Intelligent diagnosis and prediction of turbine digital electro-hydraulic control system faults: Design and experimentation
A physical modeling approach was adopted to build a Digital Electro-Hydraulic Control (DEH) system simulation model and the fault models using the SIMULINK tool. This research combined the advantages of the gray system and neural network to build a multi-parameter gray error neural network fault pre...
Uložené v:
| Vydané v: | PloS one Ročník 18; číslo 11; s. e0294413 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
San Francisco
Public Library of Science
15.11.2023
Public Library of Science (PLoS) |
| Predmet: | |
| ISSN: | 1932-6203, 1932-6203 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A physical modeling approach was adopted to build a Digital Electro-Hydraulic Control (DEH) system simulation model and the fault models using the SIMULINK tool. This research combined the advantages of the gray system and neural network to build a multi-parameter gray error neural network fault prediction model for the first time. Furthermore, an embedded platform for intelligent fault diagnosis and prediction was developed using an Application Specific Integrated Circuit chip. The results show that the simulation model of the DEH system has good performance. A jam fault, internal leakage, and a device fault could be accurately identified through the fault diagnosis model. The multi-parameter gray error neural network prediction model improves the accuracy of fault prediction. The embedded platform developed by the Application Specific Integrated Circuit chip solves the problem of transmission limitation and insufficient computing power. It realizes the intelligent diagnosis and prediction of DEH system faults and guarantees the regular operation of the DEH system. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1932-6203 1932-6203 |
| DOI: | 10.1371/journal.pone.0294413 |