Identifying Subgroups of Major Depressive Disorder Using Brain Structural Covariance Networks and Mapping of Associated Clinical and Cognitive Variables

Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. This study included 145 unmedicated patients w...

Full description

Saved in:
Bibliographic Details
Published in:Biological psychiatry global open science Vol. 1; no. 2; pp. 135 - 145
Main Authors: Yang, Xiao, Kumar, Poornima, Nickerson, Lisa D., Du, Yue, Wang, Min, Chen, Yayun, Li, Tao, Pizzagalli, Diego A., Ma, Xiaohong
Format: Journal Article
Language:English
Published: Elsevier Inc 01.08.2021
Elsevier
Subjects:
ISSN:2667-1743, 2667-1743
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes. Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2. Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.
AbstractList Background: Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. Methods: This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes. Results: Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2. Conclusions: Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.
Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes. Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2. Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.
AbstractBackgroundIdentifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD. MethodsThis study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes. ResultsSource-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2. ConclusionsOverall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.
Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD.BackgroundIdentifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way. However, limited studies have used brain structural covariance networks (SCNs) for subtyping MDD.This study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes.MethodsThis study included 145 unmedicated patients with MDD and 206 demographically matched healthy control subjects, who underwent a structural magnetic resonance imaging scan and a comprehensive neurocognitive battery. Patterns of structural covariance were identified using source-based morphometry across both patients with MDD and healthy control subjects. K-means clustering algorithms were applied on dysregulated structural networks in MDD to identify potential MDD subtypes. Finally, clinical and neurocognitive measures were compared between identified subgroups to elucidate the profile of these MDD subtypes.Source-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2.ResultsSource-based morphometry across all individuals identified 28 whole-brain SCNs that encompassed the prefrontal, anterior cingulate, and orbitofrontal cortices; basal ganglia; and cerebellar, visual, and motor regions. Compared with healthy control subjects, individuals with MDD showed lower structural network integrity in three networks including default mode, ventromedial prefrontal cortical, and salience networks. Clustering analysis revealed two MDD subtypes based on the patterns of structural network abnormalities in these three networks. Further profiling revealed that patients in subtype 1 had younger age of onset and more symptom severity as well as greater deficits in cognitive performance than patients in subtype 2.Overall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.ConclusionsOverall, we identified two MDD subtypes based on SCNs that differed in their clinical and cognitive profile. Our results represent a proof-of-concept framework for leveraging these large-scale SCNs to parse heterogeneity in MDD.
Author Kumar, Poornima
Li, Tao
Nickerson, Lisa D.
Wang, Min
Chen, Yayun
Ma, Xiaohong
Du, Yue
Pizzagalli, Diego A.
Yang, Xiao
Author_xml – sequence: 1
  givenname: Xiao
  surname: Yang
  fullname: Yang, Xiao
  organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
– sequence: 2
  givenname: Poornima
  surname: Kumar
  fullname: Kumar, Poornima
  organization: Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts
– sequence: 3
  givenname: Lisa D.
  surname: Nickerson
  fullname: Nickerson, Lisa D.
  organization: Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
– sequence: 4
  givenname: Yue
  surname: Du
  fullname: Du, Yue
  organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
– sequence: 5
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
– sequence: 6
  givenname: Yayun
  surname: Chen
  fullname: Chen, Yayun
  organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
– sequence: 7
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
– sequence: 8
  givenname: Diego A.
  surname: Pizzagalli
  fullname: Pizzagalli, Diego A.
  organization: Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, Massachusetts
– sequence: 9
  givenname: Xiaohong
  orcidid: 0000-0003-2627-9946
  surname: Ma
  fullname: Ma, Xiaohong
  email: maxiaohong@scu.edu.cn
  organization: Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
BookMark eNqVks1u1DAUhSNUJErpG7DIks0Mvo7rJAghlSk_IxVYDGVr-ecmOM3YwU4GzZvwuDjMIFEkVLGyZZ_zXfve8zg7cd5hlj0FsgQC_Hm3VENsfVxSQmFJ2JIQ_iA7pZyXCyhZcfLH_lF2HmNHCKEXUBRAT7Mfa4NutM3eujbfTKoNfhpi7pv8g-x8yK9wCBij3WF-ZaMPBkN-E2fx6yCtyzdjmPQ4BdnnK7-TwUqnMf-I43cfbmMunUmgYZgNiXkZo9dWjmjyVW-d1ck2S1a-dXaci3yZEarH-CR72Mg-4vlxPctu3r75vHq_uP70br26vF5oDmxcMFUY0qCuaGUqaGjNGyCqNKVUFWFFQxUFWhFEWjNSK1Uw3lQcSs2MUsCb4ixbH7jGy04MwW5l2Asvrfh14EMrZBit7lFoXXBlpCkBKqYrppguaq6UUY0EfaES69WBNUxqi0anzqbG3IHevXH2q2j9TtQceAF1Ajw7AoL_NmEcxdZGjX0vHfopCloWUFLgjCTpi4NUBx9jwEZoO8rR-plsewFEzPEQnTjEQ8zxEISJFI9kZn-Zf7_xHtvxf5gGsrMYRNQW08CNDajH1DH7vwB9jMEt7jF2fgouDVuAiFQQsZmDO-eWQsosUJYAL_8NuL_-T9YrBs0
CitedBy_id crossref_primary_10_1016_j_jad_2024_09_033
crossref_primary_10_1017_S0033291724003167
crossref_primary_10_1186_s12888_025_06945_7
crossref_primary_10_3389_fpsyt_2024_1428425
crossref_primary_10_1016_j_psychres_2024_115817
crossref_primary_10_1016_j_nicl_2025_103794
crossref_primary_10_1017_S0033291725101499
crossref_primary_10_1186_s12888_025_07221_4
crossref_primary_10_1017_S0033291722000320
Cites_doi 10.1186/1741-7015-10-156
10.1017/S0033291700017025
10.1016/0377-0427(87)90125-7
10.1016/j.jpsychires.2016.10.001
10.1016/j.biopsych.2021.01.011
10.1037/0021-843X.117.3.552
10.1001/jamapsychiatry.2015.0071
10.1109/TPAMI.1979.4766909
10.1016/j.biopsych.2016.06.023
10.1038/srep27964
10.1016/j.biopsych.2014.08.009
10.1186/s12916-016-0560-3
10.1523/JNEUROSCI.0141-08.2008
10.1038/nm.4246
10.1007/s00429-019-01969-8
10.1016/j.biopsych.2011.02.003
10.1093/cercor/9.4.366
10.1016/j.neuroimage.2013.05.054
10.1196/annals.1401.029
10.1038/sj.mp.4000380
10.1176/appi.ajp.159.8.1395
10.1093/brain/103.2.221
10.1371/journal.pcbi.1001006
10.1038/nrn3465
10.1155/2015/386326
10.1016/j.neuroimage.2004.10.043
10.1002/hbm.23081
10.1093/cercor/bhq291
10.1038/npp.2017.229
10.1038/npp.2014.333
10.1523/JNEUROSCI.1868-09.2009
10.1016/j.biopsych.2015.02.020
10.1038/nm0217-264d
10.1073/pnas.0504136102
10.1089/brain.2012.0132
10.1006/nimg.2001.0786
10.1098/rstb.2005.1634
10.1375/twin.10.5.683
10.1016/j.neuroimage.2004.07.051
10.1126/science.1215330
10.3389/fninf.2012.00010
10.1109/TMI.2021.3051604
10.1093/brain/awx366
10.3389/fpsyt.2018.00339
10.1016/j.tics.2011.08.003
10.1162/jocn_a_00077
10.1016/j.neuroimage.2006.01.042
10.1523/JNEUROSCI.2308-09.2009
10.1016/j.neuron.2009.03.024
10.1038/s41598-020-79220-2
10.1136/jnnp.23.1.56
10.1523/JNEUROSCI.5587-06.2007
10.1073/pnas.0135058100
10.1002/jmri.24780
10.1016/j.jad.2014.06.032
10.3758/s13415-016-0486-4
10.1016/j.jad.2014.10.010
10.1002/hbm.20540
10.1093/brain/awg026
10.1073/pnas.0905267106
10.1103/PhysRevLett.109.012001
10.1016/j.biopsych.2006.09.020
10.1037/abn0000118
10.1073/pnas.0601417103
10.1073/pnas.0701519104
10.1523/JNEUROSCI.3554-12.2013
10.1093/brain/awm184
10.1111/1467-9868.00293
10.1016/j.comppsych.2015.09.003
10.1038/s41380-019-0385-5
10.1111/acel.12271
ContentType Journal Article
Copyright 2021 The Authors
The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.bpsgos.2021.04.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2667-1743
EndPage 145
ExternalDocumentID oai_doaj_org_article_cc36bdad71184c84b4c396bbdbfa1c5b
PMC9616319
10_1016_j_bpsgos_2021_04_006
S2667174321000124
1_s2_0_S2667174321000124
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AIGII
AITUG
AJUYK
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
RPM
Z5R
6I.
