
  article-title: STC1 Expression By Cancer-Associated Fibroblasts Drives Metastasis of Colorectal Cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-1875
– ident: CR37
– volume: 45
  start-page: 648
  year: 2009
  end-page: 655
  ident: CR33
  article-title: Xanthine oxidoreductase - Clinical significance in colorectal cancer and expression of the protein in human colon cancer cells
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2008.10.036
– volume: 15
  year: 2014
  ident: CR18
  article-title: Novel image markers for non-small cell lung cancer classification and survival prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-310
– ident: CR6
– volume: 1
  start-page: 34003
  year: 2014
  ident: CR10
  article-title: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features
  publication-title: J. Med. imaging (Bellingham, Wash.)
  doi: 10.1117/1.JMI.1.3.034003
– volume: 4
  year: 2005
  ident: CR27
  article-title: Artificial neural networks for diagnosis and survival prediction in colon cancer
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-4-29
– ident: CR44
– volume: 125
  start-page: 5591
  year: 2012
  end-page: 5596
  ident: CR30
  article-title: The tumor microenvironment at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.116392
– ident: CR52
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: CR39
  article-title: Visualizing high-dimensional data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 694
  year: 2016
  end-page: 707
  ident: CR41
  article-title: Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application toInformation Retrieval
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2016.2520371
– volume: 7
  start-page: 29
  year: 2016
  ident: CR7
  article-title: Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.186902
– ident: CR34
– volume: 9
  start-page: 1
  year: 1997
  end-page: 32
  ident: CR38
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.1.1
– year: 2013
  ident: CR40
  article-title: Visualizing and Understanding ConvolutionalNetworks
  publication-title: arXiv Prepr. arXiv1311.2901
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR46
  article-title: Scikit-learn: Machine Learning in {P}ython
  publication-title: J. Mach. Learn. Res.
– ident: CR20
– volume: 3
  start-page: 108ra113
  year: 2011
  ident: 21758_CR19
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3002564
– year: 2013
  ident: 21758_CR40
  publication-title: arXiv Prepr. arXiv1311.2901
  doi: 10.1007/978-3-319-10590-1_53
– volume: 550
  start-page: 354
  year: 2017
  ident: 21758_CR3
  publication-title: Nat. Publ. Gr.
  doi: 10.1038/nature24270
– ident: 21758_CR47
  doi: 10.1007/978-3-642-15561-1_11
– volume: 304
  start-page: 649
  year: 2016
  ident: 21758_CR4
  publication-title: Jama
– volume: 148
  start-page: 88
  year: 2015
  ident: 21758_CR25
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2014.09.041
– volume: 12
  start-page: 2825
  year: 2011
  ident: 21758_CR46
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 648
  year: 2009
  ident: 21758_CR33
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2008.10.036
– ident: 21758_CR37
  doi: 10.1145/1273496.1273592
– volume: 7
  start-page: 38
  year: 2016
  ident: 21758_CR12
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.189703
– ident: 21758_CR20
  doi: 10.1109/ISBI.2016.7493475
– volume: 9
  start-page: 249
  year: 2010
  ident: 21758_CR45
  publication-title: Proc. 13th Int. Conf. Artif. Intell. Stat.
– volume: 521
  start-page: 436
  year: 2015
  ident: 21758_CR2
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 115
  start-page: 211
  year: 2015
  ident: 21758_CR35
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– ident: 21758_CR6
– ident: 21758_CR34
  doi: 10.1016/j.infsof.2008.09.005
– volume: 24
  start-page: 694
  year: 2016
  ident: 21758_CR41
  publication-title: IEEE/ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2016.2520371
– volume: 4
  year: 2005
  ident: 21758_CR27
  publication-title: Mol. Cancer
  doi: 10.1186/1476-4598-4-29
– volume: 1
  start-page: 34003
  year: 2014
  ident: 21758_CR10
  publication-title: J. Med. imaging (Bellingham, Wash.)
  doi: 10.1117/1.JMI.1.3.034003
– volume: 8
  start-page: 30
  year: 2017
  ident: 21758_CR17
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_34_17
– ident: 21758_CR14
  doi: 10.1109/ISBI.2016.7493473
– volume: 34
  start-page: 187
  year: 1972
  ident: 21758_CR50
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 4
  start-page: 8
  year: 2013
  ident: 21758_CR9
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.112693
– ident: 21758_CR42
  doi: 10.1371/journal.pone.0067863
– volume: 7
  year: 2016
  ident: 21758_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12474
– volume: 125
  start-page: 5591
  year: 2012
  ident: 21758_CR30
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.116392
– ident: 21758_CR36
  doi: 10.1109/CVPR.2015.7299007
– volume: 6
  year: 2016
  ident: 21758_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/srep26286
– volume: 9
  start-page: 1
  year: 1997
  ident: 21758_CR38
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.1.1
– ident: 21758_CR44
  doi: 10.1109/CVPR.2016.399
– volume: 12
  start-page: 501
  year: 2017
  ident: 21758_CR22
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2016.10.017
– ident: 21758_CR43
– volume: 35
  start-page: 1196
  year: 2016
  ident: 21758_CR16
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2525803
– volume: 7
  start-page: 29
  year: 2016
  ident: 21758_CR7
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.186902
– volume: 218
  start-page: 285
  year: 2009
  ident: 21758_CR23
  publication-title: J. Pathol.
  doi: 10.1002/path.2527
– volume: 53
  start-page: 457
  year: 1958
  ident: 21758_CR49
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– volume: 350
  start-page: 469
  year: 1997
  ident: 21758_CR28
  publication-title: Lancet
  doi: 10.1016/S0140-6736(96)11196-X
– volume: 9
  start-page: 2579
  year: 2008
  ident: 21758_CR39
  publication-title: J. Mach. Learn. Res.
– ident: 21758_CR52
– volume: 8150 LNCS
  start-page: 411
  year: 2013
  ident: 21758_CR11
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– volume: 62
  start-page: 1
  year: 2015
  ident: 21758_CR15
  publication-title: IEEE Trans. Med. Imaging
– volume: 61
  start-page: 85
  year: 2015
  ident: 21758_CR1
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 6
  start-page: 291
  year: 2014
  ident: 21758_CR31
  publication-title: Cancer Manag. Res.
– volume: 56
  start-page: 1134
  year: 2000
  ident: 21758_CR48
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2000.01134.x
– volume: 73
  start-page: 1287 LP
  year: 2013
  ident: 21758_CR26
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-1875
– volume: 43
  start-page: 344
  year: 2011
  ident: 21758_CR32
  publication-title: Dig. Liver Dis.
  doi: 10.1016/S1590-8658(11)60590-2
– volume: 108
  start-page: djw027
  year: 2016
  ident: 21758_CR13
  publication-title: JNCI J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djw027
– volume: 20
  start-page: 9850
  year: 2014
  ident: 21758_CR24
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v20.i29.9850
– volume: 79
  start-page: 857
  year: 1997
  ident: 21758_CR29
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y
– volume: 15
  year: 2014
  ident: 21758_CR18
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-15-310
– ident: 21758_CR51
– volume: 542
  start-page: 115
  year: 2017
  ident: 21758_CR8
  publication-title: Nature
  doi: 10.1038/nature21056
SSID ssj0000529419
Score 2.6715677
Snippet Image-based machine learning and deep learning in particular has recently shown expert-level accuracy in medical image classification. In this study, we...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3395
SubjectTerms 631/114/1305
692/4028/67/1504/1885
Aged
Algorithms
Classification
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - pathology
Deep Learning
Eosine Yellowish-(YS) - administration & dosage
Female
Hematoxylin - administration & dosage
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Information processing
Learning algorithms
Machine Learning
Male
Middle Aged
multidisciplinary
Prognosis
Retrospective Studies
Risk groups
Science
Science (multidisciplinary)
Tissue analysis
Tumors
Title Deep learning based tissue analysis predicts outcome in colorectal cancer
URI https://link.springer.com/article/10.1038/s41598-018-21758-3
https://www.ncbi.nlm.nih.gov/pubmed/29467373
https://www.proquest.com/docview/2007096807
https://www.proquest.com/docview/2007420567
https://pubmed.ncbi.nlm.nih.gov/PMC5821847
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-349348
http://kipublications.ki.se/Default.aspx?queryparsed=id:137722206
Volume 8
WOSCitedRecordID wos000425590600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQuvAuBsjIScIGoeTiJfUKFtqISXUUI0HKyEscpK1CyZDdI_HtmHG-qpWgvXKIoduLEM_Z8mbG_AXiehdIYUxsfwULgE_uIX0pZ-UmRVElRxklWWEl_yKZTMZvJ3Dnclm5Z5XpOtBN11WrykR-STw3htgiyN4ufPmWNouiqS6GxA3vEkhDbpXv56GOhKBYPpdsrE8TicIn2ivaUhageaDiFH2_aoysg8-payTFg-he5qDVIp7f_91PuwC0HRdnRoDt34Zpp7sGNITnl7_twdmzMgrmsEheMzF3FVlZOrHBUJmzRUaBntWRtv8LGDZs3jHiwaR7FZ2vSqe4BfD49-fTuve8SL_gaAc7KL3hQRLzQgRRZJnUlQmNkGJeiDgse1YZQWloi0Aw0_q5hx-tUV5ruqnlNTMf7sNu0jXkELNS8rqs4LWtEbmWQyrQuA-zNilf4s6cTD8J19yvtWMkpOcYPZaPjsVCDyBSKTFmRqdiDV-M9i4GTY2vtg7UUlBufS3UpAg-ejcU4sihcUjSm7Yc6PEKAiHUeDkowNod6RQl-8OHZhnqMFYi1e7OkmX-z7N20MxkhgQev14p0-VrbvuLFoGwbLRzPvxyptrtQfa9iLmMuPHj5j3ru0nc8M4pLCoc_3t4tT-BmRKOENu-HB7C76nrzFK7rX6hn3QR2sllmj2ICe29PpvnHifVm4PE8yid2GGJJfnaef_0D-qs35g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70doASNRLmA1D-fhQ4UqlqqrLqseCurNTRynrEDJkk1a9U_xG5nJq1qK9tYDt9Vm4sSZbzyfPfYMwNvQkcaYzHAkCzan7CM8kTLlfuynfpx4fhg3mp6E02l0fCwP1-B3fxaGtlX2Y2IzUKeFpjXybVpTQ7od2eHH-S9OVaMoutqX0GhhcWAuznHKttgZj1C_W6679_no0z7vqgpwjd674rGwY1fE2sbZdih1GjnGSMdLosyJhZsZoiBBgizK1jgXQY-oA51quisTGaXxxXZvwE2kEW7UbBU8HNZ0KGomHNmdzbG9aHuB_pHOsDkIR3TUEfeW_d8VUnt1b-YQoP0rmWnjAPfu_2-f7gHc66g2221t4yGsmfwR3G6Lb148hvHImDnrqmacMnLnKasaHLK4S9XC5iUFsqoFK-oKO2vYLGeU55v8BLatyWbKJ_D1WvrxFNbzIjfPgTlaZFnqBUmGzDSxAxlkiY3aS0WKk1ntW-D06la6y7pOxT9-qib670WqhYhCiKgGIsqz4P1wz7zNObJSerPXuurGn4W6VLkFb4bLOHJQOCjOTVG3MsJFAowyz1rQDY9DHFMBI2w8XILjIEBZyZev5LPvTXZyOnmNlMeCDz1wL19rVS-2WnAvPWE0-7arivJU1bXyhPREZMG7f8h1f_3AX0YJSeH-F6s_y2u4s3_0ZaIm4-nBBtx1yUIpUYGzCetVWZuXcEufIebKV42JMzi5bsP4A_1ijOc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3tBAASNRLhBtHs7DB4QqlhWrVqs9AOrNJI5dVqBkm02o-tf665jJq1qK9tYDt9Vm4sTxN56xZ_wNwOvIFVpro210Fhyb2EfsVIjMDpIgC5LUD6KkGenDaDaLj47EfAvO-7MwlFbZz4nNRJ0VivbIR7Snhu527EQj06VFzMeTD8sTmypIUaS1L6fRQuRAn53i8m31fjrGsd7zvMmnLx8_212FAVuhJa_shDuJxxPl4Mo7EiqLXa2F66excRPuGU3uSJiiR-UoXJegdVShyhTdZbghSl9s9xpcj4i0vEkbnA_7OxRB467ozuk4fjxaoa2k82wuQhONdmz767bwkoN7OU9zCNb-RWzaGMPJ3f_5M96DO50LzvZbnbkPWzp_ADfbopxnD2E61nrJumoax4zMfMaqBp8s6Shc2LKkAFe1YkVdYcc1W-SM-L_JfmDbinSpfARfr6Qfj2E7L3K9A8xV3JjMD1ODHmvqhCI0qYMjmfEMF7kqsMDth16qjo2dioL8kk1WgB_LFi4S4SIbuEjfgrfDPcuWi2Sj9G6PANnNSyt5MfwWvBou44xCYaIk10XdynAPHWOUedICcHgcYpoKG2Hj0Ro0BwFiK1-_ki9-NKzldCIbXSEL3vUgvnitTb3Ya4G-9oTx4tu-LMpjWdfS58LnsQVv_iHX_fUTf2nJBaUBPN38WV7CLdQHeTidHTyD2x4pK_EXuLuwXZW1fg431G-EXPmi0XYG369aL_4A9UqVpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+tissue+analysis+predicts+outcome+in+colorectal+cancer&rft.jtitle=Scientific+reports&rft.au=Bychkov%2C+Dmitrii&rft.au=Linder%2C+Nina&rft.au=Turkki%2C+Riku&rft.au=Nordling%2C+Stig&rft.date=2018-02-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft.spage=3395&rft_id=info:doi/10.1038%2Fs41598-018-21758-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon