Deep learning–based vortex decomposition and switching based on fiber vector eigenmodes
Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation o...
Gespeichert in:
| Veröffentlicht in: | Nanophotonics (Berlin, Germany) Jg. 12; H. 15; S. 3165 - 3177 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
De Gruyter
20.07.2023
Walter de Gruyter GmbH |
| Schlagworte: | |
| ISSN: | 2192-8614, 2192-8606, 2192-8614 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning–based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation. |
|---|---|
| AbstractList | Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning-based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation.Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning-based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation. Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning–based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation. |
| Author | Li, Jun Lu, Jiafeng Yi, Lilin Xu, Jiangtao Zeng, Xianglong Pang, Fufei Huang, Liangjin Hou, Mengdie An, Yi Xu, Mengjun |
| Author_xml | – sequence: 1 givenname: Mengdie surname: Hou fullname: Hou, Mengdie email: 1114749363@qq.com organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China – sequence: 2 givenname: Mengjun surname: Xu fullname: Xu, Mengjun email: stella@shu.edu.cn organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China – sequence: 3 givenname: Jiangtao surname: Xu fullname: Xu, Jiangtao email: tsyjxjt@shu.edu.cn organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China – sequence: 4 givenname: Jiafeng orcidid: 0000-0002-2691-6688 surname: Lu fullname: Lu, Jiafeng email: jiafenglu@shu.edu.cn organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China – sequence: 5 givenname: Yi surname: An fullname: An, Yi email: anyi0924@163.com organization: College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China – sequence: 6 givenname: Liangjin surname: Huang fullname: Huang, Liangjin email: hlj203@nudt.edu.cn organization: Nanhu Laser Laboratory, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China – sequence: 7 givenname: Xianglong orcidid: 0000-0001-7817-173X surname: Zeng fullname: Zeng, Xianglong email: zenglong@shu.edu.cn organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China – sequence: 8 givenname: Fufei orcidid: 0000-0002-7106-4584 surname: Pang fullname: Pang, Fufei email: ffpang@shu.edu.cn organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China – sequence: 9 givenname: Jun surname: Li fullname: Li, Jun email: jun.johnson.li@gmail.com organization: College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China – sequence: 10 givenname: Lilin surname: Yi fullname: Yi, Lilin email: lilinyi@sjtu.edu.cn organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39635056$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UkFvFCEYJabGtmvvnswkXryM8g0DM5zU1KpNmnjRgyfCwscum1lYYXZrb_4H_6G_RNaptW2iHODLx3uPB7xjchBiQEKeAH0BHPjLoEPcLOuGNqymZX5AjhqQTd0LaA9u1YfkJOcVLUNKBlI8IodMCsYpF0fky1vETTWgTsGHxc_vP-Y6o612MY34rbJo4noTsx99DJUOtsqXfjTLAq0mYGk7P8dU7dCMMVXoFxjW0WJ-TB46PWQ8uV5n5PO7s0-nH-qLj-_PT99c1KZ4G-s5lc6xru_mwITjvdPUsZZ1CLZ1nLUCGtNRY4GWprG0b7BjPaCQTWeQAZuR80nXRr1Sm-TXOl2pqL363YhpoXQavRlQ0R4p1RaAStEKK3opXCcFoEWHtpw2I68mrc12vkZrMIxJD3dE7-4Ev1SLuFMAnILouqLw_Fohxa9bzKNa-2xwGHTAuM2KQSt4A8BogT67B13FbQrlrVTTM8mE4HyPenrb0o2XP19YAHQCmBRzTuhuIEDVPihqCoraB0Xtg1Io4h7F-FHv_7hcyg__I76eiJd6GDFZXKTtVSn-Ov8XFRrgDARnvwCBwdl4 |
| CitedBy_id | crossref_primary_10_1109_JLT_2024_3520981 crossref_primary_10_1364_JOSAA_570239 crossref_primary_10_1364_PRJ_524697 crossref_primary_10_1016_j_optcom_2024_130602 crossref_primary_10_1016_j_optlastec_2023_109795 crossref_primary_10_1016_j_optlastec_2025_113245 crossref_primary_10_1088_1402_4896_adc161 crossref_primary_10_1002_lpor_202500004 crossref_primary_10_1016_j_optlastec_2024_111389 crossref_primary_10_3788_COL202422_110602 |