AAFTH
AFCTW
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c614t-4b3d0fec828d81f296f10b7d7ab8043f2b21280ee29409bb346f8617c4dbb16f3
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001052856100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2667-1743
IngestDate Fri Oct 03 12:19:26 EDT 2025
Thu Aug 21 18:38:39 EDT 2025
Thu Oct 02 05:16:15 EDT 2025
Sat Nov 29 07:33:27 EST 2025
Tue Nov 18 22:24:53 EST 2025
Thu Jul 20 20:14:41 EDT 2023
Sun Feb 23 10:19:03 EST 2025
Tue Aug 26 16:33:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Biotypes
CANTAB
Source-based morphometry
Clustering
Major depression
Structural covariance networks
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c614t-4b3d0fec828d81f296f10b7d7ab8043f2b21280ee29409bb346f8617c4dbb16f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
DAP and XM contributed equally to this work as joint senior authors.
XY and PK contributed equally to this work as joint first authors.
ORCID 0000-0003-2627-9946
OpenAccessLink https://doaj.org/article/cc36bdad71184c84b4c396bbdbfa1c5b
PQID 2731721640
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_cc36bdad71184c84b4c396bbdbfa1c5b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9616319
proquest_miscellaneous_2731721640
crossref_citationtrail_10_1016_j_bpsgos_2021_04_006
crossref_primary_10_1016_j_bpsgos_2021_04_006
elsevier_sciencedirect_doi_10_1016_j_bpsgos_2021_04_006
elsevier_clinicalkeyesjournals_1_s2_0_S2667174321000124
elsevier_clinicalkey_doi_10_1016_j_bpsgos_2021_04_006
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Biological psychiatry global open science
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Segall, Allen, Jung, Erhardt, Arja, Kiehl, Calhoun (bib39) 2012; 6
Good, Johnsrude, Ashburner, Henson, Friston, Frackowiak (bib33) 2001; 14
Gupta, Turner, Calhoun (bib38) 2019; 224
Andersson, Jenkinson, Smith (bib32) 2007
Nguyen, Kakeda, Watanabe, Katsuki, Sugimoto, Igata (bib10) 2020; 10
First, Spitzer, Gibbon, Williams (bib26) 1997
Drysdale, Grosenick, Downar, Dunlop, Mansouri, Meng (bib5) 2017; 23
Honey, Kötter, Breakspear, Sporns (bib24) 2007; 104
Wu, Sun, Wang, Yu, Li, Peng (bib25) 2017; 84
Marquand, Wolfers, Mennes, Buitelaar, Beckmann (bib3) 2016; 1
Guo, Wang, Guo, Chen, Zhang, Li (bib37) 2015; 42
Klein (bib78) 2008; 117
Greicius, Flores, Menon, Glover, Solvason, Kenna (bib64) 2007; 62
Drysdale, Grosenick, Downar, Dunlop, Mansouri, Meng (bib57) 2017; 23
Bernhardt, Chen, He, Evans, Bernasconi (bib69) 2011; 21
Hafkemeijer, Altmann-Schneider, de Craen, Slagboom, van der Grond, Rombouts (bib11) 2014; 13
Hamilton, Furman, Chang, Thomason, Dennis, Gotlib (bib63) 2011; 70
Damoiseaux, Rombouts, Barkhof, Scheltens, Stam, Smith, Beckmann (bib21) 2006; 103
Drevets (bib67) 2007; 1121
Beijers, Wardenaar, van Loo, Schoevers (bib2) 2019; 24
Yang, Ma, Huang, Sun, Zhao, Lin (bib75) 2015; 63
Afridi, Hina, Qureshi, Hussain (bib72) 2011; 21
Seeley, Menon, Schatzberg, Keller, Glover, Kenna (bib66) 2007; 27
Beckmann, DeLuca, Devlin, Smith (bib20) 2005; 360
Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg (bib31) 2004; 23
Rousseeuw (bib43) 1987; 20
Menon (bib53) 2011; 15
Rockel, Hiorns, Powell (bib49) 1980; 103
Aad, Abbott, Abdallah, Abdelalim, Abdesselam, Abdinov (bib30) 2012; 109
Yao, Zhang, Lin, Zhou, Xu, Jiang (bib16) 2010; 6
Hamilton, Farmer, Fogelman, Gotlib (bib61) 2015; 78
Habas, Kamdar, Nguyen, Prater, Beckmann, Menon, Greicius (bib22) 2009; 29
van Loo, de Jonge, Romeijn, Kessler, Schoevers (bib4) 2012; 10
Eckert, Keren, Roberts, Calhoun, Harris (bib19) 2010; 4
Seeley, Crawford, Zhou, Miller, Greicius (bib55) 2009; 62
Lerch, Worsley, Shaw, Greenstein, Lenroot, Giedd, Evans (bib50) 2006; 31
Evans (bib14) 2013; 80
He, Chen, Evans (bib15) 2008; 28
Qi, Yang, Zhao, Calhoun, Perrone-Bizzozero, Liu (bib36) 2018; 141
Burkhouse, Jacobs, Peters, Ajilore, Watkins, Langenecker (bib62) 2017; 17
Hamilton (bib27) 1960; 23
Alexander-Bloch, Raznahan, Bullmore, Giedd (bib13) 2013; 33
Kaiser, Andrews-Hanna, Wager, Pizzagalli (bib41) 2015; 72
Gold, Goldberg, McNary, Dixon, Lehman (bib73) 2002; 159
Greicius, Krasnow, Reiss, Menon (bib18) 2003; 100
Qi, Schumann, Bustillo, Turner, Jiang, Zhi (bib8) 2021
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bib60) 2005; 102
Scheinost, Holmes, DellaGioia, Schleifer, Matuskey, Abdallah (bib56) 2018; 43
Beckmann, Smith (bib17) 2005; 25
Weinberg, Perlman, Kotov, Hajcak (bib79) 2016; 125
Smith, Fox, Miller, Glahn, Fox, Mackay (bib34) 2009; 106
Hafkemeijer, Möller, Dopper, Jiskoot, van den Berg-Huysmans, van Swieten (bib54) 2016; 37
Eckert, Leonard, Richards, Aylward, Thomson, Berninger (bib23) 2003; 126
Schmitt, Eyler, Giedd, Kremen, Kendler, Neale (bib68) 2007; 10
Zheng, Xu, Xie, Guo, Zhang, Yao, Wu (bib58) 2015; 2015
Drevets, Ongür, Price (bib65) 1998; 3:220-226
Lin, Xu, Lu, Ouyang, Dang, Lorenzo-Seva (bib76) 2014; 168
Bortolato, Miskowiak, Köhler, Maes, Fernandes, Berk, Carvalho (bib77) 2016; 14
Wang, Wang, Qu, Zhou, Li, Deng (bib12) 2016; 6
Etkin, Patenaude, Song, Usherwood, Rekshan, Schatzberg (bib74) 2015; 40
Douaud, Smith, Jenkinson, Behrens, Johansen-Berg, Vickers (bib29) 2007; 130
Gong, He (bib40) 2015; 77
Liao, Zhang, Mantini, Xu, Wang, Chen (bib52) 2013; 3
Caliński, Harabasz (bib44) 1974; 3
Alexander-Bloch, Giedd, Bullmore (bib47) 2013; 14
Laird, Fox, Eickhoff, Turner, Ray, McKay (bib35) 2011; 23
Zhi, Calhoun, Lv, Ma, Ke, Fu (bib59) 2018; 9
MacQueen (bib42) 1967
Yao, Sui, Wang, Yang, Jiaerken, Luo (bib7) 2021; 40
Gong, Rosa-Neto, Carbonell, Chen, He, Evans (bib51) 2009; 29
Fried, Nesse (bib1) 2015; 172
Tibshirani, Walther, Hastie (bib45) 2001; 63
Wright, Sharma, Ellison, McGuire, Friston, Brammer (bib48) 1999; 9
Davies, Bouldin (bib46) 1979; 1
Gong (bib28) 1992
Chen, Gutierrez, Thompson, Panizzon, Jernigan, Eyler (bib70) 2012; 335
Price, Lane, Gates, Kraynak, Horner, Thase, Siegle (bib6) 2017; 81
Xu, Groth, Pearlson, Schretlen, Calhoun (bib9) 2009; 30
Abas, Sahakian, Levy (bib71) 1990; 20
Davies (10.1016/j.bpsgos.2021.04.006_bib46) 1979; 1
Etkin (10.1016/j.bpsgos.2021.04.006_bib74) 2015; 40
Yao (10.1016/j.bpsgos.2021.04.006_bib7) 2021; 40
Beckmann (10.1016/j.bpsgos.2021.04.006_bib20) 2005; 360
Kaiser (10.1016/j.bpsgos.2021.04.006_bib41) 2015; 72
Hamilton (10.1016/j.bpsgos.2021.04.006_bib63) 2011; 70
Eckert (10.1016/j.bpsgos.2021.04.006_bib19) 2010; 4
Price (10.1016/j.bpsgos.2021.04.006_bib6) 2017; 81
Habas (10.1016/j.bpsgos.2021.04.006_bib22) 2009; 29
Scheinost (10.1016/j.bpsgos.2021.04.006_bib56) 2018; 43
Nguyen (10.1016/j.bpsgos.2021.04.006_bib10) 2020; 10
Rockel (10.1016/j.bpsgos.2021.04.006_bib49) 1980; 103
Gong (10.1016/j.bpsgos.2021.04.006_bib51) 2009; 29
Seeley (10.1016/j.bpsgos.2021.04.006_bib66) 2007; 27
Drysdale (10.1016/j.bpsgos.2021.04.006_bib57) 2017; 23
Abas (10.1016/j.bpsgos.2021.04.006_bib71) 1990; 20
Yang (10.1016/j.bpsgos.2021.04.006_bib75) 2015; 63
Lerch (10.1016/j.bpsgos.2021.04.006_bib50) 2006; 31
Gong (10.1016/j.bpsgos.2021.04.006_bib40) 2015; 77
Tibshirani (10.1016/j.bpsgos.2021.04.006_bib45) 2001; 63
Beijers (10.1016/j.bpsgos.2021.04.006_bib2) 2019; 24
Hafkemeijer (10.1016/j.bpsgos.2021.04.006_bib11) 2014; 13
Smith (10.1016/j.bpsgos.2021.04.006_bib31) 2004; 23
Laird (10.1016/j.bpsgos.2021.04.006_bib35) 2011; 23
Evans (10.1016/j.bpsgos.2021.04.006_bib14) 2013; 80
Lin (10.1016/j.bpsgos.2021.04.006_bib76) 2014; 168
MacQueen (10.1016/j.bpsgos.2021.04.006_bib42) 1967
Alexander-Bloch (10.1016/j.bpsgos.2021.04.006_bib47) 2013; 14
Hafkemeijer (10.1016/j.bpsgos.2021.04.006_bib54) 2016; 37
Gold (10.1016/j.bpsgos.2021.04.006_bib73) 2002; 159
He (10.1016/j.bpsgos.2021.04.006_bib15) 2008; 28
Rousseeuw (10.1016/j.bpsgos.2021.04.006_bib43) 1987; 20
Bernhardt (10.1016/j.bpsgos.2021.04.006_bib69) 2011; 21
Alexander-Bloch (10.1016/j.bpsgos.2021.04.006_bib13) 2013; 33
Greicius (10.1016/j.bpsgos.2021.04.006_bib64) 2007; 62
Bortolato (10.1016/j.bpsgos.2021.04.006_bib77) 2016; 14
Seeley (10.1016/j.bpsgos.2021.04.006_bib55) 2009; 62
Zhi (10.1016/j.bpsgos.2021.04.006_bib59) 2018; 9
Yao (10.1016/j.bpsgos.2021.04.006_bib16) 2010; 6
Zheng (10.1016/j.bpsgos.2021.04.006_bib58) 2015; 2015
Segall (10.1016/j.bpsgos.2021.04.006_bib39) 2012; 6
Andersson (10.1016/j.bpsgos.2021.04.006_bib32) 2007
Xu (10.1016/j.bpsgos.2021.04.006_bib9) 2009; 30
Weinberg (10.1016/j.bpsgos.2021.04.006_bib79) 2016; 125
Drysdale (10.1016/j.bpsgos.2021.04.006_bib5) 2017; 23
Burkhouse (10.1016/j.bpsgos.2021.04.006_bib62) 2017; 17
Afridi (10.1016/j.bpsgos.2021.04.006_bib72) 2011; 21
Qi (10.1016/j.bpsgos.2021.04.006_bib36) 2018; 141
Gong (10.1016/j.bpsgos.2021.04.006_bib28) 1992
Good (10.1016/j.bpsgos.2021.04.006_bib33) 2001; 14
Damoiseaux (10.1016/j.bpsgos.2021.04.006_bib21) 2006; 103
Wu (10.1016/j.bpsgos.2021.04.006_bib25) 2017; 84
Aad (10.1016/j.bpsgos.2021.04.006_bib30) 2012; 109
Drevets (10.1016/j.bpsgos.2021.04.006_bib67) 2007; 1121
Qi (10.1016/j.bpsgos.2021.04.006_bib8) 2021
Greicius (10.1016/j.bpsgos.2021.04.006_bib18) 2003; 100
Chen (10.1016/j.bpsgos.2021.04.006_bib70) 2012; 335
Douaud (10.1016/j.bpsgos.2021.04.006_bib29) 2007; 130
Guo (10.1016/j.bpsgos.2021.04.006_bib37) 2015; 42
Marquand (10.1016/j.bpsgos.2021.04.006_bib3) 2016; 1
Eckert (10.1016/j.bpsgos.2021.04.006_bib23) 2003; 126
van Loo (10.1016/j.bpsgos.2021.04.006_bib4) 2012; 10
Liao (10.1016/j.bpsgos.2021.04.006_bib52) 2013; 3
Drevets (10.1016/j.bpsgos.2021.04.006_bib65) 1998; 3:220-226
Honey (10.1016/j.bpsgos.2021.04.006_bib24) 2007; 104
Schmitt (10.1016/j.bpsgos.2021.04.006_bib68) 2007; 10
Fried (10.1016/j.bpsgos.2021.04.006_bib1) 2015; 172
Wang (10.1016/j.bpsgos.2021.04.006_bib12) 2016; 6
Smith (10.1016/j.bpsgos.2021.04.006_bib34) 2009; 106
Hamilton (10.1016/j.bpsgos.2021.04.006_bib27) 1960; 23
First (10.1016/j.bpsgos.2021.04.006_bib26) 1997
Hamilton (10.1016/j.bpsgos.2021.04.006_bib61) 2015; 78
Klein (10.1016/j.bpsgos.2021.04.006_bib78) 2008; 117
Beckmann (10.1016/j.bpsgos.2021.04.006_bib17) 2005; 25
Gupta (10.1016/j.bpsgos.2021.04.006_bib38) 2019; 224
Fox (10.1016/j.bpsgos.2021.04.006_bib60) 2005; 102
Caliński (10.1016/j.bpsgos.2021.04.006_bib44) 1974; 3
Wright (10.1016/j.bpsgos.2021.04.006_bib48) 1999; 9
Menon (10.1016/j.bpsgos.2021.04.006_bib53) 2011; 15
References_xml – volume: 23
  start-page: 28
  year: 2017
  end-page: 38
  ident: bib57
  article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat Med
– year: 1997
  ident: bib26
  article-title: User’s Guide for the Structured Clinical Interview for DSM-IV Axis I Disorders SCID-I: Clinician Version
– volume: 77
  start-page: 223
  year: 2015
  end-page: 235
  ident: bib40
  article-title: Depression, neuroimaging and connectomics: A selective overview
  publication-title: Biol Psychiatry
– volume: 104
  start-page: 10240
  year: 2007
  end-page: 10245
  ident: bib24
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 2147
  year: 2011
  end-page: 2157
  ident: bib69
  article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy
  publication-title: Cereb Cortex
– volume: 27
  start-page: 2349
  year: 2007
  end-page: 2356
  ident: bib66
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
– volume: 14
  start-page: 21
  year: 2001
  end-page: 36
  ident: bib33
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
– volume: 29
  start-page: 8586
  year: 2009
  end-page: 8594
  ident: bib22
  article-title: Distinct cerebellar contributions to intrinsic connectivity networks
  publication-title: J Neurosci
– volume: 103
  start-page: 221
  year: 1980
  end-page: 244
  ident: bib49
  article-title: The basic uniformity in structure of the neocortex
  publication-title: Brain
– volume: 62
  start-page: 42
  year: 2009
  end-page: 52
  ident: bib55
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: bib44
  article-title: A dendrite method for cluster analysis
  publication-title: Commun Stat
– volume: 40
  start-page: 1279
  year: 2021
  end-page: 1289
  ident: bib7
  article-title: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity
  publication-title: IEEE Trans Med Imaging
– volume: 1121
  start-page: 499
  year: 2007
  end-page: 527
  ident: bib67
  article-title: Orbitofrontal cortex function and structure in depression
  publication-title: Ann N Y Acad Sci
– year: 1992
  ident: bib28
  article-title: Wechsler Adult Intelligence Scale-Revised in China Version
– volume: 3
  start-page: 240
  year: 2013
  end-page: 254
  ident: bib52
  article-title: Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy
  publication-title: Brain Connect
– volume: 4
  start-page: 10
  year: 2010
  ident: bib19
  article-title: Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex
  publication-title: Front Hum Neurosci
– volume: 20
  start-page: 507
  year: 1990
  end-page: 520
  ident: bib71
  article-title: Neuropsychological deficits and CT scan changes in elderly depressives
  publication-title: Psychol Med
– volume: 28
  start-page: 4756
  year: 2008
  end-page: 4766
  ident: bib15
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease
  publication-title: J Neurosci
– volume: 23
  start-page: 56
  year: 1960
  end-page: 62
  ident: bib27
  article-title: A rating scale for depression
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 9
  start-page: 339
  year: 2018
  ident: bib59
  article-title: Aberrant dynamic functional network connectivity and graph properties in major depressive disorder
  publication-title: Front Psychiatry
– volume: 63
  start-page: 71
  year: 2015
  end-page: 79
  ident: bib75
  article-title: Gray matter volume abnormalities were associated with sustained attention in unmedicated major depression
  publication-title: Compr Psychiatry
– volume: 84
  start-page: 237
  year: 2017
  end-page: 242
  ident: bib25
  article-title: Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder
  publication-title: J Psychiatr Res
– year: 2007
  ident: bib32
  article-title: Non-Linear Registration, aka Spatial Normalisation. FMRIB Technical Report TR07JA2
– volume: 141
  start-page: 916
  year: 2018
  end-page: 926
  ident: bib36
  article-title: MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder
  publication-title: Brain
– volume: 168
  start-page: 184
  year: 2014
  end-page: 191
  ident: bib76
  article-title: Neuropsychological performance in melancholic, atypical and undifferentiated major depression during depressed and remitted states: A prospective longitudinal study
  publication-title: J Affect Disord
– volume: 81
  start-page: 347
  year: 2017
  end-page: 357
  ident: bib6
  article-title: Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood
  publication-title: Biol Psychiatry
– volume: 17
  start-page: 394
  year: 2017
  end-page: 405
  ident: bib62
  article-title: Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls
  publication-title: Cogn Affect Behav Neurosci
– volume: 117
  start-page: 552
  year: 2008
  end-page: 560
  ident: bib78
  article-title: Classification of depressive disorders in the DSM-V: Proposal for a two-dimension system
  publication-title: J Abnorm Psychol
– volume: 224
  start-page: 3031
  year: 2019
  end-page: 3044
  ident: bib38
  article-title: Source-based morphometry: A decade of covarying structural brain patterns
  publication-title: Brain Struct Funct
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: bib45
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J R Stat Soc B
– volume: 125
  start-page: 26
  year: 2016
  end-page: 39
  ident: bib79
  article-title: Depression and reduced neural response to emotional images: Distinction from anxiety, and importance of symptom dimensions and age of onset
  publication-title: J Abnorm Psychol
– volume: 6
  start-page: 27964
  year: 2016
  ident: bib12
  article-title: Disorganized cortical thickness covariance network in major depressive disorder implicated by aberrant hubs in large-scale networks
  publication-title: Sci Rep
– volume: 130
  start-page: 2375
  year: 2007
  end-page: 2386
  ident: bib29
  article-title: Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia
  publication-title: Brain
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib34
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: 683
  year: 2007
  end-page: 694
  ident: bib68
  article-title: Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment
  publication-title: Twin Res Hum Genet
– volume: 37
  start-page: 978
  year: 2016
  end-page: 988
  ident: bib54
  article-title: Differences in structural covariance brain networks between behavioral variant frontotemporal dementia and Alzheimer’s disease
  publication-title: Hum Brain Mapp
– volume: 14
  start-page: 9
  year: 2016
  ident: bib77
  article-title: Cognitive remission: A novel objective for the treatment of major depression?
  publication-title: BMC Med
– volume: 6
  year: 2010
  ident: bib16
  article-title: Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease
  publication-title: PLoS Comput Biol
– volume: 126
  start-page: 482
  year: 2003
  end-page: 494
  ident: bib23
  article-title: Anatomical correlates of dyslexia: Frontal and cerebellar findings
  publication-title: Brain
– volume: 1
  start-page: 224
  year: 1979
  end-page: 227
  ident: bib46
  article-title: A cluster separation measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
– year: 2021
  ident: bib8
  article-title: Reward processing in novelty seekers: A transdiagnostic psychiatric imaging biomarker [published online ahead of print Jan 30]
  publication-title: Biol Psychiatry
– volume: 33
  start-page: 2889
  year: 2013
  end-page: 2899
  ident: bib13
  article-title: The convergence of maturational change and structural covariance in human cortical networks
  publication-title: J Neurosci
– volume: 109
  year: 2012
  ident: bib30
  article-title: Determination of the strange-quark density of the proton from ATLAS measurements of the W→ℓν and Z→ℓℓ cross sections
  publication-title: Phys Rev Lett
– volume: 62
  start-page: 429
  year: 2007
  end-page: 437
  ident: bib64
  article-title: Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biol Psychiatry
– volume: 14
  start-page: 322
  year: 2013
  end-page: 336
  ident: bib47
  article-title: Imaging structural co-variance between human brain regions
  publication-title: Nat Rev Neurosci
– volume: 43
  start-page: 1119
  year: 2018
  end-page: 1127
  ident: bib56
  article-title: Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder
  publication-title: Neuropsychopharmacology
– volume: 159
  start-page: 1395
  year: 2002
  end-page: 1402
  ident: bib73
  article-title: Cognitive correlates of job tenure among patients with severe mental illness
  publication-title: Am J Psychiatry
– volume: 30
  start-page: 711
  year: 2009
  end-page: 724
  ident: bib9
  article-title: Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia
  publication-title: Hum Brain Mapp
– volume: 24
  start-page: 888
  year: 2019
  end-page: 900
  ident: bib2
  article-title: Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping
  publication-title: Mol Psychiatry
– volume: 100
  start-page: 253
  year: 2003
  end-page: 258
  ident: bib18
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci U S A
– volume: 42
  start-page: 261
  year: 2015
  end-page: 268
  ident: bib37
  article-title: Structural covariance networks across healthy young adults and their consistency
  publication-title: J Magn Reson Imaging
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bib60
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci U S A
– volume: 360
  start-page: 1001
  year: 2005
  end-page: 1013
  ident: bib20
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 23
  start-page: 4022
  year: 2011
  end-page: 4037
  ident: bib35
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J Cogn Neurosci
– volume: 80
  start-page: 489
  year: 2013
  end-page: 504
  ident: bib14
  article-title: Networks of anatomical covariance
  publication-title: NeuroImage
– volume: 15
  start-page: 483
  year: 2011
  end-page: 506
  ident: bib53
  article-title: Large-scale brain networks and psychopathology: A unifying triple network model
  publication-title: Trends Cogn Sci
– volume: 29
  start-page: 15684
  year: 2009
  end-page: 15693
  ident: bib51
  article-title: Age- and gender-related differences in the cortical anatomical network
  publication-title: J Neurosci
– volume: 78
  start-page: 224
  year: 2015
  end-page: 230
  ident: bib61
  article-title: Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience
  publication-title: Biol Psychiatry
– volume: 10
  start-page: 156
  year: 2012
  ident: bib4
  article-title: Data-driven subtypes of major depressive disorder: A systematic review
  publication-title: BMC Med
– volume: 23
  start-page: 264
  year: 2017
  ident: bib5
  article-title: Erratum: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat Med
– volume: 13
  start-page: 1068
  year: 2014
  end-page: 1074
  ident: bib11
  article-title: Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults
  publication-title: Aging Cell
– volume: 9
  start-page: 366
  year: 1999
  end-page: 378
  ident: bib48
  article-title: Supra-regional brain systems and the neuropathology of schizophrenia
  publication-title: Cereb Cortex
– volume: 25
  start-page: 294
  year: 2005
  end-page: 311
  ident: bib17
  article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis
  publication-title: Neuroimage
– volume: 40
  start-page: 1332
  year: 2015
  end-page: 1342
  ident: bib74
  article-title: A cognitive-emotional biomarker for predicting remission with antidepressant medications: A report from the iSPOT-D trial
  publication-title: Neuropsychopharmacology
– volume: 6
  start-page: 10
  year: 2012
  ident: bib39
  article-title: Correspondence between structure and function in the human brain at rest
  publication-title: Front Neuroinform
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib42
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1: Theory of Statistics
– volume: 1
  start-page: 433
  year: 2016
  end-page: 447
  ident: bib3
  article-title: Beyond lumping and splitting: A review of computational approaches for stratifying psychiatric disorders
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– volume: 10
  start-page: 22096
  year: 2020
  ident: bib10
  article-title: Brain structural network alterations related to serum cortisol levels in drug-naïve, first-episode major depressive disorder patients: A source-based morphometric study
  publication-title: Sci Rep
– volume: 3:220-226
  start-page: 190
  year: 1998
  end-page: 191
  ident: bib65
  article-title: Neuroimaging abnormalities in the subgenual prefrontal cortex: Implications for the pathophysiology of familial mood disorders
  publication-title: Mol Psychiatry
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib43
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comp Appl Math
– volume: 172
  start-page: 96
  year: 2015
  end-page: 102
  ident: bib1
  article-title: Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR∗D study
  publication-title: J Affect Disord
– volume: 103
  start-page: 13848
  year: 2006
  end-page: 13853
  ident: bib21
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc Natl Acad Sci U S A
– volume: 335
  start-page: 1634
  year: 2012
  end-page: 1636
  ident: bib70
  article-title: Hierarchical genetic organization of human cortical surface area
  publication-title: Science
– volume: 72
  start-page: 603
  year: 2015
  end-page: 611
  ident: bib41
  article-title: Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity
  publication-title: JAMA Psychiatry
– volume: 31
  start-page: 993
  year: 2006
  end-page: 1003
  ident: bib50
  article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI
  publication-title: Neuroimage
– volume: 70
  start-page: 327
  year: 2011
  end-page: 333
  ident: bib63
  article-title: Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination
  publication-title: Biol Psychiatry
– volume: 21
  start-page: 351
  year: 2011
  end-page: 355
  ident: bib72
  article-title: Cognitive disturbance comparison among drug-naive depressed cases and healthy controls
  publication-title: J Coll Physicians Surg Pak
– volume: 2015
  start-page: 386326
  year: 2015
  ident: bib58
  article-title: The altered triple networks interaction in depression under resting state based on graph theory
  publication-title: Biomed Res Int
– volume: 23
  start-page: S208
  year: 2004
  end-page: S219
  ident: bib31
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
– volume: 10
  start-page: 156
  year: 2012
  ident: 10.1016/j.bpsgos.2021.04.006_bib4
  article-title: Data-driven subtypes of major depressive disorder: A systematic review
  publication-title: BMC Med
  doi: 10.1186/1741-7015-10-156
– volume: 20
  start-page: 507
  year: 1990
  ident: 10.1016/j.bpsgos.2021.04.006_bib71
  article-title: Neuropsychological deficits and CT scan changes in elderly depressives
  publication-title: Psychol Med
  doi: 10.1017/S0033291700017025
– year: 2007
  ident: 10.1016/j.bpsgos.2021.04.006_bib32
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.bpsgos.2021.04.006_bib43
  article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comp Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– volume: 84
  start-page: 237
  year: 2017
  ident: 10.1016/j.bpsgos.2021.04.006_bib25
  article-title: Abnormalities in the structural covariance of emotion regulation networks in major depressive disorder
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2016.10.001
– year: 2021
  ident: 10.1016/j.bpsgos.2021.04.006_bib8
  article-title: Reward processing in novelty seekers: A transdiagnostic psychiatric imaging biomarker [published online ahead of print Jan 30]
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2021.01.011
– volume: 117
  start-page: 552
  year: 2008
  ident: 10.1016/j.bpsgos.2021.04.006_bib78
  article-title: Classification of depressive disorders in the DSM-V: Proposal for a two-dimension system
  publication-title: J Abnorm Psychol
  doi: 10.1037/0021-843X.117.3.552
– volume: 72
  start-page: 603
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib41
  article-title: Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity
  publication-title: JAMA Psychiatry
  doi: 10.1001/jamapsychiatry.2015.0071
– year: 1997
  ident: 10.1016/j.bpsgos.2021.04.006_bib26
– volume: 1
  start-page: 224
  year: 1979
  ident: 10.1016/j.bpsgos.2021.04.006_bib46
  article-title: A cluster separation measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1979.4766909
– volume: 81
  start-page: 347
  year: 2017
  ident: 10.1016/j.bpsgos.2021.04.006_bib6
  article-title: Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2016.06.023
– volume: 6
  start-page: 27964
  year: 2016
  ident: 10.1016/j.bpsgos.2021.04.006_bib12
  article-title: Disorganized cortical thickness covariance network in major depressive disorder implicated by aberrant hubs in large-scale networks
  publication-title: Sci Rep
  doi: 10.1038/srep27964
– volume: 77
  start-page: 223
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib40
  article-title: Depression, neuroimaging and connectomics: A selective overview
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2014.08.009
– volume: 14
  start-page: 9
  year: 2016
  ident: 10.1016/j.bpsgos.2021.04.006_bib77
  article-title: Cognitive remission: A novel objective for the treatment of major depression?
  publication-title: BMC Med
  doi: 10.1186/s12916-016-0560-3
– volume: 28
  start-page: 4756
  year: 2008
  ident: 10.1016/j.bpsgos.2021.04.006_bib15
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0141-08.2008
– volume: 23
  start-page: 28
  year: 2017
  ident: 10.1016/j.bpsgos.2021.04.006_bib57
  article-title: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat Med
  doi: 10.1038/nm.4246
– volume: 224
  start-page: 3031
  year: 2019
  ident: 10.1016/j.bpsgos.2021.04.006_bib38
  article-title: Source-based morphometry: A decade of covarying structural brain patterns
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-019-01969-8
– volume: 70
  start-page: 327
  year: 2011
  ident: 10.1016/j.bpsgos.2021.04.006_bib63
  article-title: Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2011.02.003
– volume: 9
  start-page: 366
  year: 1999
  ident: 10.1016/j.bpsgos.2021.04.006_bib48
  article-title: Supra-regional brain systems and the neuropathology of schizophrenia
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/9.4.366
– volume: 80
  start-page: 489
  year: 2013
  ident: 10.1016/j.bpsgos.2021.04.006_bib14
  article-title: Networks of anatomical covariance
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.054
– volume: 1121
  start-page: 499
  year: 2007
  ident: 10.1016/j.bpsgos.2021.04.006_bib67
  article-title: Orbitofrontal cortex function and structure in depression
  publication-title: Ann N Y Acad Sci
  doi: 10.1196/annals.1401.029
– volume: 3:220-226
  start-page: 190
  year: 1998
  ident: 10.1016/j.bpsgos.2021.04.006_bib65
  article-title: Neuroimaging abnormalities in the subgenual prefrontal cortex: Implications for the pathophysiology of familial mood disorders
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4000380
– volume: 159
  start-page: 1395
  year: 2002
  ident: 10.1016/j.bpsgos.2021.04.006_bib73
  article-title: Cognitive correlates of job tenure among patients with severe mental illness
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.159.8.1395
– volume: 103
  start-page: 221
  year: 1980
  ident: 10.1016/j.bpsgos.2021.04.006_bib49
  article-title: The basic uniformity in structure of the neocortex
  publication-title: Brain
  doi: 10.1093/brain/103.2.221
– volume: 6
  year: 2010
  ident: 10.1016/j.bpsgos.2021.04.006_bib16
  article-title: Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001006
– volume: 14
  start-page: 322
  year: 2013
  ident: 10.1016/j.bpsgos.2021.04.006_bib47
  article-title: Imaging structural co-variance between human brain regions
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3465
– volume: 2015
  start-page: 386326
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib58
  article-title: The altered triple networks interaction in depression under resting state based on graph theory
  publication-title: Biomed Res Int
  doi: 10.1155/2015/386326
– volume: 25
  start-page: 294
  year: 2005
  ident: 10.1016/j.bpsgos.2021.04.006_bib17
  article-title: Tensorial extensions of independent component analysis for multisubject FMRI analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.10.043
– volume: 3
  start-page: 1
  year: 1974
  ident: 10.1016/j.bpsgos.2021.04.006_bib44
  article-title: A dendrite method for cluster analysis
  publication-title: Commun Stat
– volume: 37
  start-page: 978
  year: 2016
  ident: 10.1016/j.bpsgos.2021.04.006_bib54
  article-title: Differences in structural covariance brain networks between behavioral variant frontotemporal dementia and Alzheimer’s disease
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23081
– volume: 21
  start-page: 2147
  year: 2011
  ident: 10.1016/j.bpsgos.2021.04.006_bib69
  article-title: Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhq291
– volume: 43
  start-page: 1119
  year: 2018
  ident: 10.1016/j.bpsgos.2021.04.006_bib56
  article-title: Multimodal investigation of network level effects using intrinsic functional connectivity, anatomical covariance, and structure-to-function correlations in unmedicated major depressive disorder
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2017.229
– volume: 40
  start-page: 1332
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib74
  article-title: A cognitive-emotional biomarker for predicting remission with antidepressant medications: A report from the iSPOT-D trial
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2014.333
– volume: 29
  start-page: 8586
  year: 2009
  ident: 10.1016/j.bpsgos.2021.04.006_bib22
  article-title: Distinct cerebellar contributions to intrinsic connectivity networks
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1868-09.2009
– volume: 4
  start-page: 10
  year: 2010
  ident: 10.1016/j.bpsgos.2021.04.006_bib19
  article-title: Age-related changes in processing speed: Unique contributions of cerebellar and prefrontal cortex
  publication-title: Front Hum Neurosci
– volume: 78
  start-page: 224
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib61
  article-title: Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2015.02.020
– volume: 23
  start-page: 264
  year: 2017
  ident: 10.1016/j.bpsgos.2021.04.006_bib5
  article-title: Erratum: Resting-state connectivity biomarkers define neurophysiological subtypes of depression
  publication-title: Nat Med
  doi: 10.1038/nm0217-264d
– start-page: 281
  year: 1967
  ident: 10.1016/j.bpsgos.2021.04.006_bib42
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 102
  start-page: 9673
  year: 2005
  ident: 10.1016/j.bpsgos.2021.04.006_bib60
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0504136102
– volume: 3
  start-page: 240
  year: 2013
  ident: 10.1016/j.bpsgos.2021.04.006_bib52
  article-title: Relationship between large-scale functional and structural covariance networks in idiopathic generalized epilepsy
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0132
– volume: 14
  start-page: 21
  year: 2001
  ident: 10.1016/j.bpsgos.2021.04.006_bib33
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0786
– volume: 360
  start-page: 1001
  year: 2005
  ident: 10.1016/j.bpsgos.2021.04.006_bib20
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1634
– volume: 10
  start-page: 683
  year: 2007
  ident: 10.1016/j.bpsgos.2021.04.006_bib68
  article-title: Review of twin and family studies on neuroanatomic phenotypes and typical neurodevelopment
  publication-title: Twin Res Hum Genet
  doi: 10.1375/twin.10.5.683
– volume: 23
  start-page: S208
  issue: suppl 1
  year: 2004
  ident: 10.1016/j.bpsgos.2021.04.006_bib31
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 335
  start-page: 1634
  year: 2012
  ident: 10.1016/j.bpsgos.2021.04.006_bib70
  article-title: Hierarchical genetic organization of human cortical surface area
  publication-title: Science
  doi: 10.1126/science.1215330
– volume: 6
  start-page: 10
  year: 2012
  ident: 10.1016/j.bpsgos.2021.04.006_bib39
  article-title: Correspondence between structure and function in the human brain at rest
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2012.00010
– volume: 40
  start-page: 1279
  year: 2021
  ident: 10.1016/j.bpsgos.2021.04.006_bib7
  article-title: A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3051604
– volume: 21
  start-page: 351
  year: 2011
  ident: 10.1016/j.bpsgos.2021.04.006_bib72
  article-title: Cognitive disturbance comparison among drug-naive depressed cases and healthy controls
  publication-title: J Coll Physicians Surg Pak
– volume: 141
  start-page: 916
  year: 2018
  ident: 10.1016/j.bpsgos.2021.04.006_bib36
  article-title: MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder
  publication-title: Brain
  doi: 10.1093/brain/awx366
– volume: 9
  start-page: 339
  year: 2018
  ident: 10.1016/j.bpsgos.2021.04.006_bib59
  article-title: Aberrant dynamic functional network connectivity and graph properties in major depressive disorder
  publication-title: Front Psychiatry
  doi: 10.3389/fpsyt.2018.00339
– volume: 15
  start-page: 483
  year: 2011
  ident: 10.1016/j.bpsgos.2021.04.006_bib53
  article-title: Large-scale brain networks and psychopathology: A unifying triple network model
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2011.08.003
– volume: 23
  start-page: 4022
  year: 2011
  ident: 10.1016/j.bpsgos.2021.04.006_bib35
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn_a_00077
– volume: 31
  start-page: 993
  year: 2006
  ident: 10.1016/j.bpsgos.2021.04.006_bib50
  article-title: Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.042
– volume: 29
  start-page: 15684
  year: 2009
  ident: 10.1016/j.bpsgos.2021.04.006_bib51
  article-title: Age- and gender-related differences in the cortical anatomical network
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2308-09.2009
– volume: 62
  start-page: 42
  year: 2009
  ident: 10.1016/j.bpsgos.2021.04.006_bib55
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– volume: 10
  start-page: 22096
  year: 2020
  ident: 10.1016/j.bpsgos.2021.04.006_bib10
  article-title: Brain structural network alterations related to serum cortisol levels in drug-naïve, first-episode major depressive disorder patients: A source-based morphometric study
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-79220-2
– volume: 23
  start-page: 56
  year: 1960
  ident: 10.1016/j.bpsgos.2021.04.006_bib27
  article-title: A rating scale for depression
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.23.1.56
– volume: 27
  start-page: 2349
  year: 2007
  ident: 10.1016/j.bpsgos.2021.04.006_bib66
  article-title: Dissociable intrinsic connectivity networks for salience processing and executive control
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5587-06.2007
– volume: 100
  start-page: 253
  year: 2003
  ident: 10.1016/j.bpsgos.2021.04.006_bib18
  article-title: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0135058100
– volume: 42
  start-page: 261
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib37
  article-title: Structural covariance networks across healthy young adults and their consistency
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24780
– volume: 168
  start-page: 184
  year: 2014
  ident: 10.1016/j.bpsgos.2021.04.006_bib76
  article-title: Neuropsychological performance in melancholic, atypical and undifferentiated major depression during depressed and remitted states: A prospective longitudinal study
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2014.06.032
– volume: 17
  start-page: 394
  year: 2017
  ident: 10.1016/j.bpsgos.2021.04.006_bib62
  article-title: Neural correlates of rumination in adolescents with remitted major depressive disorder and healthy controls
  publication-title: Cogn Affect Behav Neurosci
  doi: 10.3758/s13415-016-0486-4
– volume: 172
  start-page: 96
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib1
  article-title: Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR∗D study
  publication-title: J Affect Disord
  doi: 10.1016/j.jad.2014.10.010
– volume: 30
  start-page: 711
  year: 2009
  ident: 10.1016/j.bpsgos.2021.04.006_bib9
  article-title: Source-based morphometry: The use of independent component analysis to identify gray matter differences with application to schizophrenia
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20540
– volume: 126
  start-page: 482
  year: 2003
  ident: 10.1016/j.bpsgos.2021.04.006_bib23
  article-title: Anatomical correlates of dyslexia: Frontal and cerebellar findings
  publication-title: Brain
  doi: 10.1093/brain/awg026
– volume: 106
  start-page: 13040
  year: 2009
  ident: 10.1016/j.bpsgos.2021.04.006_bib34
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0905267106
– volume: 109
  year: 2012
  ident: 10.1016/j.bpsgos.2021.04.006_bib30
  article-title: Determination of the strange-quark density of the proton from ATLAS measurements of the W→ℓν and Z→ℓℓ cross sections
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.109.012001
– volume: 62
  start-page: 429
  year: 2007
  ident: 10.1016/j.bpsgos.2021.04.006_bib64
  article-title: Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.09.020
– volume: 125
  start-page: 26
  year: 2016
  ident: 10.1016/j.bpsgos.2021.04.006_bib79
  article-title: Depression and reduced neural response to emotional images: Distinction from anxiety, and importance of symptom dimensions and age of onset
  publication-title: J Abnorm Psychol
  doi: 10.1037/abn0000118
– volume: 103
  start-page: 13848
  year: 2006
  ident: 10.1016/j.bpsgos.2021.04.006_bib21
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0601417103
– volume: 104
  start-page: 10240
  year: 2007
  ident: 10.1016/j.bpsgos.2021.04.006_bib24
  article-title: Network structure of cerebral cortex shapes functional connectivity on multiple time scales
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0701519104
– volume: 33
  start-page: 2889
  year: 2013
  ident: 10.1016/j.bpsgos.2021.04.006_bib13
  article-title: The convergence of maturational change and structural covariance in human cortical networks
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3554-12.2013
– year: 1992
  ident: 10.1016/j.bpsgos.2021.04.006_bib28
– volume: 130
  start-page: 2375
  year: 2007
  ident: 10.1016/j.bpsgos.2021.04.006_bib29
  article-title: Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia
  publication-title: Brain
  doi: 10.1093/brain/awm184
– volume: 63
  start-page: 411
  year: 2001
  ident: 10.1016/j.bpsgos.2021.04.006_bib45
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J R Stat Soc B
  doi: 10.1111/1467-9868.00293
– volume: 63
  start-page: 71
  year: 2015
  ident: 10.1016/j.bpsgos.2021.04.006_bib75
  article-title: Gray matter volume abnormalities were associated with sustained attention in unmedicated major depression
  publication-title: Compr Psychiatry
  doi: 10.1016/j.comppsych.2015.09.003
– volume: 1
  start-page: 433
  year: 2016
  ident: 10.1016/j.bpsgos.2021.04.006_bib3
  article-title: Beyond lumping and splitting: A review of computational approaches for stratifying psychiatric disorders
  publication-title: Biol Psychiatry Cogn Neurosci Neuroimaging
– volume: 24
  start-page: 888
  year: 2019
  ident: 10.1016/j.bpsgos.2021.04.006_bib2
  article-title: Data-driven biological subtypes of depression: Systematic review of biological approaches to depression subtyping
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-019-0385-5
– volume: 13
  start-page: 1068
  year: 2014
  ident: 10.1016/j.bpsgos.2021.04.006_bib11
  article-title: Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults
  publication-title: Aging Cell
  doi: 10.1111/acel.12271
SSID ssj0002513312
Score 2.2380698
Snippet Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically informed way....
AbstractBackgroundIdentifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically...
Background: Identifying data-driven subtypes of major depressive disorder (MDD) holds promise for parsing the heterogeneity of MDD in a neurobiologically...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms Archival Report
Biotypes
CANTAB
Clustering
Major depression
Psychiatric/Mental Health
Source-based morphometry
Structural covariance networks
Title Identifying Subgroups of Major Depressive Disorder Using Brain Structural Covariance Networks and Mapping of Associated Clinical and Cognitive Variables
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2667174321000124
https://www.clinicalkey.es/playcontent/1-s2.0-S2667174321000124
https://dx.doi.org/10.1016/j.bpsgos.2021.04.006
https://www.proquest.com/docview/2731721640
https://pubmed.ncbi.nlm.nih.gov/PMC9616319
https://doaj.org/article/cc36bdad71184c84b4c396bbdbfa1c5b
Volume 1
WOSCitedRecordID wos001052856100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2667-1743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513312
  issn: 2667-1743
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2667-1743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002513312
  issn: 2667-1743
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAFFQFiKVRG4hrh2I6dHOnSigNdIRWqvVnxq2y1Sqqm7JHf0Z_LjJNUiYS0HLjsYdeeRJ5v55HMfEPIh0LXFSRdVVaGss6k8jFD3rRMRMetELqMaZzP5Ve9WpXrdfVtMuoLa8J6euD-4D46J5T1tdcQCUtXSiudqJS13sY6d4VF6wtRzySZQhvMcWxJetUJDghZEKUY--ZScZe96a5aZOvmeWI6xYFHE7-U6Ptn7mkSfs6LJyfe6OyQPBvCSPqpv_3n5FFoXpD7vus2dS5RsAipY6OjbaTn9XV7Sz8PVa-7QEfSTZpKBugJDoqgF4lLFnk46LLdQRKNiKCrvlC8o3XjQRDyOVyhzFGxwdOBXHSblizHgiR6iSLsNnQvyY-z0-_LL9kweSFz4K7vMmmFZzE4SMd8mUdeqZgzq72ubcmkiNyCxytZCLyC_NBaIVUsIRZy0lubqyhekYOmbcJrQpnmsWLBS43kgnlRc-WirDTEUazgXi2IGM_duIGWHKdjbM1Yf3Ztem0Z1JZh0oC2FiR72HXT03LsWX-CKn1Yi6Ta6QuAmhmgZvZBbUGKERBm7FsFSwuCNnsurv-2L3SDuehMbjpumLlAsCJWeZ6eEMrpziEi6iOdf7jm-xGxBgwGvgWqm9D-gkVaYNqvJAPpMyjPTmf-S7P5majHKwXxe169-R_HeUSe4g331ZRvyQFgPLwjT9zubtPdHpPHel0ep381fJ7_Pv0DDYNWcw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Subgroups+of+Major+Depressive+Disorder+Using+Brain+Structural+Covariance+Networks+and+Mapping+of+Associated+Clinical+and+Cognitive+Variables&rft.jtitle=Biological+psychiatry+global+open+science&rft.au=Yang%2C+Xiao&rft.au=Kumar%2C+Poornima&rft.au=Nickerson%2C+Lisa+D&rft.au=Du%2C+Yue&rft.date=2021-08-01&rft.issn=2667-1743&rft.eissn=2667-1743&rft.volume=1&rft.issue=2&rft.spage=135&rft_id=info:doi/10.1016%2Fj.bpsgos.2021.04.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F26671743%2FS2667174321X00031%2Fcov150h.gif