Deep learning–based vortex decomposition and switching based on fiber vector eigenmodes

Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics (Berlin, Germany) Jg. 12; H. 15; S. 3165 - 3177
Hauptverfasser: Hou, Mengdie, Xu, Mengjun, Xu, Jiangtao, Lu, Jiafeng, An, Yi, Huang, Liangjin, Zeng, Xianglong, Pang, Fufei, Li, Jun, Yi, Lilin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany De Gruyter 20.07.2023
Walter de Gruyter GmbH
Schlagworte:
ISSN:2192-8614, 2192-8606, 2192-8614
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning–based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation.
AbstractList Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning-based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation.Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning-based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation.
Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their polarization singularities and helical phase wavefront structure. However, one of the most critical challenges is still the intelligent generation or precise control of these modes. Here, we demonstrate the first simulation and experimental realization of decomposing the CV and OAM modes by reconstructing the multi-view images of projected intensity distribution. Assisted by the deep learning–based stochastic parallel gradient descent (SPGD) algorithm, the modal coefficients and optical field distributions can be retrieved in 1.32 s within an average error of 0.416 % showing high efficiency and accuracy. Especially, the interference pattern and quarter-wave plate are exploited to confirm the phase and distinguish elliptical or circular polarization direction, respectively. The generated donut modes are experimentally decomposed in the CV and OAM modes, where purity of CV modes reaches 99.5 %. Finally, fast switching vortex modes is achieved by electrically driving the polarization controller to deliver diverse CV modes. Our findings may provide a convenient way to characterize and deepen the understanding of CV or OAM modes in view of modal proportions, which is expected of latent applied value on information coding and quantum computation.
Author Li, Jun
Lu, Jiafeng
Yi, Lilin
Xu, Jiangtao
Zeng, Xianglong
Pang, Fufei
Huang, Liangjin
Hou, Mengdie
An, Yi
Xu, Mengjun
Author_xml – sequence: 1
  givenname: Mengdie
  surname: Hou
  fullname: Hou, Mengdie
  email: 1114749363@qq.com
  organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
– sequence: 2
  givenname: Mengjun
  surname: Xu
  fullname: Xu, Mengjun
  email: stella@shu.edu.cn
  organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
– sequence: 3
  givenname: Jiangtao
  surname: Xu
  fullname: Xu, Jiangtao
  email: tsyjxjt@shu.edu.cn
  organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
– sequence: 4
  givenname: Jiafeng
  orcidid: 0000-0002-2691-6688
  surname: Lu
  fullname: Lu, Jiafeng
  email: jiafenglu@shu.edu.cn
  organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
– sequence: 5
  givenname: Yi
  surname: An
  fullname: An, Yi
  email: anyi0924@163.com
  organization: College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
– sequence: 6
  givenname: Liangjin
  surname: Huang
  fullname: Huang, Liangjin
  email: hlj203@nudt.edu.cn
  organization: Nanhu Laser Laboratory, College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
– sequence: 7
  givenname: Xianglong
  orcidid: 0000-0001-7817-173X
  surname: Zeng
  fullname: Zeng, Xianglong
  email: zenglong@shu.edu.cn
  organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
– sequence: 8
  givenname: Fufei
  orcidid: 0000-0002-7106-4584
  surname: Pang
  fullname: Pang, Fufei
  email: ffpang@shu.edu.cn
  organization: The Key Lab of Specialty Fiber Optics and Optical Access Network, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai University, Shanghai 200444, China
– sequence: 9
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  email: jun.johnson.li@gmail.com
  organization: College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
– sequence: 10
  givenname: Lilin
  surname: Yi
  fullname: Yi, Lilin
  email: lilinyi@sjtu.edu.cn
  organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39635056$$D View this record in MEDLINE/PubMed
BookMark eNp9UkFvFCEYJabGtmvvnswkXryM8g0DM5zU1KpNmnjRgyfCwscum1lYYXZrb_4H_6G_RNaptW2iHODLx3uPB7xjchBiQEKeAH0BHPjLoEPcLOuGNqymZX5AjhqQTd0LaA9u1YfkJOcVLUNKBlI8IodMCsYpF0fky1vETTWgTsGHxc_vP-Y6o612MY34rbJo4noTsx99DJUOtsqXfjTLAq0mYGk7P8dU7dCMMVXoFxjW0WJ-TB46PWQ8uV5n5PO7s0-nH-qLj-_PT99c1KZ4G-s5lc6xru_mwITjvdPUsZZ1CLZ1nLUCGtNRY4GWprG0b7BjPaCQTWeQAZuR80nXRr1Sm-TXOl2pqL363YhpoXQavRlQ0R4p1RaAStEKK3opXCcFoEWHtpw2I68mrc12vkZrMIxJD3dE7-4Ev1SLuFMAnILouqLw_Fohxa9bzKNa-2xwGHTAuM2KQSt4A8BogT67B13FbQrlrVTTM8mE4HyPenrb0o2XP19YAHQCmBRzTuhuIEDVPihqCoraB0Xtg1Io4h7F-FHv_7hcyg__I76eiJd6GDFZXKTtVSn-Ov8XFRrgDARnvwCBwdl4
CitedBy_id crossref_primary_10_1109_JLT_2024_3520981
crossref_primary_10_1364_JOSAA_570239
crossref_primary_10_1364_PRJ_524697
crossref_primary_10_1016_j_optcom_2024_130602
crossref_primary_10_1016_j_optlastec_2023_109795
crossref_primary_10_1016_j_optlastec_2025_113245
crossref_primary_10_1088_1402_4896_adc161
crossref_primary_10_1002_lpor_202500004
crossref_primary_10_1016_j_optlastec_2024_111389
crossref_primary_10_3788_COL202422_110602
Cites_doi 10.1364/ol.27.001884
10.1364/oe.442516
10.1364/oe.26.019171
10.1364/ol.43.005603
10.1016/j.optcom.2015.05.057
10.1515/nanoph-2021-0317
10.1364/oe.23.022977
10.1063/1.4937592
10.1038/s41377-018-0074-1
10.1364/oe.23.004620
10.1364/aop.1.000001
10.1088/2040-8978/19/1/013001
10.1515/nanoph-2018-0179
10.1002/lpor.202000249
10.1364/ao.58.000404
10.1103/physrevlett.106.123901
10.1109/jlt.2022.3194582
10.1016/j.yofte.2019.101934
10.1002/lpor.201800164
10.1109/jlt.2017.2676241
10.1109/jlt.2021.3056182
10.1364/optica.2.000900
10.1364/ol.43.005841
10.1103/physrevlett.94.143902
10.1364/oe.469328
10.1063/1.2374809
10.1364/oe.25.002733
10.1063/1.4884116
10.1364/optica.5.000960
10.1038/s41467-020-19323-6
10.1364/ol.16.000645
10.1109/lpt.2015.2405092
10.1515/nanoph-2017-0047
10.1515/nanoph-2013-0047
10.1364/ol.43.002146
10.1364/prj.386954
10.1364/prj.385007
10.1016/j.optcom.2007.08.067
10.1364/oe.27.005973
10.1109/jlt.2020.2982222
10.1109/jlt.2017.2787120
10.1002/adom.202300009
10.1364/ol.422623
10.1364/oe.27.010127
10.1364/prj.416294
10.1515/nanoph-2020-0050
10.1038/s41377-020-0251-x
10.1109/jlt.2014.2320539
10.29026/oea.2022.220058
10.1038/s41377-021-00497-7
10.1016/j.sna.2018.10.011
10.1109/JLT.2022.3194582
10.1109/JLT.2017.2676241
10.1364/PRJ.385007
10.1364/OL.43.005841
10.1109/JLT.2014.2320539
10.1364/OL.27.001884
10.1364/CLEOPR.2020.P1_6
10.1364/OE.26.019171
10.1364/OPTICA.5.000960
10.1364/OL.16.000645
10.1103/PhysRevLett.106.123901
10.1109/JLT.2020.2982222
10.1364/OE.23.004620
10.1103/PhysRevLett.94.143902
10.1109/JLT.2017.2787120
10.1364/OL.422623
10.1364/OE.442516
10.1364/OL.43.005603
10.1109/LPT.2015.2405092
10.1364/PRJ.416294
10.1364/OE.469328
10.1364/PRJ.386954
10.1364/AOP.1.000001
10.1364/OE.27.005973
10.1364/AO.58.000404
10.1364/OE.25.002733
10.1364/OPTICA.2.000900
10.1109/JLT.2021.3056182
10.1364/OL.43.002146
10.1364/OE.23.022977
10.1364/OE.27.010127
ContentType Journal Article
Copyright 2023 the author(s), published by De Gruyter, Berlin/Boston.
2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
Copyright_xml – notice: 2023 the author(s), published by De Gruyter, Berlin/Boston.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 the author(s), published by De Gruyter, Berlin/Boston 2023 the author(s), published by De Gruyter, Berlin/Boston GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7SP
7U5
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1515/nanoph-2023-0202
DatabaseName CrossRef
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Collection (ProQuest)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2192-8614
EndPage 3177
ExternalDocumentID oai_doaj_org_article_08e00ad1109646d6896f7961edefedf5
PMC11501677
39635056
10_1515_nanoph_2023_0202
10_1515_nanoph_2023_020212153165
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12274281
– fundername: Higher Education Discipline Innovation Project
  grantid: D20031
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: 20JC1415700
GroupedDBID 0R~
0~D
5VS
8FE
8FG
AAFWJ
ABFKT
ACGFS
ADBBV
ADMLS
AEJTT
AENEX
AFBDD
AFFHD
AFKRA
AFPKN
AHGSO
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
GROUPED_DOAJ
HCIFZ
HZ~
M48
O9-
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
QD8
RPM
SA.
SLJYH
AAYXX
CITATION
9-L
AIKXB
F-.
IPNFZ
NPM
RIG
~Z8
7SP
7U5
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c614t-b09ff3787b136f58fa0f3437e1d4f534612c70cd10437cd082e7381e6927ce313
IEDL.DBID DOA
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001009902700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2192-8614
2192-8606
IngestDate Fri Oct 03 12:51:28 EDT 2025
Tue Nov 04 02:04:07 EST 2025
Sun Nov 09 09:18:30 EST 2025
Sun Nov 09 08:52:52 EST 2025
Wed Feb 19 02:03:17 EST 2025
Tue Nov 18 22:36:47 EST 2025
Sat Nov 29 01:46:28 EST 2025
Sat Nov 29 01:27:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords deep learning
mode decomposition
vortex switching
vector eigenmodes
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
2023 the author(s), published by De Gruyter, Berlin/Boston.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c614t-b09ff3787b136f58fa0f3437e1d4f534612c70cd10437cd082e7381e6927ce313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2691-6688
0000-0001-7817-173X
0000-0002-7106-4584
OpenAccessLink https://doaj.org/article/08e00ad1109646d6896f7961edefedf5
PMID 39635056
PQID 2839366550
PQPubID 2038884
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_08e00ad1109646d6896f7961edefedf5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11501677
proquest_miscellaneous_3146521130
proquest_journals_2839366550
pubmed_primary_39635056
crossref_primary_10_1515_nanoph_2023_0202
crossref_citationtrail_10_1515_nanoph_2023_0202
walterdegruyter_journals_10_1515_nanoph_2023_020212153165
PublicationCentury 2000
PublicationDate 2023-07-20
PublicationDateYYYYMMDD 2023-07-20
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-20
  day: 20
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Nanophotonics (Berlin, Germany)
PublicationTitleAlternate Nanophotonics
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References (j_nanoph-2023-0202_ref_045) 2019; 8
(j_nanoph-2023-0202_ref_020) 2021; 10
(j_nanoph-2023-0202_ref_011) 2015; 107
(j_nanoph-2023-0202_ref_035) 2020; 11
(j_nanoph-2023-0202_ref_013) 2008; 281
(j_nanoph-2023-0202_ref_039) 2021; 9
(j_nanoph-2023-0202_ref_046) 2018; 7
(j_nanoph-2023-0202_ref_041) 2022; 5
(j_nanoph-2023-0202_ref_021) 2018; 43
(j_nanoph-2023-0202_ref_052) 2006; 89
(j_nanoph-2023-0202_ref_010) 2014; 104
(j_nanoph-2023-0202_ref_003) 2016; 19
(j_nanoph-2023-0202_ref_030) 2005; 94
(j_nanoph-2023-0202_ref_048) 2020; 9
(j_nanoph-2023-0202_ref_042) 2023
(j_nanoph-2023-0202_ref_016) 2021; 46
(j_nanoph-2023-0202_ref_036) 2018; 7
(j_nanoph-2023-0202_ref_004) 2011; 106
(j_nanoph-2023-0202_ref_015) 2015; 27
(j_nanoph-2023-0202_ref_040) 2021; 10
(j_nanoph-2023-0202_ref_023) 2021; 39
(j_nanoph-2023-0202_ref_002) 2013; 2
(j_nanoph-2023-0202_ref_014) 2017; 25
(j_nanoph-2023-0202_ref_047) 2020; 8
(j_nanoph-2023-0202_ref_024) 2002; 27
(j_nanoph-2023-0202_ref_051) 2015; 2
(j_nanoph-2023-0202_ref_001) 2009; 1
(j_nanoph-2023-0202_ref_029) 2015; 23
(j_nanoph-2023-0202_ref_032) 2018; 5
(j_nanoph-2023-0202_ref_034) 1991; 16
(j_nanoph-2023-0202_ref_026) 2020; 9
(j_nanoph-2023-0202_ref_012) 2019; 58
(j_nanoph-2023-0202_ref_008) 2022; 30
(j_nanoph-2023-0202_ref_044) 2015; 23
(j_nanoph-2023-0202_ref_050) 2019; 52
(j_nanoph-2023-0202_ref_017) 2020; 8
(j_nanoph-2023-0202_ref_005) 2015; 354
(j_nanoph-2023-0202_ref_037) 2018; 43
(j_nanoph-2023-0202_ref_006) 2019; 27
(j_nanoph-2023-0202_ref_038) 2019; 27
(j_nanoph-2023-0202_ref_022) 2014; 32
(j_nanoph-2023-0202_ref_007) 2018; 12
(j_nanoph-2023-0202_ref_018) 2018; 36
(j_nanoph-2023-0202_ref_033) 2020; 14
(j_nanoph-2023-0202_ref_025) 2018; 26
(j_nanoph-2023-0202_ref_028) 2017; 35
(j_nanoph-2023-0202_ref_027) 2022; 40
(j_nanoph-2023-0202_ref_019) 2021; 29
(j_nanoph-2023-0202_ref_009) 2018; 284
(j_nanoph-2023-0202_ref_031) 2020; 38
(j_nanoph-2023-0202_ref_049) 2018; 43
2023072011152458436_j_nanoph-2023-0202_ref_012
2023072011152458436_j_nanoph-2023-0202_ref_011
2023072011152458436_j_nanoph-2023-0202_ref_014
2023072011152458436_j_nanoph-2023-0202_ref_013
2023072011152458436_j_nanoph-2023-0202_ref_016
2023072011152458436_j_nanoph-2023-0202_ref_015
2023072011152458436_j_nanoph-2023-0202_ref_018
2023072011152458436_j_nanoph-2023-0202_ref_017
2023072011152458436_j_nanoph-2023-0202_ref_019
2023072011152458436_j_nanoph-2023-0202_ref_021
2023072011152458436_j_nanoph-2023-0202_ref_020
2023072011152458436_j_nanoph-2023-0202_ref_001
2023072011152458436_j_nanoph-2023-0202_ref_045
2023072011152458436_j_nanoph-2023-0202_ref_044
2023072011152458436_j_nanoph-2023-0202_ref_003
2023072011152458436_j_nanoph-2023-0202_ref_047
2023072011152458436_j_nanoph-2023-0202_ref_002
2023072011152458436_j_nanoph-2023-0202_ref_046
2023072011152458436_j_nanoph-2023-0202_ref_005
2023072011152458436_j_nanoph-2023-0202_ref_049
2023072011152458436_j_nanoph-2023-0202_ref_004
2023072011152458436_j_nanoph-2023-0202_ref_048
2023072011152458436_j_nanoph-2023-0202_ref_007
2023072011152458436_j_nanoph-2023-0202_ref_006
2023072011152458436_j_nanoph-2023-0202_ref_009
2023072011152458436_j_nanoph-2023-0202_ref_008
2023072011152458436_j_nanoph-2023-0202_ref_050
2023072011152458436_j_nanoph-2023-0202_ref_052
2023072011152458436_j_nanoph-2023-0202_ref_051
2023072011152458436_j_nanoph-2023-0202_ref_010
2023072011152458436_j_nanoph-2023-0202_ref_034
2023072011152458436_j_nanoph-2023-0202_ref_033
2023072011152458436_j_nanoph-2023-0202_ref_036
2023072011152458436_j_nanoph-2023-0202_ref_035
2023072011152458436_j_nanoph-2023-0202_ref_038
2023072011152458436_j_nanoph-2023-0202_ref_037
2023072011152458436_j_nanoph-2023-0202_ref_039
2023072011152458436_j_nanoph-2023-0202_ref_041
2023072011152458436_j_nanoph-2023-0202_ref_040
2023072011152458436_j_nanoph-2023-0202_ref_043
2023072011152458436_j_nanoph-2023-0202_ref_042
2023072011152458436_j_nanoph-2023-0202_ref_023
2023072011152458436_j_nanoph-2023-0202_ref_022
2023072011152458436_j_nanoph-2023-0202_ref_025
2023072011152458436_j_nanoph-2023-0202_ref_024
2023072011152458436_j_nanoph-2023-0202_ref_027
2023072011152458436_j_nanoph-2023-0202_ref_026
2023072011152458436_j_nanoph-2023-0202_ref_029
2023072011152458436_j_nanoph-2023-0202_ref_028
2023072011152458436_j_nanoph-2023-0202_ref_030
2023072011152458436_j_nanoph-2023-0202_ref_032
2023072011152458436_j_nanoph-2023-0202_ref_031
References_xml – volume: 27
  start-page: 1884
  issue: 21
  year: 2002
  end-page: 1886
  ident: j_nanoph-2023-0202_ref_024
  article-title: All-fiber wavelength and mode-selective coupler for optical interconnections
  publication-title: Opt. Lett.
  doi: 10.1364/ol.27.001884
– volume: 29
  start-page: 41496
  issue: 25
  year: 2021
  end-page: 41511
  ident: j_nanoph-2023-0202_ref_019
  article-title: Generation of cylindrical vector dissipative soliton using an ultra-broadband LPFG mode converter with flat conversion efficiency
  publication-title: Opt. Express
  doi: 10.1364/oe.442516
– volume: 26
  start-page: 19171
  issue: 15
  year: 2018
  end-page: 19181
  ident: j_nanoph-2023-0202_ref_025
  article-title: High-order mode Yb-doped fiber lasers based on mode-selective couplers
  publication-title: Opt. Express
  doi: 10.1364/oe.26.019171
– volume: 43
  start-page: 5603
  issue: 22
  year: 2018
  end-page: 5606
  ident: j_nanoph-2023-0202_ref_037
  article-title: Color image identification and reconstruction using artificial neural networks on multimode fiber images: towards an all-optical design
  publication-title: Opt. Lett.
  doi: 10.1364/ol.43.005603
– volume: 354
  start-page: 71
  year: 2015
  end-page: 78
  ident: j_nanoph-2023-0202_ref_005
  article-title: Super-resolution microscopy based on fluorescence emission difference of cylindrical vector beams
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2015.05.057
– volume: 10
  start-page: 3527
  issue: 13
  year: 2021
  end-page: 3539
  ident: j_nanoph-2023-0202_ref_020
  article-title: 3 W average-power high-order mode pulse in dissipative soliton resonance mode-locked fiber laser
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2021-0317
– volume: 23
  start-page: 22977
  issue: 18
  year: 2015
  end-page: 22990
  ident: j_nanoph-2023-0202_ref_029
  article-title: Analysis of the modal evolution in fused-type mode-selective fiber couplers
  publication-title: Opt. Express
  doi: 10.1364/oe.23.022977
– volume: 107
  start-page: 241102
  issue: 24
  year: 2015
  end-page: 241104
  ident: j_nanoph-2023-0202_ref_011
  article-title: Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4937592
– volume: 7
  start-page: 1
  issue: 69
  year: 2018
  end-page: 11
  ident: j_nanoph-2023-0202_ref_036
  article-title: Multimode optical fiber transmission with a deep learning network
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0074-1
– volume: 23
  start-page: 4620
  issue: 4
  year: 2015
  end-page: 4629
  ident: j_nanoph-2023-0202_ref_044
  article-title: Real-time mode decomposition for few-mode fiber based on numerical method
  publication-title: Opt. Express
  doi: 10.1364/oe.23.004620
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  end-page: 57
  ident: j_nanoph-2023-0202_ref_001
  article-title: Cylindrical vector beams: from mathematical concepts to applications
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/aop.1.000001
– volume: 19
  start-page: 013001
  issue: 1
  year: 2016
  ident: j_nanoph-2023-0202_ref_003
  article-title: Roadmap on structured light
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/19/1/013001
– volume: 8
  start-page: 271
  issue: 2
  year: 2019
  end-page: 285
  ident: j_nanoph-2023-0202_ref_045
  article-title: Complex analysis between CV modes and OAM modes in fiber systems
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0179
– volume: 14
  start-page: 2000249
  year: 2020
  ident: j_nanoph-2023-0202_ref_033
  article-title: Deep learning-based recognition of different mode bases in ring‐core fiber
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202000249
– volume: 58
  start-page: 404
  issue: 2
  year: 2019
  end-page: 409
  ident: j_nanoph-2023-0202_ref_012
  article-title: Characterizing vortex beams from a spatial light modulator with collinear phase-shifting holography
  publication-title: Appl. Opt.
  doi: 10.1364/ao.58.000404
– volume: 106
  start-page: 123901
  issue: 12
  year: 2011
  ident: j_nanoph-2023-0202_ref_004
  article-title: Revealing local field structure of focused ultrashort pulses
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.106.123901
– volume: 40
  start-page: 6493
  issue: 19
  year: 2022
  end-page: 6500
  ident: j_nanoph-2023-0202_ref_027
  article-title: Generating femtosecond visible doughnut beams based on transverse-mode modulation
  publication-title: J. Lightwave Technol.
  doi: 10.1109/jlt.2022.3194582
– volume: 52
  start-page: 101934
  year: 2019
  ident: j_nanoph-2023-0202_ref_050
  article-title: Generation of orbital angular momentum mode using a single cylindrical vector mode based on mode selective coupler
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2019.101934
– volume: 12
  start-page: 1800164
  issue: 11
  year: 2018
  end-page: 1800169
  ident: j_nanoph-2023-0202_ref_007
  article-title: Tripling the capacity of optical vortices by nonlinear metasurface
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201800164
– volume: 35
  start-page: 2161
  issue: 11
  year: 2017
  end-page: 2166
  ident: j_nanoph-2023-0202_ref_028
  article-title: Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler
  publication-title: J. Lightwave Technol.
  doi: 10.1109/jlt.2017.2676241
– volume: 39
  start-page: 3269
  issue: 10
  year: 2021
  end-page: 3275
  ident: j_nanoph-2023-0202_ref_023
  article-title: The superimposed multi-channel helical long-period fiber grating and its application to multi-channel OAM mode generator
  publication-title: J. Lightwave Technol.
  doi: 10.1109/jlt.2021.3056182
– volume: 2
  start-page: 900
  year: 2015
  ident: j_nanoph-2023-0202_ref_051
  article-title: Q-plate enabled especially diverse orbital-angular-momentum conversion for stimulated emission depletion microscopy
  publication-title: Optica
  doi: 10.1364/optica.2.000900
– volume: 43
  start-page: 5841
  issue: 23
  year: 2018
  end-page: 5844
  ident: j_nanoph-2023-0202_ref_021
  article-title: Dynamic mode-switchable optical vortex beams using acousto-optic mode converter
  publication-title: Opt. Lett.
  doi: 10.1364/ol.43.005841
– volume: 94
  start-page: 143902
  year: 2005
  end-page: 143904
  ident: j_nanoph-2023-0202_ref_030
  article-title: Complete modal decomposition for optical waveguides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.94.143902
– volume: 30
  start-page: 34765
  issue: 19
  year: 2022
  end-page: 34775
  ident: j_nanoph-2023-0202_ref_008
  article-title: Remote sensing using a spatially and temporally controlled asymmetric perfect vortex basis generated with a 2D HOBBIT
  publication-title: Opt. Express
  doi: 10.1364/oe.469328
– volume: 89
  start-page: 191125
  issue: 19
  year: 2006
  end-page: 191134
  ident: j_nanoph-2023-0202_ref_052
  article-title: Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2374809
– volume: 25
  start-page: 2733
  issue: 3
  year: 2017
  end-page: 2741
  ident: j_nanoph-2023-0202_ref_014
  article-title: Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions
  publication-title: Opt. Express
  doi: 10.1364/oe.25.002733
– volume: 104
  start-page: e149
  issue: 24
  year: 2014
  ident: j_nanoph-2023-0202_ref_010
  article-title: Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4884116
– volume: 5
  start-page: 960
  issue: 8
  year: 2018
  end-page: 966
  ident: j_nanoph-2023-0202_ref_032
  article-title: Learning to see through multimode fibers
  publication-title: Optica
  doi: 10.1364/optica.5.000960
– volume: 11
  start-page: 5507
  year: 2020
  ident: j_nanoph-2023-0202_ref_035
  article-title: Fast mode decomposition in few-mode fibers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19323-6
– volume: 16
  start-page: 645
  issue: 9
  year: 1991
  end-page: 647
  ident: j_nanoph-2023-0202_ref_034
  article-title: Remote image classification through multimode optical fiber using a neural network
  publication-title: Opt. Lett.
  doi: 10.1364/ol.16.000645
– volume: 27
  start-page: 1006
  issue: 9
  year: 2015
  end-page: 1009
  ident: j_nanoph-2023-0202_ref_015
  article-title: Temperature-insensitive mode converters with co2-laser written long-period fiber gratings
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/lpt.2015.2405092
– volume: 7
  start-page: 287
  issue: 1
  year: 2018
  end-page: 293
  ident: j_nanoph-2023-0202_ref_046
  article-title: Controllable all-fiber generation/conversion of circularly polarized orbital angular momentum beams using long period fiber gratings
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2017-0047
– volume: 2
  start-page: 455
  issue: 5
  year: 2013
  end-page: 475
  ident: j_nanoph-2023-0202_ref_002
  article-title: Optical vortices in fiber
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2013-0047
– volume: 43
  start-page: 2146
  issue: 9
  year: 2018
  end-page: 2149
  ident: j_nanoph-2023-0202_ref_049
  article-title: Orbital angular momentum transition of light using a cylindrical vector beam
  publication-title: Opt. Lett.
  doi: 10.1364/ol.43.002146
– volume: 8
  start-page: 1203
  issue: 7
  year: 2020
  end-page: 1212
  ident: j_nanoph-2023-0202_ref_017
  article-title: Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser
  publication-title: Photonics Res.
  doi: 10.1364/prj.386954
– volume: 8
  start-page: 1268
  issue: 8
  year: 2020
  end-page: 1277
  ident: j_nanoph-2023-0202_ref_047
  article-title: All-fiber generation of arbitrary cylindrical vector beams on the first-order Poincaré sphere
  publication-title: Photonics Res.
  doi: 10.1364/prj.385007
– volume: 281
  start-page: 7
  issue: 1
  year: 2008
  end-page: 11
  ident: j_nanoph-2023-0202_ref_013
  article-title: Optical vortices generated by multi-level achromatic spiral phase plates for broadband beams
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2007.08.067
– volume: 27
  start-page: 5973
  issue: 5
  year: 2019
  end-page: 5981
  ident: j_nanoph-2023-0202_ref_006
  article-title: Sub-Rayleigh resolution single-pixel imaging using Gaussian- and doughnut-spot illumination
  publication-title: Opt. Express
  doi: 10.1364/oe.27.005973
– volume: 38
  start-page: 4052
  issue: 15
  year: 2020
  end-page: 4060
  ident: j_nanoph-2023-0202_ref_031
  article-title: An Accurate method for measuring the proportions of degenerated spatial modes in fibers
  publication-title: J. Lightwave Technol.
  doi: 10.1109/jlt.2020.2982222
– volume: 36
  start-page: 1683
  issue: 9
  year: 2018
  end-page: 1688
  ident: j_nanoph-2023-0202_ref_018
  article-title: Orbital angular momentum mode converter based on helical long period fiber grating inscribed by hydrogen-oxygen flame
  publication-title: J. Lightwave Technol.
  doi: 10.1109/jlt.2017.2787120
– year: 2023
  ident: j_nanoph-2023-0202_ref_042
  article-title: Angular superoscillatory metalens empowers single-shot measurement of OAM modes with finer intervals
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202300009
– volume: 46
  start-page: 2710
  issue: 11
  year: 2021
  end-page: 2713
  ident: j_nanoph-2023-0202_ref_016
  article-title: Vortex soliton oscillation in mode-locked laser based on broadband long period fiber grating
  publication-title: Opt. Lett.
  doi: 10.1364/ol.422623
– volume: 27
  start-page: 10127
  issue: 7
  year: 2019
  end-page: 10137
  ident: j_nanoph-2023-0202_ref_038
  article-title: Learning to decompose the modes in few-mode fibers with deep convolutional neutral network
  publication-title: Opt. Express
  doi: 10.1364/oe.27.010127
– volume: 9
  start-page: 247
  issue: 6
  year: 2021
  end-page: 252
  ident: j_nanoph-2023-0202_ref_039
  article-title: Genetic-algorithm-based deep neural networks for highly efficient photonic device design
  publication-title: Photonics Res.
  doi: 10.1364/prj.416294
– volume: 9
  start-page: 973
  issue: 4
  year: 2020
  end-page: 981
  ident: j_nanoph-2023-0202_ref_026
  article-title: A mode generator and multiplexer at visible wavelength based on all-fiber mode selective coupler
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2020-0050
– volume: 9
  start-page: 1881
  issue: 1
  year: 2020
  end-page: 1888
  ident: j_nanoph-2023-0202_ref_048
  article-title: Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-020-0251-x
– volume: 32
  start-page: 2152
  issue: 11
  year: 2014
  end-page: 2156
  ident: j_nanoph-2023-0202_ref_022
  article-title: Generation of optical vortices using a helical fiber Bragg grating
  publication-title: J. Lightwave Technol.
  doi: 10.1109/jlt.2014.2320539
– volume: 5
  start-page: 220058
  issue: 11
  year: 2022
  ident: j_nanoph-2023-0202_ref_041
  article-title: Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
  publication-title: Opto-Electron. Adv.
  doi: 10.29026/oea.2022.220058
– volume: 10
  start-page: 1
  issue: 63
  year: 2021
  end-page: 12
  ident: j_nanoph-2023-0202_ref_040
  article-title: Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-021-00497-7
– volume: 284
  start-page: 22
  year: 2018
  end-page: 27
  ident: j_nanoph-2023-0202_ref_009
  article-title: Highly-sensitive optical fiber temperature sensors based on PDMS/silica hybrid fiber structures
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2018.10.011
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_027
  doi: 10.1109/JLT.2022.3194582
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_033
  doi: 10.1002/lpor.202000249
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_052
  doi: 10.1063/1.2374809
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_028
  doi: 10.1109/JLT.2017.2676241
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_047
  doi: 10.1364/PRJ.385007
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_021
  doi: 10.1364/OL.43.005841
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_022
  doi: 10.1109/JLT.2014.2320539
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_048
  doi: 10.1038/s41377-020-0251-x
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_024
  doi: 10.1364/OL.27.001884
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_043
  doi: 10.1364/CLEOPR.2020.P1_6
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_025
  doi: 10.1364/OE.26.019171
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_020
  doi: 10.1515/nanoph-2021-0317
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_032
  doi: 10.1364/OPTICA.5.000960
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_007
  doi: 10.1002/lpor.201800164
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_036
  doi: 10.1038/s41377-018-0074-1
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_041
  doi: 10.29026/oea.2022.220058
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_026
  doi: 10.1515/nanoph-2020-0050
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_034
  doi: 10.1364/OL.16.000645
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_042
  doi: 10.1002/adom.202300009
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_035
  doi: 10.1038/s41467-020-19323-6
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_004
  doi: 10.1103/PhysRevLett.106.123901
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_031
  doi: 10.1109/JLT.2020.2982222
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_044
  doi: 10.1364/OE.23.004620
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_030
  doi: 10.1103/PhysRevLett.94.143902
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_018
  doi: 10.1109/JLT.2017.2787120
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_046
  doi: 10.1515/nanoph-2017-0047
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_016
  doi: 10.1364/OL.422623
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_019
  doi: 10.1364/OE.442516
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_037
  doi: 10.1364/OL.43.005603
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_015
  doi: 10.1109/LPT.2015.2405092
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_005
  doi: 10.1016/j.optcom.2015.05.057
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_039
  doi: 10.1364/PRJ.416294
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_008
  doi: 10.1364/OE.469328
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_002
  doi: 10.1515/nanoph-2013-0047
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_013
  doi: 10.1016/j.optcom.2007.08.067
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_017
  doi: 10.1364/PRJ.386954
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_040
  doi: 10.1038/s41377-021-00497-7
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_010
  doi: 10.1063/1.4884116
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_050
  doi: 10.1016/j.yofte.2019.101934
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_001
  doi: 10.1364/AOP.1.000001
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_006
  doi: 10.1364/OE.27.005973
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_012
  doi: 10.1364/AO.58.000404
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_009
  doi: 10.1016/j.sna.2018.10.011
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_014
  doi: 10.1364/OE.25.002733
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_011
  doi: 10.1063/1.4937592
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_051
  doi: 10.1364/OPTICA.2.000900
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_023
  doi: 10.1109/JLT.2021.3056182
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_049
  doi: 10.1364/OL.43.002146
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_029
  doi: 10.1364/OE.23.022977
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_003
  doi: 10.1088/2040-8978/19/1/013001
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_045
  doi: 10.1515/nanoph-2018-0179
– ident: 2023072011152458436_j_nanoph-2023-0202_ref_038
  doi: 10.1364/OE.27.010127
SSID ssj0000993196
Score 2.3087087
Snippet Structured optical fields, such as cylindrical vector (CV) and orbital angular momentum (OAM) modes, have attracted considerable attention due to their...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3165
SubjectTerms Algorithms
Angular momentum
Circular polarization
Decomposition
Deep learning
Image reconstruction
mode decomposition
Quantum computing
Switching
vector eigenmodes
vortex switching
Wave fronts
Wave plates
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsGDT8iZQkJHYsLAmiR07WSFeFauqC5AKmyh-TUdCyTDJTGHHP_CHfAn3Op5Uw6Mbtokncua-TnyvziHkmVe5FUJpJqwWTBiXMW0hHnNtvLKNdTyzQWxCHR-Xp6fVSTxw6-NY5TYnhkRtO4Nn5DMogxWXEgD1i-UXhqpR2F2NEhpXyTVkSUDphpPi03TGAugHPQz15QDIsBLAeuxUQhWftU3bLc8Y6oczAE35TmUKBP5_Q51_Dk_un4fGtnXz1frbsG2khvp0dPC_b3aT7EdkSl-OrnSLXHHtbXIQUSqNOaC_Qz6-cW5Jo9rE_Of3H1gILd3g1O5Xah0OqcdJMNq0lvbniyEMbNJxIVz2OKZCN6FhQB3ygaIgT3-XfDh6-_71OxYFGpiBqj4wnVbecwh5nXHpi9I3qeeCK5dZ4QsuAD0ZlRqbIYGSsYA2nAKE4GSVKwNewO-RvbZr3QNCeeW4Ep7r1GZCl7kGKOiNbkp8ltQuIbOtcWoT2ctRRONzjV8xYM56NGeN5qzRnAl5Pv1iOTJ3XLL2Fdp7Woec2-FCt5rXMYTrtHRp2likaJVCWllW0qtKZs4676wvEnK4tW8dE0FfXxg3IU-n2xDC2JdpWtet-5pDtQIUBWgiIfdH55p2wiFBIkhNSLnjdjtb3b3TLs4CTThi_UwqlZDqNw-92N6__hCMJp7J4uHl7_SI3BjDB4I7PSR7w2rtHpPrZjMs-tWTEIy_AHrLQD0
  priority: 102
  providerName: ProQuest
Title Deep learning–based vortex decomposition and switching based on fiber vector eigenmodes
URI https://www.degruyter.com/doi/10.1515/nanoph-2023-0202
https://www.ncbi.nlm.nih.gov/pubmed/39635056
https://www.proquest.com/docview/2839366550
https://www.proquest.com/docview/3146521130
https://pubmed.ncbi.nlm.nih.gov/PMC11501677
https://doaj.org/article/08e00ad1109646d6896f7961edefedf5
Volume 12
WOSCitedRecordID wos001009902700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: P5Z
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2192-8614
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000993196
  issn: 2192-8614
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9NAEB7BQUFzvMFwRItEQ2HF9m527ZKDO0FBFCGQcjSW93UXhJwodnLQ8R_4h_wSZtZOuPBsaFys19ZoHp5vPaNvAJ54lVkhlI6F1SIWxqWxthiPmTZe2co6ntowbEKNx_l0WkwujPqinrCOHrhT3DDJXZJUlogxpZBW5oX0qpCps8476wN7aaKKC4epDx3uId_q65KYs4d1Vc8XZzFNC48RImU7eSjQ9f8OY_7aKrl_HsrY1p0uV5_bTdk0ZKPjG7Dfw0j2rBP_Jlxy9S243kNK1gdscxtOXji3YP1oiNNvX75S1rJsTS22n5h11FHet22xqrasOZ-1obuSdRtx2VNPCVuHv_vMEXknTc9p7sC746O3z1_G_TSF2GAKbmOdFN5zjE-dculHua8SzwVXLrXCj7hAqGNUYmxKbEfGIjRwCtO5k0WmDJqM34W9el67-8B44bgSnuvEpkLnmUbc5o2ucnqX1C6C4Ua3pempxmnixceSjhxojbKzRknWKMkaETzdPrHoaDb-sveQzLXdRwTZYQHdpuzdpvyX20RwsDF22UdtUyLUKriUeGiL4PH2NsYbFVGq2s1XTckxtSDkwdQfwb3ON7aScPyaEaKMIN_xmh1Rd-_Us7PA6U3APJVKRVD85GA_xPuTQogghKdy9OB_KOYhXOtiBOM1OYC9drlyj-CqWbezZjmAy2qaD-DK4dF48mYQYg6vk9F7XJu8ej05-Q7LijWa
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFgkuLW8MBRYJDhys2N7Nrn1AiNJWrVqiChWpnLa2dzeNhJwQ50Fv_Af-Bz-KX8KMH6nCo7ceuNoba-18M983nvEMwAunIiOEynxhMuGL3IZ-ZtAeoyx3yqTG8tBUwyZUrxefnCRHK_Cj_RaGyipbn1g5ajPM6R15B2kw4VKioH4z-uLT1CjKrrYjNGpYHNjzOYZs5ev9bfx_X0bR7s7xuz2_mSrg50hFEz8LEuc44jQLuXTd2KWB44IrGxrhulwg5ecqyE1IXX9ygxRpFdKalUmkctw6x-tegzWBKzHYW9va6R19WLzVQb1FmKaJdiid_BjDgyY3irqhU6TFcHTm08RyH2VatMSF1ciAv-ncP8s11-dVKt3Y_nh6PmlTtxUj7m78b8_yFqw32pu9rY3lNqzY4g5sNDqcNV6uvAuftq0dsWaeRv_nt-9E9YbNqC75KzOWyvCbWjeWFoaV88GkKkll9UI87KgQh82qlAiz1PGURg6V9-DjldzgfVgthoV9CIwnlivheBaYUGRxlKHYdXmWxnQtmVkPOi0YdN70Z6cxIZ81xWkIH13DRxN8NMHHg1eLX4zq3iSXrN0ifC3WUVfx6sBw3NeNk9JBbIMgNdSEVgppZJxIpxIZWmOdNa7rwWaLJ924ulJfgMmD54vT6KQo85QWdjgtNUc-Rp2IesmDBzWYFzvhSAEkwz2Il2C-tNXlM8XgrGqETtFMKJXyIPnNIi62968HQl1VeCi7jy6_p2dwY-_4_aE-3O8dPIabtemiKws2YXUyntoncD2fTQbl-GnjChicXrXF_AICH5vf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning%E2%80%93based+vortex+decomposition+and+switching+based+on+fiber+vector+eigenmodes&rft.jtitle=Nanophotonics+%28Berlin%2C+Germany%29&rft.au=Hou%2C+Mengdie&rft.au=Xu%2C+Mengjun&rft.au=Xu%2C+Jiangtao&rft.au=Lu%2C+Jiafeng&rft.date=2023-07-20&rft.issn=2192-8614&rft.eissn=2192-8614&rft.volume=12&rft.issue=15&rft.spage=3165&rft.epage=3177&rft_id=info:doi/10.1515%2Fnanoph-2023-0202&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_nanoph_2023_0202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-8614&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-8614&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-8614&client=summon