Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension

We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high‐dimensional data and can n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biometrics Ročník 69; číslo 1; s. 31 - 40
Hlavní autori: Giacofci, M, Lambert‐Lacroix, S, Marot, G, Picard, F
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Blackwell Publishers 01.03.2013
Blackwell Publishing Ltd
Wiley-Blackwell
Wiley
Predmet:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high‐dimensional data and can not be used to model irregular curves such as peak‐like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed‐effects model that can be used for a model‐based clustering algorithm and for which we develop an EM‐algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).
AbstractList We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).
Summary We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN). [PUBLICATION ABSTRACT]
Summary We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high‐dimensional data and can not be used to model irregular curves such as peak‐like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed‐effects model that can be used for a model‐based clustering algorithm and for which we develop an EM‐algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).
We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially using splines to account for functional random effects. However, splines are not appropriate when dealing with high-dimensional data and can not be used to model irregular curves such as peak-like data. Our method is based on a wavelet decomposition of the signal for both fixed and random effects. We propose an efficient dimension reduction step based on wavelet thresholding adapted to multiple curves and using an appropriate structure for the random effect variance, we ensure that both fixed and random effects lie in the same functional space even when dealing with irregular functions that belong to Besov spaces. In the wavelet domain our model resumes to a linear mixed-effects model that can be used for a model-based clustering algorithm and for which we develop an EM-algorithm for maximum likelihood estimation. The properties of the overall procedure are validated by an extensive simulation study. Then, we illustrate our method on mass spectrometry data and we propose an original application of functional data analysis on microarray comparative genomic hybridization (CGH) data. Our procedure is available through the R package curvclust which is the first publicly available package that performs curve clustering with random effects in the high dimensional framework (available on the CRAN).
Author Giacofci, M.
Lambert-Lacroix, S.
Marot, G.
Picard, F.
Author_xml – sequence: 1
  fullname: Giacofci, M
– sequence: 2
  fullname: Lambert‐Lacroix, S
– sequence: 3
  fullname: Marot, G
– sequence: 4
  fullname: Picard, F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23379722$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-00782458$$DView record in HAL
BookMark eNqNkk9v0zAYxiM0xLrBRwAicYFDgv_G9gVpLds6qWXSxjTExXJip3OXJsNORnfjI_AZ-SQ4S9fDTvXFf56fn9d6Hx9Ee3VTmyiKIUhhGJ-XKaQEJoAgkCIAUQogRzxdv4hGW2EvGgEAsgQT-GM_OvB-GbaCAvQq2kcYM8EQGkUX1-reVKb99-fvWHmj40nV-dY4Wy_isnHx3K6NDuJxWZqi9fFJVxetbWpVxfNGm8rHto6ndnETf7UrU_sgvY5elqry5s1mPoyuTo6_T6bJ7Pz0bHI0S4oMUp4UGgOFtNCE55gLzoo8B6gwpqCiyJgGiimDsRaE6RwpzoVQNKcAMqQQ0xAfRp8G3xtVyTtnV8o9yEZZOT2ayf4MAMYRofy-Zz8O7J1rfnXGt3JlfWGqStWm6byEGeOUsIzugGJEBGUUkIB-eIYum86F3jxSWIgAgkC921BdvjJ6-9SnEALwZQAK13jvTCkL26q-y61TtpIQyD51uZR9uLIPV_apy8fU5ToY8GcGTzV2uLqp_dtW5mHne3J8dj7vl8Hg7WCw9G3jtgYEcpCBrO9RMug2fKv1VlfuVmYMMyqvv51KyC8vxrOfWI4D_37gS9VItXDWy6vLUJoCAEmGIMb_AeN85Gk
CODEN BIOMA5
CitedBy_id crossref_primary_10_1145_3581789
crossref_primary_10_1016_j_ecosta_2023_03_002
crossref_primary_10_1061_JHYEFF_HEENG_5890
crossref_primary_10_1007_s00180_016_0694_y
crossref_primary_10_1007_s00357_025_09503_8
crossref_primary_10_1007_s11634_014_0174_6
crossref_primary_10_1002_cjs_11838
crossref_primary_10_1007_s11222_023_10288_2
crossref_primary_10_1002_cjs_11680
crossref_primary_10_1016_j_ins_2018_06_035
crossref_primary_10_1016_j_jhydrol_2017_10_070
crossref_primary_10_1007_s41237_018_0066_8
crossref_primary_10_1080_01621459_2020_1764363
crossref_primary_10_1007_s11634_016_0261_y
crossref_primary_10_1007_s11634_024_00612_7
crossref_primary_10_1002_widm_1298
crossref_primary_10_1016_j_jmva_2020_104626
crossref_primary_10_1080_10618600_2022_2149540
crossref_primary_10_1080_10485252_2017_1406091
crossref_primary_10_1016_j_cpc_2025_109771
crossref_primary_10_1007_s00477_017_1441_9
crossref_primary_10_1080_01621459_2022_2066536
crossref_primary_10_1016_j_knosys_2018_01_035
crossref_primary_10_1007_s11634_024_00590_w
crossref_primary_10_1007_s00357_019_09313_9
crossref_primary_10_1109_ACCESS_2023_3322929
crossref_primary_10_1080_00949655_2023_2215371
crossref_primary_10_1007_s10182_025_00531_8
crossref_primary_10_1080_00949655_2022_2053855
crossref_primary_10_1007_s00362_023_01408_1
crossref_primary_10_1111_insr_12588
crossref_primary_10_1287_ijds_2022_0034
crossref_primary_10_1111_biom_13258
crossref_primary_10_1080_03610926_2022_2104875
crossref_primary_10_1007_s00180_018_0808_9
crossref_primary_10_1111_rssc_12310
crossref_primary_10_1016_j_envsoft_2018_09_017
crossref_primary_10_1007_s11222_023_10213_7
crossref_primary_10_1007_s11222_025_10694_8
crossref_primary_10_1146_annurev_statistics_041715_033624
crossref_primary_10_1016_j_jmva_2021_104895
crossref_primary_10_1007_s00357_020_09363_4
crossref_primary_10_1080_10485252_2024_2358435
crossref_primary_10_1080_10618600_2024_2431057
crossref_primary_10_1007_s11222_025_10650_6
crossref_primary_10_3390_math12193083
crossref_primary_10_1038_s41598_022_06767_7
crossref_primary_10_3390_app8101766
crossref_primary_10_1007_s11135_014_0050_7
crossref_primary_10_1016_j_saa_2022_121569
crossref_primary_10_1007_s11634_013_0158_y
crossref_primary_10_1177_0962280220921912
crossref_primary_10_1016_j_eswa_2020_113949
crossref_primary_10_1002_asmb_2648
crossref_primary_10_1186_s12874_015_0106_y
Cites_doi 10.1111/j.1467-9868.2006.00539.x
10.1109/78.298281
10.1093/biostatistics/kxp006
10.1093/bib/bbq004
10.1198/016214503000189
10.1093/biomet/81.3.425
10.1007/978-1-60761-711-2_9
10.1093/biostatistics/kxm048
10.1155/JBB.2005.80
10.1002/mas.20072
10.1186/1471-2105-10-4
10.1186/gb-2007-8-10-r215
10.2174/157341107780361718
10.1016/j.csda.2006.09.038
10.1214/aos/1024691081
10.1198/jcgs.2009.0013
10.1111/1467-9868.00151
10.1111/j.1467-9868.2006.00545.x
10.1111/j.1541-0420.2007.00895.x
10.1214/ss/1177011926
10.1109/34.865189
10.1090/S0002-9939-1953-0055639-3
10.1186/1471-2407-6-96
10.1016/S0140-6736(02)07746-2
ContentType Journal Article
Copyright 2013 International Biometric Society
Copyright © 2013, The International Biometric Society
Copyright © 2013, The International Biometric Society.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2013 International Biometric Society
– notice: Copyright © 2013, The International Biometric Society
– notice: Copyright © 2013, The International Biometric Society.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
1XC
DOI 10.1111/j.1541-0420.2012.01828.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
ProQuest Computer Science Collection

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 40
ExternalDocumentID oai:HAL:hal-00782458v1
2936939171
23379722
10_1111_j_1541_0420_2012_01828_x
BIOM1828
41806064
ark_67375_WNG_18SRBLZ3_B
US201500146213
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAMMB
AANHP
AAUAY
AAWIL
AAYCA
AAZSN
ABAWQ
ABDFA
ABEJV
ABGNP
ABMNT
ABXSQ
ABXVV
ACHJO
ACRPL
ACUHS
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFFHD
AFWVQ
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJAOE
AJBYB
AJNCP
ALRMG
BSCLL
H13
IPSME
KOP
NU-
OIG
OJZSN
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
ROX
O8X
PUEGO
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
1XC
ID FETCH-LOGICAL-c6158-cd30a2d9d48b38987cbb02ceec59c67d0a7ae33d947db2a8899a5b50172a27d13
IEDL.DBID DRFUL
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317303500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Fri Nov 21 06:31:03 EST 2025
Fri Oct 03 00:12:14 EDT 2025
Sun Sep 28 10:13:24 EDT 2025
Mon Nov 10 02:57:40 EST 2025
Thu Apr 03 07:00:25 EDT 2025
Tue Nov 18 19:58:24 EST 2025
Sat Nov 29 02:09:59 EST 2025
Sun Sep 21 06:24:09 EDT 2025
Wed Dec 10 14:56:05 EST 2025
Tue Nov 11 03:32:26 EST 2025
Wed Dec 27 19:10:38 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Wavelets
Functional data
Clustering
Mixed models
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013, The International Biometric Society.
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6158-cd30a2d9d48b38987cbb02ceec59c67d0a7ae33d947db2a8899a5b50172a27d13
Notes http://dx.doi.org/10.1111/j.1541-0420.2012.01828.x
ArticleID:BIOM1828
istex:DA46C681F00076E867D547AA2D796B94FAD29CB6
ark:/67375/WNG-18SRBLZ3-B
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8084-5481
0000-0002-7437-8239
PMID 23379722
PQID 1323994950
PQPubID 35366
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_00782458v1
proquest_miscellaneous_1678547651
proquest_miscellaneous_1324957504
proquest_journals_1323994950
pubmed_primary_23379722
crossref_citationtrail_10_1111_j_1541_0420_2012_01828_x
crossref_primary_10_1111_j_1541_0420_2012_01828_x
wiley_primary_10_1111_j_1541_0420_2012_01828_x_BIOM1828
jstor_primary_41806064
istex_primary_ark_67375_WNG_18SRBLZ3_B
fao_agris_US201500146213
PublicationCentury 2000
PublicationDate March 2013
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: March 2013
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate BIOM
PublicationYear 2013
Publisher Blackwell Publishers
Blackwell Publishing Ltd
Wiley-Blackwell
Wiley
Publisher_xml – name: Blackwell Publishers
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
– name: Wiley
References Antoniadis, A. and Sapatinas, T. (2007). Estimation and inference in functional mixed-effects models. Computational Statistics & Data Analysis 51, 4793-4813.
Morris, J. S., Baggerly, K. A., Gutstein, H. B., and Coombes, K. R. (2010). Statistical contributions to proteomic research. Methods in Molecular Biology 641, 143-166.
Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of the American Mathematical Society 4, 502-506.
Eckel-Passow, J. E., Oberg, A. L., Therneau, T. M., and Bergen, H. R. (2009). An insight into high-resolution mass-spectrometry data. Biostatistics 10, 481-500.
Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage. Annals of Statistics 26, 879-921.
Chin, S. F., Teschendorff, A. E., Marioni, J. C., Wang, Y., Barbosa-Morais, N. L., Thorne, N. P., Costa, J. L., Pinder, S. E., van de Wiel, M. A., Green, A. R., Ellis, I. O., Porter, P. L., Tavaré, S., Brenton, J. D., Ylstra, B., and Caldas, C. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biology 8, R215.
Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., and Liotta, L. A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572-577.
Zhang, J. and Walter, G. (1994). A wavelet-based KL-like expansion for wide sense stationary random processes. Signal Processing, IEEE Transactions on 42, 1737-1745.
Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE PAMI 22, 719-725.
Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425-455.
James, G. and Sugar, C. (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association 98, 397-408.
Fridlyand, J., Snijders, A. M., Ylstra, B., Li, H., Olshen, A., Segraves, R., Dairkee, S., Tokuyasu, T., Ljung, B. M., Jain, A. N., McLennan, J., Ziegler, J., Chin, K., Devries, S., Feiler, H., Gray, J. W., Waldman, F., Pinkel, D., and Albertson, D. G. (2006). Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96.
Amato, U. and Sapatinas, T. (2005). Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements. Advances and Applications in Statistics 51, 21-50.
Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian Wavelet methods. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 305-332.
Bensmail, H., Aruna, B., Semmes, O. J., and Haoudi, A. (2005). Functional clustering algorithm for high-dimensional proteomics data. Journal of Biomedicine and Biotechnology 2005, 80-86.
Antoniadis, A., Bigot, J., and von Sachs, R. (2008). A multiscale approach for statistical characterization of functional images. Journal of Computational and Graphical Statistics 18, 216-237.
Hilario, M., Kalousis, A., Pellegrini, C., and Muller, M. (2006). Processing and classification of protein mass spectra. Mass Spectrometry Reviews 25, 409-449.
Antoniadis, A., Bigot, J., Lambert-Lacroix, S., and Letue, F. (2007). Non parametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data. Current Analytical Chemistry 3, 127-147.
Celeux, G. and Diebolt, J. (1986). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2, 73-82.
Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. Statistical Science 6, 15-32.
Morris, J. S., Brown, P. J., Herrick, R. C., Baggerly, K. A., and Coombes, K. R. (2008). Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics 64, 479-489.
Yang, C., He, Z., and Yu, W. (2009). Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 10, 1-13.
Abramovich, F., Sapatinas, T., and Silverman, B. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society Series B Statistical Methodology 60, 725-749.
Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 179-199.
Van Wieringen, W. N., Van De Wiel, M. A., and Ylstra, B. (2008). Weighted clustering of called array CGH data. Biostatistics 9, 484-500.
van de Wiel, M. A., Picard, F., van Wieringen, W. N., and Ylstra, B. (2011). Preprocessing and downstream analysis of microarray DNA copy number profiles. Briefings in Bioinformatics 12, 10-21.
1998; 26
1986; 2
2009; 10
2006; 68
2008; 18
2000; 22
2006; 25
2010; 641
2005; 51
2007; 8
2002; 359
2008; 9
1953; 4
2006; 6
2011; 12
2007; 51
1998; 60
2007; 3
2008; 64
1994; 81
2005; 2005
2003; 98
1991; 6
1994; 42
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
Amato U. (e_1_2_9_3_1) 2005; 51
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
Celeux G. (e_1_2_9_9_1) 1986; 2
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
References_xml – reference: Van Wieringen, W. N., Van De Wiel, M. A., and Ylstra, B. (2008). Weighted clustering of called array CGH data. Biostatistics 9, 484-500.
– reference: Ray, S. and Mallick, B. (2006). Functional clustering by Bayesian Wavelet methods. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 305-332.
– reference: Donoho, D. and Johnstone, I. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425-455.
– reference: Petricoin, E. F., Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., and Liotta, L. A. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572-577.
– reference: Abramovich, F., Sapatinas, T., and Silverman, B. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society Series B Statistical Methodology 60, 725-749.
– reference: Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society Series B Statistical Methodology 68, 179-199.
– reference: Donoho, D. and Johnstone, I. (1998). Minimax estimation via wavelet shrinkage. Annals of Statistics 26, 879-921.
– reference: James, G. and Sugar, C. (2003). Clustering for sparsely sampled functional data. Journal of the American Statistical Association 98, 397-408.
– reference: Chin, S. F., Teschendorff, A. E., Marioni, J. C., Wang, Y., Barbosa-Morais, N. L., Thorne, N. P., Costa, J. L., Pinder, S. E., van de Wiel, M. A., Green, A. R., Ellis, I. O., Porter, P. L., Tavaré, S., Brenton, J. D., Ylstra, B., and Caldas, C. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biology 8, R215.
– reference: Antoniadis, A., Bigot, J., and von Sachs, R. (2008). A multiscale approach for statistical characterization of functional images. Journal of Computational and Graphical Statistics 18, 216-237.
– reference: Fridlyand, J., Snijders, A. M., Ylstra, B., Li, H., Olshen, A., Segraves, R., Dairkee, S., Tokuyasu, T., Ljung, B. M., Jain, A. N., McLennan, J., Ziegler, J., Chin, K., Devries, S., Feiler, H., Gray, J. W., Waldman, F., Pinkel, D., and Albertson, D. G. (2006). Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6, 96.
– reference: Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of the American Mathematical Society 4, 502-506.
– reference: Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects. Statistical Science 6, 15-32.
– reference: Eckel-Passow, J. E., Oberg, A. L., Therneau, T. M., and Bergen, H. R. (2009). An insight into high-resolution mass-spectrometry data. Biostatistics 10, 481-500.
– reference: Yang, C., He, Z., and Yu, W. (2009). Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 10, 1-13.
– reference: Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. IEEE PAMI 22, 719-725.
– reference: van de Wiel, M. A., Picard, F., van Wieringen, W. N., and Ylstra, B. (2011). Preprocessing and downstream analysis of microarray DNA copy number profiles. Briefings in Bioinformatics 12, 10-21.
– reference: Amato, U. and Sapatinas, T. (2005). Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements. Advances and Applications in Statistics 51, 21-50.
– reference: Morris, J. S., Baggerly, K. A., Gutstein, H. B., and Coombes, K. R. (2010). Statistical contributions to proteomic research. Methods in Molecular Biology 641, 143-166.
– reference: Antoniadis, A. and Sapatinas, T. (2007). Estimation and inference in functional mixed-effects models. Computational Statistics & Data Analysis 51, 4793-4813.
– reference: Hilario, M., Kalousis, A., Pellegrini, C., and Muller, M. (2006). Processing and classification of protein mass spectra. Mass Spectrometry Reviews 25, 409-449.
– reference: Morris, J. S., Brown, P. J., Herrick, R. C., Baggerly, K. A., and Coombes, K. R. (2008). Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics 64, 479-489.
– reference: Antoniadis, A., Bigot, J., Lambert-Lacroix, S., and Letue, F. (2007). Non parametric pre-processing methods and inference tools for analyzing time-of-flight mass spectrometry data. Current Analytical Chemistry 3, 127-147.
– reference: Bensmail, H., Aruna, B., Semmes, O. J., and Haoudi, A. (2005). Functional clustering algorithm for high-dimensional proteomics data. Journal of Biomedicine and Biotechnology 2005, 80-86.
– reference: Zhang, J. and Walter, G. (1994). A wavelet-based KL-like expansion for wide sense stationary random processes. Signal Processing, IEEE Transactions on 42, 1737-1745.
– reference: Celeux, G. and Diebolt, J. (1986). The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Computational Statistics Quarterly 2, 73-82.
– volume: 2005
  start-page: 80
  year: 2005
  end-page: 86
  article-title: Functional clustering algorithm for high‐dimensional proteomics data
  publication-title: Journal of Biomedicine and Biotechnology
– volume: 8
  start-page: R215
  year: 2007
  article-title: High‐resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer
  publication-title: Genome Biology
– volume: 68
  start-page: 179
  year: 2006
  end-page: 199
  article-title: Wavelet‐based functional mixed models
  publication-title: Journal of the Royal Statistical Society Series B Statistical Methodology
– volume: 68
  start-page: 305
  year: 2006
  end-page: 332
  article-title: Functional clustering by Bayesian Wavelet methods
  publication-title: Journal of the Royal Statistical Society Series B Statistical Methodology
– volume: 98
  start-page: 397
  year: 2003
  end-page: 408
  article-title: Clustering for sparsely sampled functional data
  publication-title: Journal of the American Statistical Association
– volume: 22
  start-page: 719
  year: 2000
  end-page: 725
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE PAMI
– volume: 81
  start-page: 425
  year: 1994
  end-page: 455
  article-title: Ideal spatial adaptation by wavelet shrinkage
  publication-title: Biometrika
– volume: 4
  start-page: 502
  year: 1953
  end-page: 506
  article-title: Sequential minimax search for a maximum
  publication-title: Proceedings of the American Mathematical Society
– volume: 2
  start-page: 73
  year: 1986
  end-page: 82
  article-title: The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
  publication-title: Computational Statistics Quarterly
– volume: 6
  start-page: 96
  year: 2006
  article-title: Breast tumor copy number aberration phenotypes and genomic instability
  publication-title: BMC Cancer
– volume: 10
  start-page: 1
  year: 2009
  end-page: 13
  article-title: Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis
  publication-title: BMC Bioinformatics
– volume: 51
  start-page: 4793
  year: 2007
  end-page: 4813
  article-title: Estimation and inference in functional mixed‐effects models
  publication-title: Computational Statistics & Data Analysis
– volume: 42
  start-page: 1737
  year: 1994
  end-page: 1745
  article-title: A wavelet‐based KL‐like expansion for wide sense stationary random processes
  publication-title: Signal Processing, IEEE Transactions on
– volume: 18
  start-page: 216
  year: 2008
  end-page: 237
  article-title: A multiscale approach for statistical characterization of functional images
  publication-title: Journal of Computational and Graphical Statistics
– volume: 9
  start-page: 484
  year: 2008
  end-page: 500
  article-title: Weighted clustering of called array CGH data
  publication-title: Biostatistics
– volume: 6
  start-page: 15
  year: 1991
  end-page: 32
  article-title: That BLUP is a good thing: The estimation of random effects
  publication-title: Statistical Science
– volume: 26
  start-page: 879
  year: 1998
  end-page: 921
  article-title: Minimax estimation via wavelet shrinkage
  publication-title: Annals of Statistics
– volume: 60
  start-page: 725
  year: 1998
  end-page: 749
  article-title: Wavelet thresholding via a Bayesian approach
  publication-title: Journal of the Royal Statistical Society Series B Statistical Methodology
– volume: 641
  start-page: 143
  year: 2010
  end-page: 166
  article-title: Statistical contributions to proteomic research
  publication-title: Methods in Molecular Biology
– volume: 12
  start-page: 10
  year: 2011
  end-page: 21
  article-title: Preprocessing and downstream analysis of microarray DNA copy number profiles
  publication-title: Briefings in Bioinformatics
– volume: 10
  start-page: 481
  year: 2009
  end-page: 500
  article-title: An insight into high‐resolution mass‐spectrometry data
  publication-title: Biostatistics
– volume: 51
  start-page: 21
  year: 2005
  end-page: 50
  article-title: Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements
  publication-title: Advances and Applications in Statistics
– volume: 64
  start-page: 479
  year: 2008
  end-page: 489
  article-title: Bayesian analysis of mass spectrometry proteomic data using wavelet‐based functional mixed models
  publication-title: Biometrics
– volume: 359
  start-page: 572
  year: 2002
  end-page: 577
  article-title: Use of proteomic patterns in serum to identify ovarian cancer
  publication-title: Lancet
– volume: 3
  start-page: 127
  year: 2007
  end-page: 147
  article-title: Non parametric pre‐processing methods and inference tools for analyzing time‐of‐flight mass spectrometry data
  publication-title: Current Analytical Chemistry
– volume: 25
  start-page: 409
  year: 2006
  end-page: 449
  article-title: Processing and classification of protein mass spectra
  publication-title: Mass Spectrometry Reviews
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1467-9868.2006.00539.x
– ident: e_1_2_9_27_1
  doi: 10.1109/78.298281
– ident: e_1_2_9_13_1
  doi: 10.1093/biostatistics/kxp006
– ident: e_1_2_9_24_1
  doi: 10.1093/bib/bbq004
– ident: e_1_2_9_16_1
  doi: 10.1198/016214503000189
– ident: e_1_2_9_11_1
  doi: 10.1093/biomet/81.3.425
– ident: e_1_2_9_18_1
  doi: 10.1007/978-1-60761-711-2_9
– ident: e_1_2_9_25_1
  doi: 10.1093/biostatistics/kxm048
– ident: e_1_2_9_7_1
  doi: 10.1155/JBB.2005.80
– ident: e_1_2_9_15_1
  doi: 10.1002/mas.20072
– ident: e_1_2_9_26_1
  doi: 10.1186/1471-2105-10-4
– ident: e_1_2_9_10_1
  doi: 10.1186/gb-2007-8-10-r215
– volume: 2
  start-page: 73
  year: 1986
  ident: e_1_2_9_9_1
  article-title: The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
  publication-title: Computational Statistics Quarterly
– ident: e_1_2_9_4_1
  doi: 10.2174/157341107780361718
– ident: e_1_2_9_6_1
  doi: 10.1016/j.csda.2006.09.038
– ident: e_1_2_9_12_1
  doi: 10.1214/aos/1024691081
– ident: e_1_2_9_5_1
  doi: 10.1198/jcgs.2009.0013
– ident: e_1_2_9_2_1
  doi: 10.1111/1467-9868.00151
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1467-9868.2006.00545.x
– ident: e_1_2_9_19_1
  doi: 10.1111/j.1541-0420.2007.00895.x
– volume: 51
  start-page: 21
  year: 2005
  ident: e_1_2_9_3_1
  article-title: Wavelet shrinkage approaches to baseline signal estimation from repeated noisy measurements
  publication-title: Advances and Applications in Statistics
– ident: e_1_2_9_23_1
  doi: 10.1214/ss/1177011926
– ident: e_1_2_9_8_1
  doi: 10.1109/34.865189
– ident: e_1_2_9_17_1
  doi: 10.1090/S0002-9939-1953-0055639-3
– ident: e_1_2_9_14_1
  doi: 10.1186/1471-2407-6-96
– ident: e_1_2_9_21_1
  doi: 10.1016/S0140-6736(02)07746-2
SSID ssj0009502
Score 2.3266277
Snippet We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially...
We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied especially...
Summary We propose a method for high‐dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied...
Summary We propose a method for high-dimensional curve clustering in the presence of interindividual variability. Curve clustering has longly been studied...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 31
SubjectTerms Algorithms
Applications
BIOMETRIC METHODOLOGY
Biometrics
biometry
Cluster Analysis
Clustering
Comparative genomic hybridization
Comparative Genomic Hybridization - methods
Computer Simulation
Data Interpretation, Statistical
Datasets
Dimensionality reduction
Female
Functional data
Genomics
High dimensional spaces
Humans
Hybridization
Likelihood Functions
Mass Spectrometry
Mass spectroscopy
Methodology
microarray technology
Mixed models
Models, Statistical
Ovarian Neoplasms - genetics
Signals
Simulations
Statistical variance
Statistics
Trucks
variance
wavelet
Wavelet transforms
Wavelets
Title Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension
URI https://api.istex.fr/ark:/67375/WNG-18SRBLZ3-B/fulltext.pdf
https://www.jstor.org/stable/41806064
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01828.x
https://www.ncbi.nlm.nih.gov/pubmed/23379722
https://www.proquest.com/docview/1323994950
https://www.proquest.com/docview/1324957504
https://www.proquest.com/docview/1678547651
https://inria.hal.science/hal-00782458
Volume 69
WOSCitedRecordID wos000317303500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwED-xFqTxwJ-yscCYAkK8ZUocp3Ye140ypLagjmoVL5YdOzBRtahdp_LGR-Az8km4S9JolSY0IV6iKDnHyeXs-51z-R3Aa85EGMk0DHLtsoA7kwZSmyRgxuSRMzIXqS2KTYjBQI7H6ccq_4n-hSn5IeoFNxoZxXxNA1ybxeYgTziGwpyFlKHFDrFPJg8RTzax_5g3oHky7I561yh4w5I7nLK9eDTezOu58Vobzmor1zPcfqWEySa9g9U6h_EmdLoJdgtv1X34P5_zETyoMKt_VBrZY7jjpi24V1ax_NGC-_2a-nXRgm2CryX78xMYnmsqbHH5--evDrpL6x9PlsTMgP7SR7Ts9y9WzuLJkkN54XfRy5aLkz4VaZss_IupT6ko_glVIaCVvR0Ydd9-Oj4NqioOQYZoSQaZjUPNbGq5NIiOpMiMCRn65ixJs7awoRbaxbFNubCGaYkBoE5MQrGpZsJG8S40prOp2wPf8NQ5Y5zJ4oyjcBoyy_KwrU1bCKutB2L9ulRWUZxTpY2JuhbqoDIVKVORMlWhTLXyIKpbfi9pPm7RZg8tQukvOBur0RmjtSOi4mFR7MErNJP6SkThfXrUU3SswGQ8kVeRB28KK6rF9PwbpdmJRJ0P3qlIng07vc-x6niwW5hZLcgjGWLgyT3YX9udqqaehYpi-l0Z497Qg5f1aZw06EuQnrrZspBBAWL2_4sMwpiEi3aCN_q0tOn6Blgci1QwhgovTPfWOlOd9x_6tPvsn1s-h21WlCShPMB9aFzOl-4F3M2u0LbnB7AlxvKgGvp_AAdhUBo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BAqIc-AmUGgoYhLi5stfr7PrYtIRUJAGljRpxWe16N1ARJShpqnDjEXhGnoQZ27EaqUIV4hJF8azjjGdnvpmMvwF4w5kII5mGwVi7LODOpIHUJgmYMePIGTkWqc2HTYh-X45G6adyHBA9C1PwQ1QFN9oZub-mDU4F6c1dnnDMhTkLqUWL7eGXMrmHgLLO0aqSGtQPB-1h9xIHb1iQh1O7F49Gm409V55rI1rdHOsZvn6ljsk63YTVuonxKni6iXbzcNW-_19_6AO4V6JWf78ws4dww00bcLuYY_mjAXd7FfnrogFbBGAL_udHMDjVNNri_PfPXy0MmNY_mCyJmwEjpo942e-drZzFgwWL8sJvY5wtypM-jWmbLPyzqU_NKP4hzSGg2t5jGLbfnRx0gnKOQ5AhXpJBZuNQM5taLg3iIykyY0KG0TlL0qwpbKiFdnFsUy6sYVpiCqgTk1B2qpmwUbwNtels6nbANzx1zhhnsjjjKJyGzLJx2NSmKYTV1gOxvl8qK0nOadbGRF1KdlCZipSpSJkqV6ZaeRBVK78XRB_XWLODJqH0F_THanjMqHpEZDwsij14jXZSnYlIvDv7XUWf5aiMJ_Ii8uBtbkaVmJ5_o0Y7kajT_nsVyeNBq_s5Vi0PtnM7qwR5JENMPbkHu2vDU6XzWagopgeWMfMNPXhVHUa3Qf8F6ambLXMZFCBu_7_IIJBJuGgmeKFPCqOuLoDFsUgFY6jw3HavrTPVOvrYo7dP_3nlS7jTOel1Vfeo_-EZbLF8QAl1Be5C7Xy-dM_hVnaBdj5_UXqAP0efUyI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgBTQe-FMYCwwICO0tk-M4tfO4rpRNtGXqqFbxYtmxAxNVOrXrVN74CHxGPgl3SRqt0oQmxEtV1eckvZzvfudcfkfIO84EDWVCg0y7NODOJIHUJg6YMVnojMxEYotmE2IwkONxcly1A8J3YUp-iHrDDVdG4a9xgbtzm62v8phDLswZxRIttgcnZXIPAGWDx0kLVmmjM-yOelc4eGlJHo7lXjwcrxf2XHustWh1O9NT-PyGFZMNvAnLVRHjdfB0He0W4ar78L_-0UfkQYVa_f3SzB6TWy5vkrtlH8sfTXK_X5O_zptkEwFsyf_8hAxPNba2uPj981cbAqb1DyYL5GaAiOkDXvb7Z0tnYbBkUZ77XYiz5fakj23aJnP_LPexGMXvYB8C3Nt7Skbd958PDoOqj0OQAl6SQWojqplNLJcG8JEUqTGUQXRO4yRtCUu10C6KbMKFNUxLSAF1bGLMTjUTNoy2yEY-zd028Q1PnDPGmTRKOQgnlFmW0ZY2LSGsth4Rq_ul0orkHHttTNSVZAeUqVCZCpWpCmWqpUfCeuZ5SfRxgznbYBJKfwV_rEYnDHePkIyHhZFH3oKd1EdCEu_D_Z7C3wpUxmN5GXpktzCjWkzPvmOhnYjV6eCDCuXJsN37Eqm2R7YKO6sFeSgppJ7cIzsrw1OV85mrMMIXliHzpR55Uw-D28BnQTp300UhAwLI7f8XGQAyMRetGC70WWnU9QWwKBKJYAwUXtjujXWm2kef-vj1-T_PfE3uHXe6qnc0-PiCbLKiPwkWBe6QjYvZwr0kd9JLMPPZq8oB_AFU1lKd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet%E2%80%90Based+Clustering+for+Mixed%E2%80%90Effects+Functional+Models+in+High+Dimension&rft.jtitle=Biometrics&rft.au=Giacofci%2C+M.&rft.au=Lambert%E2%80%90Lacroix%2C+S.&rft.au=Marot%2C+G.&rft.au=Picard%2C+F.&rft.date=2013-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=69&rft.issue=1&rft.spage=31&rft.epage=40&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01828.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1541_0420_2012_01828_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon