Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension
We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high‐dimensional data and can n...
Uložené v:
| Vydané v: | Biometrics Ročník 69; číslo 1; s. 31 - 40 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Blackwell Publishers
01.03.2013
Blackwell Publishing Ltd Wiley-Blackwell Wiley |
| Predmet: | |
| ISSN: | 0006-341X, 1541-0420, 1541-0420 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high‐dimensional data and can not be used to model irregular curves such as peak‐like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed‐effects model that can be used for a model‐based clustering algorithm and for which we develop an EM‐algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN). |
|---|---|
| AbstractList | We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN). Summary We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN). [PUBLICATION ABSTRACT] Summary We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high‐dimensional data and can not be used to model irregular curves such as peak‐like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed‐effects model that can be used for a model‐based clustering algorithm and for which we develop an EM‐algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN). We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN). |
| Author | Giacofci, M. Lambert-Lacroix, S. Marot, G. Picard, F. |
| Author_xml | – sequence: 1 fullname: Giacofci, M – sequence: 2 fullname: Lambert‐Lacroix, S – sequence: 3 fullname: Marot, G – sequence: 4 fullname: Picard, F |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23379722$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-00782458$$DView record in HAL |
| BookMark | eNqNkk9v0zAYxiM0xLrBRwAicYFDgv_G9gVpLds6qWXSxjTExXJip3OXJsNORnfjI_AZ-SQ4S9fDTvXFf56fn9d6Hx9Ee3VTmyiKIUhhGJ-XKaQEJoAgkCIAUQogRzxdv4hGW2EvGgEAsgQT-GM_OvB-GbaCAvQq2kcYM8EQGkUX1-reVKb99-fvWHmj40nV-dY4Wy_isnHx3K6NDuJxWZqi9fFJVxetbWpVxfNGm8rHto6ndnETf7UrU_sgvY5elqry5s1mPoyuTo6_T6bJ7Pz0bHI0S4oMUp4UGgOFtNCE55gLzoo8B6gwpqCiyJgGiimDsRaE6RwpzoVQNKcAMqQQ0xAfRp8G3xtVyTtnV8o9yEZZOT2ayf4MAMYRofy-Zz8O7J1rfnXGt3JlfWGqStWm6byEGeOUsIzugGJEBGUUkIB-eIYum86F3jxSWIgAgkC921BdvjJ6-9SnEALwZQAK13jvTCkL26q-y61TtpIQyD51uZR9uLIPV_apy8fU5ToY8GcGTzV2uLqp_dtW5mHne3J8dj7vl8Hg7WCw9G3jtgYEcpCBrO9RMug2fKv1VlfuVmYMMyqvv51KyC8vxrOfWI4D_37gS9VItXDWy6vLUJoCAEmGIMb_AeN85Gk |
| CODEN | BIOMA5 |
| CitedBy_id | crossref_primary_10_1145_3581789 crossref_primary_10_1016_j_ecosta_2023_03_002 crossref_primary_10_1061_JHYEFF_HEENG_5890 crossref_primary_10_1007_s00180_016_0694_y crossref_primary_10_1007_s00357_025_09503_8 crossref_primary_10_1007_s11634_014_0174_6 crossref_primary_10_1002_cjs_11838 crossref_primary_10_1007_s11222_023_10288_2 crossref_primary_10_1002_cjs_11680 crossref_primary_10_1016_j_ins_2018_06_035 crossref_primary_10_1016_j_jhydrol_2017_10_070 crossref_primary_10_1007_s41237_018_0066_8 crossref_primary_10_1080_01621459_2020_1764363 crossref_primary_10_1007_s11634_016_0261_y crossref_primary_10_1007_s11634_024_00612_7 crossref_primary_10_1002_widm_1298 crossref_primary_10_1016_j_jmva_2020_104626 crossref_primary_10_1080_10618600_2022_2149540 crossref_primary_10_1080_10485252_2017_1406091 crossref_primary_10_1016_j_cpc_2025_109771 crossref_primary_10_1007_s00477_017_1441_9 crossref_primary_10_1080_01621459_2022_2066536 crossref_primary_10_1016_j_knosys_2018_01_035 crossref_primary_10_1007_s11634_024_00590_w crossref_primary_10_1007_s00357_019_09313_9 crossref_primary_10_1109_ACCESS_2023_3322929 crossref_primary_10_1080_00949655_2023_2215371 crossref_primary_10_1007_s10182_025_00531_8 crossref_primary_10_1080_00949655_2022_2053855 crossref_primary_10_1007_s00362_023_01408_1 crossref_primary_10_1111_insr_12588 crossref_primary_10_1287_ijds_2022_0034 crossref_primary_10_1111_biom_13258 crossref_primary_10_1080_03610926_2022_2104875 crossref_primary_10_1007_s00180_018_0808_9 crossref_primary_10_1111_rssc_12310 crossref_primary_10_1016_j_envsoft_2018_09_017 crossref_primary_10_1007_s11222_023_10213_7 crossref_primary_10_1007_s11222_025_10694_8 crossref_primary_10_1146_annurev_statistics_041715_033624 crossref_primary_10_1016_j_jmva_2021_104895 crossref_primary_10_1007_s00357_020_09363_4 crossref_primary_10_1080_10485252_2024_2358435 crossref_primary_10_1080_10618600_2024_2431057 crossref_primary_10_1007_s11222_025_10650_6 crossref_primary_10_3390_math12193083 crossref_primary_10_1038_s41598_022_06767_7 crossref_primary_10_3390_app8101766 crossref_primary_10_1007_s11135_014_0050_7 crossref_primary_10_1016_j_saa_2022_121569 crossref_primary_10_1007_s11634_013_0158_y crossref_primary_10_1177_0962280220921912 crossref_primary_10_1016_j_eswa_2020_113949 crossref_primary_10_1002_asmb_2648 crossref_primary_10_1186_s12874_015_0106_y |
| Cites_doi | 10.1111/j.1467-9868.2006.00539.x 10.1109/78.298281 10.1093/biostatistics/kxp006 10.1093/bib/bbq004 10.1198/016214503000189 10.1093/biomet/81.3.425 10.1007/978-1-60761-711-2_9 10.1093/biostatistics/kxm048 10.1155/JBB.2005.80 10.1002/mas.20072 10.1186/1471-2105-10-4 10.1186/gb-2007-8-10-r215 10.2174/157341107780361718 10.1016/j.csda.2006.09.038 10.1214/aos/1024691081 10.1198/jcgs.2009.0013 10.1111/1467-9868.00151 10.1111/j.1467-9868.2006.00545.x 10.1111/j.1541-0420.2007.00895.x 10.1214/ss/1177011926 10.1109/34.865189 10.1090/S0002-9939-1953-0055639-3 10.1186/1471-2407-6-96 10.1016/S0140-6736(02)07746-2 |
| ContentType | Journal Article |
| Copyright | 2013 International Biometric Society Copyright © 2013, The International Biometric Society Copyright © 2013, The International Biometric Society. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2013 International Biometric Society – notice: Copyright © 2013, The International Biometric Society – notice: Copyright © 2013, The International Biometric Society. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 1XC |
| DOI | 10.1111/j.1541-0420.2012.01828.x |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA ProQuest Computer Science Collection MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 40 |
| ExternalDocumentID | oai:HAL:hal-00782458v1 2936939171 23379722 10_1111_j_1541_0420_2012_01828_x BIOM1828 41806064 ark_67375_WNG_18SRBLZ3_B US201500146213 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAMMB AANHP AAUAY AAWIL AAYCA AAZSN ABAWQ ABDFA ABEJV ABGNP ABMNT ABXSQ ABXVV ACHJO ACRPL ACUHS ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFFHD AFWVQ AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJAOE AJBYB AJNCP ALRMG BSCLL H13 IPSME KOP NU- OIG OJZSN PHGZM PHGZT PJZUB PPXIY PQGLB ROX O8X PUEGO AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 1XC |
| ID | FETCH-LOGICAL-c6158-cd30a2d9d48b38987cbb02ceec59c67d0a7ae33d947db2a8899a5b50172a27d13 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317303500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Fri Nov 21 06:31:03 EST 2025 Fri Oct 03 00:12:14 EDT 2025 Sun Sep 28 10:13:24 EDT 2025 Mon Nov 10 02:57:40 EST 2025 Thu Apr 03 07:00:25 EDT 2025 Tue Nov 18 19:58:24 EST 2025 Sat Nov 29 02:09:59 EST 2025 Sun Sep 21 06:24:09 EDT 2025 Wed Dec 10 14:56:05 EST 2025 Tue Nov 11 03:32:26 EST 2025 Wed Dec 27 19:10:38 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Wavelets Functional data Clustering Mixed models |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013, The International Biometric Society. licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6158-cd30a2d9d48b38987cbb02ceec59c67d0a7ae33d947db2a8899a5b50172a27d13 |
| Notes | http://dx.doi.org/10.1111/j.1541-0420.2012.01828.x ArticleID:BIOM1828 istex:DA46C681F00076E867D547AA2D796B94FAD29CB6 ark:/67375/WNG-18SRBLZ3-B SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8084-5481 0000-0002-7437-8239 |
| PMID | 23379722 |
| PQID | 1323994950 |
| PQPubID | 35366 |
| PageCount | 10 |
| ParticipantIDs | hal_primary_oai_HAL_hal_00782458v1 proquest_miscellaneous_1678547651 proquest_miscellaneous_1324957504 proquest_journals_1323994950 pubmed_primary_23379722 crossref_citationtrail_10_1111_j_1541_0420_2012_01828_x crossref_primary_10_1111_j_1541_0420_2012_01828_x wiley_primary_10_1111_j_1541_0420_2012_01828_x_BIOM1828 jstor_primary_41806064 istex_primary_ark_67375_WNG_18SRBLZ3_B fao_agris_US201500146213 |
| PublicationCentury | 2000 |
| PublicationDate | March 2013 |
| PublicationDateYYYYMMDD | 2013-03-01 |
| PublicationDate_xml | – month: 03 year: 2013 text: March 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | BIOM |
| PublicationYear | 2013 |
| Publisher | Blackwell Publishers Blackwell Publishing Ltd Wiley-Blackwell Wiley |
| Publisher_xml | – name: Blackwell Publishers – name: Blackwell Publishing Ltd – name: Wiley-Blackwell – name: Wiley |
| References | Antoniadis, A. and Sapatinas, T. (2007). Estimation and inference in functional mixed-effects models. Computational Statistics & Data Analysis 51, 4793-4813. Morris, J. S., Baggerly, K. A., Gutstein, H. B., and Coombes, K. R. (2010). Statistical contributions to proteomic research. Methods in Molecular Biology 641, 143-166. Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of the American Mathematical Society 4, 502-506. Eckel-Passow, J. E., Oberg, A. L., Therneau, T. M., and Bergen, H. R. (2009). An insight into high-resolution mass-spectrometry data. Biostatistics 10, 481-500. Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage. Annals of Statistics 26, 879-921. Chin, S. F., Teschendorff, A. E., Marioni, J. C., Wang, Y., Barbosa-Morais, N. L., Thorne, N. P., Costa, J. L., Pinder, S. E., van de Wiel, M. A., Green, A. R., Ellis, I. O., Porter, P. L., Tavaré, S., Brenton, J. D., Ylstra, B., and Caldas, C. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biology 8, R215. Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., and Liotta, L. A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572-577. Zhang, J. and Walter, G. (1994). A wavelet-based KL-like expansion for wide sense stationary random processes. Signal Processing, IEEE Transactions on 42, 1737-1745. Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE PAMI 22, 719-725. Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425-455. James, G. and Sugar, C. (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association 98, 397-408. Fridlyand, J., Snijders, A. M., Ylstra, B., Li, H., Olshen, A., Segraves, R., Dairkee, S., Tokuyasu, T., Ljung, B. M., Jain, A. N., McLennan, J., Ziegler, J., Chin, K., Devries, S., Feiler, H., Gray, J. W., Waldman, F., Pinkel, D., and Albertson, D. G. (2006). Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96. Amato, U. and Sapatinas, T. (2005). Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements. Advances and Applications in Statistics 51, 21-50. Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian Wavelet methods. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 305-332. Bensmail, H., Aruna, B., Semmes, O. J., and Haoudi, A. (2005). Functional clustering algorithm for high-dimensional proteomics data. Journal of Biomedicine and Biotechnology 2005, 80-86. Antoniadis, A., Bigot, J., and von Sachs, R. (2008). A multiscale approach for statistical characterization of functional images. Journal of Computational and Graphical Statistics 18, 216-237. Hilario, M., Kalousis, A., Pellegrini, C., and Muller, M. (2006). Processing and classification of protein mass spectra. Mass Spectrometry Reviews 25, 409-449. Antoniadis, A., Bigot, J., Lambert-Lacroix, S., and Letue, F. (2007). Non parametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data. Current Analytical Chemistry 3, 127-147. Celeux, G. and Diebolt, J. (1986). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2, 73-82. Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. Statistical Science 6, 15-32. Morris, J. S., Brown, P. J., Herrick, R. C., Baggerly, K. A., and Coombes, K. R. (2008). Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics 64, 479-489. Yang, C., He, Z., and Yu, W. (2009). Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 10, 1-13. Abramovich, F., Sapatinas, T., and Silverman, B. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society Series B Statistical Methodology 60, 725-749. Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 179-199. Van Wieringen, W. N., Van De Wiel, M. A., and Ylstra, B. (2008). Weighted clustering of called array CGH data. Biostatistics 9, 484-500. van de Wiel, M. A., Picard, F., van Wieringen, W. N., and Ylstra, B. (2011). Preprocessing and downstream analysis of microarray DNA copy number profiles. Briefings in Bioinformatics 12, 10-21. 1998; 26 1986; 2 2009; 10 2006; 68 2008; 18 2000; 22 2006; 25 2010; 641 2005; 51 2007; 8 2002; 359 2008; 9 1953; 4 2006; 6 2011; 12 2007; 51 1998; 60 2007; 3 2008; 64 1994; 81 2005; 2005 2003; 98 1991; 6 1994; 42 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 Amato U. (e_1_2_9_3_1) 2005; 51 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 Celeux G. (e_1_2_9_9_1) 1986; 2 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 |
| References_xml | – reference: Van Wieringen, W. N., Van De Wiel, M. A., and Ylstra, B. (2008). Weighted clustering of called array CGH data. Biostatistics 9, 484-500. – reference: Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian Wavelet methods. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 305-332. – reference: Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425-455. – reference: Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., and Liotta, L. A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572-577. – reference: Abramovich, F., Sapatinas, T., and Silverman, B. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society Series B Statistical Methodology 60, 725-749. – reference: Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 179-199. – reference: Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage. Annals of Statistics 26, 879-921. – reference: James, G. and Sugar, C. (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association 98, 397-408. – reference: Chin, S. F., Teschendorff, A. E., Marioni, J. C., Wang, Y., Barbosa-Morais, N. L., Thorne, N. P., Costa, J. L., Pinder, S. E., van de Wiel, M. A., Green, A. R., Ellis, I. O., Porter, P. L., Tavaré, S., Brenton, J. D., Ylstra, B., and Caldas, C. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biology 8, R215. – reference: Antoniadis, A., Bigot, J., and von Sachs, R. (2008). A multiscale approach for statistical characterization of functional images. Journal of Computational and Graphical Statistics 18, 216-237. – reference: Fridlyand, J., Snijders, A. M., Ylstra, B., Li, H., Olshen, A., Segraves, R., Dairkee, S., Tokuyasu, T., Ljung, B. M., Jain, A. N., McLennan, J., Ziegler, J., Chin, K., Devries, S., Feiler, H., Gray, J. W., Waldman, F., Pinkel, D., and Albertson, D. G. (2006). Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96. – reference: Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of the American Mathematical Society 4, 502-506. – reference: Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. Statistical Science 6, 15-32. – reference: Eckel-Passow, J. E., Oberg, A. L., Therneau, T. M., and Bergen, H. R. (2009). An insight into high-resolution mass-spectrometry data. Biostatistics 10, 481-500. – reference: Yang, C., He, Z., and Yu, W. (2009). Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 10, 1-13. – reference: Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE PAMI 22, 719-725. – reference: van de Wiel, M. A., Picard, F., van Wieringen, W. N., and Ylstra, B. (2011). Preprocessing and downstream analysis of microarray DNA copy number profiles. Briefings in Bioinformatics 12, 10-21. – reference: Amato, U. and Sapatinas, T. (2005). Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements. Advances and Applications in Statistics 51, 21-50. – reference: Morris, J. S., Baggerly, K. A., Gutstein, H. B., and Coombes, K. R. (2010). Statistical contributions to proteomic research. Methods in Molecular Biology 641, 143-166. – reference: Antoniadis, A. and Sapatinas, T. (2007). Estimation and inference in functional mixed-effects models. Computational Statistics & Data Analysis 51, 4793-4813. – reference: Hilario, M., Kalousis, A., Pellegrini, C., and Muller, M. (2006). Processing and classification of protein mass spectra. Mass Spectrometry Reviews 25, 409-449. – reference: Morris, J. S., Brown, P. J., Herrick, R. C., Baggerly, K. A., and Coombes, K. R. (2008). Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics 64, 479-489. – reference: Antoniadis, A., Bigot, J., Lambert-Lacroix, S., and Letue, F. (2007). Non parametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data. Current Analytical Chemistry 3, 127-147. – reference: Bensmail, H., Aruna, B., Semmes, O. J., and Haoudi, A. (2005). Functional clustering algorithm for high-dimensional proteomics data. Journal of Biomedicine and Biotechnology 2005, 80-86. – reference: Zhang, J. and Walter, G. (1994). A wavelet-based KL-like expansion for wide sense stationary random processes. Signal Processing, IEEE Transactions on 42, 1737-1745. – reference: Celeux, G. and Diebolt, J. (1986). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2, 73-82. – volume: 2005 start-page: 80 year: 2005 end-page: 86 article-title: Functional clustering algorithm for high‐dimensional proteomics data publication-title: Journal of Biomedicine and Biotechnology – volume: 8 start-page: R215 year: 2007 article-title: High‐resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer publication-title: Genome Biology – volume: 68 start-page: 179 year: 2006 end-page: 199 article-title: Wavelet‐based functional mixed models publication-title: Journal of the Royal Statistical Society Series B Statistical Methodology – volume: 68 start-page: 305 year: 2006 end-page: 332 article-title: Functional clustering by Bayesian Wavelet methods publication-title: Journal of the Royal Statistical Society Series B Statistical Methodology – volume: 98 start-page: 397 year: 2003 end-page: 408 article-title: Clustering for sparsely sampled functional data publication-title: Journal of the American Statistical Association – volume: 22 start-page: 719 year: 2000 end-page: 725 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE PAMI – volume: 81 start-page: 425 year: 1994 end-page: 455 article-title: Ideal spatial adaptation by wavelet shrinkage publication-title: Biometrika – volume: 4 start-page: 502 year: 1953 end-page: 506 article-title: Sequential minimax search for a maximum publication-title: Proceedings of the American Mathematical Society – volume: 2 start-page: 73 year: 1986 end-page: 82 article-title: The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem publication-title: Computational Statistics Quarterly – volume: 6 start-page: 96 year: 2006 article-title: Breast tumor copy number aberration phenotypes and genomic instability publication-title: BMC Cancer – volume: 10 start-page: 1 year: 2009 end-page: 13 article-title: Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis publication-title: BMC Bioinformatics – volume: 51 start-page: 4793 year: 2007 end-page: 4813 article-title: Estimation and inference in functional mixed‐effects models publication-title: Computational Statistics & Data Analysis – volume: 42 start-page: 1737 year: 1994 end-page: 1745 article-title: A wavelet‐based KL‐like expansion for wide sense stationary random processes publication-title: Signal Processing, IEEE Transactions on – volume: 18 start-page: 216 year: 2008 end-page: 237 article-title: A multiscale approach for statistical characterization of functional images publication-title: Journal of Computational and Graphical Statistics – volume: 9 start-page: 484 year: 2008 end-page: 500 article-title: Weighted clustering of called array CGH data publication-title: Biostatistics – volume: 6 start-page: 15 year: 1991 end-page: 32 article-title: That BLUP is a good thing: The estimation of random effects publication-title: Statistical Science – volume: 26 start-page: 879 year: 1998 end-page: 921 article-title: Minimax estimation via wavelet shrinkage publication-title: Annals of Statistics – volume: 60 start-page: 725 year: 1998 end-page: 749 article-title: Wavelet thresholding via a Bayesian approach publication-title: Journal of the Royal Statistical Society Series B Statistical Methodology – volume: 641 start-page: 143 year: 2010 end-page: 166 article-title: Statistical contributions to proteomic research publication-title: Methods in Molecular Biology – volume: 12 start-page: 10 year: 2011 end-page: 21 article-title: Preprocessing and downstream analysis of microarray DNA copy number profiles publication-title: Briefings in Bioinformatics – volume: 10 start-page: 481 year: 2009 end-page: 500 article-title: An insight into high‐resolution mass‐spectrometry data publication-title: Biostatistics – volume: 51 start-page: 21 year: 2005 end-page: 50 article-title: Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements publication-title: Advances and Applications in Statistics – volume: 64 start-page: 479 year: 2008 end-page: 489 article-title: Bayesian analysis of mass spectrometry proteomic data using wavelet‐based functional mixed models publication-title: Biometrics – volume: 359 start-page: 572 year: 2002 end-page: 577 article-title: Use of proteomic patterns in serum to identify ovarian cancer publication-title: Lancet – volume: 3 start-page: 127 year: 2007 end-page: 147 article-title: Non parametric pre‐processing methods and inference tools for analyzing time‐of‐flight mass spectrometry data publication-title: Current Analytical Chemistry – volume: 25 start-page: 409 year: 2006 end-page: 449 article-title: Processing and classification of protein mass spectra publication-title: Mass Spectrometry Reviews – ident: e_1_2_9_20_1 doi: 10.1111/j.1467-9868.2006.00539.x – ident: e_1_2_9_27_1 doi: 10.1109/78.298281 – ident: e_1_2_9_13_1 doi: 10.1093/biostatistics/kxp006 – ident: e_1_2_9_24_1 doi: 10.1093/bib/bbq004 – ident: e_1_2_9_16_1 doi: 10.1198/016214503000189 – ident: e_1_2_9_11_1 doi: 10.1093/biomet/81.3.425 – ident: e_1_2_9_18_1 doi: 10.1007/978-1-60761-711-2_9 – ident: e_1_2_9_25_1 doi: 10.1093/biostatistics/kxm048 – ident: e_1_2_9_7_1 doi: 10.1155/JBB.2005.80 – ident: e_1_2_9_15_1 doi: 10.1002/mas.20072 – ident: e_1_2_9_26_1 doi: 10.1186/1471-2105-10-4 – ident: e_1_2_9_10_1 doi: 10.1186/gb-2007-8-10-r215 – volume: 2 start-page: 73 year: 1986 ident: e_1_2_9_9_1 article-title: The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem publication-title: Computational Statistics Quarterly – ident: e_1_2_9_4_1 doi: 10.2174/157341107780361718 – ident: e_1_2_9_6_1 doi: 10.1016/j.csda.2006.09.038 – ident: e_1_2_9_12_1 doi: 10.1214/aos/1024691081 – ident: e_1_2_9_5_1 doi: 10.1198/jcgs.2009.0013 – ident: e_1_2_9_2_1 doi: 10.1111/1467-9868.00151 – ident: e_1_2_9_22_1 doi: 10.1111/j.1467-9868.2006.00545.x – ident: e_1_2_9_19_1 doi: 10.1111/j.1541-0420.2007.00895.x – volume: 51 start-page: 21 year: 2005 ident: e_1_2_9_3_1 article-title: Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements publication-title: Advances and Applications in Statistics – ident: e_1_2_9_23_1 doi: 10.1214/ss/1177011926 – ident: e_1_2_9_8_1 doi: 10.1109/34.865189 – ident: e_1_2_9_17_1 doi: 10.1090/S0002-9939-1953-0055639-3 – ident: e_1_2_9_14_1 doi: 10.1186/1471-2407-6-96 – ident: e_1_2_9_21_1 doi: 10.1016/S0140-6736(02)07746-2 |
| SSID | ssj0009502 |
| Score | 2.3266277 |
| Snippet | We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially... We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially... Summary We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied... Summary We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied... |
| SourceID | hal proquest pubmed crossref wiley jstor istex fao |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 31 |
| SubjectTerms | Algorithms Applications BIOMETRIC METHODOLOGY Biometrics biometry Cluster Analysis Clustering Comparative genomic hybridization Comparative Genomic Hybridization - methods Computer Simulation Data Interpretation, Statistical Datasets Dimensionality reduction Female Functional data Genomics High dimensional spaces Humans Hybridization Likelihood Functions Mass Spectrometry Mass spectroscopy Methodology microarray technology Mixed models Models, Statistical Ovarian Neoplasms - genetics Signals Simulations Statistical variance Statistics Trucks variance wavelet Wavelet transforms Wavelets |
| Title | Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension |
| URI | https://api.istex.fr/ark:/67375/WNG-18SRBLZ3-B/fulltext.pdf https://www.jstor.org/stable/41806064 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01828.x https://www.ncbi.nlm.nih.gov/pubmed/23379722 https://www.proquest.com/docview/1323994950 https://www.proquest.com/docview/1324957504 https://www.proquest.com/docview/1678547651 https://inria.hal.science/hal-00782458 |
| Volume | 69 |
| WOSCitedRecordID | wos000317303500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-xFqTxwJ-yscCYAkK8ZUocp3Ye140ypLagjmoVL5YdOzBRtahdp_LGR-Az8km4S9JolSY0IV6iKDnHyeXs-51z-R3Aa85EGMk0DHLtsoA7kwZSmyRgxuSRMzIXqS2KTYjBQI7H6ccq_4n-hSn5IeoFNxoZxXxNA1ybxeYgTziGwpyFlKHFDrFPJg8RTzax_5g3oHky7I561yh4w5I7nLK9eDTezOu58Vobzmor1zPcfqWEySa9g9U6h_EmdLoJdgtv1X34P5_zETyoMKt_VBrZY7jjpi24V1ax_NGC-_2a-nXRgm2CryX78xMYnmsqbHH5--evDrpL6x9PlsTMgP7SR7Ts9y9WzuLJkkN54XfRy5aLkz4VaZss_IupT6ko_glVIaCVvR0Ydd9-Oj4NqioOQYZoSQaZjUPNbGq5NIiOpMiMCRn65ixJs7awoRbaxbFNubCGaYkBoE5MQrGpZsJG8S40prOp2wPf8NQ5Y5zJ4oyjcBoyy_KwrU1bCKutB2L9ulRWUZxTpY2JuhbqoDIVKVORMlWhTLXyIKpbfi9pPm7RZg8tQukvOBur0RmjtSOi4mFR7MErNJP6SkThfXrUU3SswGQ8kVeRB28KK6rF9PwbpdmJRJ0P3qlIng07vc-x6niwW5hZLcgjGWLgyT3YX9udqqaehYpi-l0Z497Qg5f1aZw06EuQnrrZspBBAWL2_4sMwpiEi3aCN_q0tOn6Blgci1QwhgovTPfWOlOd9x_6tPvsn1s-h21WlCShPMB9aFzOl-4F3M2u0LbnB7AlxvKgGvp_AAdhUBo |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BAqIc-AmUGgoYhLi5stfr7PrYtIRUJAGljRpxWe16N1ARJShpqnDjEXhGnoQZ27EaqUIV4hJF8azjjGdnvpmMvwF4w5kII5mGwVi7LODOpIHUJgmYMePIGTkWqc2HTYh-X45G6adyHBA9C1PwQ1QFN9oZub-mDU4F6c1dnnDMhTkLqUWL7eGXMrmHgLLO0aqSGtQPB-1h9xIHb1iQh1O7F49Gm409V55rI1rdHOsZvn6ljsk63YTVuonxKni6iXbzcNW-_19_6AO4V6JWf78ws4dww00bcLuYY_mjAXd7FfnrogFbBGAL_udHMDjVNNri_PfPXy0MmNY_mCyJmwEjpo942e-drZzFgwWL8sJvY5wtypM-jWmbLPyzqU_NKP4hzSGg2t5jGLbfnRx0gnKOQ5AhXpJBZuNQM5taLg3iIykyY0KG0TlL0qwpbKiFdnFsUy6sYVpiCqgTk1B2qpmwUbwNtels6nbANzx1zhhnsjjjKJyGzLJx2NSmKYTV1gOxvl8qK0nOadbGRF1KdlCZipSpSJkqV6ZaeRBVK78XRB_XWLODJqH0F_THanjMqHpEZDwsij14jXZSnYlIvDv7XUWf5aiMJ_Ii8uBtbkaVmJ5_o0Y7kajT_nsVyeNBq_s5Vi0PtnM7qwR5JENMPbkHu2vDU6XzWagopgeWMfMNPXhVHUa3Qf8F6ambLXMZFCBu_7_IIJBJuGgmeKFPCqOuLoDFsUgFY6jw3HavrTPVOvrYo7dP_3nlS7jTOel1Vfeo_-EZbLF8QAl1Be5C7Xy-dM_hVnaBdj5_UXqAP0efUyI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgBTQe-FMYCwwICO0tk-M4tfO4rpRNtGXqqFbxYtmxAxNVOrXrVN74CHxGPgl3SRqt0oQmxEtV1eckvZzvfudcfkfIO84EDWVCg0y7NODOJIHUJg6YMVnojMxEYotmE2IwkONxcly1A8J3YUp-iHrDDVdG4a9xgbtzm62v8phDLswZxRIttgcnZXIPAGWDx0kLVmmjM-yOelc4eGlJHo7lXjwcrxf2XHustWh1O9NT-PyGFZMNvAnLVRHjdfB0He0W4ar78L_-0UfkQYVa_f3SzB6TWy5vkrtlH8sfTXK_X5O_zptkEwFsyf_8hAxPNba2uPj981cbAqb1DyYL5GaAiOkDXvb7Z0tnYbBkUZ77XYiz5fakj23aJnP_LPexGMXvYB8C3Nt7Skbd958PDoOqj0OQAl6SQWojqplNLJcG8JEUqTGUQXRO4yRtCUu10C6KbMKFNUxLSAF1bGLMTjUTNoy2yEY-zd028Q1PnDPGmTRKOQgnlFmW0ZY2LSGsth4Rq_ul0orkHHttTNSVZAeUqVCZCpWpCmWqpUfCeuZ5SfRxgznbYBJKfwV_rEYnDHePkIyHhZFH3oKd1EdCEu_D_Z7C3wpUxmN5GXpktzCjWkzPvmOhnYjV6eCDCuXJsN37Eqm2R7YKO6sFeSgppJ7cIzsrw1OV85mrMMIXliHzpR55Uw-D28BnQTp300UhAwLI7f8XGQAyMRetGC70WWnU9QWwKBKJYAwUXtjujXWm2kef-vj1-T_PfE3uHXe6qnc0-PiCbLKiPwkWBe6QjYvZwr0kd9JLMPPZq8oB_AFU1lKd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet%E2%80%90Based+Clustering+for+Mixed%E2%80%90Effects+Functional+Models+in+High+Dimension&rft.jtitle=Biometrics&rft.au=Giacofci%2C+M.&rft.au=Lambert%E2%80%90Lacroix%2C+S.&rft.au=Marot%2C+G.&rft.au=Picard%2C+F.&rft.date=2013-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=69&rft.issue=1&rft.spage=31&rft.epage=40&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01828.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1541_0420_2012_01828_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |