Identifying Subgroups of Major Depressive Disorder Using Brain Structural Covariance Networks and Mapping of Associated Clinical and Cognitive Variables
Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. This study included 145 unmedicated patients w...
Saved in:
| Published in: | Biological psychiatry global open science Vol. 1; no. 2; pp. 135 - 145 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.08.2021
Elsevier |
| Subjects: | |
| ISSN: | 2667-1743, 2667-1743 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD.
This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes.
Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2.
Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD. |
|---|---|
| AbstractList | Background: Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. Methods: This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes. Results: Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2. Conclusions: Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD. Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes. Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2. Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD. AbstractBackgroundIdentifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. MethodsThis study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes. ResultsSource-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2. ConclusionsOverall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD. Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD.BackgroundIdentifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD.This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes.MethodsThis study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes.Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2.ResultsSource-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2.Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.ConclusionsOverall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD. |
| Author | Kumar, Poornima Li, Tao Nickerson, Lisa D. Wang, Min Chen, Yayun Ma, Xiaohong Du, Yue Pizzagalli, Diego A. Yang, Xiao |
| Author_xml | – sequence: 1 givenname: Xiao surname: Yang fullname: Yang, Xiao organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China – sequence: 2 givenname: Poornima surname: Kumar fullname: Kumar, Poornima organization: Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts – sequence: 3 givenname: Lisa D. surname: Nickerson fullname: Nickerson, Lisa D. organization: Department of Psychiatry, Harvard Medical School, Boston, Massachusetts – sequence: 4 givenname: Yue surname: Du fullname: Du, Yue organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China – sequence: 5 givenname: Min surname: Wang fullname: Wang, Min organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China – sequence: 6 givenname: Yayun surname: Chen fullname: Chen, Yayun organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China – sequence: 7 givenname: Tao surname: Li fullname: Li, Tao organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China – sequence: 8 givenname: Diego A. surname: Pizzagalli fullname: Pizzagalli, Diego A. organization: Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts – sequence: 9 givenname: Xiaohong orcidid: 0000-0003-2627-9946 surname: Ma fullname: Ma, Xiaohong email: maxiaohong@scu.edu.cn organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China |
| BookMark | eNqVks1u1DAUhSNUJErpG7DIks0Mvo7rJAghlSk_IxVYDGVr-ecmOM3YwU4GzZvwuDjMIFEkVLGyZZ_zXfve8zg7cd5hlj0FsgQC_Hm3VENsfVxSQmFJ2JIQ_iA7pZyXCyhZcfLH_lF2HmNHCKEXUBRAT7Mfa4NutM3eujbfTKoNfhpi7pv8g-x8yK9wCBij3WF-ZaMPBkN-E2fx6yCtyzdjmPQ4BdnnK7-TwUqnMf-I43cfbmMunUmgYZgNiXkZo9dWjmjyVW-d1ck2S1a-dXaci3yZEarH-CR72Mg-4vlxPctu3r75vHq_uP70br26vF5oDmxcMFUY0qCuaGUqaGjNGyCqNKVUFWFFQxUFWhFEWjNSK1Uw3lQcSs2MUsCb4ixbH7jGy04MwW5l2Asvrfh14EMrZBit7lFoXXBlpCkBKqYrppguaq6UUY0EfaES69WBNUxqi0anzqbG3IHevXH2q2j9TtQceAF1Ajw7AoL_NmEcxdZGjX0vHfopCloWUFLgjCTpi4NUBx9jwEZoO8rR-plsewFEzPEQnTjEQ8zxEISJFI9kZn-Zf7_xHtvxf5gGsrMYRNQW08CNDajH1DH7vwB9jMEt7jF2fgouDVuAiFQQsZmDO-eWQsosUJYAL_8NuL_-T9YrBs0 |
| CitedBy_id | crossref_primary_10_1016_j_jad_2024_09_033 crossref_primary_10_1017_S0033291724003167 crossref_primary_10_1186_s12888_025_06945_7 crossref_primary_10_3389_fpsyt_2024_1428425 crossref_primary_10_1016_j_psychres_2024_115817 crossref_primary_10_1016_j_nicl_2025_103794 crossref_primary_10_1017_S0033291725101499 crossref_primary_10_1186_s12888_025_07221_4 crossref_primary_10_1017_S0033291722000320 |
| Cites_doi | 10.1186/1741-7015-10-156 10.1017/S0033291700017025 10.1016/0377-0427(87)90125-7 10.1016/j.jpsychires.2016.10.001 10.1016/j.biopsych.2021.01.011 10.1037/0021-843X.117.3.552 10.1001/jamapsychiatry.2015.0071 10.1109/TPAMI.1979.4766909 10.1016/j.biopsych.2016.06.023 10.1038/srep27964 10.1016/j.biopsych.2014.08.009 10.1186/s12916-016-0560-3 10.1523/JNEUROSCI.0141-08.2008 10.1038/nm.4246 10.1007/s00429-019-01969-8 10.1016/j.biopsych.2011.02.003 10.1093/cercor/9.4.366 10.1016/j.neuroimage.2013.05.054 10.1196/annals.1401.029 10.1038/sj.mp.4000380 10.1176/appi.ajp.159.8.1395 10.1093/brain/103.2.221 10.1371/journal.pcbi.1001006 10.1038/nrn3465 10.1155/2015/386326 10.1016/j.neuroimage.2004.10.043 10.1002/hbm.23081 10.1093/cercor/bhq291 10.1038/npp.2017.229 10.1038/npp.2014.333 10.1523/JNEUROSCI.1868-09.2009 10.1016/j.biopsych.2015.02.020 10.1038/nm0217-264d 10.1073/pnas.0504136102 10.1089/brain.2012.0132 10.1006/nimg.2001.0786 10.1098/rstb.2005.1634 10.1375/twin.10.5.683 10.1016/j.neuroimage.2004.07.051 10.1126/science.1215330 10.3389/fninf.2012.00010 10.1109/TMI.2021.3051604 10.1093/brain/awx366 10.3389/fpsyt.2018.00339 10.1016/j.tics.2011.08.003 10.1162/jocn_a_00077 10.1016/j.neuroimage.2006.01.042 10.1523/JNEUROSCI.2308-09.2009 10.1016/j.neuron.2009.03.024 10.1038/s41598-020-79220-2 10.1136/jnnp.23.1.56 10.1523/JNEUROSCI.5587-06.2007 10.1073/pnas.0135058100 10.1002/jmri.24780 10.1016/j.jad.2014.06.032 10.3758/s13415-016-0486-4 10.1016/j.jad.2014.10.010 10.1002/hbm.20540 10.1093/brain/awg026 10.1073/pnas.0905267106 10.1103/PhysRevLett.109.012001 10.1016/j.biopsych.2006.09.020 10.1037/abn0000118 10.1073/pnas.0601417103 10.1073/pnas.0701519104 10.1523/JNEUROSCI.3554-12.2013 10.1093/brain/awm184 10.1111/1467-9868.00293 10.1016/j.comppsych.2015.09.003 10.1038/s41380-019-0385-5 10.1111/acel.12271 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors The Authors 2021 The Authors. 2021 The Authors 2021 |
| Copyright_xml | – notice: 2021 The Authors – notice: The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
| DOI | 10.1016/j.bpsgos.2021.04.006 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Open Access: DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2667-1743 |
| EndPage | 145 |
| ExternalDocumentID | oai_doaj_org_article_cc36bdad71184c84b4c396bbdbfa1c5b PMC9616319 10_1016_j_bpsgos_2021_04_006 S2667174321000124 1_s2_0_S2667174321000124 |
| GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AIGII AITUG AJUYK AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 ROL RPM Z5R 6I. AAFTH AFCTW AAYXX CITATION 7X8 5PM |
| ID | FETCH-LOGICAL-c614t-4b3d0fec828d81f296f10b7d7ab8043f2b21280ee29409bb346f8617c4dbb16f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001052856100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2667-1743 |
| IngestDate | Fri Oct 03 12:19:26 EDT 2025 Thu Aug 21 18:38:39 EDT 2025 Thu Oct 02 05:16:15 EDT 2025 Sat Nov 29 07:33:27 EST 2025 Tue Nov 18 22:24:53 EST 2025 Thu Jul 20 20:14:41 EDT 2023 Sun Feb 23 10:19:03 EST 2025 Tue Aug 26 16:33:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Biotypes CANTAB Source-based morphometry Clustering Major depression Structural covariance networks |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c614t-4b3d0fec828d81f296f10b7d7ab8043f2b21280ee29409bb346f8617c4dbb16f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 DAP and XM contributed equally to this work as joint senior authors. XY and PK contributed equally to this work as joint first authors. |
| ORCID | 0000-0003-2627-9946 |
| OpenAccessLink | https://doaj.org/article/cc36bdad71184c84b4c396bbdbfa1c5b |
| PQID | 2731721640 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cc36bdad71184c84b4c396bbdbfa1c5b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9616319 proquest_miscellaneous_2731721640 crossref_citationtrail_10_1016_j_bpsgos_2021_04_006 crossref_primary_10_1016_j_bpsgos_2021_04_006 elsevier_sciencedirect_doi_10_1016_j_bpsgos_2021_04_006 elsevier_clinicalkeyesjournals_1_s2_0_S2667174321000124 elsevier_clinicalkey_doi_10_1016_j_bpsgos_2021_04_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Biological psychiatry global open science |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Segall, Allen, Jung, Erhardt, Arja, Kiehl, Calhoun (bib39) 2012; 6 Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib33) 2001; 14 Gupta, Turner, Calhoun (bib38) 2019; 224 Andersson, Jenkinson, Smith (bib32) 2007 Nguyen, Kakeda, Watanabe, Katsuki, Sugimoto, Igata (bib10) 2020; 10 First, Spitzer, Gibbon, Williams (bib26) 1997 Drysdale, Grosenick, Downar, Dunlop, Mansouri, Meng (bib5) 2017; 23 Honey, Kötter, Breakspear, Sporns (bib24) 2007; 104 Wu, Sun, Wang, Yu, Li, Peng (bib25) 2017; 84 Marquand, Wolfers, Mennes, Buitelaar, Beckmann (bib3) 2016; 1 Guo, Wang, Guo, Chen, Zhang, Li (bib37) 2015; 42 Klein (bib78) 2008; 117 Greicius, Flores, Menon, Glover, Solvason, Kenna (bib64) 2007; 62 Drysdale, Grosenick, Downar, Dunlop, Mansouri, Meng (bib57) 2017; 23 Bernhardt, Chen, He, Evans, Bernasconi (bib69) 2011; 21 Hafkemeijer, Altmann-Schneider, de Craen, Slagboom, van der Grond, Rombouts (bib11) 2014; 13 Hamilton, Furman, Chang, Thomason, Dennis, Gotlib (bib63) 2011; 70 Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib21) 2006; 103 Drevets (bib67) 2007; 1121 Beijers, Wardenaar, van Loo, Schoevers (bib2) 2019; 24 Yang, Ma, Huang, Sun, Zhao, Lin (bib75) 2015; 63 Afridi, Hina, Qureshi, Hussain (bib72) 2011; 21 Seeley, Menon, Schatzberg, Keller, Glover, Kenna (bib66) 2007; 27 Beckmann, DeLuca, Devlin, Smith (bib20) 2005; 360 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg (bib31) 2004; 23 Rousseeuw (bib43) 1987; 20 Menon (bib53) 2011; 15 Rockel, Hiorns, Powell (bib49) 1980; 103 Aad, Abbott, Abdallah, Abdelalim, Abdesselam, Abdinov (bib30) 2012; 109 Yao, Zhang, Lin, Zhou, Xu, Jiang (bib16) 2010; 6 Hamilton, Farmer, Fogelman, Gotlib (bib61) 2015; 78 Habas, Kamdar, Nguyen, Prater, Beckmann, Menon, Greicius (bib22) 2009; 29 van Loo, de Jonge, Romeijn, Kessler, Schoevers (bib4) 2012; 10 Eckert, Keren, Roberts, Calhoun, Harris (bib19) 2010; 4 Seeley, Crawford, Zhou, Miller, Greicius (bib55) 2009; 62 Lerch, Worsley, Shaw, Greenstein, Lenroot, Giedd, Evans (bib50) 2006; 31 Evans (bib14) 2013; 80 He, Chen, Evans (bib15) 2008; 28 Qi, Yang, Zhao, Calhoun, Perrone-Bizzozero, Liu (bib36) 2018; 141 Burkhouse, Jacobs, Peters, Ajilore, Watkins, Langenecker (bib62) 2017; 17 Hamilton (bib27) 1960; 23 Alexander-Bloch, Raznahan, Bullmore, Giedd (bib13) 2013; 33 Kaiser, Andrews-Hanna, Wager, Pizzagalli (bib41) 2015; 72 Gold, Goldberg, McNary, Dixon, Lehman (bib73) 2002; 159 Greicius, Krasnow, Reiss, Menon (bib18) 2003; 100 Qi, Schumann, Bustillo, Turner, Jiang, Zhi (bib8) 2021 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib60) 2005; 102 Scheinost, Holmes, DellaGioia, Schleifer, Matuskey, Abdallah (bib56) 2018; 43 Beckmann, Smith (bib17) 2005; 25 Weinberg, Perlman, Kotov, Hajcak (bib79) 2016; 125 Smith, Fox, Miller, Glahn, Fox, Mackay (bib34) 2009; 106 Hafkemeijer, Möller, Dopper, Jiskoot, van den Berg-Huysmans, van Swieten (bib54) 2016; 37 Eckert, Leonard, Richards, Aylward, Thomson, Berninger (bib23) 2003; 126 Schmitt, Eyler, Giedd, Kremen, Kendler, Neale (bib68) 2007; 10 Zheng, Xu, Xie, Guo, Zhang, Yao, Wu (bib58) 2015; 2015 Drevets, Ongür, Price (bib65) 1998; 3:220-226 Lin, Xu, Lu, Ouyang, Dang, Lorenzo-Seva (bib76) 2014; 168 Bortolato, Miskowiak, Köhler, Maes, Fernandes, Berk, Carvalho (bib77) 2016; 14 Wang, Wang, Qu, Zhou, Li, Deng (bib12) 2016; 6 Etkin, Patenaude, Song, Usherwood, Rekshan, Schatzberg (bib74) 2015; 40 Douaud, Smith, Jenkinson, Behrens, Johansen-Berg, Vickers (bib29) 2007; 130 Gong, He (bib40) 2015; 77 Liao, Zhang, Mantini, Xu, Wang, Chen (bib52) 2013; 3 Caliński, Harabasz (bib44) 1974; 3 Alexander-Bloch, Giedd, Bullmore (bib47) 2013; 14 Laird, Fox, Eickhoff, Turner, Ray, McKay (bib35) 2011; 23 Zhi, Calhoun, Lv, Ma, Ke, Fu (bib59) 2018; 9 MacQueen (bib42) 1967 Yao, Sui, Wang, Yang, Jiaerken, Luo (bib7) 2021; 40 Gong, Rosa-Neto, Carbonell, Chen, He, Evans (bib51) 2009; 29 Fried, Nesse (bib1) 2015; 172 Tibshirani, Walther, Hastie (bib45) 2001; 63 Wright, Sharma, Ellison, McGuire, Friston, Brammer (bib48) 1999; 9 Davies, Bouldin (bib46) 1979; 1 Gong (bib28) 1992 Chen, Gutierrez, Thompson, Panizzon, Jernigan, Eyler (bib70) 2012; 335 Price, Lane, Gates, Kraynak, Horner, Thase, Siegle (bib6) 2017; 81 Xu, Groth, Pearlson, Schretlen, Calhoun (bib9) 2009; 30 Abas, Sahakian, Levy (bib71) 1990; 20 Davies (10.1016/j.bpsgos.2021.04.006_bib46) 1979; 1 Etkin (10.1016/j.bpsgos.2021.04.006_bib74) 2015; 40 Yao (10.1016/j.bpsgos.2021.04.006_bib7) 2021; 40 Beckmann (10.1016/j.bpsgos.2021.04.006_bib20) 2005; 360 Kaiser (10.1016/j.bpsgos.2021.04.006_bib41) 2015; 72 Hamilton (10.1016/j.bpsgos.2021.04.006_bib63) 2011; 70 Eckert (10.1016/j.bpsgos.2021.04.006_bib19) 2010; 4 Price (10.1016/j.bpsgos.2021.04.006_bib6) 2017; 81 Habas (10.1016/j.bpsgos.2021.04.006_bib22) 2009; 29 Scheinost (10.1016/j.bpsgos.2021.04.006_bib56) 2018; 43 Nguyen (10.1016/j.bpsgos.2021.04.006_bib10) 2020; 10 Rockel (10.1016/j.bpsgos.2021.04.006_bib49) 1980; 103 Gong (10.1016/j.bpsgos.2021.04.006_bib51) 2009; 29 Seeley (10.1016/j.bpsgos.2021.04.006_bib66) 2007; 27 Drysdale (10.1016/j.bpsgos.2021.04.006_bib57) 2017; 23 Abas (10.1016/j.bpsgos.2021.04.006_bib71) 1990; 20 Yang (10.1016/j.bpsgos.2021.04.006_bib75) 2015; 63 Lerch (10.1016/j.bpsgos.2021.04.006_bib50) 2006; 31 Gong (10.1016/j.bpsgos.2021.04.006_bib40) 2015; 77 Tibshirani (10.1016/j.bpsgos.2021.04.006_bib45) 2001; 63 Beijers (10.1016/j.bpsgos.2021.04.006_bib2) 2019; 24 Hafkemeijer (10.1016/j.bpsgos.2021.04.006_bib11) 2014; 13 Smith (10.1016/j.bpsgos.2021.04.006_bib31) 2004; 23 Laird (10.1016/j.bpsgos.2021.04.006_bib35) 2011; 23 Evans (10.1016/j.bpsgos.2021.04.006_bib14) 2013; 80 Lin (10.1016/j.bpsgos.2021.04.006_bib76) 2014; 168 MacQueen (10.1016/j.bpsgos.2021.04.006_bib42) 1967 Alexander-Bloch (10.1016/j.bpsgos.2021.04.006_bib47) 2013; 14 Hafkemeijer (10.1016/j.bpsgos.2021.04.006_bib54) 2016; 37 Gold (10.1016/j.bpsgos.2021.04.006_bib73) 2002; 159 He (10.1016/j.bpsgos.2021.04.006_bib15) 2008; 28 Rousseeuw (10.1016/j.bpsgos.2021.04.006_bib43) 1987; 20 Bernhardt (10.1016/j.bpsgos.2021.04.006_bib69) 2011; 21 Alexander-Bloch (10.1016/j.bpsgos.2021.04.006_bib13) 2013; 33 Greicius (10.1016/j.bpsgos.2021.04.006_bib64) 2007; 62 Bortolato (10.1016/j.bpsgos.2021.04.006_bib77) 2016; 14 Seeley (10.1016/j.bpsgos.2021.04.006_bib55) 2009; 62 Zhi (10.1016/j.bpsgos.2021.04.006_bib59) 2018; 9 Yao (10.1016/j.bpsgos.2021.04.006_bib16) 2010; 6 Zheng (10.1016/j.bpsgos.2021.04.006_bib58) 2015; 2015 Segall (10.1016/j.bpsgos.2021.04.006_bib39) 2012; 6 Andersson (10.1016/j.bpsgos.2021.04.006_bib32) 2007 Xu (10.1016/j.bpsgos.2021.04.006_bib9) 2009; 30 Weinberg (10.1016/j.bpsgos.2021.04.006_bib79) 2016; 125 Drysdale (10.1016/j.bpsgos.2021.04.006_bib5) 2017; 23 Burkhouse (10.1016/j.bpsgos.2021.04.006_bib62) 2017; 17 Afridi (10.1016/j.bpsgos.2021.04.006_bib72) 2011; 21 Qi (10.1016/j.bpsgos.2021.04.006_bib36) 2018; 141 Gong (10.1016/j.bpsgos.2021.04.006_bib28) 1992 Good (10.1016/j.bpsgos.2021.04.006_bib33) 2001; 14 Damoiseaux (10.1016/j.bpsgos.2021.04.006_bib21) 2006; 103 Wu (10.1016/j.bpsgos.2021.04.006_bib25) 2017; 84 Aad (10.1016/j.bpsgos.2021.04.006_bib30) 2012; 109 Drevets (10.1016/j.bpsgos.2021.04.006_bib67) 2007; 1121 Qi (10.1016/j.bpsgos.2021.04.006_bib8) 2021 Greicius (10.1016/j.bpsgos.2021.04.006_bib18) 2003; 100 Chen (10.1016/j.bpsgos.2021.04.006_bib70) 2012; 335 Douaud (10.1016/j.bpsgos.2021.04.006_bib29) 2007; 130 Guo (10.1016/j.bpsgos.2021.04.006_bib37) 2015; 42 Marquand (10.1016/j.bpsgos.2021.04.006_bib3) 2016; 1 Eckert (10.1016/j.bpsgos.2021.04.006_bib23) 2003; 126 van Loo (10.1016/j.bpsgos.2021.04.006_bib4) 2012; 10 Liao (10.1016/j.bpsgos.2021.04.006_bib52) 2013; 3 Drevets (10.1016/j.bpsgos.2021.04.006_bib65) 1998; 3:220-226 Honey (10.1016/j.bpsgos.2021.04.006_bib24) 2007; 104 Schmitt (10.1016/j.bpsgos.2021.04.006_bib68) 2007; 10 Fried (10.1016/j.bpsgos.2021.04.006_bib1) 2015; 172 Wang (10.1016/j.bpsgos.2021.04.006_bib12) 2016; 6 Smith (10.1016/j.bpsgos.2021.04.006_bib34) 2009; 106 Hamilton (10.1016/j.bpsgos.2021.04.006_bib27) 1960; 23 First (10.1016/j.bpsgos.2021.04.006_bib26) 1997 Hamilton (10.1016/j.bpsgos.2021.04.006_bib61) 2015; 78 Klein (10.1016/j.bpsgos.2021.04.006_bib78) 2008; 117 Beckmann (10.1016/j.bpsgos.2021.04.006_bib17) 2005; 25 Gupta (10.1016/j.bpsgos.2021.04.006_bib38) 2019; 224 Fox (10.1016/j.bpsgos.2021.04.006_bib60) 2005; 102 Caliński (10.1016/j.bpsgos.2021.04.006_bib44) 1974; 3 Wright (10.1016/j.bpsgos.2021.04.006_bib48) 1999; 9 Menon (10.1016/j.bpsgos.2021.04.006_bib53) 2011; 15 |
| References_xml | – volume: 23 start-page: 28 year: 2017 end-page: 38 ident: bib57 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat Med – year: 1997 ident: bib26 article-title: User’s Guide for the Structured Clinical Interview for DSM-IV Axis I Disorders SCID-I: Clinician Version – volume: 77 start-page: 223 year: 2015 end-page: 235 ident: bib40 article-title: Depression, neuroimaging and connectomics: A selective overview publication-title: Biol Psychiatry – volume: 104 start-page: 10240 year: 2007 end-page: 10245 ident: bib24 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 2147 year: 2011 end-page: 2157 ident: bib69 article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy publication-title: Cereb Cortex – volume: 27 start-page: 2349 year: 2007 end-page: 2356 ident: bib66 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci – volume: 14 start-page: 21 year: 2001 end-page: 36 ident: bib33 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: Neuroimage – volume: 29 start-page: 8586 year: 2009 end-page: 8594 ident: bib22 article-title: Distinct cerebellar contributions to intrinsic connectivity networks publication-title: J Neurosci – volume: 103 start-page: 221 year: 1980 end-page: 244 ident: bib49 article-title: The basic uniformity in structure of the neocortex publication-title: Brain – volume: 62 start-page: 42 year: 2009 end-page: 52 ident: bib55 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: bib44 article-title: A dendrite method for cluster analysis publication-title: Commun Stat – volume: 40 start-page: 1279 year: 2021 end-page: 1289 ident: bib7 article-title: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity publication-title: IEEE Trans Med Imaging – volume: 1121 start-page: 499 year: 2007 end-page: 527 ident: bib67 article-title: Orbitofrontal cortex function and structure in depression publication-title: Ann N Y Acad Sci – year: 1992 ident: bib28 article-title: Wechsler Adult Intelligence Scale-Revised in China Version – volume: 3 start-page: 240 year: 2013 end-page: 254 ident: bib52 article-title: Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy publication-title: Brain Connect – volume: 4 start-page: 10 year: 2010 ident: bib19 article-title: Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex publication-title: Front Hum Neurosci – volume: 20 start-page: 507 year: 1990 end-page: 520 ident: bib71 article-title: Neuropsychological deficits and CT scan changes in elderly depressives publication-title: Psychol Med – volume: 28 start-page: 4756 year: 2008 end-page: 4766 ident: bib15 article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease publication-title: J Neurosci – volume: 23 start-page: 56 year: 1960 end-page: 62 ident: bib27 article-title: A rating scale for depression publication-title: J Neurol Neurosurg Psychiatry – volume: 9 start-page: 339 year: 2018 ident: bib59 article-title: Aberrant dynamic functional network connectivity and graph properties in major depressive disorder publication-title: Front Psychiatry – volume: 63 start-page: 71 year: 2015 end-page: 79 ident: bib75 article-title: Gray matter volume abnormalities were associated with sustained attention in unmedicated major depression publication-title: Compr Psychiatry – volume: 84 start-page: 237 year: 2017 end-page: 242 ident: bib25 article-title: Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder publication-title: J Psychiatr Res – year: 2007 ident: bib32 article-title: Non-Linear Registration, aka Spatial Normalisation. FMRIB Technical Report TR07JA2 – volume: 141 start-page: 916 year: 2018 end-page: 926 ident: bib36 article-title: MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder publication-title: Brain – volume: 168 start-page: 184 year: 2014 end-page: 191 ident: bib76 article-title: Neuropsychological performance in melancholic, atypical and undifferentiated major depression during depressed and remitted states: A prospective longitudinal study publication-title: J Affect Disord – volume: 81 start-page: 347 year: 2017 end-page: 357 ident: bib6 article-title: Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood publication-title: Biol Psychiatry – volume: 17 start-page: 394 year: 2017 end-page: 405 ident: bib62 article-title: Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls publication-title: Cogn Affect Behav Neurosci – volume: 117 start-page: 552 year: 2008 end-page: 560 ident: bib78 article-title: Classification of depressive disorders in the DSM-V: Proposal for a two-dimension system publication-title: J Abnorm Psychol – volume: 224 start-page: 3031 year: 2019 end-page: 3044 ident: bib38 article-title: Source-based morphometry: A decade of covarying structural brain patterns publication-title: Brain Struct Funct – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: bib45 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J R Stat Soc B – volume: 125 start-page: 26 year: 2016 end-page: 39 ident: bib79 article-title: Depression and reduced neural response to emotional images: Distinction from anxiety, and importance of symptom dimensions and age of onset publication-title: J Abnorm Psychol – volume: 6 start-page: 27964 year: 2016 ident: bib12 article-title: Disorganized cortical thickness covariance network in major depressive disorder implicated by aberrant hubs in large-scale networks publication-title: Sci Rep – volume: 130 start-page: 2375 year: 2007 end-page: 2386 ident: bib29 article-title: Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia publication-title: Brain – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib34 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 683 year: 2007 end-page: 694 ident: bib68 article-title: Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment publication-title: Twin Res Hum Genet – volume: 37 start-page: 978 year: 2016 end-page: 988 ident: bib54 article-title: Differences in structural covariance brain networks between behavioral variant frontotemporal dementia and Alzheimer’s disease publication-title: Hum Brain Mapp – volume: 14 start-page: 9 year: 2016 ident: bib77 article-title: Cognitive remission: A novel objective for the treatment of major depression? publication-title: BMC Med – volume: 6 year: 2010 ident: bib16 article-title: Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease publication-title: PLoS Comput Biol – volume: 126 start-page: 482 year: 2003 end-page: 494 ident: bib23 article-title: Anatomical correlates of dyslexia: Frontal and cerebellar findings publication-title: Brain – volume: 1 start-page: 224 year: 1979 end-page: 227 ident: bib46 article-title: A cluster separation measure publication-title: IEEE Trans Pattern Anal Mach Intell – year: 2021 ident: bib8 article-title: Reward processing in novelty seekers: A transdiagnostic psychiatric imaging biomarker [published online ahead of print Jan 30] publication-title: Biol Psychiatry – volume: 33 start-page: 2889 year: 2013 end-page: 2899 ident: bib13 article-title: The convergence of maturational change and structural covariance in human cortical networks publication-title: J Neurosci – volume: 109 year: 2012 ident: bib30 article-title: Determination of the strange-quark density of the proton from ATLAS measurements of the W→ℓν and Z→ℓℓ cross sections publication-title: Phys Rev Lett – volume: 62 start-page: 429 year: 2007 end-page: 437 ident: bib64 article-title: Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus publication-title: Biol Psychiatry – volume: 14 start-page: 322 year: 2013 end-page: 336 ident: bib47 article-title: Imaging structural co-variance between human brain regions publication-title: Nat Rev Neurosci – volume: 43 start-page: 1119 year: 2018 end-page: 1127 ident: bib56 article-title: Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder publication-title: Neuropsychopharmacology – volume: 159 start-page: 1395 year: 2002 end-page: 1402 ident: bib73 article-title: Cognitive correlates of job tenure among patients with severe mental illness publication-title: Am J Psychiatry – volume: 30 start-page: 711 year: 2009 end-page: 724 ident: bib9 article-title: Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia publication-title: Hum Brain Mapp – volume: 24 start-page: 888 year: 2019 end-page: 900 ident: bib2 article-title: Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping publication-title: Mol Psychiatry – volume: 100 start-page: 253 year: 2003 end-page: 258 ident: bib18 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci U S A – volume: 42 start-page: 261 year: 2015 end-page: 268 ident: bib37 article-title: Structural covariance networks across healthy young adults and their consistency publication-title: J Magn Reson Imaging – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bib60 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci U S A – volume: 360 start-page: 1001 year: 2005 end-page: 1013 ident: bib20 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 23 start-page: 4022 year: 2011 end-page: 4037 ident: bib35 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J Cogn Neurosci – volume: 80 start-page: 489 year: 2013 end-page: 504 ident: bib14 article-title: Networks of anatomical covariance publication-title: NeuroImage – volume: 15 start-page: 483 year: 2011 end-page: 506 ident: bib53 article-title: Large-scale brain networks and psychopathology: A unifying triple network model publication-title: Trends Cogn Sci – volume: 29 start-page: 15684 year: 2009 end-page: 15693 ident: bib51 article-title: Age- and gender-related differences in the cortical anatomical network publication-title: J Neurosci – volume: 78 start-page: 224 year: 2015 end-page: 230 ident: bib61 article-title: Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience publication-title: Biol Psychiatry – volume: 10 start-page: 156 year: 2012 ident: bib4 article-title: Data-driven subtypes of major depressive disorder: A systematic review publication-title: BMC Med – volume: 23 start-page: 264 year: 2017 ident: bib5 article-title: Erratum: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat Med – volume: 13 start-page: 1068 year: 2014 end-page: 1074 ident: bib11 article-title: Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults publication-title: Aging Cell – volume: 9 start-page: 366 year: 1999 end-page: 378 ident: bib48 article-title: Supra-regional brain systems and the neuropathology of schizophrenia publication-title: Cereb Cortex – volume: 25 start-page: 294 year: 2005 end-page: 311 ident: bib17 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: Neuroimage – volume: 40 start-page: 1332 year: 2015 end-page: 1342 ident: bib74 article-title: A cognitive-emotional biomarker for predicting remission with antidepressant medications: A report from the iSPOT-D trial publication-title: Neuropsychopharmacology – volume: 6 start-page: 10 year: 2012 ident: bib39 article-title: Correspondence between structure and function in the human brain at rest publication-title: Front Neuroinform – start-page: 281 year: 1967 end-page: 297 ident: bib42 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1: Theory of Statistics – volume: 1 start-page: 433 year: 2016 end-page: 447 ident: bib3 article-title: Beyond lumping and splitting: A review of computational approaches for stratifying psychiatric disorders publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 10 start-page: 22096 year: 2020 ident: bib10 article-title: Brain structural network alterations related to serum cortisol levels in drug-naïve, first-episode major depressive disorder patients: A source-based morphometric study publication-title: Sci Rep – volume: 3:220-226 start-page: 190 year: 1998 end-page: 191 ident: bib65 article-title: Neuroimaging abnormalities in the subgenual prefrontal cortex: Implications for the pathophysiology of familial mood disorders publication-title: Mol Psychiatry – volume: 20 start-page: 53 year: 1987 end-page: 65 ident: bib43 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J Comp Appl Math – volume: 172 start-page: 96 year: 2015 end-page: 102 ident: bib1 article-title: Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR∗D study publication-title: J Affect Disord – volume: 103 start-page: 13848 year: 2006 end-page: 13853 ident: bib21 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc Natl Acad Sci U S A – volume: 335 start-page: 1634 year: 2012 end-page: 1636 ident: bib70 article-title: Hierarchical genetic organization of human cortical surface area publication-title: Science – volume: 72 start-page: 603 year: 2015 end-page: 611 ident: bib41 article-title: Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity publication-title: JAMA Psychiatry – volume: 31 start-page: 993 year: 2006 end-page: 1003 ident: bib50 article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI publication-title: Neuroimage – volume: 70 start-page: 327 year: 2011 end-page: 333 ident: bib63 article-title: Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination publication-title: Biol Psychiatry – volume: 21 start-page: 351 year: 2011 end-page: 355 ident: bib72 article-title: Cognitive disturbance comparison among drug-naive depressed cases and healthy controls publication-title: J Coll Physicians Surg Pak – volume: 2015 start-page: 386326 year: 2015 ident: bib58 article-title: The altered triple networks interaction in depression under resting state based on graph theory publication-title: Biomed Res Int – volume: 23 start-page: S208 year: 2004 end-page: S219 ident: bib31 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 10 start-page: 156 year: 2012 ident: 10.1016/j.bpsgos.2021.04.006_bib4 article-title: Data-driven subtypes of major depressive disorder: A systematic review publication-title: BMC Med doi: 10.1186/1741-7015-10-156 – volume: 20 start-page: 507 year: 1990 ident: 10.1016/j.bpsgos.2021.04.006_bib71 article-title: Neuropsychological deficits and CT scan changes in elderly depressives publication-title: Psychol Med doi: 10.1017/S0033291700017025 – year: 2007 ident: 10.1016/j.bpsgos.2021.04.006_bib32 – volume: 20 start-page: 53 year: 1987 ident: 10.1016/j.bpsgos.2021.04.006_bib43 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J Comp Appl Math doi: 10.1016/0377-0427(87)90125-7 – volume: 84 start-page: 237 year: 2017 ident: 10.1016/j.bpsgos.2021.04.006_bib25 article-title: Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2016.10.001 – year: 2021 ident: 10.1016/j.bpsgos.2021.04.006_bib8 article-title: Reward processing in novelty seekers: A transdiagnostic psychiatric imaging biomarker [published online ahead of print Jan 30] publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2021.01.011 – volume: 117 start-page: 552 year: 2008 ident: 10.1016/j.bpsgos.2021.04.006_bib78 article-title: Classification of depressive disorders in the DSM-V: Proposal for a two-dimension system publication-title: J Abnorm Psychol doi: 10.1037/0021-843X.117.3.552 – volume: 72 start-page: 603 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib41 article-title: Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity publication-title: JAMA Psychiatry doi: 10.1001/jamapsychiatry.2015.0071 – year: 1997 ident: 10.1016/j.bpsgos.2021.04.006_bib26 – volume: 1 start-page: 224 year: 1979 ident: 10.1016/j.bpsgos.2021.04.006_bib46 article-title: A cluster separation measure publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1979.4766909 – volume: 81 start-page: 347 year: 2017 ident: 10.1016/j.bpsgos.2021.04.006_bib6 article-title: Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2016.06.023 – volume: 6 start-page: 27964 year: 2016 ident: 10.1016/j.bpsgos.2021.04.006_bib12 article-title: Disorganized cortical thickness covariance network in major depressive disorder implicated by aberrant hubs in large-scale networks publication-title: Sci Rep doi: 10.1038/srep27964 – volume: 77 start-page: 223 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib40 article-title: Depression, neuroimaging and connectomics: A selective overview publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2014.08.009 – volume: 14 start-page: 9 year: 2016 ident: 10.1016/j.bpsgos.2021.04.006_bib77 article-title: Cognitive remission: A novel objective for the treatment of major depression? publication-title: BMC Med doi: 10.1186/s12916-016-0560-3 – volume: 28 start-page: 4756 year: 2008 ident: 10.1016/j.bpsgos.2021.04.006_bib15 article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0141-08.2008 – volume: 23 start-page: 28 year: 2017 ident: 10.1016/j.bpsgos.2021.04.006_bib57 article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat Med doi: 10.1038/nm.4246 – volume: 224 start-page: 3031 year: 2019 ident: 10.1016/j.bpsgos.2021.04.006_bib38 article-title: Source-based morphometry: A decade of covarying structural brain patterns publication-title: Brain Struct Funct doi: 10.1007/s00429-019-01969-8 – volume: 70 start-page: 327 year: 2011 ident: 10.1016/j.bpsgos.2021.04.006_bib63 article-title: Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2011.02.003 – volume: 9 start-page: 366 year: 1999 ident: 10.1016/j.bpsgos.2021.04.006_bib48 article-title: Supra-regional brain systems and the neuropathology of schizophrenia publication-title: Cereb Cortex doi: 10.1093/cercor/9.4.366 – volume: 80 start-page: 489 year: 2013 ident: 10.1016/j.bpsgos.2021.04.006_bib14 article-title: Networks of anatomical covariance publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.054 – volume: 1121 start-page: 499 year: 2007 ident: 10.1016/j.bpsgos.2021.04.006_bib67 article-title: Orbitofrontal cortex function and structure in depression publication-title: Ann N Y Acad Sci doi: 10.1196/annals.1401.029 – volume: 3:220-226 start-page: 190 year: 1998 ident: 10.1016/j.bpsgos.2021.04.006_bib65 article-title: Neuroimaging abnormalities in the subgenual prefrontal cortex: Implications for the pathophysiology of familial mood disorders publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4000380 – volume: 159 start-page: 1395 year: 2002 ident: 10.1016/j.bpsgos.2021.04.006_bib73 article-title: Cognitive correlates of job tenure among patients with severe mental illness publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.159.8.1395 – volume: 103 start-page: 221 year: 1980 ident: 10.1016/j.bpsgos.2021.04.006_bib49 article-title: The basic uniformity in structure of the neocortex publication-title: Brain doi: 10.1093/brain/103.2.221 – volume: 6 year: 2010 ident: 10.1016/j.bpsgos.2021.04.006_bib16 article-title: Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1001006 – volume: 14 start-page: 322 year: 2013 ident: 10.1016/j.bpsgos.2021.04.006_bib47 article-title: Imaging structural co-variance between human brain regions publication-title: Nat Rev Neurosci doi: 10.1038/nrn3465 – volume: 2015 start-page: 386326 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib58 article-title: The altered triple networks interaction in depression under resting state based on graph theory publication-title: Biomed Res Int doi: 10.1155/2015/386326 – volume: 25 start-page: 294 year: 2005 ident: 10.1016/j.bpsgos.2021.04.006_bib17 article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.10.043 – volume: 3 start-page: 1 year: 1974 ident: 10.1016/j.bpsgos.2021.04.006_bib44 article-title: A dendrite method for cluster analysis publication-title: Commun Stat – volume: 37 start-page: 978 year: 2016 ident: 10.1016/j.bpsgos.2021.04.006_bib54 article-title: Differences in structural covariance brain networks between behavioral variant frontotemporal dementia and Alzheimer’s disease publication-title: Hum Brain Mapp doi: 10.1002/hbm.23081 – volume: 21 start-page: 2147 year: 2011 ident: 10.1016/j.bpsgos.2021.04.006_bib69 article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy publication-title: Cereb Cortex doi: 10.1093/cercor/bhq291 – volume: 43 start-page: 1119 year: 2018 ident: 10.1016/j.bpsgos.2021.04.006_bib56 article-title: Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder publication-title: Neuropsychopharmacology doi: 10.1038/npp.2017.229 – volume: 40 start-page: 1332 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib74 article-title: A cognitive-emotional biomarker for predicting remission with antidepressant medications: A report from the iSPOT-D trial publication-title: Neuropsychopharmacology doi: 10.1038/npp.2014.333 – volume: 29 start-page: 8586 year: 2009 ident: 10.1016/j.bpsgos.2021.04.006_bib22 article-title: Distinct cerebellar contributions to intrinsic connectivity networks publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1868-09.2009 – volume: 4 start-page: 10 year: 2010 ident: 10.1016/j.bpsgos.2021.04.006_bib19 article-title: Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex publication-title: Front Hum Neurosci – volume: 78 start-page: 224 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib61 article-title: Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2015.02.020 – volume: 23 start-page: 264 year: 2017 ident: 10.1016/j.bpsgos.2021.04.006_bib5 article-title: Erratum: Resting-state connectivity biomarkers define neurophysiological subtypes of depression publication-title: Nat Med doi: 10.1038/nm0217-264d – start-page: 281 year: 1967 ident: 10.1016/j.bpsgos.2021.04.006_bib42 article-title: Some methods for classification and analysis of multivariate observations – volume: 102 start-page: 9673 year: 2005 ident: 10.1016/j.bpsgos.2021.04.006_bib60 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0504136102 – volume: 3 start-page: 240 year: 2013 ident: 10.1016/j.bpsgos.2021.04.006_bib52 article-title: Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy publication-title: Brain Connect doi: 10.1089/brain.2012.0132 – volume: 14 start-page: 21 year: 2001 ident: 10.1016/j.bpsgos.2021.04.006_bib33 article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains publication-title: Neuroimage doi: 10.1006/nimg.2001.0786 – volume: 360 start-page: 1001 year: 2005 ident: 10.1016/j.bpsgos.2021.04.006_bib20 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 10 start-page: 683 year: 2007 ident: 10.1016/j.bpsgos.2021.04.006_bib68 article-title: Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment publication-title: Twin Res Hum Genet doi: 10.1375/twin.10.5.683 – volume: 23 start-page: S208 issue: suppl 1 year: 2004 ident: 10.1016/j.bpsgos.2021.04.006_bib31 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 335 start-page: 1634 year: 2012 ident: 10.1016/j.bpsgos.2021.04.006_bib70 article-title: Hierarchical genetic organization of human cortical surface area publication-title: Science doi: 10.1126/science.1215330 – volume: 6 start-page: 10 year: 2012 ident: 10.1016/j.bpsgos.2021.04.006_bib39 article-title: Correspondence between structure and function in the human brain at rest publication-title: Front Neuroinform doi: 10.3389/fninf.2012.00010 – volume: 40 start-page: 1279 year: 2021 ident: 10.1016/j.bpsgos.2021.04.006_bib7 article-title: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3051604 – volume: 21 start-page: 351 year: 2011 ident: 10.1016/j.bpsgos.2021.04.006_bib72 article-title: Cognitive disturbance comparison among drug-naive depressed cases and healthy controls publication-title: J Coll Physicians Surg Pak – volume: 141 start-page: 916 year: 2018 ident: 10.1016/j.bpsgos.2021.04.006_bib36 article-title: MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder publication-title: Brain doi: 10.1093/brain/awx366 – volume: 9 start-page: 339 year: 2018 ident: 10.1016/j.bpsgos.2021.04.006_bib59 article-title: Aberrant dynamic functional network connectivity and graph properties in major depressive disorder publication-title: Front Psychiatry doi: 10.3389/fpsyt.2018.00339 – volume: 15 start-page: 483 year: 2011 ident: 10.1016/j.bpsgos.2021.04.006_bib53 article-title: Large-scale brain networks and psychopathology: A unifying triple network model publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2011.08.003 – volume: 23 start-page: 4022 year: 2011 ident: 10.1016/j.bpsgos.2021.04.006_bib35 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J Cogn Neurosci doi: 10.1162/jocn_a_00077 – volume: 31 start-page: 993 year: 2006 ident: 10.1016/j.bpsgos.2021.04.006_bib50 article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.042 – volume: 29 start-page: 15684 year: 2009 ident: 10.1016/j.bpsgos.2021.04.006_bib51 article-title: Age- and gender-related differences in the cortical anatomical network publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2308-09.2009 – volume: 62 start-page: 42 year: 2009 ident: 10.1016/j.bpsgos.2021.04.006_bib55 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – volume: 10 start-page: 22096 year: 2020 ident: 10.1016/j.bpsgos.2021.04.006_bib10 article-title: Brain structural network alterations related to serum cortisol levels in drug-naïve, first-episode major depressive disorder patients: A source-based morphometric study publication-title: Sci Rep doi: 10.1038/s41598-020-79220-2 – volume: 23 start-page: 56 year: 1960 ident: 10.1016/j.bpsgos.2021.04.006_bib27 article-title: A rating scale for depression publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.23.1.56 – volume: 27 start-page: 2349 year: 2007 ident: 10.1016/j.bpsgos.2021.04.006_bib66 article-title: Dissociable intrinsic connectivity networks for salience processing and executive control publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5587-06.2007 – volume: 100 start-page: 253 year: 2003 ident: 10.1016/j.bpsgos.2021.04.006_bib18 article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0135058100 – volume: 42 start-page: 261 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib37 article-title: Structural covariance networks across healthy young adults and their consistency publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24780 – volume: 168 start-page: 184 year: 2014 ident: 10.1016/j.bpsgos.2021.04.006_bib76 article-title: Neuropsychological performance in melancholic, atypical and undifferentiated major depression during depressed and remitted states: A prospective longitudinal study publication-title: J Affect Disord doi: 10.1016/j.jad.2014.06.032 – volume: 17 start-page: 394 year: 2017 ident: 10.1016/j.bpsgos.2021.04.006_bib62 article-title: Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls publication-title: Cogn Affect Behav Neurosci doi: 10.3758/s13415-016-0486-4 – volume: 172 start-page: 96 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib1 article-title: Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR∗D study publication-title: J Affect Disord doi: 10.1016/j.jad.2014.10.010 – volume: 30 start-page: 711 year: 2009 ident: 10.1016/j.bpsgos.2021.04.006_bib9 article-title: Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia publication-title: Hum Brain Mapp doi: 10.1002/hbm.20540 – volume: 126 start-page: 482 year: 2003 ident: 10.1016/j.bpsgos.2021.04.006_bib23 article-title: Anatomical correlates of dyslexia: Frontal and cerebellar findings publication-title: Brain doi: 10.1093/brain/awg026 – volume: 106 start-page: 13040 year: 2009 ident: 10.1016/j.bpsgos.2021.04.006_bib34 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0905267106 – volume: 109 year: 2012 ident: 10.1016/j.bpsgos.2021.04.006_bib30 article-title: Determination of the strange-quark density of the proton from ATLAS measurements of the W→ℓν and Z→ℓℓ cross sections publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.109.012001 – volume: 62 start-page: 429 year: 2007 ident: 10.1016/j.bpsgos.2021.04.006_bib64 article-title: Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.09.020 – volume: 125 start-page: 26 year: 2016 ident: 10.1016/j.bpsgos.2021.04.006_bib79 article-title: Depression and reduced neural response to emotional images: Distinction from anxiety, and importance of symptom dimensions and age of onset publication-title: J Abnorm Psychol doi: 10.1037/abn0000118 – volume: 103 start-page: 13848 year: 2006 ident: 10.1016/j.bpsgos.2021.04.006_bib21 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0601417103 – volume: 104 start-page: 10240 year: 2007 ident: 10.1016/j.bpsgos.2021.04.006_bib24 article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0701519104 – volume: 33 start-page: 2889 year: 2013 ident: 10.1016/j.bpsgos.2021.04.006_bib13 article-title: The convergence of maturational change and structural covariance in human cortical networks publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3554-12.2013 – year: 1992 ident: 10.1016/j.bpsgos.2021.04.006_bib28 – volume: 130 start-page: 2375 year: 2007 ident: 10.1016/j.bpsgos.2021.04.006_bib29 article-title: Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia publication-title: Brain doi: 10.1093/brain/awm184 – volume: 63 start-page: 411 year: 2001 ident: 10.1016/j.bpsgos.2021.04.006_bib45 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J R Stat Soc B doi: 10.1111/1467-9868.00293 – volume: 63 start-page: 71 year: 2015 ident: 10.1016/j.bpsgos.2021.04.006_bib75 article-title: Gray matter volume abnormalities were associated with sustained attention in unmedicated major depression publication-title: Compr Psychiatry doi: 10.1016/j.comppsych.2015.09.003 – volume: 1 start-page: 433 year: 2016 ident: 10.1016/j.bpsgos.2021.04.006_bib3 article-title: Beyond lumping and splitting: A review of computational approaches for stratifying psychiatric disorders publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging – volume: 24 start-page: 888 year: 2019 ident: 10.1016/j.bpsgos.2021.04.006_bib2 article-title: Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping publication-title: Mol Psychiatry doi: 10.1038/s41380-019-0385-5 – volume: 13 start-page: 1068 year: 2014 ident: 10.1016/j.bpsgos.2021.04.006_bib11 article-title: Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults publication-title: Aging Cell doi: 10.1111/acel.12271 |
| SSID | ssj0002513312 |
| Score | 2.2380698 |
| Snippet | Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way.... AbstractBackgroundIdentifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically... Background: Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically... |
| SourceID | doaj pubmedcentral proquest crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 135 |
| SubjectTerms | Archival Report Biotypes CANTAB Clustering Major depression Psychiatric/Mental Health Source-based morphometry Structural covariance networks |
| Title | Identifying Subgroups of Major Depressive Disorder Using Brain Structural Covariance Networks and Mapping of Associated Clinical and Cognitive Variables |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2667174321000124 https://www.clinicalkey.es/playcontent/1-s2.0-S2667174321000124 https://dx.doi.org/10.1016/j.bpsgos.2021.04.006 https://www.proquest.com/docview/2731721640 https://pubmed.ncbi.nlm.nih.gov/PMC9616319 https://doaj.org/article/cc36bdad71184c84b4c396bbdbfa1c5b |
| Volume | 1 |
| WOSCitedRecordID | wos001052856100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2667-1743 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513312 issn: 2667-1743 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2667-1743 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002513312 issn: 2667-1743 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFFQFiKVRG4hrh2I6dHOnSigNdIRWqvVnxq2y1Sqqm7JHf0Z_LjJNUiYS0HLjsYdeeRJ5v55HMfEPIh0LXFSRdVVaGss6k8jFD3rRMRMetELqMaZzP5Ve9WpXrdfVtMuoLa8J6euD-4D46J5T1tdcQCUtXSiudqJS13sY6d4VF6wtRzySZQhvMcWxJetUJDghZEKUY--ZScZe96a5aZOvmeWI6xYFHE7-U6Ptn7mkSfs6LJyfe6OyQPBvCSPqpv_3n5FFoXpD7vus2dS5RsAipY6OjbaTn9XV7Sz8PVa-7QEfSTZpKBugJDoqgF4lLFnk46LLdQRKNiKCrvlC8o3XjQRDyOVyhzFGxwdOBXHSblizHgiR6iSLsNnQvyY-z0-_LL9kweSFz4K7vMmmFZzE4SMd8mUdeqZgzq72ubcmkiNyCxytZCLyC_NBaIVUsIRZy0lubqyhekYOmbcJrQpnmsWLBS43kgnlRc-WirDTEUazgXi2IGM_duIGWHKdjbM1Yf3Ztem0Z1JZh0oC2FiR72HXT03LsWX-CKn1Yi6Ta6QuAmhmgZvZBbUGKERBm7FsFSwuCNnsurv-2L3SDuehMbjpumLlAsCJWeZ6eEMrpziEi6iOdf7jm-xGxBgwGvgWqm9D-gkVaYNqvJAPpMyjPTmf-S7P5majHKwXxe169-R_HeUSe4g331ZRvyQFgPLwjT9zubtPdHpPHel0ep381fJ7_Pv0DDYNWcw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Subgroups+of+Major+Depressive+Disorder+Using+Brain+Structural+Covariance+Networks+and+Mapping+of+Associated+Clinical+and+Cognitive+Variables&rft.jtitle=Biological+psychiatry+global+open+science&rft.au=Yang%2C+Xiao&rft.au=Kumar%2C+Poornima&rft.au=Nickerson%2C+Lisa+D&rft.au=Du%2C+Yue&rft.date=2021-08-01&rft.issn=2667-1743&rft.eissn=2667-1743&rft.volume=1&rft.issue=2&rft.spage=135&rft_id=info:doi/10.1016%2Fj.bpsgos.2021.04.006&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26671743%2FS2667174321X00031%2Fcov150h.gif |