| Cites_doi | 10.1364/ol.27.001884 10.1364/oe.442516 10.1364/oe.26.019171 10.1364/ol.43.005603 10.1016/j.optcom.2015.05.057 10.1515/nanoph-2021-0317 10.1364/oe.23.022977 10.1063/1.4937592 10.1038/s41377-018-0074-1 10.1364/oe.23.004620 10.1364/aop.1.000001 10.1088/2040-8978/19/1/013001 10.1515/nanoph-2018-0179 10.1002/lpor.202000249 10.1364/ao.58.000404 10.1103/physrevlett.106.123901 10.1109/jlt.2022.3194582 10.1016/j.yofte.2019.101934 10.1002/lpor.201800164 10.1109/jlt.2017.2676241 10.1109/jlt.2021.3056182 10.1364/optica.2.000900 10.1364/ol.43.005841 10.1103/physrevlett.94.143902 10.1364/oe.469328 10.1063/1.2374809 10.1364/oe.25.002733 10.1063/1.4884116 10.1364/optica.5.000960 10.1038/s41467-020-19323-6 10.1364/ol.16.000645 10.1109/lpt.2015.2405092 10.1515/nanoph-2017-0047 10.1515/nanoph-2013-0047 10.1364/ol.43.002146 10.1364/prj.386954 10.1364/prj.385007 10.1016/j.optcom.2007.08.067 10.1364/oe.27.005973 10.1109/jlt.2020.2982222 10.1109/jlt.2017.2787120 10.1002/adom.202300009 10.1364/ol.422623 10.1364/oe.27.010127 10.1364/prj.416294 10.1515/nanoph-2020-0050 10.1038/s41377-020-0251-x 10.1109/jlt.2014.2320539 10.29026/oea.2022.220058 10.1038/s41377-021-00497-7 10.1016/j.sna.2018.10.011 10.1109/JLT.2022.3194582 10.1109/JLT.2017.2676241 10.1364/PRJ.385007 10.1364/OL.43.005841 10.1109/JLT.2014.2320539 10.1364/OL.27.001884 10.1364/CLEOPR.2020.P1_6 10.1364/OE.26.019171 10.1364/OPTICA.5.000960 10.1364/OL.16.000645 10.1103/PhysRevLett.106.123901 10.1109/JLT.2020.2982222 10.1364/OE.23.004620 10.1103/PhysRevLett.94.143902 10.1109/JLT.2017.2787120 10.1364/OL.422623 10.1364/OE.442516 10.1364/OL.43.005603 10.1109/LPT.2015.2405092 10.1364/PRJ.416294 10.1364/OE.469328 10.1364/PRJ.386954 10.1364/AOP.1.000001 10.1364/OE.27.005973 10.1364/AO.58.000404 10.1364/OE.25.002733 10.1364/OPTICA.2.000900 10.1109/JLT.2021.3056182 10.1364/OL.43.002146 10.1364/OE.23.022977 10.1364/OE.27.010127 |
| ContentType | Journal Article |
| Copyright | 2023 the author(s), published by De Gruyter, Berlin/Boston. 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
| Copyright_xml | – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston. – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston |
| DBID | AAYXX CITATION NPM 7SP 7U5 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1515/nanoph-2023-0202 |
| DatabaseName | CrossRef PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Collection (ProQuest) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2192-8614 |
| EndPage | 3177 |
| ExternalDocumentID | oai_doaj_org_article_08e00ad1109646d6896f7961edefedf5 PMC11501677 39635056 10_1515_nanoph_2023_0202 10_1515_nanoph_2023_020212153165 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12274281 – fundername: Higher Education Discipline Innovation Project grantid: D20031 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 20JC1415700 |
| GroupedDBID | 0R~ 0~D 5VS 8FE 8FG AAFWJ ABFKT ACGFS ADBBV ADMLS AEJTT AENEX AFBDD AFFHD AFKRA AFPKN AHGSO ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU GROUPED_DOAJ HCIFZ HZ~ M48 O9- OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC QD8 RPM SA. SLJYH AAYXX CITATION 9-L AIKXB F-. IPNFZ NPM RIG ~Z8 7SP 7U5 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c614t-b09ff3787b136f58fa0f3437e1d4f534612c70cd10437cd082e7381e6927ce313 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001009902700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-8614 2192-8606 |
| IngestDate | Fri Oct 03 12:51:28 EDT 2025 Tue Nov 04 02:04:07 EST 2025 Sun Nov 09 09:18:30 EST 2025 Sun Nov 09 08:52:52 EST 2025 Wed Feb 19 02:03:17 EST 2025 Tue Nov 18 22:36:47 EST 2025 Sat Nov 29 01:46:28 EST 2025 Sat Nov 29 01:27:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | deep learning mode decomposition vortex switching vector eigenmodes |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 2023 the author(s), published by De Gruyter, Berlin/Boston. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c614t-b09ff3787b136f58fa0f3437e1d4f534612c70cd10437cd082e7381e6927ce313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2691-6688 0000-0001-7817-173X 0000-0002-7106-4584 |
| OpenAccessLink | https://doaj.org/article/08e00ad1109646d6896f7961edefedf5 |
| PMID | 39635056 |
| PQID | 2839366550 |
| PQPubID | 2038884 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_08e00ad1109646d6896f7961edefedf5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501677 proquest_miscellaneous_3146521130 proquest_journals_2839366550 pubmed_primary_39635056 crossref_primary_10_1515_nanoph_2023_0202 crossref_citationtrail_10_1515_nanoph_2023_0202 walterdegruyter_journals_10_1515_nanoph_2023_020212153165 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-20 |
| PublicationDateYYYYMMDD | 2023-07-20 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Berlin |
| PublicationTitle | Nanophotonics (Berlin, Germany) |
| PublicationTitleAlternate | Nanophotonics |
| PublicationYear | 2023 |
| Publisher | De Gruyter Walter de Gruyter GmbH |
| Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
| References | (j_nanoph-2023-0202_ref_045) 2019; 8 (j_nanoph-2023-0202_ref_020) 2021; 10 (j_nanoph-2023-0202_ref_011) 2015; 107 (j_nanoph-2023-0202_ref_035) 2020; 11 (j_nanoph-2023-0202_ref_013) 2008; 281 (j_nanoph-2023-0202_ref_039) 2021; 9 (j_nanoph-2023-0202_ref_046) 2018; 7 (j_nanoph-2023-0202_ref_041) 2022; 5 (j_nanoph-2023-0202_ref_021) 2018; 43 (j_nanoph-2023-0202_ref_052) 2006; 89 (j_nanoph-2023-0202_ref_010) 2014; 104 (j_nanoph-2023-0202_ref_003) 2016; 19 (j_nanoph-2023-0202_ref_030) 2005; 94 (j_nanoph-2023-0202_ref_048) 2020; 9 (j_nanoph-2023-0202_ref_042) 2023 (j_nanoph-2023-0202_ref_016) 2021; 46 (j_nanoph-2023-0202_ref_036) 2018; 7 (j_nanoph-2023-0202_ref_004) 2011; 106 (j_nanoph-2023-0202_ref_015) 2015; 27 (j_nanoph-2023-0202_ref_040) 2021; 10 (j_nanoph-2023-0202_ref_023) 2021; 39 (j_nanoph-2023-0202_ref_002) 2013; 2 (j_nanoph-2023-0202_ref_014) 2017; 25 (j_nanoph-2023-0202_ref_047) 2020; 8 (j_nanoph-2023-0202_ref_024) 2002; 27 (j_nanoph-2023-0202_ref_051) 2015; 2 (j_nanoph-2023-0202_ref_001) 2009; 1 (j_nanoph-2023-0202_ref_029) 2015; 23 (j_nanoph-2023-0202_ref_032) 2018; 5 (j_nanoph-2023-0202_ref_034) 1991; 16 (j_nanoph-2023-0202_ref_026) 2020; 9 (j_nanoph-2023-0202_ref_012) 2019; 58 (j_nanoph-2023-0202_ref_008) 2022; 30 (j_nanoph-2023-0202_ref_044) 2015; 23 (j_nanoph-2023-0202_ref_050) 2019; 52 (j_nanoph-2023-0202_ref_017) 2020; 8 (j_nanoph-2023-0202_ref_005) 2015; 354 (j_nanoph-2023-0202_ref_037) 2018; 43 (j_nanoph-2023-0202_ref_006) 2019; 27 (j_nanoph-2023-0202_ref_038) 2019; 27 (j_nanoph-2023-0202_ref_022) 2014; 32 (j_nanoph-2023-0202_ref_007) 2018; 12 (j_nanoph-2023-0202_ref_018) 2018; 36 (j_nanoph-2023-0202_ref_033) 2020; 14 (j_nanoph-2023-0202_ref_025) 2018; 26 (j_nanoph-2023-0202_ref_028) 2017; 35 (j_nanoph-2023-0202_ref_027) 2022; 40 (j_nanoph-2023-0202_ref_019) 2021; 29 (j_nanoph-2023-0202_ref_009) 2018; 284 (j_nanoph-2023-0202_ref_031) 2020; 38 (j_nanoph-2023-0202_ref_049) 2018; 43 2023072011152458436_j_nanoph-2023-0202_ref_012 2023072011152458436_j_nanoph-2023-0202_ref_011 2023072011152458436_j_nanoph-2023-0202_ref_014 2023072011152458436_j_nanoph-2023-0202_ref_013 2023072011152458436_j_nanoph-2023-0202_ref_016 2023072011152458436_j_nanoph-2023-0202_ref_015 2023072011152458436_j_nanoph-2023-0202_ref_018 2023072011152458436_j_nanoph-2023-0202_ref_017 2023072011152458436_j_nanoph-2023-0202_ref_019 2023072011152458436_j_nanoph-2023-0202_ref_021 2023072011152458436_j_nanoph-2023-0202_ref_020 2023072011152458436_j_nanoph-2023-0202_ref_001 2023072011152458436_j_nanoph-2023-0202_ref_045 2023072011152458436_j_nanoph-2023-0202_ref_044 2023072011152458436_j_nanoph-2023-0202_ref_003 2023072011152458436_j_nanoph-2023-0202_ref_047 2023072011152458436_j_nanoph-2023-0202_ref_002 2023072011152458436_j_nanoph-2023-0202_ref_046 2023072011152458436_j_nanoph-2023-0202_ref_005 2023072011152458436_j_nanoph-2023-0202_ref_049 2023072011152458436_j_nanoph-2023-0202_ref_004 2023072011152458436_j_nanoph-2023-0202_ref_048 2023072011152458436_j_nanoph-2023-0202_ref_007 2023072011152458436_j_nanoph-2023-0202_ref_006 2023072011152458436_j_nanoph-2023-0202_ref_009 2023072011152458436_j_nanoph-2023-0202_ref_008 2023072011152458436_j_nanoph-2023-0202_ref_050 2023072011152458436_j_nanoph-2023-0202_ref_052 2023072011152458436_j_nanoph-2023-0202_ref_051 2023072011152458436_j_nanoph-2023-0202_ref_010 2023072011152458436_j_nanoph-2023-0202_ref_034 2023072011152458436_j_nanoph-2023-0202_ref_033 2023072011152458436_j_nanoph-2023-0202_ref_036 2023072011152458436_j_nanoph-2023-0202_ref_035 2023072011152458436_j_nanoph-2023-0202_ref_038 2023072011152458436_j_nanoph-2023-0202_ref_037 2023072011152458436_j_nanoph-2023-0202_ref_039 2023072011152458436_j_nanoph-2023-0202_ref_041 2023072011152458436_j_nanoph-2023-0202_ref_040 2023072011152458436_j_nanoph-2023-0202_ref_043 2023072011152458436_j_nanoph-2023-0202_ref_042 2023072011152458436_j_nanoph-2023-0202_ref_023 2023072011152458436_j_nanoph-2023-0202_ref_022 2023072011152458436_j_nanoph-2023-0202_ref_025 2023072011152458436_j_nanoph-2023-0202_ref_024 2023072011152458436_j_nanoph-2023-0202_ref_027 2023072011152458436_j_nanoph-2023-0202_ref_026 2023072011152458436_j_nanoph-2023-0202_ref_029 2023072011152458436_j_nanoph-2023-0202_ref_028 2023072011152458436_j_nanoph-2023-0202_ref_030 2023072011152458436_j_nanoph-2023-0202_ref_032 2023072011152458436_j_nanoph-2023-0202_ref_031 |
| References_xml | – volume: 27 start-page: 1884 issue: 21 year: 2002 end-page: 1886 ident: j_nanoph-2023-0202_ref_024 article-title: All-fiber wavelength and mode-selective coupler for optical interconnections publication-title: Opt. Lett. doi: 10.1364/ol.27.001884 – volume: 29 start-page: 41496 issue: 25 year: 2021 end-page: 41511 ident: j_nanoph-2023-0202_ref_019 article-title: Generation of cylindrical vector dissipative soliton using an ultra-broadband LPFG mode converter with flat conversion efficiency publication-title: Opt. Express doi: 10.1364/oe.442516 – volume: 26 start-page: 19171 issue: 15 year: 2018 end-page: 19181 ident: j_nanoph-2023-0202_ref_025 article-title: High-order mode Yb-doped fiber lasers based on mode-selective couplers publication-title: Opt. Express doi: 10.1364/oe.26.019171 – volume: 43 start-page: 5603 issue: 22 year: 2018 end-page: 5606 ident: j_nanoph-2023-0202_ref_037 article-title: Color image identification and reconstruction using artificial neural networks on multimode fiber images: towards an all-optical design publication-title: Opt. Lett. doi: 10.1364/ol.43.005603 – volume: 354 start-page: 71 year: 2015 end-page: 78 ident: j_nanoph-2023-0202_ref_005 article-title: Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.05.057 – volume: 10 start-page: 3527 issue: 13 year: 2021 end-page: 3539 ident: j_nanoph-2023-0202_ref_020 article-title: 3 W average-power high-order mode pulse in dissipative soliton resonance mode-locked fiber laser publication-title: Nanophotonics doi: 10.1515/nanoph-2021-0317 – volume: 23 start-page: 22977 issue: 18 year: 2015 end-page: 22990 ident: j_nanoph-2023-0202_ref_029 article-title: Analysis of the modal evolution in fused-type mode-selective fiber couplers publication-title: Opt. Express doi: 10.1364/oe.23.022977 – volume: 107 start-page: 241102 issue: 24 year: 2015 end-page: 241104 ident: j_nanoph-2023-0202_ref_011 article-title: Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates publication-title: Appl. Phys. Lett. doi: 10.1063/1.4937592 – volume: 7 start-page: 1 issue: 69 year: 2018 end-page: 11 ident: j_nanoph-2023-0202_ref_036 article-title: Multimode optical fiber transmission with a deep learning network publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0074-1 – volume: 23 start-page: 4620 issue: 4 year: 2015 end-page: 4629 ident: j_nanoph-2023-0202_ref_044 article-title: Real-time mode decomposition for few-mode fiber based on numerical method publication-title: Opt. Express doi: 10.1364/oe.23.004620 – volume: 1 start-page: 1 issue: 1 year: 2009 end-page: 57 ident: j_nanoph-2023-0202_ref_001 article-title: Cylindrical vector beams: from mathematical concepts to applications publication-title: Adv. Opt. Photonics doi: 10.1364/aop.1.000001 – volume: 19 start-page: 013001 issue: 1 year: 2016 ident: j_nanoph-2023-0202_ref_003 article-title: Roadmap on structured light publication-title: J. Opt. doi: 10.1088/2040-8978/19/1/013001 – volume: 8 start-page: 271 issue: 2 year: 2019 end-page: 285 ident: j_nanoph-2023-0202_ref_045 article-title: Complex analysis between CV modes and OAM modes in fiber systems publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0179 – volume: 14 start-page: 2000249 year: 2020 ident: j_nanoph-2023-0202_ref_033 article-title: Deep learning-based recognition of different mode bases in ring‐core fiber publication-title: Laser Photonics Rev. doi: 10.1002/lpor.202000249 – volume: 58 start-page: 404 issue: 2 year: 2019 end-page: 409 ident: j_nanoph-2023-0202_ref_012 article-title: Characterizing vortex beams from a spatial light modulator with collinear phase-shifting holography publication-title: Appl. Opt. doi: 10.1364/ao.58.000404 – volume: 106 start-page: 123901 issue: 12 year: 2011 ident: j_nanoph-2023-0202_ref_004 article-title: Revealing local field structure of focused ultrashort pulses publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.106.123901 – volume: 40 start-page: 6493 issue: 19 year: 2022 end-page: 6500 ident: j_nanoph-2023-0202_ref_027 article-title: Generating femtosecond visible doughnut beams based on transverse-mode modulation publication-title: J. Lightwave Technol. doi: 10.1109/jlt.2022.3194582 – volume: 52 start-page: 101934 year: 2019 ident: j_nanoph-2023-0202_ref_050 article-title: Generation of orbital angular momentum mode using a single cylindrical vector mode based on mode selective coupler publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2019.101934 – volume: 12 start-page: 1800164 issue: 11 year: 2018 end-page: 1800169 ident: j_nanoph-2023-0202_ref_007 article-title: Tripling the capacity of optical vortices by nonlinear metasurface publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201800164 – volume: 35 start-page: 2161 issue: 11 year: 2017 end-page: 2166 ident: j_nanoph-2023-0202_ref_028 article-title: Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler publication-title: J. Lightwave Technol. doi: 10.1109/jlt.2017.2676241 – volume: 39 start-page: 3269 issue: 10 year: 2021 end-page: 3275 ident: j_nanoph-2023-0202_ref_023 article-title: The superimposed multi-channel helical long-period fiber grating and its application to multi-channel OAM mode generator publication-title: J. Lightwave Technol. doi: 10.1109/jlt.2021.3056182 – volume: 2 start-page: 900 year: 2015 ident: j_nanoph-2023-0202_ref_051 article-title: Q-plate enabled especially diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy publication-title: Optica doi: 10.1364/optica.2.000900 – volume: 43 start-page: 5841 issue: 23 year: 2018 end-page: 5844 ident: j_nanoph-2023-0202_ref_021 article-title: Dynamic mode-switchable optical vortex beams using acousto-optic mode converter publication-title: Opt. Lett. doi: 10.1364/ol.43.005841 – volume: 94 start-page: 143902 year: 2005 end-page: 143904 ident: j_nanoph-2023-0202_ref_030 article-title: Complete modal decomposition for optical waveguides publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.94.143902 – volume: 30 start-page: 34765 issue: 19 year: 2022 end-page: 34775 ident: j_nanoph-2023-0202_ref_008 article-title: Remote sensing using a spatially and temporally controlled asymmetric perfect vortex basis generated with a 2D HOBBIT publication-title: Opt. Express doi: 10.1364/oe.469328 – volume: 89 start-page: 191125 issue: 19 year: 2006 end-page: 191134 ident: j_nanoph-2023-0202_ref_052 article-title: Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning publication-title: Appl. Phys. Lett. doi: 10.1063/1.2374809 – volume: 25 start-page: 2733 issue: 3 year: 2017 end-page: 2741 ident: j_nanoph-2023-0202_ref_014 article-title: Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions publication-title: Opt. Express doi: 10.1364/oe.25.002733 – volume: 104 start-page: e149 issue: 24 year: 2014 ident: j_nanoph-2023-0202_ref_010 article-title: Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate publication-title: Appl. Phys. Lett. doi: 10.1063/1.4884116 – volume: 5 start-page: 960 issue: 8 year: 2018 end-page: 966 ident: j_nanoph-2023-0202_ref_032 article-title: Learning to see through multimode fibers publication-title: Optica doi: 10.1364/optica.5.000960 – volume: 11 start-page: 5507 year: 2020 ident: j_nanoph-2023-0202_ref_035 article-title: Fast mode decomposition in few-mode fibers publication-title: Nat. Commun. doi: 10.1038/s41467-020-19323-6 – volume: 16 start-page: 645 issue: 9 year: 1991 end-page: 647 ident: j_nanoph-2023-0202_ref_034 article-title: Remote image classification through multimode optical fiber using a neural network publication-title: Opt. Lett. doi: 10.1364/ol.16.000645 – volume: 27 start-page: 1006 issue: 9 year: 2015 end-page: 1009 ident: j_nanoph-2023-0202_ref_015 article-title: Temperature-insensitive mode converters with co2-laser written long-period fiber gratings publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/lpt.2015.2405092 – volume: 7 start-page: 287 issue: 1 year: 2018 end-page: 293 ident: j_nanoph-2023-0202_ref_046 article-title: Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings publication-title: Nanophotonics doi: 10.1515/nanoph-2017-0047 – volume: 2 start-page: 455 issue: 5 year: 2013 end-page: 475 ident: j_nanoph-2023-0202_ref_002 article-title: Optical vortices in fiber publication-title: Nanophotonics doi: 10.1515/nanoph-2013-0047 – volume: 43 start-page: 2146 issue: 9 year: 2018 end-page: 2149 ident: j_nanoph-2023-0202_ref_049 article-title: Orbital angular momentum transition of light using a cylindrical vector beam publication-title: Opt. Lett. doi: 10.1364/ol.43.002146 – volume: 8 start-page: 1203 issue: 7 year: 2020 end-page: 1212 ident: j_nanoph-2023-0202_ref_017 article-title: Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser publication-title: Photonics Res. doi: 10.1364/prj.386954 – volume: 8 start-page: 1268 issue: 8 year: 2020 end-page: 1277 ident: j_nanoph-2023-0202_ref_047 article-title: All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere publication-title: Photonics Res. doi: 10.1364/prj.385007 – volume: 281 start-page: 7 issue: 1 year: 2008 end-page: 11 ident: j_nanoph-2023-0202_ref_013 article-title: Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams publication-title: Opt. Commun. doi: 10.1016/j.optcom.2007.08.067 – volume: 27 start-page: 5973 issue: 5 year: 2019 end-page: 5981 ident: j_nanoph-2023-0202_ref_006 article-title: Sub-Rayleigh resolution single-pixel imaging using Gaussian- and doughnut-spot illumination publication-title: Opt. Express doi: 10.1364/oe.27.005973 – volume: 38 start-page: 4052 issue: 15 year: 2020 end-page: 4060 ident: j_nanoph-2023-0202_ref_031 article-title: An Accurate method for measuring the proportions of degenerated spatial modes in fibers publication-title: J. Lightwave Technol. doi: 10.1109/jlt.2020.2982222 – volume: 36 start-page: 1683 issue: 9 year: 2018 end-page: 1688 ident: j_nanoph-2023-0202_ref_018 article-title: Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen-oxygen flame publication-title: J. Lightwave Technol. doi: 10.1109/jlt.2017.2787120 – year: 2023 ident: j_nanoph-2023-0202_ref_042 article-title: Angular superoscillatory metalens empowers single-shot measurement of OAM modes with finer intervals publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202300009 – volume: 46 start-page: 2710 issue: 11 year: 2021 end-page: 2713 ident: j_nanoph-2023-0202_ref_016 article-title: Vortex soliton oscillation in mode-locked laser based on broadband long period fiber grating publication-title: Opt. Lett. doi: 10.1364/ol.422623 – volume: 27 start-page: 10127 issue: 7 year: 2019 end-page: 10137 ident: j_nanoph-2023-0202_ref_038 article-title: Learning to decompose the modes in few-mode fibers with deep convolutional neutral network publication-title: Opt. Express doi: 10.1364/oe.27.010127 – volume: 9 start-page: 247 issue: 6 year: 2021 end-page: 252 ident: j_nanoph-2023-0202_ref_039 article-title: Genetic-algorithm-based deep neural networks for highly efficient photonic device design publication-title: Photonics Res. doi: 10.1364/prj.416294 – volume: 9 start-page: 973 issue: 4 year: 2020 end-page: 981 ident: j_nanoph-2023-0202_ref_026 article-title: A mode generator and multiplexer at visible wavelength based on all-fiber mode selective coupler publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0050 – volume: 9 start-page: 1881 issue: 1 year: 2020 end-page: 1888 ident: j_nanoph-2023-0202_ref_048 article-title: Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis publication-title: Light Sci. Appl. doi: 10.1038/s41377-020-0251-x – volume: 32 start-page: 2152 issue: 11 year: 2014 end-page: 2156 ident: j_nanoph-2023-0202_ref_022 article-title: Generation of optical vortices using a helical fiber Bragg grating publication-title: J. Lightwave Technol. doi: 10.1109/jlt.2014.2320539 – volume: 5 start-page: 220058 issue: 11 year: 2022 ident: j_nanoph-2023-0202_ref_041 article-title: Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization publication-title: Opto-Electron. Adv. doi: 10.29026/oea.2022.220058 – volume: 10 start-page: 1 issue: 63 year: 2021 end-page: 12 ident: j_nanoph-2023-0202_ref_040 article-title: Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation publication-title: Light Sci. Appl. doi: 10.1038/s41377-021-00497-7 – volume: 284 start-page: 22 year: 2018 end-page: 27 ident: j_nanoph-2023-0202_ref_009 article-title: Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2018.10.011 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_027 doi: 10.1109/JLT.2022.3194582 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_033 doi: 10.1002/lpor.202000249 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_052 doi: 10.1063/1.2374809 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_028 doi: 10.1109/JLT.2017.2676241 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_047 doi: 10.1364/PRJ.385007 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_021 doi: 10.1364/OL.43.005841 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_022 doi: 10.1109/JLT.2014.2320539 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_048 doi: 10.1038/s41377-020-0251-x – ident: 2023072011152458436_j_nanoph-2023-0202_ref_024 doi: 10.1364/OL.27.001884 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_043 doi: 10.1364/CLEOPR.2020.P1_6 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_025 doi: 10.1364/OE.26.019171 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_020 doi: 10.1515/nanoph-2021-0317 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_032 doi: 10.1364/OPTICA.5.000960 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_007 doi: 10.1002/lpor.201800164 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_036 doi: 10.1038/s41377-018-0074-1 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_041 doi: 10.29026/oea.2022.220058 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_026 doi: 10.1515/nanoph-2020-0050 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_034 doi: 10.1364/OL.16.000645 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_042 doi: 10.1002/adom.202300009 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_035 doi: 10.1038/s41467-020-19323-6 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_004 doi: 10.1103/PhysRevLett.106.123901 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_031 doi: 10.1109/JLT.2020.2982222 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_044 doi: 10.1364/OE.23.004620 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_030 doi: 10.1103/PhysRevLett.94.143902 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_018 doi: 10.1109/JLT.2017.2787120 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_046 doi: 10.1515/nanoph-2017-0047 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_016 doi: 10.1364/OL.422623 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_019 doi: 10.1364/OE.442516 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_037 doi: 10.1364/OL.43.005603 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_015 doi: 10.1109/LPT.2015.2405092 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_005 doi: 10.1016/j.optcom.2015.05.057 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_039 doi: 10.1364/PRJ.416294 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_008 doi: 10.1364/OE.469328 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_002 doi: 10.1515/nanoph-2013-0047 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_013 doi: 10.1016/j.optcom.2007.08.067 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_017 doi: 10.1364/PRJ.386954 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_040 doi: 10.1038/s41377-021-00497-7 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_010 doi: 10.1063/1.4884116 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_050 doi: 10.1016/j.yofte.2019.101934 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_001 doi: 10.1364/AOP.1.000001 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_006 doi: 10.1364/OE.27.005973 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_012 doi: 10.1364/AO.58.000404 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_009 doi: 10.1016/j.sna.2018.10.011 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_014 doi: 10.1364/OE.25.002733 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_011 doi: 10.1063/1.4937592 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_051 doi: 10.1364/OPTICA.2.000900 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_023 doi: 10.1109/JLT.2021.3056182 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_049 doi: 10.1364/OL.43.002146 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_029 doi: 10.1364/OE.23.022977 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_003 doi: 10.1088/2040-8978/19/1/013001 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_045 doi: 10.1515/nanoph-2018-0179 – ident: 2023072011152458436_j_nanoph-2023-0202_ref_038 doi: 10.1364/OE.27.010127 |
| SSID | ssj0000993196 |
| Score | 2.3087087 |
| Snippet | Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their... |
| SourceID | doaj pubmedcentral proquest pubmed crossref walterdegruyter |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3165 |
| SubjectTerms | Algorithms Angular momentum Circular polarization Decomposition Deep learning Image reconstruction mode decomposition Quantum computing Switching vector eigenmodes vortex switching Wave fronts Wave plates |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsGDT8iZQkJHYsLAmiR07WSFeFauqC5AKmyh-TUdCyTDJTGHHP_CHfAn3Op5Uw6Mbtokncua-TnyvziHkmVe5FUJpJqwWTBiXMW0hHnNtvLKNdTyzQWxCHR-Xp6fVSTxw6-NY5TYnhkRtO4Nn5DMogxWXEgD1i-UXhqpR2F2NEhpXyTVkSUDphpPi03TGAugHPQz15QDIsBLAeuxUQhWftU3bLc8Y6oczAE35TmUKBP5_Q51_Dk_un4fGtnXz1frbsG2khvp0dPC_b3aT7EdkSl-OrnSLXHHtbXIQUSqNOaC_Qz6-cW5Jo9rE_Of3H1gILd3g1O5Xah0OqcdJMNq0lvbniyEMbNJxIVz2OKZCN6FhQB3ygaIgT3-XfDh6-_71OxYFGpiBqj4wnVbecwh5nXHpi9I3qeeCK5dZ4QsuAD0ZlRqbIYGSsYA2nAKE4GSVKwNewO-RvbZr3QNCeeW4Ep7r1GZCl7kGKOiNbkp8ltQuIbOtcWoT2ctRRONzjV8xYM56NGeN5qzRnAl5Pv1iOTJ3XLL2Fdp7Woec2-FCt5rXMYTrtHRp2likaJVCWllW0qtKZs4676wvEnK4tW8dE0FfXxg3IU-n2xDC2JdpWtet-5pDtQIUBWgiIfdH55p2wiFBIkhNSLnjdjtb3b3TLs4CTThi_UwqlZDqNw-92N6__hCMJp7J4uHl7_SI3BjDB4I7PSR7w2rtHpPrZjMs-tWTEIy_AHrLQD0 priority: 102 providerName: ProQuest |
| Title | Deep learning–based vortex decomposition and switching based on fiber vector eigenmodes |
| URI | https://www.degruyter.com/doi/10.1515/nanoph-2023-0202 https://www.ncbi.nlm.nih.gov/pubmed/39635056 https://www.proquest.com/docview/2839366550 https://www.proquest.com/docview/3146521130 https://pubmed.ncbi.nlm.nih.gov/PMC11501677 https://doaj.org/article/08e00ad1109646d6896f7961edefedf5 |
| Volume | 12 |
| WOSCitedRecordID | wos001009902700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2192-8614 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993196 issn: 2192-8614 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2192-8614 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993196 issn: 2192-8614 databaseCode: P5Z dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2192-8614 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993196 issn: 2192-8614 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2192-8614 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000993196 issn: 2192-8614 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9NAEB7BQUFzvMFwRItEQ2HF9m527ZKDO0FBFCGQcjSW93UXhJwodnLQ8R_4h_wSZtZOuPBsaFys19ZoHp5vPaNvAJ54lVkhlI6F1SIWxqWxthiPmTZe2co6ntowbEKNx_l0WkwujPqinrCOHrhT3DDJXZJUlogxpZBW5oX0qpCps8476wN7aaKKC4epDx3uId_q65KYs4d1Vc8XZzFNC48RImU7eSjQ9f8OY_7aKrl_HsrY1p0uV5_bTdk0ZKPjG7Dfw0j2rBP_Jlxy9S243kNK1gdscxtOXji3YP1oiNNvX75S1rJsTS22n5h11FHet22xqrasOZ-1obuSdRtx2VNPCVuHv_vMEXknTc9p7sC746O3z1_G_TSF2GAKbmOdFN5zjE-dculHua8SzwVXLrXCj7hAqGNUYmxKbEfGIjRwCtO5k0WmDJqM34W9el67-8B44bgSnuvEpkLnmUbc5o2ucnqX1C6C4Ua3pempxmnixceSjhxojbKzRknWKMkaETzdPrHoaDb-sveQzLXdRwTZYQHdpuzdpvyX20RwsDF22UdtUyLUKriUeGiL4PH2NsYbFVGq2s1XTckxtSDkwdQfwb3ON7aScPyaEaKMIN_xmh1Rd-_Us7PA6U3APJVKRVD85GA_xPuTQogghKdy9OB_KOYhXOtiBOM1OYC9drlyj-CqWbezZjmAy2qaD-DK4dF48mYQYg6vk9F7XJu8ej05-Q7LijWa |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFgkuLW8MBRYJDhys2N7Nrn1AiNJWrVqiChWpnLa2dzeNhJwQ50Fv_Af-Bz-KX8KMH6nCo7ceuNoba-18M983nvEMwAunIiOEynxhMuGL3IZ-ZtAeoyx3yqTG8tBUwyZUrxefnCRHK_Cj_RaGyipbn1g5ajPM6R15B2kw4VKioH4z-uLT1CjKrrYjNGpYHNjzOYZs5ev9bfx_X0bR7s7xuz2_mSrg50hFEz8LEuc44jQLuXTd2KWB44IrGxrhulwg5ecqyE1IXX9ygxRpFdKalUmkctw6x-tegzWBKzHYW9va6R19WLzVQb1FmKaJdiid_BjDgyY3irqhU6TFcHTm08RyH2VatMSF1ciAv-ncP8s11-dVKt3Y_nh6PmlTtxUj7m78b8_yFqw32pu9rY3lNqzY4g5sNDqcNV6uvAuftq0dsWaeRv_nt-9E9YbNqC75KzOWyvCbWjeWFoaV88GkKkll9UI87KgQh82qlAiz1PGURg6V9-DjldzgfVgthoV9CIwnlivheBaYUGRxlKHYdXmWxnQtmVkPOi0YdN70Z6cxIZ81xWkIH13DRxN8NMHHg1eLX4zq3iSXrN0ifC3WUVfx6sBw3NeNk9JBbIMgNdSEVgppZJxIpxIZWmOdNa7rwWaLJ924ulJfgMmD54vT6KQo85QWdjgtNUc-Rp2IesmDBzWYFzvhSAEkwz2Il2C-tNXlM8XgrGqETtFMKJXyIPnNIi62968HQl1VeCi7jy6_p2dwY-_4_aE-3O8dPIabtemiKws2YXUyntoncD2fTQbl-GnjChicXrXF_AICH5vf |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning%E2%80%93based+vortex+decomposition+and+switching+based+on+fiber+vector+eigenmodes&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Hou%2C+Mengdie&rft.au=Xu%2C+Mengjun&rft.au=Xu%2C+Jiangtao&rft.au=Lu%2C+Jiafeng&rft.date=2023-07-20&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=12&rft.issue=15&rft.spage=3165&rft.epage=3177&rft_id=info:doi/10.1515%2Fnanoph-2023-0202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2023_0202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon |