Non-reciprocal phase transitions
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter 1 – 6 , non-equilibrium systems 7 – 9 , networks of neurons 10 , 11 , social groups with conformist and contrarian members 12 , directional interface growth phenome...
Saved in:
| Published in: | Nature (London) Vol. 592; no. 7854; pp. 363 - 369 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
15.04.2021
Nature Publishing Group |
| Subjects: | |
| ISSN: | 0028-0836, 1476-4687, 1476-4687 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter
1
–
6
, non-equilibrium systems
7
–
9
, networks of neurons
10
,
11
, social groups with conformist and contrarian members
12
, directional interface growth phenomena
13
–
15
and metamaterials
16
–
20
. Although wave propagation in non-reciprocal media has recently been closely studied
1
,
16
–
20
, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points
21
. We describe the emergence of these phases using insights from bifurcation theory
22
,
23
and non-Hermitian quantum mechanics
24
,
25
. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.
A theoretical study of non-reciprocity in collective phenomena reveals the emergence of time-dependent phases heralded by exceptional points in contexts ranging from synchronization and flocking to pattern formation. |
|---|---|
| AbstractList | Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter
, non-equilibrium systems
, networks of neurons
, social groups with conformist and contrarian members
, directional interface growth phenomena
and metamaterials
. Although wave propagation in non-reciprocal media has recently been closely studied
, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points
. We describe the emergence of these phases using insights from bifurcation theory
and non-Hermitian quantum mechanics
. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter.sup.1-6, non-equilibrium systems.sup.7-9, networks of neurons.sup.10,11, social groups with conformist and contrarian members.sup.12, directional interface growth phenomena.sup.13-15 and metamaterials.sup.16-20. Although wave propagation in non-reciprocal media has recently been closely studied.sup.1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points.sup.21. We describe the emergence of these phases using insights from bifurcation theory.sup.22,23 and non-Hermitian quantum mechanics.sup.24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. A theoretical study of non-reciprocity in collective phenomena reveals the emergence of time-dependent phases heralded by exceptional points in contexts ranging from synchronization and flocking to pattern formation. Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter.sup.1-6, non-equilibrium systems.sup.7-9, networks of neurons.sup.10,11, social groups with conformist and contrarian members.sup.12, directional interface growth phenomena.sup.13-15 and metamaterials.sup.16-20. Although wave propagation in non-reciprocal media has recently been closely studied.sup.1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points.sup.21. We describe the emergence of these phases using insights from bifurcation theory.sup.22,23 and non-Hermitian quantum mechanics.sup.24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter 1 – 6 , non-equilibrium systems 7 – 9 , networks of neurons 10 , 11 , social groups with conformist and contrarian members 12 , directional interface growth phenomena 13 – 15 and metamaterials 16 – 20 . Although wave propagation in non-reciprocal media has recently been closely studied 1 , 16 – 20 , less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points 21 . We describe the emergence of these phases using insights from bifurcation theory 22 , 23 and non-Hermitian quantum mechanics 24 , 25 . Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. A theoretical study of non-reciprocity in collective phenomena reveals the emergence of time-dependent phases heralded by exceptional points in contexts ranging from synchronization and flocking to pattern formation. Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi) crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. |
| Audience | Academic |
| Author | Vitelli, Vincenzo Fruchart, Michel Littlewood, Peter B. Hanai, Ryo |
| Author_xml | – sequence: 1 givenname: Michel surname: Fruchart fullname: Fruchart, Michel organization: James Franck Institute and Department of Physics, University of Chicago – sequence: 2 givenname: Ryo surname: Hanai fullname: Hanai, Ryo organization: James Franck Institute and Department of Physics, University of Chicago, Department of Physics, Osaka University, Pritzker School of Molecular Engineering, University of Chicago – sequence: 3 givenname: Peter B. surname: Littlewood fullname: Littlewood, Peter B. organization: James Franck Institute and Department of Physics, University of Chicago – sequence: 4 givenname: Vincenzo orcidid: 0000-0001-6328-8783 surname: Vitelli fullname: Vitelli, Vincenzo email: vitelli@uchicago.edu organization: James Franck Institute and Department of Physics, University of Chicago, Kadanoff Center for Theoretical Physics, University of Chicago |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33854249$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90k9P2zAYBnBrAo3S7QvsMFVwASEz_7dzrCoYSIhJG9OOluM4xSh1WjuRtm-Ps1JBUUE5RIp-z6s39nMI9kIbHABfMDrHiKpviWGuBEQEQ0Sp5LD4AEaYSQGZUHIPjBAiCiJFxQE4TOkBIcSxZB_BAaWKM8KKEZjctgFGZ_0yttY0k-W9SW7SRROS73wb0iewX5smuc9P7zH4fXlxN7uCNz--X8-mN9AKzDpIhUHKIEwlYcRyXBokCiZtWZXIWCULTiwpyipvrGpScstETWpDS8ltJV1Fx-BkPTcvsupd6vTCJ-uaxgTX9kkTjilhsiAi0-NX9KHtY8jbDYpJpghhz2puGqd9qNv8V3YYqqeCK8YlFzgruEPNXXDRNPm4a58_b_mjHd4u_Uq_ROc7UH4qt_B259TTrUA2nfvbzU2fkr7-9XPbnr1tp3d_Zrfb-uvTWfXlwlV6Gf3CxH9604AM1BrY2KYUXa2t78xw9Xln32iM9FA2vS6bzmXT_8umhyh5Fd1MfzdE16GUcZi7-Hx576QeATup3q8 |
| CitedBy_id | crossref_primary_10_1088_1742_5468_add0a2 crossref_primary_10_1002_adfm_202316745 crossref_primary_10_1103_PhysRevLett_127_268001 crossref_primary_10_1038_s41567_022_01704_x crossref_primary_10_1103_gkhv_rp16 crossref_primary_10_1103_PhysRevE_111_L023405 crossref_primary_10_1103_PhysRevResearch_5_023035 crossref_primary_10_1103_PhysRevResearch_6_013190 crossref_primary_10_1103_jvwg_l6jw crossref_primary_10_1103_PRXQuantum_4_010306 crossref_primary_10_1016_j_trc_2024_104586 crossref_primary_10_1088_1751_8121_acd153 crossref_primary_10_1103_PhysRevE_111_024317 crossref_primary_10_1103_PRXQuantum_6_020101 crossref_primary_10_1063_5_0214730 crossref_primary_10_1038_s41567_021_01238_8 crossref_primary_10_1103_298n_q3tq crossref_primary_10_1103_fbv7_m7sd crossref_primary_10_1007_s41614_022_00083_3 crossref_primary_10_1103_PhysRevResearch_6_013062 crossref_primary_10_1103_PhysRevA_111_023702 crossref_primary_10_1088_1742_6596_2086_1_012202 crossref_primary_10_1038_s42005_022_00952_w crossref_primary_10_1073_pnas_2502211122 crossref_primary_10_1103_PhysRevX_14_021052 crossref_primary_10_1016_j_newton_2025_100232 crossref_primary_10_1002_ange_202313885 crossref_primary_10_1103_PhysRevLett_134_193603 crossref_primary_10_1103_PhysRevX_14_011029 crossref_primary_10_1103_PhysRevApplied_21_054057 crossref_primary_10_1103_ttny_t2gs crossref_primary_10_1103_PhysRevE_111_L023402 crossref_primary_10_1016_j_plrev_2022_09_004 crossref_primary_10_1088_1751_8121_ad72bc crossref_primary_10_1088_1361_6463_ad50e6 crossref_primary_10_1088_2515_7639_ad06cc crossref_primary_10_1016_j_ijmecsci_2025_109990 crossref_primary_10_1103_PhysRevResearch_7_013234 crossref_primary_10_1073_pnas_2307279120 crossref_primary_10_1038_s41467_022_35427_7 crossref_primary_10_1038_s41565_022_01268_0 crossref_primary_10_1103_PhysRevResearch_4_023211 crossref_primary_10_1016_j_chaos_2024_114809 crossref_primary_10_1103_PhysRevA_108_012221 crossref_primary_10_1103_PhysRevResearch_7_013250 crossref_primary_10_1146_annurev_conmatphys_040821_113439 crossref_primary_10_1103_r3dx_7lrd crossref_primary_10_1016_j_chempr_2023_11_017 crossref_primary_10_1134_S1063780X22601511 crossref_primary_10_22331_q_2025_09_18_1861 crossref_primary_10_1039_D5SM00129C crossref_primary_10_1063_5_0152144 crossref_primary_10_1209_0295_5075_acd472 crossref_primary_10_1007_s11467_023_1292_4 crossref_primary_10_1088_1367_2630_ac9cc3 crossref_primary_10_1038_s41467_021_25845_4 crossref_primary_10_1103_s6df_sng9 crossref_primary_10_1103_chxf_fq9v crossref_primary_10_1016_j_chaos_2025_117118 crossref_primary_10_1103_PhysRevLett_134_167101 crossref_primary_10_1038_s41567_025_02927_4 crossref_primary_10_1063_5_0284977 crossref_primary_10_1038_d41586_021_00886_3 crossref_primary_10_1209_0295_5075_ac2adc crossref_primary_10_7566_JPSJ_93_094003 crossref_primary_10_1103_PhysRevResearch_4_013047 crossref_primary_10_1073_pnas_2206994120 crossref_primary_10_3389_fncom_2022_642397 crossref_primary_10_1103_np7q_hxld crossref_primary_10_1002_anie_202409382 crossref_primary_10_1088_1674_1056_acc803 crossref_primary_10_1088_1367_2630_adfd05 crossref_primary_10_1038_s41467_025_62707_9 crossref_primary_10_1088_1367_2630_add366 crossref_primary_10_3390_sym14040814 crossref_primary_10_1039_D3NR04646J crossref_primary_10_1039_D4NR00105B crossref_primary_10_1073_pnas_2219385121 crossref_primary_10_1103_PhysRevB_111_L121301 crossref_primary_10_1038_s41567_022_01874_8 crossref_primary_10_1088_1751_8121_addb92 crossref_primary_10_1103_PhysRevB_105_064302 crossref_primary_10_1103_tpzc_qms7 crossref_primary_10_7566_JPSJ_92_074801 crossref_primary_10_1038_s41578_025_00818_x crossref_primary_10_1088_1367_2630_ae02be crossref_primary_10_1103_PhysRevE_111_055410 crossref_primary_10_1038_s41467_025_61728_8 crossref_primary_10_1088_1367_2630_acfdc2 crossref_primary_10_1038_s42005_025_02220_z crossref_primary_10_1039_D5SM00182J crossref_primary_10_1038_s41565_022_01258_2 crossref_primary_10_1146_annurev_conmatphys_032922_101439 crossref_primary_10_1088_1361_6633_ad797d crossref_primary_10_1038_s41467_024_47525_9 crossref_primary_10_1103_PhysRevResearch_6_L032012 crossref_primary_10_1103_PhysRevLett_129_070401 crossref_primary_10_1103_PhysRevResearch_6_033052 crossref_primary_10_1016_j_matt_2024_06_022 crossref_primary_10_1103_z5x1_4syg crossref_primary_10_1088_1674_1056_adc666 crossref_primary_10_1103_RevModPhys_97_025004 crossref_primary_10_1016_j_jmps_2022_105163 crossref_primary_10_1088_1367_2630_ad9859 crossref_primary_10_1140_epje_s10189_025_00482_7 crossref_primary_10_1073_pnas_2508692122 crossref_primary_10_1016_j_vacuum_2022_111616 crossref_primary_10_1039_D5SM00573F crossref_primary_10_1103_PRXLife_3_013010 crossref_primary_10_1088_1751_8121_ad5089 crossref_primary_10_1073_pnas_2407705121 crossref_primary_10_1103_PhysRevResearch_7_013055 crossref_primary_10_1063_5_0250643 crossref_primary_10_1038_s41566_025_01683_4 crossref_primary_10_1002_adma_202309835 crossref_primary_10_1016_j_cpc_2025_109689 crossref_primary_10_1103_PhysRevE_111_054104 crossref_primary_10_1088_1367_2630_ac924f crossref_primary_10_1103_ht7n_bdp9 crossref_primary_10_1103_PhysRevX_15_011005 crossref_primary_10_1038_s41467_025_59729_8 crossref_primary_10_1103_93tr_phkw crossref_primary_10_1103_PhysRevX_12_010501 crossref_primary_10_1002_adfm_202310932 crossref_primary_10_1038_s41467_024_47889_y crossref_primary_10_1103_PhysRevLett_134_148301 crossref_primary_10_1103_PhysRevResearch_6_033016 crossref_primary_10_1038_s42005_024_01519_7 crossref_primary_10_1038_s41467_023_37190_9 crossref_primary_10_1038_s41467_025_60518_6 crossref_primary_10_1088_1367_2630_ad5b14 crossref_primary_10_7566_JPSJ_92_033001 crossref_primary_10_1088_1742_5468_accce7 crossref_primary_10_1103_gphr_d1bc crossref_primary_10_1103_PhysRevResearch_3_043075 crossref_primary_10_1103_PhysRevE_106_034608 crossref_primary_10_1103_PhysRevB_111_L100305 crossref_primary_10_1103_PhysRevX_15_011010 crossref_primary_10_3389_fcpxs_2023_1111486 crossref_primary_10_1103_PhysRevE_111_014132 crossref_primary_10_1103_PhysRevE_111_014131 crossref_primary_10_1038_s41467_024_46058_5 crossref_primary_10_1038_s41467_022_31984_z crossref_primary_10_1038_s41467_023_42713_5 crossref_primary_10_1103_flzv_lq7x crossref_primary_10_1146_annurev_conmatphys_040821_125506 crossref_primary_10_1038_s42005_023_01173_5 crossref_primary_10_1103_PhysRevE_105_064602 crossref_primary_10_1109_MSSC_2024_3437290 crossref_primary_10_1038_s41377_023_01121_6 crossref_primary_10_1021_acs_chemrev_4c00912 crossref_primary_10_1103_w1fg_6qmv crossref_primary_10_1103_PhysRevB_111_045130 crossref_primary_10_1038_s41567_024_02589_8 crossref_primary_10_1103_RevModPhys_97_015007 crossref_primary_10_1103_PhysRevLett_134_117103 crossref_primary_10_1103_RevModPhys_97_015002 crossref_primary_10_1103_PhysRevLett_134_066902 crossref_primary_10_1103_nrv2_9h8z crossref_primary_10_1088_1402_4896_ad7f9c crossref_primary_10_1140_epje_s10189_021_00118_6 crossref_primary_10_1002_lpor_202200976 crossref_primary_10_1038_s41567_024_02457_5 crossref_primary_10_1088_1742_5468_ad8f2b crossref_primary_10_1103_PhysRevResearch_6_023162 crossref_primary_10_1073_pnas_2113912119 crossref_primary_10_1103_m28c_8ggl crossref_primary_10_1007_s11467_023_1309_z crossref_primary_10_1016_j_physa_2024_130338 crossref_primary_10_1209_0295_5075_ac8f69 crossref_primary_10_1002_lpor_202200177 crossref_primary_10_1103_PhysRevB_111_054515 crossref_primary_10_1103_PhysRevResearch_5_021001 crossref_primary_10_1038_s41586_022_04504_8 crossref_primary_10_1038_s42005_023_01291_0 crossref_primary_10_1016_j_chaos_2025_116461 crossref_primary_10_1016_j_ijmecsci_2025_110692 crossref_primary_10_1088_1742_5468_adc896 crossref_primary_10_1073_pnas_2412993122 crossref_primary_10_1103_PhysRevResearch_4_L022064 crossref_primary_10_1016_j_chaos_2024_114650 crossref_primary_10_1103_p5fv_c9dj crossref_primary_10_1103_PhysRevResearch_5_033221 crossref_primary_10_1103_PhysRevResearch_5_L032038 crossref_primary_10_1063_5_0208107 crossref_primary_10_1038_s41567_021_01437_3 crossref_primary_10_1088_1402_4896_ad05ab crossref_primary_10_1038_s42005_025_01999_1 crossref_primary_10_1088_1367_2630_adbc15 crossref_primary_10_1103_PhysRevResearch_5_043063 crossref_primary_10_1002_ange_202409382 crossref_primary_10_1038_s41567_022_01769_8 crossref_primary_10_1038_s41598_022_23597_9 crossref_primary_10_1103_PhysRevB_108_L121105 crossref_primary_10_7498_aps_74_20250689 crossref_primary_10_1002_anie_202313885 crossref_primary_10_1002_advs_202408460 crossref_primary_10_1103_PhysRevB_111_165131 crossref_primary_10_1038_s41598_023_39094_6 crossref_primary_10_1103_PhysRevLett_134_106901 crossref_primary_10_1038_s41467_021_26034_z crossref_primary_10_1088_1674_1056_ade06f crossref_primary_10_1007_s10338_025_00606_8 crossref_primary_10_1088_1751_8121_ac79e5 crossref_primary_10_1038_s41586_024_08514_6 crossref_primary_10_1103_PhysRevResearch_5_033217 crossref_primary_10_1103_Physics_18_142 crossref_primary_10_1038_s42005_021_00762_6 crossref_primary_10_1093_pnasnexus_pgae120 crossref_primary_10_1088_1751_8121_ad9efd crossref_primary_10_3389_fchem_2022_803906 crossref_primary_10_1038_s41467_025_62620_1 crossref_primary_10_1103_PhysRevResearch_3_023206 crossref_primary_10_7566_JPSJ_94_084002 crossref_primary_10_1038_s41467_021_26699_6 crossref_primary_10_1038_s41586_021_03868_7 crossref_primary_10_1103_9y9w_lw92 crossref_primary_10_1103_dvb3_b2v8 crossref_primary_10_1103_213q_sqxf crossref_primary_10_1038_s42005_025_02065_6 crossref_primary_10_1051_epn_2024305 crossref_primary_10_1103_PhysRevE_106_024604 crossref_primary_10_1103_PhysRevFluids_8_054101 crossref_primary_10_1016_j_physrep_2025_01_005 crossref_primary_10_1016_j_physrep_2024_01_006 crossref_primary_10_1103_PhysRevResearch_4_L042027 crossref_primary_10_1038_s41586_022_04970_0 crossref_primary_10_1088_1361_648X_adac98 crossref_primary_10_1038_s42005_021_00755_5 crossref_primary_10_1088_1402_4896_ad36f2 crossref_primary_10_1103_PhysRevResearch_7_023234 crossref_primary_10_1073_pnas_2505488122 crossref_primary_10_1088_1402_4896_ae00fc crossref_primary_10_1103_PhysRevA_111_012221 crossref_primary_10_1088_1367_2630_ad2132 crossref_primary_10_1038_s42005_025_02211_0 crossref_primary_10_1088_1361_648X_ad81a5 crossref_primary_10_1038_s42005_024_01576_y crossref_primary_10_1103_PhysRevResearch_5_043008 crossref_primary_10_1016_j_chaos_2025_116244 crossref_primary_10_1016_j_neuroscience_2023_08_012 crossref_primary_10_1038_s41586_025_08646_3 crossref_primary_10_1103_jc9p_m3rn crossref_primary_10_1103_PhysRevResearch_5_L022033 crossref_primary_10_1103_pbtn_wsgv crossref_primary_10_1038_s41467_024_48458_z crossref_primary_10_1103_PhysRevB_111_165117 crossref_primary_10_1103_PhysRevResearch_6_013148 crossref_primary_10_1103_PhysRevX_14_021014 crossref_primary_10_1016_j_heliyon_2023_e22701 crossref_primary_10_1103_PhysRevLett_134_223601 crossref_primary_10_7566_JPSJ_92_093001 crossref_primary_10_1016_j_chaos_2024_115782 crossref_primary_10_1103_PhysRevE_111_024107 crossref_primary_10_31857_S0367292122600984 crossref_primary_10_1016_j_chaos_2024_115302 crossref_primary_10_1038_s41467_023_41129_5 crossref_primary_10_21468_SciPostPhysLectNotes_99 crossref_primary_10_1088_1742_5468_ade86d crossref_primary_10_1103_PhysRevApplied_22_064072 crossref_primary_10_1126_sciadv_ady1211 crossref_primary_10_1016_j_physa_2025_130920 crossref_primary_10_1103_gl1t_t2c4 crossref_primary_10_1016_j_physa_2023_129452 crossref_primary_10_1103_PhysRevLett_134_033801 crossref_primary_10_1103_PhysRevE_111_034133 crossref_primary_10_1088_1674_1056_ad4327 crossref_primary_10_1088_1367_2630_ad50ff crossref_primary_10_1073_pnas_2219900120 crossref_primary_10_1016_j_ymssp_2023_110501 crossref_primary_10_1126_science_adq2329 crossref_primary_10_1016_j_newton_2025_100206 crossref_primary_10_1016_j_physrep_2024_09_014 crossref_primary_10_1088_1751_8121_ac7182 crossref_primary_10_1103_PhysRevResearch_5_L022012 crossref_primary_10_1038_s42005_024_01866_5 crossref_primary_10_1038_s42005_025_02098_x crossref_primary_10_1038_s41598_024_72557_y crossref_primary_10_1103_PhysRevE_111_034124 crossref_primary_10_1088_1674_1056_ae030c crossref_primary_10_1038_s41467_025_58920_1 crossref_primary_10_1038_s41598_023_31583_y crossref_primary_10_1103_vvrx_mljg crossref_primary_10_1103_xrph_vgf3 crossref_primary_10_1103_PhysRevResearch_5_043032 crossref_primary_10_1209_0295_5075_ac33cb crossref_primary_10_1103_PhysRevResearch_7_023008 crossref_primary_10_1016_j_plrev_2023_12_006 crossref_primary_10_1038_s42256_024_00871_1 crossref_primary_10_1016_j_scib_2023_12_002 |
| Cites_doi | 10.1063/1.436761 10.1039/C8SM01836G 10.1063/1.1489072 10.1103/PhysRevE.97.042302 10.1103/PhysRevLett.63.1954 10.1103/PhysRevA.34.693 10.1103/PhysRevLett.110.195301 10.1209/epl/i2002-00280-2 10.1007/978-1-4612-4300-7 10.1103/PhysRevE.84.046202 10.1007/978-3-662-11832-0 10.1073/pnas.1118672109 10.1103/PhysRevE.51.4380 10.1007/978-3-540-29028-5 10.1103/RevModPhys.82.1767 10.1088/1367-2630/aa8ed7 10.1103/PhysRevLett.64.866 10.1103/PhysRevE.89.062924 10.1103/RevModPhys.49.435 10.1023/A:1023084404080 10.1103/PhysRevLett.108.251602 10.1103/PhysRevA.45.8605 10.1088/1367-2630/12/11/113035 10.1140/epjst/e2014-02193-y 10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2 10.1143/PTP.76.576 10.1088/0305-4470/35/31/101 10.1103/PhysRevLett.112.068301 10.1103/PhysRevLett.65.1458 10.1016/j.neuron.2016.12.041 10.1007/978-1-4757-3484-3 10.1017/CBO9780511616051 10.1103/PhysRevLett.113.065303 10.1016/S0001-2092(07)64531-1 10.1007/BF01077511 10.1103/PhysRevLett.125.126402 10.1209/0295-5075/4/2/007 10.1103/PhysRevE.74.022101 10.1103/PhysRevLett.89.058101 10.1103/PhysRevLett.110.184102 10.1080/00268976.2019.1567849 10.1103/PhysRev.117.648 10.1073/pnas.2010580117 10.1051/jphyslet:019850046017078700 10.1063/1.1461427 10.1103/PhysRevLett.74.4839 10.1103/PhysRevA.88.053408 10.1090/S0002-9947-1980-0561832-4 10.1103/PhysRevE.83.030901 10.1103/PhysRevLett.104.178103 10.1103/PhysRevResearch.2.023173 10.1146/annurev-conmatphys-031119-050644 10.1126/science.aau5347 10.1103/PhysRevE.93.042310 10.1103/PhysRevE.85.056210 10.1088/0951-7715/7/6/008 10.21468/SciPostPhys.8.5.074 10.1515/zna-1988-8-901 10.1103/RevModPhys.85.1143 10.1063/1.1668896 10.1016/0370-1573(74)90023-4 10.1103/PhysRevLett.120.215301 10.1088/1751-8113/46/30/305001 10.1103/PhysRevE.94.032205 10.1103/PhysRevLett.61.2574 10.1063/1.4959804 10.1103/PhysRevLett.94.214301 10.1016/S0079-6123(04)47009-5 10.1103/PhysRevA.30.2548 10.1103/PhysRevLett.117.038103 10.1137/0143052 10.1209/0295-5075/9/8/007 10.1103/PhysRevLett.123.018101 10.1103/PhysRevLett.69.2915 10.1063/1.3136851 10.1103/PhysRevA.38.3593 10.1103/PhysRevA.77.013618 10.1038/s41563-020-0635-6 10.1103/PhysRev.95.1374 10.1088/1367-2630/18/9/093006 10.1209/epl/i1997-00421-1 10.1103/PhysRevLett.120.140401 10.1103/PhysRevLett.115.200402 10.1038/s41567-020-0922-9 10.1017/CBO9780511550485 10.1017/9781107278974 10.1142/S0129183105007261 10.1103/PhysRevLett.109.160402 10.1103/PhysRevB.99.201103 10.1088/1751-8113/42/44/445001 10.1021/acs.nanolett.8b04134 10.1007/BF01614072 10.1103/PhysRevE.99.012612 10.1103/PhysRevLett.110.091601 10.1016/j.neuron.2009.02.005 10.1080/01418639508238541 10.1142/4062 10.1088/0034-4885/67/5/R03 10.1016/0167-2789(88)90032-2 10.1017/CBO9780511627200 10.1103/RevModPhys.65.851 10.1103/PhysRevLett.55.496 10.1103/PhysRevLett.80.5243 10.1017/S0022112088000746 10.1103/PhysRevLett.96.044506 10.1103/PhysRevX.10.041009 10.1209/0295-5075/4/9/011 10.1007/978-3-319-18212-4_10 10.1103/PhysRevLett.117.248001 10.1103/PhysRevLett.125.118001 10.1103/PhysRevLett.123.016805 10.1038/nature08891 10.1088/1367-2630/ab20fd 10.1103/PhysRevLett.79.1150 10.1146/annurev.fl.23.010191.002013 10.1103/PhysRevA.42.4693 10.1126/science.261.5121.578 10.1063/1.2930766 10.1007/978-1-4612-4574-2 10.1103/PhysRevLett.122.247702 10.1007/978-1-4757-3978-7 10.1063/PT.3.4020 10.1103/PhysRevE.80.046215 10.1143/PTP.77.622 10.1103/PhysRevLett.101.084103 10.1038/s41563-018-0123-4 10.1016/S0167-2789(99)00007-X 10.1103/RevModPhys.91.035002 10.3402/tellusa.v55i3.12093 10.1103/PhysRevLett.112.148102 10.1126/sciadv.aau9403 10.1103/PhysRevE.58.4828 10.1080/00018739100101462 10.1103/PhysRevResearch.1.023026 10.1103/PhysRevLett.118.018101 10.1162/089976602317250861 10.1088/0034-4885/70/6/R03 10.1103/PhysRevB.94.020408 10.1098/rstb.2000.0769 10.1103/PhysRevResearch.2.043059 10.1103/PhysRevA.46.963 10.1103/PhysRevE.96.042208 10.1017/S0022112086002513 10.1088/0951-7715/10/5/006 10.1201/b18360 10.1137/030600503 10.1103/RevModPhys.72.603 10.1016/B978-044452965-7/50004-0 10.1186/1471-2202-10-S1-P64 10.1038/s41567-019-0603-8 10.1063/1.1418246 10.1063/1.3247089 10.1038/nature18605 10.1038/s41467-019-12599-3 10.1146/annurev.fluid.38.050304.092139 10.1016/0550-3213(76)90025-0 10.1137/0521081 10.1038/nphys3423 10.1007/978-3-642-69689-3 10.1038/s41567-020-0795-y 10.1103/PhysRevE.97.012130 10.1103/PhysRevLett.119.058002 10.1103/PhysRevLett.92.018101 10.1098/rsta.1987.0050 10.1103/PhysRevLett.123.218001 10.1007/978-3-0348-8167-8 10.1088/0305-4470/19/11/005 10.1038/s41598-019-53455-0 10.1103/PhysRevLett.120.244101 10.1103/PhysRevB.94.041104 10.1103/PhysRevE.47.1739 10.1103/PhysRevLett.64.184 10.1103/RevModPhys.90.031001 10.1090/conm/056/855089 10.1103/PhysRevLett.75.1226 10.1126/science.1230020 10.1038/ncomms15791 10.1103/PhysRevE.58.1383 10.1103/PhysRevLett.106.054102 10.1103/PhysRevE.78.031406 10.1103/PhysRevLett.108.248101 10.1103/PhysRevLett.75.4326 10.1007/978-3-642-66784-8 10.1038/s41467-017-01378-7 10.1007/978-1-4612-5034-0 10.1103/PhysRevE.61.1648 10.1103/RevModPhys.77.137 10.1073/pnas.1503749112 10.1103/PhysRevA.72.014104 10.1073/pnas.94.19.10426 10.1103/PhysRevLett.122.185301 10.1103/PhysRevLett.57.2861 10.1007/BF02812722 10.1103/PhysRevE.98.062219 10.1103/PhysRevA.92.063807 10.1088/0305-4470/25/15/015 10.1051/jphys:0198900500200308900 10.1016/0167-2789(88)90005-X 10.1103/PhysRevLett.72.1188 10.1103/PhysRevE.56.780 10.1515/9780691213101 10.1103/PhysRevE.91.012134 10.1103/PhysRevB.102.085151 10.1016/0167-2789(94)90196-1 10.1088/0305-4470/38/8/009 10.1209/0295-5075/10/4/005 10.1103/RevModPhys.74.99 10.1140/epje/i2018-11653-4 10.1088/1464-4266/5/3/380 10.1063/1.1703672 10.1103/PhysRevLett.64.1381 10.1103/PhysRevLett.122.128001 10.1103/PhysRevLett.70.2391 10.1103/PhysRevE.58.565 10.1137/0515001 10.1103/PhysRevA.92.052124 10.1103/PhysRevE.86.011909 10.1016/S0167-2789(97)00187-5 10.1103/PhysRevLett.106.213901 10.1017/jfm.2019.553 10.1103/PhysRevA.15.319 10.1103/PhysRevLett.120.264101 10.1038/s41467-017-01190-3 10.1103/PhysRevE.47.1727 10.1146/annurev.fluid.37.061903.175810 10.1103/PhysRevApplied.10.047001 10.1209/epl/i2001-00509-0 10.1088/1367-2630/ab81b6 10.1103/PhysRevE.95.020601 10.1103/PhysRevLett.101.264103 10.1007/978-3-642-61544-3 10.1103/PhysRevA.37.3909 10.1146/annurev-fluid-122316-045042 10.1007/978-3-662-05389-8 10.1016/j.physleta.2010.02.032 10.1103/PhysRevA.82.013629 10.1103/PhysRevLett.125.238005 10.1103/PhysRevLett.125.220601 10.1038/s41578-020-0206-0 10.1103/PhysRevE.54.5053 10.1103/PhysRev.127.965 10.1209/0295-5075/125/20008 10.1073/pnas.1609572113 10.1063/1.4958930 10.1103/PhysRevLett.109.160401 10.1103/PhysRevE.81.061916 10.1038/nphys3134 10.1103/PhysRevLett.68.1073 10.1126/science.1246957 10.1088/0305-4470/29/24/001 10.1007/978-90-481-2869-3 10.5479/sil.52126.39088015628399 10.1186/s13408-020-00086-9 10.1103/PhysRevLett.124.086801 10.1103/PhysRevLett.58.2318 10.1209/0295-5075/95/18003 10.1103/PhysRevResearch.2.023068 10.1063/1.522724 10.1111/j.1365-2664.2007.01333.x 10.1016/0167-2789(84)90005-8 10.1103/PhysRevE.49.483 10.1016/j.physrep.2015.01.001 10.1126/sciadv.aba2282 10.1038/nature21044 10.1103/PhysRevLett.57.2935 10.1007/978-3-662-04174-1 10.1016/j.physd.2011.01.002 10.1103/PhysRevE.69.056216 10.1103/PhysRevLett.92.025702 10.1038/s41377-018-0105-y 10.1103/PhysRevResearch.2.033018 10.1103/PhysRevE.58.3089 10.1103/PhysRevA.27.591 10.1103/PhysRevE.101.052601 10.1017/S0022112081002139 10.1103/PhysRevLett.55.2857 10.1016/j.ecolmodel.2004.05.001 10.1038/nphys2276 10.1038/nature12673 10.1088/1367-2630/18/9/095003 10.1103/PhysRevLett.77.570 10.1038/s41566-017-0031-1 10.1007/BF00280698 10.1103/RevModPhys.88.035002 10.1103/PhysRevE.79.026204 10.1126/science.aar7709 10.1126/science.aat9891 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 COPYRIGHT 2021 Nature Publishing Group Copyright Nature Publishing Group Apr 15, 2021 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: Copyright Nature Publishing Group Apr 15, 2021 |
| DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
| DOI | 10.1038/s41586-021-03375-9 |
| DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database (Proquest) Proquest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection (ProQuest) ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PATMY name: Environmental Science Database url: http://search.proquest.com/environmentalscience sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics |
| EISSN | 1476-4687 |
| EndPage | 369 |
| ExternalDocumentID | A658457561 33854249 10_1038_s41586_021_03375_9 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States Nigeria Aba Nigeria |
| GeographicLocations_xml | – name: United States – name: Aba Nigeria – name: Nigeria |
| GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ABUFD ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 FAC I-F J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NFIDA NPM NXXTH ODYON OHT P-O PEA PM3 PV9 QS- R4F RHI SKT SV3 TH9 TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 ACMFV AEIIB PMFND 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c614t-36a08a0137242c51ba06947cbdb0ac87952c29bd1588f2b5c46f2fa3b75cd7ed3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 407 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683804100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-0836 1476-4687 |
| IngestDate | Wed Oct 01 08:19:11 EDT 2025 Tue Oct 07 07:19:04 EDT 2025 Tue Nov 11 10:13:49 EST 2025 Sat Nov 29 11:20:34 EST 2025 Tue Jun 10 15:32:40 EDT 2025 Tue Nov 04 18:02:54 EST 2025 Thu Nov 13 14:22:28 EST 2025 Thu Nov 13 15:17:46 EST 2025 Mon Jul 21 04:15:32 EDT 2025 Sat Nov 29 03:48:47 EST 2025 Tue Nov 18 21:54:27 EST 2025 Fri Feb 21 02:37:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7854 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c614t-36a08a0137242c51ba06947cbdb0ac87952c29bd1588f2b5c46f2fa3b75cd7ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6328-8783 |
| PMID | 33854249 |
| PQID | 2514748224 |
| PQPubID | 40569 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2513247926 proquest_journals_2514748224 gale_infotracmisc_A658457561 gale_infotracgeneralonefile_A658457561 gale_infotraccpiq_658457561 gale_infotracacademiconefile_A658457561 gale_incontextgauss_ISR_A658457561 gale_incontextgauss_ATWCN_A658457561 pubmed_primary_33854249 crossref_citationtrail_10_1038_s41586_021_03375_9 crossref_primary_10_1038_s41586_021_03375_9 springer_journals_10_1038_s41586_021_03375_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-15 |
| PublicationDateYYYYMMDD | 2021-04-15 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | International weekly journal of science |
| PublicationTitle | Nature (London) |
| PublicationTitleAbbrev | Nature |
| PublicationTitleAlternate | Nature |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Chossat, P. & Lauterbach, R. Methods in Equivariant Bifurcations and Dynamical Systems (World Scientific, 2000). KonotopVVYangJZezyulinDANonlinear waves in PT-symmetric systemsRev. Mod. Phys.2016880350022016RvMP...88c5002K10.1103/RevModPhys.88.035002 Risken, H. The Fokker–Planck Equation (Springer, 1989). MishraSBaskaranAMarchettiMCFluctuations and pattern formation in self-propelled particlesPhys. Rev. E2010810619162010PhRvE..81f1916M10.1103/PhysRevE.81.061916 LahiriRRamaswamySAre steadily moving crystals unstable?Phys. Rev. Lett.199779115011531997PhRvL..79.1150L1:CAS:528:DyaK2sXlsVOkuro%3D10.1103/PhysRevLett.79.1150 GutöhrleinRMainJCartariusHWunnerGBifurcations and exceptional points in dipolar Bose–Einstein condensatesJ. Phys. A20134630500130803251276.8203710.1088/1751-8113/46/30/305001 Arnold, V. I. Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1988). SimonAJBechhoeferJLibchaberASolitary modes and the Eckhaus instability in directional solidificationPhys. Rev. Lett.19886125741988PhRvL..61.2574S1:STN:280:DC%2BC2sfosVKhtw%3D%3D1003916010.1103/PhysRevLett.61.2574 DauchotOMannevillePLocal versus global concepts in hydrodynamic stability theoryJ. Phys. II199773713891:CAS:528:DyaK2sXht1Ckt7g%3D DangelmayrGHettelJKnoblochEParity-breaking bifurcation in inhomogeneous systemsNonlinearity19971010931997Nonli..10.1093D14733760995.3402710.1088/0951-7715/10/5/006 FieldMJEquivariant dynamical systemsTrans. Am. Math. Soc.19802591855618320447.5802910.1090/S0002-9947-1980-0561832-4 PalacciJSacannaSSteinbergAPPineDJChaikinPMLiving crystals of light-activated colloidal surfersScience20133399369402013Sci...339..936P1:CAS:528:DC%2BC3sXis1OisLY%3D2337155510.1126/science.1230020 GrossmannSThe onset of shear flow turbulenceRev. Mod. Phys.2000726036182000RvMP...72..603G10.1103/RevModPhys.72.603 LahiriRBarmaMRamaswamySStrong phase separation in a model of sedimenting latticesPhys. Rev. E20006116482000PhRvE..61.1648L1:CAS:528:DC%2BD3cXhtVGltrw%3D10.1103/PhysRevE.61.1648 WatanabeSStrogatzSHIntegrability of a globally coupled oscillator arrayPhys. Rev. Lett.19937023911993PhRvL..70.2391W12125591:STN:280:DC%2BC2sfpt12lsQ%3D%3D100535501063.3450510.1103/PhysRevLett.70.2391 WilczekFQuantum time crystalsPhys. Rev. Lett.20121091604012012PhRvL.109p0401W2321505610.1103/PhysRevLett.109.160401 BotPCadotOMutabaziISecondary instability mode of a roll pattern and transition to spatiotemporal chaos in the Taylor–Dean systemPhys. Rev. E199858308930971998PhRvE..58.3089B1:CAS:528:DyaK1cXlslyqtLs%3D10.1103/PhysRevE.58.3089 SiebererLMHuberSDAltmanEDiehlSDynamical critical phenomena in driven-dissipative systemsPhys. Rev. Lett.20131101953012013PhRvL.110s5301S1:STN:280:DC%2BC3snntF2lsA%3D%3D2370571510.1103/PhysRevLett.110.195301 MostafazadehAPseudo-Hermiticity versus PT-symmetry. II: A complete characterization of non-Hermitian Hamiltonians with a real spectrumJ. Math. Phys.20024328142002JMP....43.2814M18937011060.8102210.1063/1.1461427 KnoblochEMooreDRMinimal model of binary fluid convectionPhys. Rev. A199042469347091990PhRvA..42.4693K1:STN:280:DC%2BC2sjpt1Slug%3D%3D990457710.1103/PhysRevA.42.4693 AsllaniMCarlettiTTopological resilience in non-normal networked systemsPhys. Rev. E2018970423022018PhRvE..97d2302A1:CAS:528:DC%2BC1MXkvFOrs7s%3D2975871610.1103/PhysRevE.97.042302 PazóDMontbrióEExistence of hysteresis in the Kuramoto model with bimodal frequency distributionsPhys. Rev. E2009800462152009PhRvE..80d6215P10.1103/PhysRevE.80.046215 NicolaouZGNishikawaTNicholsonSBGreenJRMotterAENon-normality and non-monotonic dynamics in complex reaction networksPhys. Rev. Res.202020430591:CAS:528:DC%2BB3MXjtVygsro%3D10.1103/PhysRevResearch.2.043059 HongHStrogatzSHConformists and contrarians in a Kuramoto model with identical natural frequenciesPhys. Rev. E2011840462022011PhRvE..84d6202H10.1103/PhysRevE.84.046202 HanaiREdelmanAOhashiYLittlewoodPBNon-Hermitian phase transition from a polariton Bose–Einstein condensate to a photon laserPhys. Rev. Lett.20191221853012019PhRvL.122r5301H1:CAS:528:DC%2BC1MXhtFKlsb%2FK3114488110.1103/PhysRevLett.122.185301 OswaldPBechhoeferJLibchaberAInstabilities of a moving nematic–isotropic interfacePhys. Rev. Lett.198758231823211987PhRvL..58.2318O1:CAS:528:DyaL2sXkvVOlt7w%3D10.1103/PhysRevLett.58.2318 HohenbergPKrekhovAAn introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patternsPhys. Rep.20155721422015PhR...572....1H33202671357.8202210.1016/j.physrep.2015.01.001 Loos, S. A. M., Hermann, S. M. & Klapp, S. H. L. Non-reciprocal hidden degrees of freedom: a unifying perspective on memory, feedback, and activity. Preprint at https://arxiv.org/abs/1910.08372 (2019). OttEAntonsenTMLow dimensional behavior of large systems of globally coupled oscillatorsChaos2008180371132008Chaos..18c7113O2464324190454871309.3405810.1063/1.2930766 MaitraALenzMVoituriezRChiral active hexatics: giant number fluctuations, waves and destruction of orderPhys. Rev. Lett.20201252380052020PhRvL.125w8005M1:CAS:528:DC%2BB3MXpsFOn3333720810.1103/PhysRevLett.125.238005 You, Z., Baskaran, A. & Marchetti, M. C. Nonreciprocity as a generic route to traveling states. Preprint at https://arxiv.org/abs/2005.07684 (2020). RabaudMMichallandSCouderYDynamical regimes of directional viscous fingering: spatiotemporal chaos and wave propagationPhys. Rev. Lett.1990641841871990PhRvL..64..184R1:STN:280:DC%2BC2sfoslSksg%3D%3D1004167110.1103/PhysRevLett.64.184 van Kampen, N. G. Stochastic Processes in Physics and Chemistry Vol. 1 (Elsevier, 2007). KerswellRNonlinear nonmodal stability theoryAnnu. Rev. Fluid Mech.2018503193452018AnRFM..50..319K37532131384.7602210.1146/annurev-fluid-122316-045042 Sornette, D. Critical Phenomena in Natural Sciences (Springer, 2000). ChoMWKimSUnderstanding visual map formation through vortex dynamics of spin Hamiltonian modelsPhys. Rev. Lett.2004920181012004PhRvL..92a8101C1475402210.1103/PhysRevLett.92.018101 Guckenheimer, J. A codimension two bifurcation with circular symmetry. In Multiparameter Bifurcation Theory (eds Golubitsky, M. & Guckenheimer, J. M.) 175–184 (AMS, 1986). MaltmanKLaidlawWGOnsager symmetry and the diagonalizability of the hydrodynamic matrixJ. Math. Phys.19751615611975JMP....16.1561M41862210.1063/1.522724 AronCChamonCLandau theory for non-equilibrium steady statesSciPost Phys.202080742020ScPP....8...74A418064710.21468/SciPostPhys.8.5.074 CoulletPGoldsteinREGunaratneGHParity-breaking transitions of modulated patterns in hydrodynamic systemsPhys. Rev. Lett.198963195419571989PhRvL..63.1954C1:STN:280:DC%2BC2sfos1Wnug%3D%3D1004072310.1103/PhysRevLett.63.1954 CrossMCHohenbergPCPattern formation outside of equilibriumRev. Mod. Phys.19936585111121993RvMP...65..851C1:CAS:528:DyaK2cXhtFShs7c%3D1371.3700110.1103/RevModPhys.65.851 Das, J., Rao, M. & Ramaswamy, S. Nonequilibrium steady states of the isotropic classical magnet. Preprint at https://arxiv.org/abs/cond-mat/0404071 (2004). BrandHRHohenbergPCSteinbergVAmplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous mediumPhys. Rev. A1983275915931983PhRvA..27..591B1:CAS:528:DyaL3sXmtVOqsA%3D%3D10.1103/PhysRevA.27.591 HanaiRLittlewoodPBCritical fluctuations at a many-body exceptional pointPhys. Rev. Res.202020330181:CAS:528:DC%2BB3cXitVOku7zJ10.1103/PhysRevResearch.2.033018 PetersonCWParkerJRiceSASchererNFControlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradientsNano Lett.2019198979032019NanoL..19..897P3062407110.1021/acs.nanolett.8b04134 Henkel, M., Hinrichsen, H. & Lübeck, S. Non-equilibrium Phase Transitions Vol. 1 (Springer, 2008). EstepNASounasDLSoricJAlùAMagnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loopsNat. Phys.2014109231:CAS:528:DC%2BC2cXhvFKlsrzE10.1038/nphys3134 LevisDPagonabarragaILiebchenBActivity induced synchronization: mutual flocking and chiral self-sortingPhys. Rev. Res.201910230261:CAS:528:DC%2BB3cXhvVOhtrbP10.1103/PhysRevResearch.1.023026 ChomazJ-MGlobal instabilities in spatially developing flows: non-normality and nonlinearityAnnu. Rev. Fluid Mech.2005373573922005AnRFM..37..357C21153471117.7602710.1146/annurev.fluid.37.061903.175810 AharonyanMTorreEGDMany-body exceptional points in colliding condensatesMol. Phys.201911719712019MolPh.117.1971A1:CAS:528:DC%2BC1MXhsF2qsL4%3D10.1080/00268976.2019.1567849 KepesidisKVPT-symmetry breaking in the steady state of microscopic gain–loss systemsNew J. Phys.2016180950032016NJPh...18i5003K10.1088/1367-2630/18/9/095003 FauveSDouadySThualODrift instabilities of cellular patternsJ. Phys. II19911311 ErmakDLMcCammonJABrownian dynamics with hydrodynamic interactionsJ. Chem. Phys.19786913521978JChPh..69.1352E1:CAS:528:DyaE1cXls12huro%3D10.1063/1.436761 CoulletPFauveSTirapeguiELarge scale instability of nonlinear standing wavesJ. Physique Lett.19854678779110.1051/jphyslet:019850046017078700 CugliandoloLFKurchanJWeak ergodicity breaking in mean-field spin-glass modelsPhilos. Mag. B1995715015141995PMagB..71..501C1:CAS:528:DyaK2MXltV2ktLw%3D10.1080/01418639508238541 Schnabel, M., Kaschube, M. & Wolf, F. Pinwheel stability, pattern selection and the geometry of visual space. Preprint at https://arxiv.org/abs/0801.3832 (2008). Von Neumann, J. & Wigner, E. P. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen Physik. Zeit. 30, 467 (1929); translated in Symmetry in the Solid State (eds Knox, R. S. & Gold, A.) (Benjamin, New York, 1964). BressloffPCCowanJDGolubitskyMThomasPJWienerMCGeometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortexPhil. Trans. R. Soc. Lond. B20013562993301:STN:280:DC%2BD3MzlsFemtQ%3D%3D10.1098/rstb.2000.0769 BricardACaussinJ-BDesreumauxNDauchotOBartoloDEmergence of macroscopic directed motion in populations of motile colloidsNature201350395982013Natur.503...95B1:CAS:528:DC%2BC3sXhslelt7nL2420128210.1038/nature12673 Hoyle, R. Pattern Formation (Cambridge Univ. Press, 2006). GaldaAVinokurVMParity–time symmetry breaking in magne 3375_CR256 3375_CR134 3375_CR258 MG Neubert (3375_CR97) 2004; 179 3375_CR257 VV Konotop (3375_CR115) 2016; 88 FA Lavergne (3375_CR6) 2019; 364 E-M Graefe (3375_CR253) 2010; 82 A Pikovsky (3375_CR240) 2011; 240 T Ihle (3375_CR210) 2011; 83 N Bain (3375_CR203) 2019; 363 G Dangelmayr (3375_CR268) 1997; 10 B Pietras (3375_CR245) 2018; 98 AP Seyranian (3375_CR194) 2005; 38 K Zhang (3375_CR161) 2020; 125 KP O’Keeffe (3375_CR217) 2017; 8 3375_CR141 G Parisi (3375_CR132) 1986; 19 N Okuma (3375_CR158) 2020; 124 H Watanabe (3375_CR186) 2012; 108 3375_CR149 M Parto (3375_CR47) 2020; 19 ME Brachet (3375_CR261) 1987; 4 MC Cross (3375_CR279) 1988; 37 A Peshkov (3375_CR209) 2014; 223 J-B Caussin (3375_CR220) 2014; 112 H Sompolinsky (3375_CR11) 1986; 57 A Amir (3375_CR90) 2016; 93 JW Krakauer (3375_CR131) 2017; 93 D Pazó (3375_CR244) 2009; 80 F Wilczek (3375_CR313) 2012; 109 G Lan (3375_CR119) 2012; 8 JD Crawford (3375_CR70) 1991; 23 T Vicsek (3375_CR34) 1995; 75 FP Kemeth (3375_CR310) 2016; 26 3375_CR150 3375_CR153 KA Julien (3375_CR195) 1994; 7 M Rabaud (3375_CR41) 1990; 64 3375_CR111 B Mahault (3375_CR211) 2019; 123 H Hong (3375_CR135) 2011; 84 A Ghatak (3375_CR147) 2020; 117 JA Acebrón (3375_CR33) 2005; 77 3375_CR117 3375_CR116 3375_CR118 A Costanzo (3375_CR144) 2019; 125 B Liebchen (3375_CR216) 2017; 119 LL Bonilla (3375_CR39) 2019; 99 S Mishra (3375_CR221) 2010; 81 NR Bernier (3375_CR104) 2014; 113 S Fauve (3375_CR264) 1991; 1 cr-split#-3375_CR180.2 cr-split#-3375_CR180.1 N Uchida (3375_CR2) 2010; 104 C Bick (3375_CR243) 2020; 10 KV Kepesidis (3375_CR252) 2016; 18 R Lahiri (3375_CR9) 1997; 79 D Yllanes (3375_CR5) 2017; 19 K Makris (3375_CR101) 2014; 4 3375_CR121 S Autti (3375_CR317) 2018; 120 MIN Rosa (3375_CR148) 2020; 22 E Montbrió (3375_CR242) 2015; 5 LN Trefethen (3375_CR52) 1993; 261 SA Marvel (3375_CR239) 2009; 19 P Coullet (3375_CR14) 1989; 63 RJ Wiener (3375_CR305) 1992; 69 BF Farrell (3375_CR80) 1994; 72 K Giergiel (3375_CR316) 2018; 120 AU Hassan (3375_CR45) 2015; 92 A Ramos (3375_CR48) 2020; 10 J-M Flesselles (3375_CR270) 1991; 40 LM Sieberer (3375_CR28) 2013; 110 Y Ashida (3375_CR49) 2017; 8 FDC Farrell (3375_CR207) 2012; 108 M Nixon (3375_CR46) 2013; 110 MC Marchetti (3375_CR77) 2013; 85 Z Lin (3375_CR145) 2011; 106 H Daido (3375_CR225) 1987; 77 R Hanai (3375_CR31) 2020; 2 JE Avron (3375_CR172) 1998; 92 3375_CR177 3375_CR176 J Toner (3375_CR201) 1998; 58 3375_CR299 M Ginibre (3375_CR274) 1997; 56 HR Brand (3375_CR284) 1984; 30 MA Muñoz (3375_CR64) 2018; 90 H Hong (3375_CR229) 2012; 85 A Galda (3375_CR251) 2019; 9 CH Lee (3375_CR160) 2019; 123 R Aditi Simha (3375_CR223) 2002; 89 N Hatano (3375_CR24) 1996; 77 LP Dadhichi (3375_CR139) 2020; 101 T Helbig (3375_CR20) 2020; 16 G Baggio (3375_CR93) 2020; 6 A Pinter (3375_CR308) 2006; 96 A Pluchino (3375_CR136) 2005; 16 D Banerjee (3375_CR173) 2017; 8 CM Bender (3375_CR25) 1998; 80 B Derrida (3375_CR133) 1987; 4 Y Adini (3375_CR298) 1997; 94 H Daido (3375_CR37) 1992; 68 L Landau (3375_CR57) 1954; 96 EP Wigner (3375_CR114) 1960; 1 E Knobloch (3375_CR278) 1981; 108 T Biancalani (3375_CR51) 2017; 118 NA Estep (3375_CR165) 2014; 10 MW Cho (3375_CR294) 2004; 92 R Curtu (3375_CR297) 2004; 3 CD Andereck (3375_CR306) 1986; 164 PC Bressloff (3375_CR293) 2002; 14 L Leroy (3375_CR188) 1992; 25 R Soto (3375_CR126) 2014; 112 C-U Choe (3375_CR234) 2016; 94 3375_CR191 V Soni (3375_CR175) 2019; 15 3375_CR190 M Aharonyan (3375_CR105) 2019; 117 S Saha (3375_CR3) 2019; 21 MC Cross (3375_CR282) 1988; 38 3375_CR197 C Scheibner (3375_CR168) 2020; 125 3375_CR154 H Hong (3375_CR12) 2011; 106 P Coullet (3375_CR263) 1990; 64 C Counillon (3375_CR277) 1997; 40 M Golubitsky (3375_CR311) 1985; 87 3375_CR84 S Malzard (3375_CR155) 2015; 115 P Bot (3375_CR304) 1998; 58 NP Kryuchkov (3375_CR125) 2018; 14 P Hohenberg (3375_CR61) 2015; 572 C Aron (3375_CR76) 2020; 8 E Ott (3375_CR236) 2009; 19 CM Bender (3375_CR112) 2007; 70 M Durve (3375_CR143) 2018; 41 A Mostafazadeh (3375_CR108) 2002; 43 A Pikovsky (3375_CR232) 2008; 101 H Cartarius (3375_CR254) 2008; 77 I Prigogine (3375_CR315) 1968; 48 3375_CR162 3375_CR163 EA Martens (3375_CR233) 2016; 26 H Watanabe (3375_CR185) 2020; 11 E Knobloch (3375_CR290) 1990; 42 A Shapere (3375_CR312) 2012; 109 K Wilson (3375_CR62) 1974; 12 M Krupa (3375_CR199) 1990; 21 MC Cross (3375_CR280) 1986; 57 CW Peterson (3375_CR130) 2019; 19 I Mutabazi (3375_CR303) 1995; 51 CM Bender (3375_CR109) 2002; 35 D Nishiguchi (3375_CR214) 2017; 95 J Goldstone (3375_CR183) 1962; 127 3375_CR170 M Asllani (3375_CR92) 2018; 4 F Ginelli (3375_CR138) 2015; 112 3375_CR295 R Chajwa (3375_CR87) 2020; 10 SGK Tennakoon (3375_CR302) 1996; 54 A Morin (3375_CR137) 2015; 91 P Oswald (3375_CR42) 1987; 58 S Townley (3375_CR98) 2007; 44 C Dembowski (3375_CR247) 2004; 69 H Hong (3375_CR309) 2014; 89 3375_CR63 P Coullet (3375_CR288) 1985; 46 P Strack (3375_CR50) 2013; 88 R Gutöhrlein (3375_CR255) 2013; 46 3375_CR65 3375_CR66 NC Keim (3375_CR59) 2019; 91 3375_CR68 VI Arnold (3375_CR193) 1995; 1 3375_CR69 H Masoud (3375_CR167) 2019; 879 H Tasaki (3375_CR151) 2020; 125 A Bricard (3375_CR26) 2013; 503 AU Oza (3375_CR212) 2016; 18 M-A Miri (3375_CR18) 2019; 363 É Fodor (3375_CR152) 2016; 117 HR Brand (3375_CR283) 1983; 27 P Coullet (3375_CR260) 1985; 55 3375_CR300 L Van Hove (3375_CR60) 1954; 95 G Hennequin (3375_CR89) 2012; 86 ZG Nicolaou (3375_CR94) 2020; 2 S Watanabe (3375_CR237) 1993; 70 D Levis (3375_CR218) 2019; 1 J Guckenheimer (3375_CR285) 1984; 15 3375_CR71 3375_CR72 H Sakaguchi (3375_CR36) 1986; 76 3375_CR73 3375_CR74 R Lahiri (3375_CR124) 2000; 61 3375_CR75 S Grossmann (3375_CR82) 2000; 72 D Armbruster (3375_CR266) 1988; 29 F Melo (3375_CR271) 1990; 64 3375_CR78 A Mostafazadeh (3375_CR107) 2002; 43 R Di Leonardo (3375_CR123) 2008; 78 cr-split#-3375_CR179.2 cr-split#-3375_CR179.1 C Coulais (3375_CR146) 2017; 542 S Weigert (3375_CR113) 2003; 5 D Zhou (3375_CR169) 2020; 2 PH Coullet (3375_CR281) 1983; 43 K Dholakia (3375_CR128) 2010; 82 DM Abrams (3375_CR231) 2008; 101 T Hofmann (3375_CR159) 2019; 122 E Montbrió (3375_CR10) 2018; 120 C Caloz (3375_CR166) 2018; 10 D Geyer (3375_CR202) 2018; 17 J Toner (3375_CR35) 1995; 75 AJ Simon (3375_CR269) 1988; 61 KJ Burns (3375_CR219) 2020; 2 CM Bender (3375_CR110) 2010; 374 G Faivre (3375_CR43) 1989; 9 EA Martens (3375_CR227) 2009; 79 YY Renardy (3375_CR196) 1999; 129 L Feng (3375_CR100) 2017; 11 R Hanai (3375_CR30) 2019; 122 W Schöpf (3375_CR291) 1993; 47 A Metelmann (3375_CR29) 2015; 5 H Nielsen (3375_CR187) 1976; 105 R Fleury (3375_CR16) 2014; 343 TC Butler (3375_CR296) 2012; 109 MRE Proctor (3375_CR267) 1988; 188 RJ Potton (3375_CR164) 2004; 67 R Gallego (3375_CR235) 2017; 96 E Ott (3375_CR230) 2008; 18 A Mostafazadeh (3375_CR106) 2002; 43 3375_CR53 G Dangelmayr (3375_CR198) 1987; 322 3375_CR54 E Bertin (3375_CR205) 2006; 74 3375_CR55 D Bensimon (3375_CR289) 1989; 50 3375_CR56 O Dauchot (3375_CR81) 1997; 7 J Agudo-Canalejo (3375_CR127) 2019; 123 J Das (3375_CR38) 2002; 60 DR Nelson (3375_CR96) 1998; 58 R Kerswell (3375_CR86) 2018; 50 YD Yifat (3375_CR129) 2018; 7 E Bertin (3375_CR206) 2009; 42 J Goldstone (3375_CR182) 1961; 19 G Grégoire (3375_CR222) 2004; 92 L Bonilla (3375_CR228) 1998; 113 Y Nambu (3375_CR181) 1960; 117 E Knobloch (3375_CR265) 1995; 74 S Watanabe (3375_CR238) 1994; 74 3375_CR1 S Altmeyer (3375_CR307) 2010; 12 DS Dean (3375_CR204) 1996; 29 L Böberg (3375_CR79) 1988; 43 3375_CR21 3375_CR22 L Ridolfi (3375_CR99) 2011; 95 3375_CR23 LF Cugliandolo (3375_CR58) 1995; 71 G Faivre (3375_CR272) 1992; 46 A Souslov (3375_CR174) 2019; 122 B Malomed (3375_CR13) 1984; 14 J-M Chomaz (3375_CR83) 2005; 37 CH Lee (3375_CR156) 2019; 99 C Scheibner (3375_CR19) 2020; 16 A Maitra (3375_CR142) 2020; 125 L Pan (3375_CR15) 1994; 49 K Kassner (3375_CR273) 1990; 65 3375_CR102 3375_CR224 M Nagy (3375_CR4) 2010; 464 Y Minami (3375_CR189) 2018; 97 M Brandenbourger (3375_CR17) 2019; 10 RW Walden (3375_CR287) 1985; 55 AV Ivlev (3375_CR8) 2015; 5 S Omata (3375_CR226) 1988; 31 AA Mailybaev (3375_CR249) 2005; 72 L Barberis (3375_CR140) 2016; 117 S Douady (3375_CR262) 1989; 10 PJ Schmid (3375_CR85) 2007; 39 cr-split#-3375_CR192.1 JB Weiss (3375_CR120) 2003; A55 cr-split#-3375_CR192.2 J Swift (3375_CR259) 1977; 15 MJ Field (3375_CR200) 1980; 259 BK Murphy (3375_CR88) 2009; 61 J Doppler (3375_CR246) 2016; 537 E Moses (3375_CR286) 1986; 34 IS Aranson (3375_CR67) 2002; 74 Y Hidaka (3375_CR184) 2013; 110 BC van Zuiden (3375_CR7) 2016; 113 HZ Cummins (3375_CR275) 1993; 47 P Brunet (3375_CR44) 2001; 56 L Bellon (3375_CR276) 1998; 58 J-C Tsai (3375_CR215) 2005; 94 IV Tyulkina (3375_CR241) 2018; 120 MC Cross (3375_CR40) 1993; 65 3375_CR208 CH Lee (3375_CR157) 2020; 102 DL Ermak (3375_CR122) 1978; 69 K Maltman (3375_CR171) 1975; 16 PC Bressloff (3375_CR292) 2001; 356 J Palacci (3375_CR27) 2013; 339 cr-split#-3375_CR178.1 TJ Milburn (3375_CR248) 2015; 92 NY Yao (3375_CR314) 2018; 71 cr-split#-3375_CR178.2 M Asllani (3375_CR91) 2018; 97 R Suzuki (3375_CR213) 2015; 11 MG Neubert (3375_CR95) 1997; 78 A Galda (3375_CR250) 2016; 94 H Riecke (3375_CR301) 1992; 45 PC Hohenberg (3375_CR32) 1977; 49 V Tripathi (3375_CR103) 2016; 94 33854244 - Nature. 2021 Apr;592(7854):355-356 |
| References_xml | – reference: DeanDSLangevin equation for the density of a system of interacting Langevin processesJ. Phys. Math. Gen.199629L6131996JPhA...29L.613D14468821:CAS:528:DyaK2sXltFKhsQ%3D%3D10.1088/0305-4470/29/24/001 – reference: OttEAntonsenTMLong time evolution of phase oscillator systemsChaos2009190231172009Chaos..19b3117O2548751195662521309.3405910.1063/1.3136851 – reference: AshidaYFurukawaSUedaMParity-time-symmetric quantum critical phenomenaNat. Commun.201782017NatCo...815791A1:CAS:528:DC%2BC2sXpvFemur8%3D28593991547270910.1038/ncomms15791 – reference: TennakoonSGKAndereckCDHegsethJJRieckeHTemporal modulation of traveling waves in the flow between rotating cylinders with broken azimuthal symmetryPhys. Rev. E199654505350651996PhRvE..54.5053T1:CAS:528:DyaK28XntFehu7s%3D10.1103/PhysRevE.54.5053 – reference: BrandenbourgerMLocsinXLernerECoulaisCNon-reciprocal robotic metamaterialsNat. Commun.2019102019NatCo..10.4608B31601803678707110.1038/s41467-019-12599-3 – reference: PluchinoALatoraVRapisardaAChanging opinions in a changing world: a new perspective in sociophysicsInt. J. Mod. Phys. C2005165152005IJMPC..16..515P1121.9141210.1142/S0129183105007261 – reference: GinelliFIntermittent collective dynamics emerge from conflicting imperatives in sheep herdsProc. Natl Acad. Sci. USA2015112127292015PNAS..11212729G1:CAS:528:DC%2BC2MXhsFKnt7fJ2641708210.1073/pnas.1503749112 – reference: MontbrióEPazóDRoxinAMacroscopic description for networks of spiking neuronsPhys. Rev. X20155021028 – reference: CumminsHZFourtuneLRabaudMSuccessive bifurcations in directional viscous fingeringPhys. Rev. E199347172717381993PhRvE..47.1727C1:STN:280:DC%2BC2sfitlKrtg%3D%3D10.1103/PhysRevE.47.1727 – reference: SouslovADasbiswasKFruchartMVaikuntanathanSVitelliVTopological waves in fluids with odd viscosityPhys. Rev. Lett.20191221280012019PhRvL.122l8001S39381061:CAS:528:DC%2BC1MXpsFymsb8%3D3097803510.1103/PhysRevLett.122.128001 – reference: ShapereAWilczekFClassical time crystalsPhys. Rev. Lett.20121091604022012PhRvL.109p0402S2321505710.1103/PhysRevLett.109.160402 – reference: SahaSRamaswamySGolestanianRPairing, waltzing and scattering of chemotactic active colloidsNew J. Phys.2019210630062019NJPh...21f3006S39799841:CAS:528:DC%2BC1MXit1Wht7zJ10.1088/1367-2630/ab20fd – reference: OswaldPBechhoeferJLibchaberAInstabilities of a moving nematic–isotropic interfacePhys. Rev. Lett.198758231823211987PhRvL..58.2318O1:CAS:528:DyaL2sXkvVOlt7w%3D10.1103/PhysRevLett.58.2318 – reference: AuttiSEltsovVVolovikGObservation of a time quasicrystal and its transition to a superfluid time crystalPhys. Rev. Lett.20181202153012018PhRvL.120u5301A1:CAS:528:DC%2BC1MXltVygu7Y%3D2988314810.1103/PhysRevLett.120.215301 – reference: CurtuRErmentroutBPattern formation in a network of excitatory and inhibitory cells with adaptationSIAM J. Appl. Dyn. Syst.200431912312004SJADS...3..191C21147341090.3403810.1137/030600503 – reference: NeubertMGCaswellHAlternatives to resilience for measuring the responses of ecological systems to perturbationsEcology19977865366510.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2 – reference: Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Preprint at https://arxiv.org/abs/2006.01837 (2020). – reference: BiancalaniTJafarpourFGoldenfeldNGiant amplification of noise in fluctuation-induced pattern formationPhys. Rev. Lett.20171180181012017PhRvL.118a8101B2810645310.1103/PhysRevLett.118.018101 – reference: WatanabeSStrogatzSHIntegrability of a globally coupled oscillator arrayPhys. Rev. Lett.19937023911993PhRvL..70.2391W12125591:STN:280:DC%2BC2sfpt12lsQ%3D%3D100535501063.3450510.1103/PhysRevLett.70.2391 – reference: Laguës, M. & Lesne, A. Invariances d’Échelle: des Changements d’États à la Turbulence (Belin, 2003). – reference: Chossat, P. & Iooss, G. The Couette–Taylor Problem (Springer, 1994). – reference: AronCChamonCLandau theory for non-equilibrium steady statesSciPost Phys.202080742020ScPP....8...74A418064710.21468/SciPostPhys.8.5.074 – reference: FaivreGMergyJDynamical wavelength selection by tilt domains in thin-film lamellar eutectic growthPhys. Rev. A1992469631992PhRvA..46..963F1:CAS:528:DyaK38XlsVSqt74%3D990819810.1103/PhysRevA.46.963 – reference: YifatYDReactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterersLight Sci. Appl.201872018LSA.....7..105Y1:CAS:528:DC%2BC1cXisVygsbnM30564311628999110.1038/s41377-018-0105-y – reference: RenardyYYRenardyMFujimuraKTakens–Bogdanov bifurcation on the hexagonal lattice for double-layer convectionPhysica D19991291711999PhyD..129..171R16875920948.7602110.1016/S0167-2789(99)00007-X – reference: FaivreGde CheveigneSGuthmannCKurowskiPSolitary tilt waves in thin lamellar eutecticsEurophys. Lett.198997797841989EL......9..779F10.1209/0295-5075/9/8/007 – reference: PalacciJSacannaSSteinbergAPPineDJChaikinPMLiving crystals of light-activated colloidal surfersScience20133399369402013Sci...339..936P1:CAS:528:DC%2BC3sXis1OisLY%3D2337155510.1126/science.1230020 – reference: MakrisKGeLTüreciHAnomalous transient amplification of waves in non-normal photonic mediaPhys. Rev. X20144041044 – reference: MilburnTJGeneral description of quasiadiabatic dynamical phenomena near exceptional pointsPhys. Rev. A2015920521242015PhRvA..92e2124M10.1103/PhysRevA.92.052124 – reference: MarchettiMCHydrodynamics of soft active matterRev. Mod. Phys.20138511432013RvMP...85.1143M1:CAS:528:DC%2BC3sXhvVWgtr3N10.1103/RevModPhys.85.1143 – reference: LeeCHLiLThomaleRGongJUnraveling non-Hermitian pumping: emergent spectral singularities and anomalous responsesPhys. Rev. B20201020851512020PhRvB.102h5151L1:CAS:528:DC%2BB3cXhvVCmurnM10.1103/PhysRevB.102.085151 – reference: BonillaLVicenteCPSpiglerRTime-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributionsPhysica D1998113791998PhyD..113...79B16102150935.3403110.1016/S0167-2789(97)00187-5 – reference: CrossMCTraveling and standing waves in binary-fluid convection in finite geometriesPhys. Rev. Lett.198657293529381986PhRvL..57.2935C1:STN:280:DC%2BC2sfotFejtQ%3D%3D1003391210.1103/PhysRevLett.57.2935 – reference: BarberisLPeruaniFLarge-scale patterns in a minimal cognitive flocking model: incidental leaders, nematic patterns, and aggregatesPhys. Rev. Lett.20161172480012016PhRvL.117x8001B2800918510.1103/PhysRevLett.117.248001 – reference: Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Preprint at https://arxiv.org/abs/2010.00364 (2020). – reference: UchidaNGolestanianRSynchronization and collective dynamics in a carpet of microfluidic rotorsPhys. Rev. Lett.20101041781032010PhRvL.104q8103U2048214610.1103/PhysRevLett.104.178103 – reference: SoniVThe odd free surface flows of a colloidal chiral fluidNat. Phys.201915118811941:CAS:528:DC%2BC1MXhsleitbnI10.1038/s41567-019-0603-8 – reference: MontbrióEPazóDKuramoto model for excitation-inhibition-based oscillationsPhys. Rev. Lett.20181202441012018PhRvL.120x4101M2995694610.1103/PhysRevLett.120.244101 – reference: GallegoRMontbrióEPazóDSynchronization scenarios in the Winfree model of coupled oscillatorsPhys. Rev. E2017960422082017PhRvE..96d2208G2934758910.1103/PhysRevE.96.042208 – reference: Groot, S. R. D. & Mazur, P. Non-Equilibrium Thermodynamics (Dover Publications, 1962). – reference: BrachetMECoulletPFauveSPropagative phase dynamics in temporally intermittent systemsEurophys. Lett.1987410171987EL......4.1017B1:CAS:528:DyaL2sXmsVarsbY%3D10.1209/0295-5075/4/9/011 – reference: MetelmannAClerkAANonreciprocal photon transmission and amplification via reservoir engineeringPhys. Rev. X20155021025 – reference: OkumaNKawabataKShiozakiKSatoMTopological origin of non-Hermitian skin effectsPhys. Rev. Lett.20201240868012020PhRvL.124h6801O40717861:CAS:528:DC%2BB3cXmslygu7k%3D3216732410.1103/PhysRevLett.124.086801 – reference: CostanzoAMilling-induction and milling-destruction in a Vicsek-like binary-mixture modelEurophys. Lett.2019125200082019EL....12520008C10.1209/0295-5075/125/20008 – reference: Haken, H. (ed.) Synergetics (Springer, 1977). – reference: GiergielKMiroszewskiASachaKTime crystal platform: from quasicrystal structures in time to systems with exotic interactionsPhys. Rev. Lett.20181201404012018PhRvL.120n0401G37884091:CAS:528:DC%2BC1MXltFSks7Y%3D2969411110.1103/PhysRevLett.120.140401 – reference: GaldaAVinokurVMParity–time symmetry breaking in magnetic systemsPhys. Rev. B201694020408(R)2016PhRvB..94b0408G10.1103/PhysRevB.94.020408erratum 100, 209902 (2019) – reference: PartoMHayengaWMarandiAChristodoulidesDNKhajavikhanMRealizing spin Hamiltonians in nanoscale active photonic latticesNat. Mater.2020197257312020NatMa..19..725P1:CAS:528:DC%2BB3cXltFequ7k%3D3220345710.1038/s41563-020-0635-6 – reference: AltmeyerSHoffmannCSecondary bifurcation of mixed-cross-spirals connecting travelling wave solutionsNew J. Phys.2010121130352010NJPh...12k3035A10.1088/1367-2630/12/11/113035 – reference: LavergneFAWendehenneHBäuerleTBechingerCGroup formation and cohesion of active particles with visual perception–dependent motilityScience201936470742019Sci...364...70L1:CAS:528:DC%2BC1MXmsVSnurY%3D10.1126/science.aau5347 – reference: Guckenheimer, J. A codimension two bifurcation with circular symmetry. In Multiparameter Bifurcation Theory (eds Golubitsky, M. & Guckenheimer, J. M.) 175–184 (AMS, 1986). – reference: DouadySFauveSThualOOscillatory phase modulation of parametrically forced surface wavesEurophys. Lett.1989103091989EL.....10..309D10.1209/0295-5075/10/4/005 – reference: O’KeeffeKPHongHStrogatzSHOscillators that sync and swarmNat. Commun.201782017NatCo...8.1504O29138413568622910.1038/s41467-017-01190-3 – reference: ProctorMREJonesCAThe interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonanceJ. Fluid Mech.19881883011988JFM...188..301P9441740649.7601810.1017/S0022112088000746 – reference: JulienKAStrong spatial interactions with 1:1 resonance: a three-layer convection problemNonlinearity1994716551994Nonli...7.1655J13044440812.3403410.1088/0951-7715/7/6/008 – reference: Dayan, P. & Abbott, L. Theoretical Neuroscience: Computational and Mathematical Modelling of Neural Systems (MIT Press, 2001). – reference: NixonMRonenEFriesemAADavidsonNObserving geometric frustration with thousands of coupled lasersPhys. Rev. Lett.20131101841022013PhRvL.110r4102N2368319910.1103/PhysRevLett.110.184102 – reference: DangelmayrGHettelJKnoblochEParity-breaking bifurcation in inhomogeneous systemsNonlinearity19971010931997Nonli..10.1093D14733760995.3402710.1088/0951-7715/10/5/006 – reference: ZhouDZhangJNon-Hermitian topological metamaterials with odd elasticityPhys. Rev. Res.202020231731:CAS:528:DC%2BB3cXhsFCnurrJ10.1103/PhysRevResearch.2.023173 – reference: LeroyLOn spontaneous symmetry breakdown in dynamical systemsJ. Phys. Math. Gen.199225L9871992JPhA...25L.987L0755.5804610.1088/0305-4470/25/15/015 – reference: SeyranianAPKirillovONMailybaevAACoupling of eigenvalues of complex matrices at diabolic and exceptional pointsJ. Phys. Math. Gen.20053817232005JPhA...38.1723S21191821081.8103910.1088/0305-4470/38/8/009 – reference: PietrasBDeschleNDaffertshoferAFirst-order phase transitions in the Kuramoto model with compact bimodal frequency distributionsPhys. Rev. E2018980622192018PhRvE..98f2219P392313910.1103/PhysRevE.98.062219 – reference: GhatakABrandenbourgerMvan WezelJCoulaisCObservation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterialProc. Natl Acad. Sci. USA2020117295612020PNAS..11729561G1:CAS:528:DC%2BB3cXisVKnsr%2FN3316872210.1073/pnas.2010580117 – reference: CoulletPIoossGInstabilities of one-dimensional cellular patternsPhys. Rev. Lett.1990648661990PhRvL..64..866C10382661:STN:280:DC%2BC2sfoslCrug%3D%3D100421011050.8251810.1103/PhysRevLett.64.866 – reference: LinZUnidirectional invisibility induced by PT-symmetric periodic structuresPhys. Rev. Lett.20111062139012011PhRvL.106u3901L2169929710.1103/PhysRevLett.106.213901 – reference: TyulkinaIVGoldobinDSKlimenkoLSPikovskyADynamics of noisy oscillator populations beyond the Ott–Antonsen ansatzPhys. Rev. Lett.20181202641012018PhRvL.120z4101T1:CAS:528:DC%2BC1MXltVyisrs%3D3000477010.1103/PhysRevLett.120.264101 – reference: TripathiVGaldaABarmanHVinokurVMParity–time symmetry-breaking mechanism of dynamic Mott transitions in dissipative systemsPhys. Rev. B2016940411042016PhRvB..94d1104T10.1103/PhysRevB.94.041104 – reference: ZhangKYangZFangCCorrespondence between winding numbers and skin modes in non-Hermitian systemsPhys. Rev. Lett.20201251264022020PhRvL.125l6402Z41551441:CAS:528:DC%2BB3cXhvFKqsLfJ3301676610.1103/PhysRevLett.125.126402 – reference: OmataSYamaguchiYShimizuHEntrainment among coupled limit cycle oscillators with frustrationPhysica D1988313971988PhyD...31..397O9547780644.9200210.1016/0167-2789(88)90005-X – reference: ChoeC-URiJ-SKimR-SIncoherent chimera and glassy states in coupled oscillators with frustrated interactionsPhys. Rev. E2016940322052016PhRvE..94c2205C2773969910.1103/PhysRevE.94.032205 – reference: GolubitskyMStewartIHopf bifurcation in the presence of symmetryArch. Ration. Mech. Anal.1985871071657655960588.3403010.1007/BF00280698 – reference: Achenbach, J. D. Reciprocity in Elastodynamics (Cambridge Univ. Press, 2004). – reference: Loos, S. A. M., Hermann, S. M. & Klapp, S. H. L. Non-reciprocal hidden degrees of freedom: a unifying perspective on memory, feedback, and activity. Preprint at https://arxiv.org/abs/1910.08372 (2019). – reference: CaussinJ-BEmergent spatial structures in flocking models: a dynamical system insightPhys. Rev. Lett.20141121481022014PhRvL.112n8102C2476602010.1103/PhysRevLett.112.148102 – reference: DadhichiLPKethapelliJChajwaRRamaswamySMaitraANonmutual torques and the unimportance of motility for long-range order in two-dimensional flocksPhys. Rev. E20201010526012020PhRvE.101e2601D1:CAS:528:DC%2BB3MXlsFWqsw%3D%3D3257519210.1103/PhysRevE.101.052601 – reference: MiriM-AAlùAExceptional points in optics and photonicsScience2019363eaar770938891901:CAS:528:DC%2BC1MXkvVyh1431.7800110.1126/science.aar7709 – reference: AransonISKramerLThe world of the complex Ginzburg–Landau equationRev. Mod. Phys.200274991432002RvMP...74...99A18950971205.3529910.1103/RevModPhys.74.99 – reference: MuñozMACriticality and dynamical scaling in living systemsRev. Mod. Phys.2018900310012018RvMP...90c1001M386123110.1103/RevModPhys.90.031001 – reference: HohenbergPKrekhovAAn introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patternsPhys. Rep.20155721422015PhR...572....1H33202671357.8202210.1016/j.physrep.2015.01.001 – reference: ChajwaRMenonNRamaswamySGovindarajanRWaves, algebraic growth, and clumping in sedimenting disk arraysPhys. Rev. X2020100410161:CAS:528:DC%2BB3MXjtFSksbw%3D – reference: HassanAUHodaeiHMiriM-AKhajavikhanMChristodoulidesDNNonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonatorsPhys. Rev. A2015920638072015PhRvA..92f3807H10.1103/PhysRevA.92.063807 – reference: Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Springer, 2004). – reference: FieldMJEquivariant dynamical systemsTrans. Am. Math. Soc.19802591855618320447.5802910.1090/S0002-9947-1980-0561832-4 – reference: NagyMÁkosZBiroDVicsekTHierarchical group dynamics in pigeon flocksNature20104648908932010Natur.464..890N1:CAS:528:DC%2BC3cXktlynsL8%3D2037614910.1038/nature08891 – reference: van Saarloos, W. The complex Ginzburg–Landau equation for beginners. Spatio-temporal Patterns in Nonequilibrium Complex Systems Vol. XXI (eds Cladis, P. E. & Palffy-Muhoray, P.) (Addison-Wesley, 1994). – reference: TsaiJ-CYeFRodriguezJGollubJPLubenskyTCA chiral granular gasPhys. Rev. Lett.2005942143012005PhRvL..94u4301T1609032310.1103/PhysRevLett.94.214301 – reference: DerridaBGardnerEZippeliusAAn exactly solvable asymmetric neural network modelEurophys. Lett.198741671987EL......4..167D10.1209/0295-5075/4/2/007 – reference: KeimNCPaulsenJDZeravcicZSastrySNagelSRMemory formation in matterRev. Mod. Phys.2019910350022019RvMP...91c5002K40159301:CAS:528:DC%2BC1MXit1Clt7zK10.1103/RevModPhys.91.035002 – reference: CrossMCHohenbergPCPattern formation outside of equilibriumRev. Mod. Phys.19936585111121993RvMP...65..851C1:CAS:528:DyaK2cXhtFShs7c%3D1371.3700110.1103/RevModPhys.65.851 – reference: SuzukiRWeberCAFreyEBauschARPolar pattern formation in driven filament systems requires non-binary particle collisionsNat. Phys.2015118391:CAS:528:DC%2BC2MXhtlSltLnO27656244502791410.1038/nphys3423 – reference: AmirAHatanoNNelsonDRNon-Hermitian localization in biological networksPhys. Rev. E2016930423102016PhRvE..93d2310A37044582717631510.1103/PhysRevE.93.042310 – reference: BrandHRHohenbergPCSteinbergVAmplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous mediumPhys. Rev. A1983275915931983PhRvA..27..591B1:CAS:528:DyaL3sXmtVOqsA%3D%3D10.1103/PhysRevA.27.591 – reference: MeloFOswaldPDestabilization of a faceted smectic-A–smectic-B interfacePhys. Rev. Lett.19906413811990PhRvL..64.1381M1:CAS:528:DyaK3cXhvV2nt7o%3D1004138110.1103/PhysRevLett.64.1381 – reference: Trefethen, L. N. & Embree, M. Spectra and Pseudospectra (Princeton Univ. Press, 2005). – reference: Golubitsky, M., Stewart, I. & Schaeffer, D. G. Singularities and Groups in Bifurcation Theory Vol. II (Springer, 1988). – reference: van Kampen, N. G. Stochastic Processes in Physics and Chemistry Vol. 1 (Elsevier, 2007). – reference: CoulletPFauveSPropagative phase dynamics for systems with galilean invariancePhys. Rev. Lett.19855528571985PhRvL..55.2857C1:STN:280:DC%2BC2sfnvFKqsg%3D%3D1003225710.1103/PhysRevLett.55.2857 – reference: SompolinskyHKanterITemporal association in asymmetric neural networksPhys. Rev. Lett.198657286128641986PhRvL..57.2861S1:STN:280:DC%2BC2sfotFarsw%3D%3D1003388510.1103/PhysRevLett.57.2861 – reference: Newton, I. Philosophiæ Naturalis Principia Mathematica (1687). – reference: ScheibnerCOdd elasticityNat. Phys.2020164754801:CAS:528:DC%2BB3cXktFelsL8%3D10.1038/s41567-020-0795-y – reference: ArnoldVIRemarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effectSelecta Mathematica199511191995mmmc.conf.....A13272270841.5800810.1007/BF01614072 – reference: TownleySCarslakeDKellie-smithOMccarthyDHodgsonDPredicting transient amplification in perturbed ecological systemsJ. Appl. Ecol.200744124310.1111/j.1365-2664.2007.01333.x – reference: Hensch, T. K. & Fagiolini, M. in Progress in Brain Research (eds van Pelt, J. et al.) 115–124 (Elsevier, 2005). – reference: Takens, F. in Global Analysis of Dynamical Systems (eds Broer, H. W. et al.) 1–63 (IOP, 2001); reprinted from Commun. Math. Inst. Rijksuniv. Utrecht2, 1–111 (1974). – reference: OzaAUDunkelJAntipolar ordering of topological defects in active liquid crystalsNew J. Phys.2016180930062016NJPh...18i3006O10.1088/1367-2630/18/9/093006 – reference: GutöhrleinRMainJCartariusHWunnerGBifurcations and exceptional points in dipolar Bose–Einstein condensatesJ. Phys. A20134630500130803251276.8203710.1088/1751-8113/46/30/305001 – reference: CoulletPGoldsteinREGunaratneGHParity-breaking transitions of modulated patterns in hydrodynamic systemsPhys. Rev. Lett.198963195419571989PhRvL..63.1954C1:STN:280:DC%2BC2sfos1Wnug%3D%3D1004072310.1103/PhysRevLett.63.1954 – reference: Henkel, M. & Pleimling, M. Non-equilibrium Phase Transitions Vol. 2 (Springer, 2010). – reference: DembowskiCEncircling an exceptional pointPhys. Rev. E2004690562162004PhRvE..69e6216D1:STN:280:DC%2BD2czkslSluw%3D%3D10.1103/PhysRevE.69.056216 – reference: CalozCElectromagnetic nonreciprocityPhys. Rev. Appl.2018100470012018PhRvP..10d7001C1:CAS:528:DC%2BC1MXltVGnsbg%3D10.1103/PhysRevApplied.10.047001 – reference: BricardACaussinJ-BDesreumauxNDauchotOBartoloDEmergence of macroscopic directed motion in populations of motile colloidsNature201350395982013Natur.503...95B1:CAS:528:DC%2BC3sXhslelt7nL2420128210.1038/nature12673 – reference: Winfree, A. T. The Geometry of Biological Time (Springer, 2001). – reference: HennequinGVogelsTPGerstnerWNon-normal amplification in random balanced neuronal networksPhys. Rev. E2012860119092012PhRvE..86a1909H10.1103/PhysRevE.86.011909 – reference: BotPCadotOMutabaziISecondary instability mode of a roll pattern and transition to spatiotemporal chaos in the Taylor–Dean systemPhys. Rev. E199858308930971998PhRvE..58.3089B1:CAS:528:DyaK1cXlslyqtLs%3D10.1103/PhysRevE.58.3089 – reference: Di LeonardoRHydrodynamic interactions in two dimensionsPhys. Rev. E2008780314062008PhRvE..78c1406D10.1103/PhysRevE.78.031406 – reference: KnoblochEMooreDRMinimal model of binary fluid convectionPhys. Rev. A199042469347091990PhRvA..42.4693K1:STN:280:DC%2BC2sjpt1Slug%3D%3D990457710.1103/PhysRevA.42.4693 – reference: Livi, R. & Politi, P. Nonequilibrium Statistical Physics: A Modern Perspective (Cambridge Univ. Press, 2017). – reference: DauchotOMannevillePLocal versus global concepts in hydrodynamic stability theoryJ. Phys. II199773713891:CAS:528:DyaK2sXht1Ckt7g%3D – reference: WaldenRWKolodnerPPassnerASurkoCMTraveling waves and chaos in convection in binary fluid mixturesPhys. Rev. Lett.1985554964991985PhRvL..55..496W1:CAS:528:DyaL2MXkvV2lsro%3D1003236810.1103/PhysRevLett.55.496 – reference: IhleTKinetic theory of flocking: derivation of hydrodynamic equationsPhys. Rev. E2011830309012011PhRvE..83c0901I10.1103/PhysRevE.83.030901 – reference: DaidoHQuasientrainment and slow relaxation in a population of oscillators with random and frustrated interactionsPhys. Rev. Lett.199268107310761992PhRvL..68.1073D1:STN:280:DC%2BC2sfptFersg%3D%3D1004607110.1103/PhysRevLett.68.1073 – reference: IvlevAVStatistical mechanics where Newton’s third law is brokenPhys. Rev. X20155011035 – reference: Sornette, D. Critical Phenomena in Natural Sciences (Springer, 2000). – reference: SchmidPJNonmodal stability theoryAnnu. Rev. Fluid Mech.2007391291622007AnRFM..39..129S23094841296.7605510.1146/annurev.fluid.38.050304.092139 – reference: MurphyBKMillerKDBalanced amplification: a new mechanism of selective amplification of neural activity patternsNeuron2009616356481:CAS:528:DC%2BD1MXlt1Klsbs%3D19249282266795710.1016/j.neuron.2009.02.005correction 89, 235 (2016) – reference: PottonRJReciprocity in opticsRep. Prog. Phys.2004677172004RPPh...67..717P10.1088/0034-4885/67/5/R03 – reference: FarrellFDCMarchettiMCMarenduzzoDTailleurJPattern formation in self-propelled particles with density-dependent motilityPhys. Rev. Lett.20121082481012012PhRvL.108x8101F1:STN:280:DC%2BC38bpsFertQ%3D%3D2300433610.1103/PhysRevLett.108.248101 – reference: HanaiRLittlewoodPBCritical fluctuations at a many-body exceptional pointPhys. Rev. Res.202020330181:CAS:528:DC%2BB3cXitVOku7zJ10.1103/PhysRevResearch.2.033018 – reference: Saha, S., Agudo-Canalejo, J. & Golestanian, R. Scalar active mixtures: the nonreciprocal Cahn–Hilliard model. Preprint at https://arxiv.org/abs/2005.07101 (2020). – reference: WeigertSPT-symmetry and its spontaneous breakdown explained by anti-linearityJ. Opt. B20035S4162003JOptB...5S.416W10.1088/1464-4266/5/3/380 – reference: GrossmannSThe onset of shear flow turbulenceRev. Mod. Phys.2000726036182000RvMP...72..603G10.1103/RevModPhys.72.603 – reference: HatanoNNelsonDRLocalization transitions in non-Hermitian quantum mechanicsPhys. Rev. Lett.1996775705731996PhRvL..77..570H1:CAS:528:DyaK28XksVWhs74%3D1006284410.1103/PhysRevLett.77.570 – reference: BanerjeeDSouslovAAbanovAGVitelliVOdd viscosity in chiral active fluidsNat. Commun.201782017NatCo...8.1573B29146894569108610.1038/s41467-017-01378-7 – reference: Mostafazadeh, A. Physics of spectral singularities. In Trends in Mathematics (eds Kielanowski, P. et al.) 145–165 (Springer, 2015). – reference: MasoudHStoneHAThe reciprocal theorem in fluid dynamics and transport phenomenaJ. Fluid Mech.2019879P12019JFM...879P...1M40189811430.7612910.1017/jfm.2019.553 – reference: NielsenHChadhaSOn how to count Goldstone bosonsNucl. Phys. B19761054451976NuPhB.105..445N10.1016/0550-3213(76)90025-0 – reference: GeyerDMorinABartoloDSounds and hydrodynamics of polar active fluidsNat. Mater.2018177892018NatMa..17..789G1:CAS:528:DC%2BC1cXht1OjsrnF2996746310.1038/s41563-018-0123-4 – reference: HongHStrogatzSHMean-field behavior in coupled oscillators with attractive and repulsive interactionsPhys. Rev. E2012850562102012PhRvE..85e6210H10.1103/PhysRevE.85.056210 – reference: RabaudMMichallandSCouderYDynamical regimes of directional viscous fingering: spatiotemporal chaos and wave propagationPhys. Rev. Lett.1990641841871990PhRvL..64..184R1:STN:280:DC%2BC2sfoslSksg%3D%3D1004167110.1103/PhysRevLett.64.184 – reference: MarvelSAMirolloREStrogatzSHIdentical phase oscillators with global sinusoidal coupling evolve by Möbius group actionChaos2009190431042009Chaos..19d3104M2603661200592001311.3408210.1063/1.3247089 – reference: Kato, T. Perturbation Theory for Linear Operators 2nd edn (Springer, 1984). – reference: BertinEDrozMGrégoireGBoltzmann and hydrodynamic description for self-propelled particlesPhys. Rev. E2006740221012006PhRvE..74b2101B10.1103/PhysRevE.74.022101 – reference: KepesidisKVPT-symmetry breaking in the steady state of microscopic gain–loss systemsNew J. Phys.2016180950032016NJPh...18i5003K10.1088/1367-2630/18/9/095003 – reference: Henkel, M., Hinrichsen, H. & Lübeck, S. Non-equilibrium Phase Transitions Vol. 1 (Springer, 2008). – reference: FlessellesJ-MSimonALibchaberADynamics of one-dimensional interfaces: an experimentalist’s viewAdv. Phys.19914011991AdPhy..40....1F1:CAS:528:DyaK3MXlt1Sltbo%3D10.1080/00018739100101462 – reference: CounillonCGlobal drift of a circular array of liquid columnsEurophys. Lett.199740371997EL.....40...37C1:CAS:528:DyaK2sXmslentLc%3D10.1209/epl/i1997-00421-1 – reference: YllanesDLeoniMMarchettiMCHow many dissenters does it take to disorder a flock?New J. Phys.2017191030262017NJPh...19j3026Y10.1088/1367-2630/aa8ed7 – reference: CoulaisCSounasDAlùAStatic non-reciprocity in mechanical metamaterialsNature20175424612017Natur.542..461C1:CAS:528:DC%2BC2sXisV2ktL4%3D2819278610.1038/nature21044 – reference: MorinACaussinJ-BEloyCBartoloDCollective motion with anticipation: flocking, spinning, and swarmingPhys. Rev. E2015910121342015PhRvE..91a2134M341664910.1103/PhysRevE.91.012134 – reference: NambuYQuasi-particles and gauge invariance in the theory of superconductivityPhys. Rev.19601176481960PhRv..117..648N12248510.1103/PhysRev.117.648 – reference: TonerJTuYLong-range order in a two-dimensional dynamical XY model: how birds fly togetherPhys. Rev. Lett.199575432643291995PhRvL..75.4326T1:CAS:528:DyaK2MXps1yhtLo%3D1005987610.1103/PhysRevLett.75.4326 – reference: BonillaLLTrenadoCContrarian compulsions produce exotic time-dependent flocking of active particlesPhys. Rev. E2019990126122019PhRvE..99a2612B1:CAS:528:DC%2BC1MXps1Ont7g%3D3078028910.1103/PhysRevE.99.012612 – reference: WienerRJMcAlisterDFParity breaking and solitary waves in axisymmetric Taylor vortex flowPhys. Rev. Lett.199269291529181992PhRvL..69.2915W1:STN:280:DC%2BC2sfptF2ktg%3D%3D1004667410.1103/PhysRevLett.69.2915 – reference: GinibreMAkamatsuSFaivreGExperimental determination of the stability diagram of a lamellar eutectic growth frontPhys. Rev. E1997567807961997PhRvE..56..780G1:CAS:528:DyaK2sXkvFGgur0%3D10.1103/PhysRevE.56.780 – reference: HohenbergPCHalperinBITheory of dynamic critical phenomenaRev. Mod. Phys.1977494354791977RvMP...49..435H1:CAS:528:DyaE2sXlt1artLw%3D10.1103/RevModPhys.49.435 – reference: RosaMINRuzzeneMDynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactionsNew J. Phys.2020220530042020NJPh...22e3004R412757610.1088/1367-2630/ab81b6 – reference: GrégoireGChatéHOnset of collective and cohesive motionPhys. Rev. Lett.2004920257022004PhRvL..92b5702G1475394610.1103/PhysRevLett.92.025702 – reference: HongHPeriodic synchronization and chimera in conformist and contrarian oscillatorsPhys. Rev. E2014890629242014PhRvE..89f2924H10.1103/PhysRevE.89.062924 – reference: DholakiaKZemánekPGripped by light: optical bindingRev. Mod. Phys.201082176717912010RvMP...82.1767D10.1103/RevModPhys.82.1767 – reference: Hoyle, R. Pattern Formation (Cambridge Univ. Press, 2006). – reference: MaltmanKLaidlawWGOnsager symmetry and the diagonalizability of the hydrodynamic matrixJ. Math. Phys.19751615611975JMP....16.1561M41862210.1063/1.522724 – reference: van ZuidenBCPauloseJIrvineWTMBartoloDVitelliVSpatiotemporal order and emergent edge currents in active spinner materialsProc. Natl Acad. Sci. USA2016113129192016PNAS..11312919V2780332310.1073/pnas.1609572113 – reference: SakaguchiHKuramotoYA soluble active rotater model showing phase transitions via mutual entertainmentProg. Theor. Phys.1986765765811986PThPh..76..576S10.1143/PTP.76.576 – reference: NelsonDRShnerbNMNon-Hermitian localization and population biologyPhys. Rev. E19985813831998PhRvE..58.1383N16371171:CAS:528:DyaK1cXltVSmtbo%3D10.1103/PhysRevE.58.1383 – reference: AcebrónJABonillaLLVicenteCJPRitortFSpiglerRThe Kuramoto model: a simple paradigm for synchronization phenomenaRev. Mod. Phys.2005771371852005RvMP...77..137A10.1103/RevModPhys.77.137 – reference: SiebererLMHuberSDAltmanEDiehlSDynamical critical phenomena in driven-dissipative systemsPhys. Rev. Lett.20131101953012013PhRvL.110s5301S1:STN:280:DC%2BC3snntF2lsA%3D%3D2370571510.1103/PhysRevLett.110.195301 – reference: Aditi SimhaRRamaswamySHydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particlesPhys. Rev. Lett.2002890581012002PhRvL..89e8101A1:STN:280:DC%2BD38zps1Kqtg%3D%3D121444680994.7609910.1103/PhysRevLett.89.058101 – reference: BöbergLBrosaUOnset of turbulence in a pipeZ. Naturforsch. A1988436977261988ZNatA..43..697B10.1515/zna-1988-8-901 – reference: DurveMSahaASayeedAActive particle condensation by non-reciprocal and time-delayed interactionsEur. Phys. J. E2018412962626410.1140/epje/i2018-11653-4 – reference: LahiriRRamaswamySAre steadily moving crystals unstable?Phys. Rev. Lett.199779115011531997PhRvL..79.1150L1:CAS:528:DyaK2sXlsVOkuro%3D10.1103/PhysRevLett.79.1150 – reference: BressloffPCCowanJDGolubitskyMThomasPJWienerMCGeometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortexPhil. Trans. R. Soc. Lond. B20013562993301:STN:280:DC%2BD3MzlsFemtQ%3D%3D10.1098/rstb.2000.0769 – reference: ParisiGAsymmetric neural networks and the process of learningJ. Phys. Math. Gen.198619L6751986JPhA...19L.675P85167810.1088/0305-4470/19/11/005 – reference: BurnsKJVasilGMOishiJSLecoanetDBrownBPDedalus: a flexible framework for numerical simulations with spectral methodsPhys. Rev. Res.202020230681:CAS:528:DC%2BB3cXisVemtb3M10.1103/PhysRevResearch.2.023068 – reference: PikovskyARosenblumMPartially integrable dynamics of hierarchical populations of coupled oscillatorsPhys. Rev. Lett.20081012641032008PhRvL.101z4103P1943764210.1103/PhysRevLett.101.264103 – reference: LahiriRBarmaMRamaswamySStrong phase separation in a model of sedimenting latticesPhys. Rev. E20006116482000PhRvE..61.1648L1:CAS:528:DC%2BD3cXhtVGltrw%3D10.1103/PhysRevE.61.1648 – reference: CrossMCStructure of nonlinear traveling-wave states in finite geometriesPhys. Rev. A198838359336001988PhRvA..38.3593C1:STN:280:DC%2BC2sjovVarug%3D%3D10.1103/PhysRevA.38.3593 – reference: VicsekTCzirókABen-JacobECohenIShochetONovel type of phase transition in a system of self-driven particlesPhys. Rev. Lett.199575122612291995PhRvL..75.1226V33634211:CAS:528:DyaK2MXntlKntLo%3D10.1103/PhysRevLett.75.1226 – reference: HongHStrogatzSHConformists and contrarians in a Kuramoto model with identical natural frequenciesPhys. Rev. E2011840462022011PhRvE..84d6202H10.1103/PhysRevE.84.046202 – reference: PazóDMontbrióEExistence of hysteresis in the Kuramoto model with bimodal frequency distributionsPhys. Rev. E2009800462152009PhRvE..80d6215P10.1103/PhysRevE.80.046215 – reference: KassnerKMisbahCParity breaking in eutectic growthPhys. Rev. Lett.199065145814611990PhRvL..65.1458K1:STN:280:DC%2BC2sfoslKmtA%3D%3D1004227110.1103/PhysRevLett.65.1458 – reference: CrossMCKimKLinear instability and the codimension-2 region in binary fluid convection between rigid impermeable boundariesPhys. Rev. A198837390939201988PhRvA..37.3909C9419311:STN:280:DC%2BC2sjos12qtw%3D%3D10.1103/PhysRevA.37.3909 – reference: HongHStrogatzSHKuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillatorsPhys. Rev. Lett.20111060541022011PhRvL.106e4102H2140539910.1103/PhysRevLett.106.054102 – reference: CugliandoloLFKurchanJWeak ergodicity breaking in mean-field spin-glass modelsPhilos. Mag. B1995715015141995PMagB..71..501C1:CAS:528:DyaK2MXltV2ktLw%3D10.1080/01418639508238541 – reference: HelbigTGeneralized bulk–boundary correspondence in non-Hermitian topolectrical circuitsNat. Phys.2020167477501:CAS:528:DC%2BB3cXhtVGmtbzJ10.1038/s41567-020-0922-9 – reference: MishraSBaskaranAMarchettiMCFluctuations and pattern formation in self-propelled particlesPhys. Rev. E2010810619162010PhRvE..81f1916M10.1103/PhysRevE.81.061916 – reference: GoldstoneJField theories with superconductor solutionsNuovo Cim.1961191541641961NCim...19..154G1283740099.2300610.1007/BF02812722 – reference: Chaté, H. & Mahault, B. Dry, aligning, dilute, active matter: a synthetic and self-contained overview. Preprint at https://arxiv.org/abs/1906.05542 (2019). – reference: NishiguchiDNagaiKHChatéHSanoMLong-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteriaPhys. Rev. E2017950206012017PhRvE..95b0601N2829791210.1103/PhysRevE.95.020601 – reference: Meron, E. Nonlinear Physics of Ecosystems (CRC Press, 2015). – reference: BrunetPFlessellesJ-MLimatLParity breaking in a one-dimensional pattern: a quantitative study with controlled wavelengthEurophys. Lett.2001562212272001EL.....56..221B1:CAS:528:DC%2BD3MXosVKlsrg%3D10.1209/epl/i2001-00509-0 – reference: Chossat, P. & Lauterbach, R. Methods in Equivariant Bifurcations and Dynamical Systems (World Scientific, 2000). – reference: AdiniYSagiDTsodyksMExcitatory–inhibitory network in the visual cortex: psychophysical evidenceProc. Natl Acad. Sci. USA19979410426104311997PNAS...9410426A1:CAS:528:DyaK2sXmt1GjtrY%3D929422710.1073/pnas.94.19.10426 – reference: You, Z., Baskaran, A. & Marchetti, M. C. Nonreciprocity as a generic route to traveling states. Preprint at https://arxiv.org/abs/2005.07684 (2020). – reference: BernierNRTorreEGDDemlerEUnstable avoided crossing in coupled spinor condensatesPhys. Rev. Lett.20141130653032014PhRvL.113f5303B2514833410.1103/PhysRevLett.113.065303 – reference: BellonLFourtuneLMinassianVTRabaudMWave-number selection and parity-breaking bifurcation in directional viscous fingeringPhys. Rev. E1998585655741998PhRvE..58..565B1:CAS:528:DyaK1cXktlOltLg%3D10.1103/PhysRevE.58.565 – reference: KrupaMBifurcations of relative equilibriaSIAM J. Math. Anal.199021145310755870706.5804310.1137/0521081 – reference: BickCGoodfellowMLaingCRMartensEAUnderstanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a reviewJ. Math. Neurosci.20201041072123246228172535741448.9201110.1186/s13408-020-00086-9 – reference: ScheibnerCIrvineWTMVitelliVNon-Hermitian band topology and skin modes in active elastic mediaPhys. Rev. Lett.20201251180012020PhRvL.125k8001S41505881:CAS:528:DC%2BB3cXitVOktbfO3297601010.1103/PhysRevLett.125.118001 – reference: WilsonKThe renormalization group and the epsilon expansionPhys. Rep.197412751991974PhR....12...75W10.1016/0370-1573(74)90023-4 – reference: AbramsDMMirolloRStrogatzSHWileyDASolvable model for chimera states of coupled oscillatorsPhys. Rev. Lett.20081010841032008PhRvL.101h4103A1876461710.1103/PhysRevLett.101.084103 – reference: LevisDPagonabarragaILiebchenBActivity induced synchronization: mutual flocking and chiral self-sortingPhys. Rev. Res.201910230261:CAS:528:DC%2BB3cXhvVOhtrbP10.1103/PhysRevResearch.1.023026 – reference: PikovskyARosenblumMDynamics of heterogeneous oscillator ensembles in terms of collective variablesPhysica D20112408722011PhyD..240..872P27765891:CAS:528:DC%2BC3MXjsFyitrY%3D1233.3701410.1016/j.physd.2011.01.002 – reference: CrawfordJDKnoblochESymmetry and symmetry-breaking bifurcations in fluid dynamicsAnnu. Rev. Fluid Mech.1991233413871991AnRFM..23..341C10903320717.7600710.1146/annurev.fl.23.010191.002013 – reference: Hongo, M., Kim, S., Noumi, T. & Ota, A. Effective Lagrangian for Nambu–Goldstone modes in nonequilibrium open systems. Preprint at https://arxiv.org/abs/1907.08609 (2019). – reference: ArmbrusterDGuckenheimerJHolmesPHeteroclinic cycles and modulated travelling waves in systems with O(2) symmetryPhysica D1988292571988PhyD...29..257A9392770634.3402710.1016/0167-2789(88)90032-2 – reference: BaggioGRuttenVHennequinGZampieriSEfficient communication over complex dynamical networks: the role of matrix non-normalitySci. Adv.20206eaba22822020SciA....6.2282B32518824725316610.1126/sciadv.aba2282 – reference: Arnold, V. I. Modes and quasimodes. Funct. Anal. Appl. 6, 94 (1972); translated from Funktsional. Anal. i Prilozhen. 6, 12–20 (1972). – reference: SwiftJHohenbergPCHydrodynamic fluctuations at the convective instabilityPhys. Rev. A1977153191977PhRvA..15..319S10.1103/PhysRevA.15.319 – reference: RieckeHPaapH-GParity-breaking and Hopf bifurcations in axisymmetric Taylor vortex flowPhys. Rev. A199245860586101992PhRvA..45.8605R1:STN:280:DC%2BC2sjpsVCmsg%3D%3D990696010.1103/PhysRevA.45.8605 – reference: PinterALückeMHoffmannCCompetition between traveling fluid waves of left and right spiral vortices and their different amplitude combinationsPhys. Rev. Lett.2006960445062006PhRvL..96d4506P1:STN:280:DC%2BD287gtFyhug%3D%3D1648683210.1103/PhysRevLett.96.044506 – reference: AharonyanMTorreEGDMany-body exceptional points in colliding condensatesMol. Phys.201911719712019MolPh.117.1971A1:CAS:528:DC%2BC1MXhsF2qsL4%3D10.1080/00268976.2019.1567849 – reference: CartariusHMainJWunnerGDiscovery of exceptional points in the Bose–Einstein condensation of gases with attractive 1/r interactionPhys. Rev. A2008770136182008PhRvA..77a3618C10.1103/PhysRevA.77.013618 – reference: ButlerTCEvolutionary constraints on visual cortex architecture from the dynamics of hallucinationsProc. Natl Acad. Sci. USA20121096066092012PNAS..109..606B1:CAS:528:DC%2BC38Xht1entr8%3D2220396910.1073/pnas.1118672109 – reference: FauveSDouadySThualODrift instabilities of cellular patternsJ. Phys. II19911311 – reference: GaldaAVinokurVMExceptional points in classical spin dynamicsSci. Rep.201992019NatSR...917484G31767882687760910.1038/s41598-019-53455-0 – reference: MutabaziIAndereckCDMode resonance and wavelength-halving instability in the Taylor–Dean systemPhys. Rev. E199551438043901995PhRvE..51.4380M1:CAS:528:DyaK2MXlslOmtLo%3D10.1103/PhysRevE.51.4380 – reference: KrakauerJWGhazanfarAAGomez-MarinAMacIverMAPoeppelDNeuroscience needs behavior: correcting a reductionist biasNeuron2017934801:CAS:528:DC%2BC2sXjtVequrs%3D10.1016/j.neuron.2016.12.041 – reference: BenderCMBoettcherSReal spectra in non-Hermitian Hamiltonians having PT symmetryPhys. Rev. Lett.199880524352461998PhRvL..80.5243B16274421:CAS:528:DyaK1cXjvVyjsrw%3D0947.8101810.1103/PhysRevLett.80.5243 – reference: FleuryRSounasDLSieckCFHabermanMRAlùASound isolation and giant linear nonreciprocity in a compact acoustic circulatorScience20143435165192014Sci...343..516F1:CAS:528:DC%2BC2cXhtlajurs%3D2448247710.1126/science.1246957 – reference: ChomazJ-MGlobal instabilities in spatially developing flows: non-normality and nonlinearityAnnu. Rev. Fluid Mech.2005373573922005AnRFM..37..357C21153471117.7602710.1146/annurev.fluid.37.061903.175810 – reference: LanGSartoriPNeumannSSourjikVTuYThe energy–speed–accuracy trade-off in sensory adaptationNat. Phys.201284221:CAS:528:DC%2BC38XksVehsb4%3D22737175337806510.1038/nphys2276 – reference: MartensEAExact results for the Kuramoto model with a bimodal frequency distributionPhys. Rev. E2009790262042009PhRvE..79b6204M24972641:STN:280:DC%2BD1MzgtFyhtw%3D%3D10.1103/PhysRevE.79.026204 – reference: BertinEDrozMGrégoireGHydrodynamic equations for self-propelled particles: microscopic derivation and stability analysisJ. Phys. A Math. Theor.2009424450011422.7621410.1088/1751-8113/42/44/445001 – reference: WatanabeHCounting rules of Nambu–Goldstone modesAnnu. Rev. Condens. Matter Phys.2020111691:CAS:528:DC%2BC1MXitFOlurbN10.1146/annurev-conmatphys-031119-050644 – reference: Cross, M. & Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge Univ. Press, 2009). – reference: GuckenheimerJMultiple bifurcation problems of codimension twoSIAM J. Math. Anal.1984151491984SJMA...15....1G7286800543.3403410.1137/0515001 – reference: NicolaouZGNishikawaTNicholsonSBGreenJRMotterAENon-normality and non-monotonic dynamics in complex reaction networksPhys. Rev. Res.202020430591:CAS:528:DC%2BB3MXjtVygsro%3D10.1103/PhysRevResearch.2.043059 – reference: WignerEPNormal form of antiunitary operatorsJ. Math. Phys.196014091960JMP.....1..409W1175570096.4340110.1063/1.1703672 – reference: Agudo-CanalejoJGolestanianRActive phase separation in mixtures of chemically interacting particlesPhys. Rev. Lett.20191230181012019PhRvL.123a8101A1:CAS:528:DC%2BC1MXhvFelsLvO3138642010.1103/PhysRevLett.123.018101 – reference: MosesESteinbergVFlow patterns and nonlinear behavior of traveling waves in a convective binary fluidPhys. Rev. A1986346936961986PhRvA..34..693M1:CAS:528:DyaL28XkvVWmsb8%3D10.1103/PhysRevA.34.693erratum 35, 1444–1445 (1987) – reference: TonerJTuYFlocks, herds, and schools: a quantitative theory of flockingPhys. Rev. E19985848281998PhRvE..58.4828T16513241:CAS:528:DyaK1cXmsFGjsbs%3D10.1103/PhysRevE.58.4828 – reference: Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. (2020). – reference: BenderCMBerryMVMandilaraAGeneralized PT symmetry and real spectraJ. Phys. Math. Gen.200235L4672002JPhA...35L.467B19288421066.8153710.1088/0305-4470/35/31/101 – reference: AvronJEOdd viscosityJ. Stat. Phys.19989254355716490140939.7600510.1023/A:1023084404080 – reference: TasakiHHohenberg–Mermin–Wagner-type theorems for equilibrium models of flockingPhys. Rev. Lett.20201252206012020PhRvL.125v0601T41884831:CAS:528:DC%2BB3cXisFyltrfK3331545410.1103/PhysRevLett.125.220601 – reference: WatanabeSStrogatzSHConstants of motion for superconducting Josephson arraysPhysica D1994741971994PhyD...74..197W0812.3404310.1016/0167-2789(94)90196-1 – reference: AsllaniMLambiotteRCarlettiTStructure and dynamical behavior of non-normal networksSci. Adv.20184eaau94032018SciA....4.9403A30547090629130910.1126/sciadv.aau9403 – reference: AsllaniMCarlettiTTopological resilience in non-normal networked systemsPhys. Rev. E2018970423022018PhRvE..97d2302A1:CAS:528:DC%2BC1MXkvFOrs7s%3D2975871610.1103/PhysRevE.97.042302 – reference: FodorÉHow far from equilibrium is active matter?Phys. Rev. Lett.20161170381032016PhRvL.117c8103F36269622747214510.1103/PhysRevLett.117.038103 – reference: OttEAntonsenTMLow dimensional behavior of large systems of globally coupled oscillatorsChaos2008180371132008Chaos..18c7113O2464324190454871309.3405810.1063/1.2930766 – reference: MalzardSPoliCSchomerusHTopologically protected defect states in open photonic systems with non-Hermitian charge conjugation and parity–time symmetryPhys. Rev. Lett.20151152004022015PhRvL.115t0402M2661342210.1103/PhysRevLett.115.200402 – reference: Schnabel, M., Kaschube, M. & Wolf, F. Pinwheel stability, pattern selection and the geometry of visual space. Preprint at https://arxiv.org/abs/0801.3832 (2008). – reference: Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Self-sensing metamaterials with odd micropolarity. Preprint at https://arxiv.org/abs/2009.07329 (2020). – reference: LiebchenBLevisDCollective behavior of chiral active matter: pattern formation and enhanced flockingPhys. Rev. Lett.20171190580022017PhRvL.119e8002L2894973210.1103/PhysRevLett.119.058002 – reference: Van HoveLTime-dependent correlations between spins and neutron scattering in ferromagnetic crystalsPhys. Rev.195495137413841954PhRv...95.1374V0057.4500410.1103/PhysRev.95.1374 – reference: PeshkovABertinEGinelliFChatéHBoltzmann–Ginzburg–Landau approach for continuous descriptions of generic Vicsek-like models. Eur. PhysJ. Spec. Top.2014223131510.1140/epjst/e2014-02193-y – reference: ErmakDLMcCammonJABrownian dynamics with hydrodynamic interactionsJ. Chem. Phys.19786913521978JChPh..69.1352E1:CAS:528:DyaE1cXls12huro%3D10.1063/1.436761 – reference: MinamiYHidakaYSpontaneous symmetry breaking and Nambu–Goldstone modes in dissipative systemsPhys. Rev. E2018970121302018PhRvE..97a2130M10.1103/PhysRevE.97.012130 – reference: Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984). – reference: SimonAJBechhoeferJLibchaberASolitary modes and the Eckhaus instability in directional solidificationPhys. Rev. Lett.19886125741988PhRvL..61.2574S1:STN:280:DC%2BC2sfosVKhtw%3D%3D1003916010.1103/PhysRevLett.61.2574 – reference: MahaultBGinelliFChatéHQuantitative assessment of the Toner and Tu theory of polar flocksPhys. Rev. Lett.20191232180012019PhRvL.123u8001M1:CAS:528:DC%2BB3cXhvFylsLw%3D3180914410.1103/PhysRevLett.123.218001 – reference: LeeCHLiLGongJHybrid higher-order skin-topological modes in nonreciprocal systemsPhys. Rev. Lett.20191230168052019PhRvL.123a6805L1:CAS:528:DC%2BC1MXhvFanur%2FI3138640410.1103/PhysRevLett.123.016805 – reference: MaitraALenzMVoituriezRChiral active hexatics: giant number fluctuations, waves and destruction of orderPhys. Rev. Lett.20201252380052020PhRvL.125w8005M1:CAS:528:DC%2BB3MXpsFOn3333720810.1103/PhysRevLett.125.238005 – reference: MailybaevAAKirillovONSeyranianAPGeometric phase around exceptional pointsPhys. Rev. A2005720141042005PhRvA..72a4104M10.1103/PhysRevA.72.014104 – reference: KnoblochEProctorMRENonlinear periodic convection in double-diffusive systemsJ. Fluid Mech.19811082913161981JFM...108..291K6272300478.7605010.1017/S0022112081002139 – reference: FengLEl-GanainyRGeLNon-Hermitian photonics based on parity–time symmetryNat. Photon.2017117522017NaPho..11..752F1:CAS:528:DC%2BC2sXitVWnsL%2FK10.1038/s41566-017-0031-1 – reference: DaidoHPopulation dynamics of randomly interacting self-oscillators. I: Tractable models without frustrationProg. Theor. Phys.1987776221987PThPh..77..622D89882010.1143/PTP.77.622 – reference: HidakaYCounting rule for Nambu–Goldstone modes in nonrelativistic SystemsPhys. Rev. Lett.20131100916012013PhRvL.110i1601H2349670110.1103/PhysRevLett.110.091601 – reference: NeubertMGKlanjscekTCaswellHReactivity and transient dynamics of predator–prey and food web modelsEcol. Modell.20041792910.1016/j.ecolmodel.2004.05.001 – reference: Golubitsky, M. & Schaeffer, D. G. Singularities and Groups in Bifurcation Theory Vol. I (Springer, 1985). – reference: PetersonCWParkerJRiceSASchererNFControlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradientsNano Lett.2019198979032019NanoL..19..897P3062407110.1021/acs.nanolett.8b04134 – reference: Khemani, V., Moessner, R. & Sondhi, S. L. A brief history of time crystals. Preprint at https://arxiv.org/abs/1910.10745 (2019). – reference: KerswellRNonlinear nonmodal stability theoryAnnu. Rev. Fluid Mech.2018503193452018AnRFM..50..319K37532131384.7602210.1146/annurev-fluid-122316-045042 – reference: TrefethenLNTrefethenAEReddySCDriscollTAHydrodynamic stability without eigenvaluesScience19932615785841993Sci...261..578T12294951:STN:280:DC%2BC3cvis1Wnsg%3D%3D177581671226.7601310.1126/science.261.5121.578 – reference: MostafazadehAPseudo-Hermiticity versus PT-symmetry. III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetriesJ. Math. Phys.20024339442002JMP....43.3944M19156361061.8107510.1063/1.1489072 – reference: Golubitsky, M. & Stewart, I. The Symmetry Perspective (Birkhäuser, 2002). – reference: LandauLKhalatnikovIOn the anomalous absorption of sound near a second-order phase transition pointDokl. Akad. Nauk SSSR195496469472 – reference: SotoRGolestanianRSelf-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistryPhys. Rev. Lett.20141120683012014PhRvL.112f8301S2458071210.1103/PhysRevLett.112.068301 – reference: Das, J., Rao, M. & Ramaswamy, S. Nonequilibrium steady states of the isotropic classical magnet. Preprint at https://arxiv.org/abs/cond-mat/0404071 (2004). – reference: ChoMWKimSUnderstanding visual map formation through vortex dynamics of spin Hamiltonian modelsPhys. Rev. Lett.2004920181012004PhRvL..92a8101C1475402210.1103/PhysRevLett.92.018101 – reference: KemethFPHauglandSWSchmidtLKevrekidisIGKrischerKA classification scheme for chimera statesChaos2016260948152016Chaos..26i4815K2778148010.1063/1.4959804 – reference: LeeCHThomaleRAnatomy of skin modes and topology in non-Hermitian systemsPhys. Rev. B2019992011032019PhRvB..99t1103L1:CAS:528:DC%2BC1MXhsVOitrzM10.1103/PhysRevB.99.201103 – reference: BainNBartoloDDynamic response and hydrodynamics of polarized crowdsScience2019363462019Sci...363...46B38891911:CAS:528:DC%2BC1MXkvVOh306068371431.7613710.1126/science.aat9891 – reference: GraefeE-MKorschHJNiederleAEQuantum–classical correspondence for a non-Hermitian Bose–Hubbard dimerPhys. Rev. A2010820136292010PhRvA..82a3629G10.1103/PhysRevA.82.013629 – reference: AndereckCDLiuSSSwinneyHLFlow regimes in a circular Couette system with independently rotating cylindersJ. Fluid Mech.19861641551831986JFM...164..155A10.1017/S0022112086002513 – reference: Han, M. et al. Statistical mechanics of a chiral active fluid. Preprint at https://arxiv.org/abs/2002.07679 (2020). – reference: Loos, S. A. M. & Klapp, S. H. L. Thermodynamic implications of non-reciprocity. Preprint at https://arxiv.org/abs/2008.00894 (2020). – reference: KnoblochEHettelJDangelmayrGParity-breaking bifurcation in inhomogeneous systemsPhys. Rev. Lett.19957448391995PhRvL..74.4839K1:CAS:528:DyaK2MXmtFOltrw%3D100586120995.3402710.1103/PhysRevLett.74.4839 – reference: BressloffPCCowanJDGolubitskyMThomasPJWienerMCWhat geometric visual hallucinations tell us about the visual cortexNeural Comput.200214473491118606791037.9108310.1162/089976602317250861 – reference: BenderCMMannheimPDPT symmetry and necessary and sufficient conditions for the reality of energy eigenvaluesPhys. Lett. A2010374161616202010PhLA..374.1616B26018101:CAS:528:DC%2BC3cXjs1antLo%3D1236.8109510.1016/j.physleta.2010.02.032 – reference: MostafazadehAPseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian HamiltonianJ. Math. Phys.2002432052002JMP....43..205M18724941059.8107010.1063/1.1418246 – reference: WeissJBCoordinate invariance in stochastic dynamical systemsTellus2003A552082182003TellA..55..208W10.3402/tellusa.v55i3.12093 – reference: RidolfiLCamporealeCD’OdoricoPLaioFTransient growth induces unexpected deterministic spatial patterns in the Turing processEurophys. Lett.201195180032011EL.....9518003R10.1209/0295-5075/95/18003 – reference: RamosAFernández-AlcázarLKottosTShapiroBOptical phase transitions in photonic networks: a spin-system formulationPhys. Rev. X2020100310241:CAS:528:DC%2BB3cXitV2itLbP – reference: CoulletPFauveSTirapeguiELarge scale instability of nonlinear standing wavesJ. Physique Lett.19854678779110.1051/jphyslet:019850046017078700 – reference: DangelmayrGKnoblochEThe Takens–Bogdanov bifurcation with O(2) symmetryPhil. Trans. R. Soc. Lond. A19873222432791987RSPTA.322..243D9021140635.5803210.1098/rsta.1987.0050 – reference: CoulletPHSpiegelEAAmplitude equations for systems with competing instabilitiesSIAM J. Appl. Math.1983437768217097380534.3500410.1137/0143052 – reference: Bogdanov, R. I. Versal deformations of a singularity of a vector field on the plane in the case of zero eigenvalues. Selecta Math. Sov. 1, 389 (1981); translated from Trudy Sem. Petrovsk. 2, 37–65 (1976). – reference: DopplerJDynamically encircling an exceptional point for asymmetric mode switchingNature2016537762016Natur.537...76D1:CAS:528:DC%2BC28Xht1GrurjL2745455410.1038/nature18605 – reference: BrandHRHohenbergPCSteinbergVCodimension-2 bifurcations for convection in binary fluid mixturesPhys. Rev. A198430254825611984PhRvA..30.2548B1:CAS:528:DyaL2MXovFOm10.1103/PhysRevA.30.2548 – reference: KonotopVVYangJZezyulinDANonlinear waves in PT-symmetric systemsRev. Mod. Phys.2016880350022016RvMP...88c5002K10.1103/RevModPhys.88.035002 – reference: KryuchkovNPIvlevAVYurchenkoSODissipative phase transitions in systems with nonreciprocal effective interactionsSoft Matter20181497202018SMat...14.9720K1:CAS:528:DC%2BC1cXit1WhsrfM3046844010.1039/C8SM01836G – reference: HofmannTHelbigTLeeCHGreiterMThomaleRChiral voltage propagation and calibration in a topolectrical Chern circuitPhys. Rev. Lett.20191222477022019PhRvL.122x7702H1:CAS:528:DC%2BC1MXhs12ltLjF3132240910.1103/PhysRevLett.122.247702 – reference: WatanabeHMurayamaHUnified description of Nambu–Goldstone bosons without Lorentz invariancePhys. Rev. Lett.20121082516022012PhRvL.108y1602W2300458410.1103/PhysRevLett.108.251602 – reference: WilczekFQuantum time crystalsPhys. Rev. Lett.20121091604012012PhRvL.109p0401W2321505610.1103/PhysRevLett.109.160401 – reference: Gardiner, C. W. Handbook of Stochastic Methods (Springer, 2004). – reference: Von Neumann, J. & Wigner, E. P. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen Physik. Zeit. 30, 467 (1929); translated in Symmetry in the Solid State (eds Knox, R. S. & Gold, A.) (Benjamin, New York, 1964). – reference: MalomedBTribelskyMBifurcations in distributed kinetic systems with aperiodic instabilityPhysica D19841467871984PhyD...14...67M7815110587.3500710.1016/0167-2789(84)90005-8 – reference: DasJRaoMRamaswamySDriven Heisenberg magnets: nonequilibrium criticality, spatiotemporal chaos and controlEurophys. Lett.2002604184242002EL.....60..418D1:CAS:528:DC%2BD38XpslWktbc%3D10.1209/epl/i2002-00280-2 – reference: GoldstoneJSalamAWeinbergSBroken symmetriesPhys. Rev.19621279651962PhRv..127..965G1605000106.2060110.1103/PhysRev.127.965 – reference: BenderCMMaking sense of non-Hermitian HamiltoniansRep. Prog. Phys.2007709472007RPPh...70..947B233129410.1088/0034-4885/70/6/R03 – reference: MartensEABickCPanaggioMJChimera states in two populations with heterogeneous phase-lagChaos2016260948192016Chaos..26i4819M3538492277814711382.9222410.1063/1.4958930 – reference: PrigogineILefeverRSymmetry-breaking instabilities in dissipative systemsII. J. Chem. Phys.196848169517001968JChPh..48.1695P10.1063/1.1668896 – reference: HanaiREdelmanAOhashiYLittlewoodPBNon-Hermitian phase transition from a polariton Bose–Einstein condensate to a photon laserPhys. Rev. Lett.20191221853012019PhRvL.122r5301H1:CAS:528:DC%2BC1MXhtFKlsb%2FK3114488110.1103/PhysRevLett.122.185301 – reference: Arnold, V. I. Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1988). – reference: MostafazadehAPseudo-Hermiticity versus PT-symmetry. II: A complete characterization of non-Hermitian Hamiltonians with a real spectrumJ. Math. Phys.20024328142002JMP....43.2814M18937011060.8102210.1063/1.1461427 – reference: SchöpfWZimmermannWConvection in binary fluids: amplitude equations, codimension-2 bifurcation, and thermal fluctuationsPhys. Rev. E199347173917641993PhRvE..47.1739S137588610.1103/PhysRevE.47.1739 – reference: Gupta, R. K., Kant, R., Soni, H., Sood, A. K. & Ramaswamy, S. Active nonreciprocal attraction between motile particles in an elastic medium. Preprint at https://arxiv.org/abs/2007.04860 (2020). – reference: StrackPVitelliVSoft quantum vibrations of a PT-symmetric nonlinear ion chainPhys. Rev. A2013880534082013PhRvA..88e3408S10.1103/PhysRevA.88.053408 – reference: EstepNASounasDLSoricJAlùAMagnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loopsNat. Phys.2014109231:CAS:528:DC%2BC2cXhvFKlsrzE10.1038/nphys3134 – reference: YaoNYNayakCTime crystals in periodically driven systemsPhys. Today2018714010.1063/PT.3.4020 – reference: FarrellBFIoannouPJVariance maintained by stochastic forcing of non-normal dynamical systems associated with linearly stable shear flowsPhys. Rev. Lett.199472118811911994PhRvL..72.1188F1:STN:280:DC%2BC2sfps1Sjsg%3D%3D1005664510.1103/PhysRevLett.72.1188 – reference: Bogdanov, R. I. Bifurcations of a limit cycle for a family of vector fields on the plane. Selecta Math. Sov. 1, 373 (1981); translated from Trudy Sem. Petrovsk. 2, 23–35 (1976). – reference: PanLde BruynJRSpatially uniform traveling cellular patterns at a driven interfacePhys. Rev. E1994494834931994PhRvE..49..483P1:CAS:528:DyaK2cXitVWju7k%3D10.1103/PhysRevE.49.483 – reference: Risken, H. The Fokker–Planck Equation (Springer, 1989). – reference: Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. Vorticity And Vortex Dynamics (Springer, 2006). – reference: BensimonDPumirAShraimanBNonlinear theory of traveling wave convection in binary mixturesJ. Phys. France1989503089310810.1051/jphys:0198900500200308900 – volume: 69 start-page: 1352 year: 1978 ident: 3375_CR122 publication-title: J. Chem. Phys. doi: 10.1063/1.436761 – volume: 14 start-page: 9720 year: 2018 ident: 3375_CR125 publication-title: Soft Matter doi: 10.1039/C8SM01836G – volume: 43 start-page: 3944 year: 2002 ident: 3375_CR108 publication-title: J. Math. Phys. doi: 10.1063/1.1489072 – volume: 97 start-page: 042302 year: 2018 ident: 3375_CR91 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.042302 – volume: 63 start-page: 1954 year: 1989 ident: 3375_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.1954 – volume: 34 start-page: 693 year: 1986 ident: 3375_CR286 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.34.693 – ident: 3375_CR154 – volume: 110 start-page: 195301 year: 2013 ident: 3375_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.195301 – volume: 60 start-page: 418 year: 2002 ident: 3375_CR38 publication-title: Europhys. Lett. doi: 10.1209/epl/i2002-00280-2 – ident: 3375_CR300 doi: 10.1007/978-1-4612-4300-7 – volume: 84 start-page: 046202 year: 2011 ident: 3375_CR135 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.046202 – ident: 3375_CR177 doi: 10.1007/978-3-662-11832-0 – volume: 109 start-page: 606 year: 2012 ident: 3375_CR296 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1118672109 – volume: 51 start-page: 4380 year: 1995 ident: 3375_CR303 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.51.4380 – ident: 3375_CR84 doi: 10.1007/978-3-540-29028-5 – volume: 82 start-page: 1767 year: 2010 ident: 3375_CR128 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1767 – volume: 19 start-page: 103026 year: 2017 ident: 3375_CR5 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa8ed7 – volume: 96 start-page: 469 year: 1954 ident: 3375_CR57 publication-title: Dokl. Akad. Nauk SSSR – volume: 64 start-page: 866 year: 1990 ident: 3375_CR263 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.866 – volume: 89 start-page: 062924 year: 2014 ident: 3375_CR309 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.062924 – volume: 49 start-page: 435 year: 1977 ident: 3375_CR32 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.49.435 – volume: 92 start-page: 543 year: 1998 ident: 3375_CR172 publication-title: J. Stat. Phys. doi: 10.1023/A:1023084404080 – volume: 108 start-page: 251602 year: 2012 ident: 3375_CR186 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.251602 – volume: 45 start-page: 8605 year: 1992 ident: 3375_CR301 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8605 – volume: 12 start-page: 113035 year: 2010 ident: 3375_CR307 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/11/113035 – volume: 223 start-page: 1315 year: 2014 ident: 3375_CR209 publication-title: J. Spec. Top. doi: 10.1140/epjst/e2014-02193-y – volume: 78 start-page: 653 year: 1997 ident: 3375_CR95 publication-title: Ecology doi: 10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2 – volume: 76 start-page: 576 year: 1986 ident: 3375_CR36 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.76.576 – volume: 35 start-page: L467 year: 2002 ident: 3375_CR109 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/35/31/101 – volume: 112 start-page: 068301 year: 2014 ident: 3375_CR126 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.068301 – ident: 3375_CR102 – volume: 65 start-page: 1458 year: 1990 ident: 3375_CR273 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.65.1458 – volume: 93 start-page: 480 year: 2017 ident: 3375_CR131 publication-title: Neuron doi: 10.1016/j.neuron.2016.12.041 – ident: 3375_CR53 doi: 10.1007/978-1-4757-3484-3 – volume: 4 start-page: 041044 year: 2014 ident: 3375_CR101 publication-title: Phys. Rev. X – ident: 3375_CR256 doi: 10.1017/CBO9780511616051 – volume: 113 start-page: 065303 year: 2014 ident: 3375_CR104 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.065303 – ident: #cr-split#-3375_CR178.2 doi: 10.1016/S0001-2092(07)64531-1 – ident: #cr-split#-3375_CR179.1 – ident: #cr-split#-3375_CR192.1 doi: 10.1007/BF01077511 – ident: 3375_CR73 – volume: 125 start-page: 126402 year: 2020 ident: 3375_CR161 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.126402 – volume: 4 start-page: 167 year: 1987 ident: 3375_CR133 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/4/2/007 – volume: 74 start-page: 022101 year: 2006 ident: 3375_CR205 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.022101 – volume: 89 start-page: 058101 year: 2002 ident: 3375_CR223 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.058101 – volume: 110 start-page: 184102 year: 2013 ident: 3375_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.184102 – volume: 117 start-page: 1971 year: 2019 ident: 3375_CR105 publication-title: Mol. Phys. doi: 10.1080/00268976.2019.1567849 – volume: 117 start-page: 648 year: 1960 ident: 3375_CR181 publication-title: Phys. Rev. doi: 10.1103/PhysRev.117.648 – volume: 117 start-page: 29561 year: 2020 ident: 3375_CR147 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010580117 – volume: 46 start-page: 787 year: 1985 ident: 3375_CR288 publication-title: J. Physique Lett. doi: 10.1051/jphyslet:019850046017078700 – volume: 43 start-page: 2814 year: 2002 ident: 3375_CR107 publication-title: J. Math. Phys. doi: 10.1063/1.1461427 – volume: 74 start-page: 4839 year: 1995 ident: 3375_CR265 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.4839 – volume: 88 start-page: 053408 year: 2013 ident: 3375_CR50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.88.053408 – volume: 259 start-page: 185 year: 1980 ident: 3375_CR200 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1980-0561832-4 – volume: 83 start-page: 030901 year: 2011 ident: 3375_CR210 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.030901 – ident: #cr-split#-3375_CR180.1 – volume: 104 start-page: 178103 year: 2010 ident: 3375_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.178103 – volume: 2 start-page: 023173 year: 2020 ident: 3375_CR169 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023173 – volume: 11 start-page: 169 year: 2020 ident: 3375_CR185 publication-title: Annu. Rev. Condens. Matter Phys. doi: 10.1146/annurev-conmatphys-031119-050644 – volume: 364 start-page: 70 year: 2019 ident: 3375_CR6 publication-title: Science doi: 10.1126/science.aau5347 – volume: 93 start-page: 042310 year: 2016 ident: 3375_CR90 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.042310 – volume: 85 start-page: 056210 year: 2012 ident: 3375_CR229 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.056210 – volume: 7 start-page: 1655 year: 1994 ident: 3375_CR195 publication-title: Nonlinearity doi: 10.1088/0951-7715/7/6/008 – volume: 8 start-page: 074 year: 2020 ident: 3375_CR76 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.8.5.074 – volume: 43 start-page: 697 year: 1988 ident: 3375_CR79 publication-title: Z. Naturforsch. A doi: 10.1515/zna-1988-8-901 – volume: 85 start-page: 1143 year: 2013 ident: 3375_CR77 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.1143 – volume: 48 start-page: 1695 year: 1968 ident: 3375_CR315 publication-title: II. J. Chem. Phys. doi: 10.1063/1.1668896 – volume: 12 start-page: 75 year: 1974 ident: 3375_CR62 publication-title: Phys. Rep. doi: 10.1016/0370-1573(74)90023-4 – volume: 120 start-page: 215301 year: 2018 ident: 3375_CR317 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.215301 – volume: 46 start-page: 305001 year: 2013 ident: 3375_CR255 publication-title: J. Phys. A doi: 10.1088/1751-8113/46/30/305001 – volume: 94 start-page: 032205 year: 2016 ident: 3375_CR234 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.032205 – volume: 61 start-page: 2574 year: 1988 ident: 3375_CR269 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2574 – volume: 26 start-page: 094815 year: 2016 ident: 3375_CR310 publication-title: Chaos doi: 10.1063/1.4959804 – volume: 94 start-page: 214301 year: 2005 ident: 3375_CR215 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.214301 – ident: 3375_CR299 doi: 10.1016/S0079-6123(04)47009-5 – volume: 30 start-page: 2548 year: 1984 ident: 3375_CR284 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.30.2548 – volume: 117 start-page: 038103 year: 2016 ident: 3375_CR152 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.038103 – volume: 43 start-page: 776 year: 1983 ident: 3375_CR281 publication-title: SIAM J. Appl. Math. doi: 10.1137/0143052 – volume: 9 start-page: 779 year: 1989 ident: 3375_CR43 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/9/8/007 – volume: 123 start-page: 018101 year: 2019 ident: 3375_CR127 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.018101 – volume: 69 start-page: 2915 year: 1992 ident: 3375_CR305 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2915 – volume: 19 start-page: 023117 year: 2009 ident: 3375_CR236 publication-title: Chaos doi: 10.1063/1.3136851 – volume: 38 start-page: 3593 year: 1988 ident: 3375_CR282 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3593 – volume: 77 start-page: 013618 year: 2008 ident: 3375_CR254 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.77.013618 – volume: 19 start-page: 725 year: 2020 ident: 3375_CR47 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0635-6 – volume: 95 start-page: 1374 year: 1954 ident: 3375_CR60 publication-title: Phys. Rev. doi: 10.1103/PhysRev.95.1374 – volume: 18 start-page: 093006 year: 2016 ident: 3375_CR212 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/9/093006 – volume: 40 start-page: 37 year: 1997 ident: 3375_CR277 publication-title: Europhys. Lett. doi: 10.1209/epl/i1997-00421-1 – volume: 120 start-page: 140401 year: 2018 ident: 3375_CR316 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.140401 – volume: 115 start-page: 200402 year: 2015 ident: 3375_CR155 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.200402 – volume: 16 start-page: 747 year: 2020 ident: 3375_CR20 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0922-9 – ident: 3375_CR162 doi: 10.1017/CBO9780511550485 – ident: 3375_CR75 doi: 10.1017/9781107278974 – volume: 16 start-page: 515 year: 2005 ident: 3375_CR136 publication-title: Int. J. Mod. Phys. C doi: 10.1142/S0129183105007261 – volume: 109 start-page: 160402 year: 2012 ident: 3375_CR312 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.160402 – volume: 10 start-page: 041016 year: 2020 ident: 3375_CR87 publication-title: Phys. Rev. X – ident: 3375_CR141 – volume: 99 start-page: 201103 year: 2019 ident: 3375_CR156 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.201103 – volume: 42 start-page: 445001 year: 2009 ident: 3375_CR206 publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8113/42/44/445001 – volume: 19 start-page: 897 year: 2019 ident: 3375_CR130 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04134 – volume: 1 start-page: 1 year: 1995 ident: 3375_CR193 publication-title: Selecta Mathematica doi: 10.1007/BF01614072 – volume: 99 start-page: 012612 year: 2019 ident: 3375_CR39 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.012612 – volume: 110 start-page: 091601 year: 2013 ident: 3375_CR184 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.091601 – volume: 61 start-page: 635 year: 2009 ident: 3375_CR88 publication-title: Neuron doi: 10.1016/j.neuron.2009.02.005 – volume: 71 start-page: 501 year: 1995 ident: 3375_CR58 publication-title: Philos. Mag. B doi: 10.1080/01418639508238541 – ident: 3375_CR71 doi: 10.1142/4062 – volume: 67 start-page: 717 year: 2004 ident: 3375_CR164 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/67/5/R03 – ident: 3375_CR176 – volume: 29 start-page: 257 year: 1988 ident: 3375_CR266 publication-title: Physica D doi: 10.1016/0167-2789(88)90032-2 – ident: 3375_CR63 – ident: 3375_CR257 doi: 10.1017/CBO9780511627200 – volume: 65 start-page: 851 year: 1993 ident: 3375_CR40 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.851 – volume: 55 start-page: 496 year: 1985 ident: 3375_CR287 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.496 – volume: 80 start-page: 5243 year: 1998 ident: 3375_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5243 – volume: 188 start-page: 301 year: 1988 ident: 3375_CR267 publication-title: J. Fluid Mech. doi: 10.1017/S0022112088000746 – volume: 96 start-page: 044506 year: 2006 ident: 3375_CR308 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.044506 – ident: 3375_CR56 doi: 10.1103/PhysRevX.10.041009 – volume: 4 start-page: 1017 year: 1987 ident: 3375_CR261 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/4/9/011 – ident: 3375_CR111 doi: 10.1007/978-3-319-18212-4_10 – volume: 117 start-page: 248001 year: 2016 ident: 3375_CR140 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.248001 – volume: 125 start-page: 118001 year: 2020 ident: 3375_CR168 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.118001 – volume: 123 start-page: 016805 year: 2019 ident: 3375_CR160 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.016805 – volume: 464 start-page: 890 year: 2010 ident: 3375_CR4 publication-title: Nature doi: 10.1038/nature08891 – volume: 21 start-page: 063006 year: 2019 ident: 3375_CR3 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab20fd – volume: 79 start-page: 1150 year: 1997 ident: 3375_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1150 – volume: 23 start-page: 341 year: 1991 ident: 3375_CR70 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.23.010191.002013 – volume: 42 start-page: 4693 year: 1990 ident: 3375_CR290 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.42.4693 – volume: 261 start-page: 578 year: 1993 ident: 3375_CR52 publication-title: Science doi: 10.1126/science.261.5121.578 – volume: 18 start-page: 037113 year: 2008 ident: 3375_CR230 publication-title: Chaos doi: 10.1063/1.2930766 – ident: 3375_CR69 doi: 10.1007/978-1-4612-4574-2 – volume: 122 start-page: 247702 year: 2019 ident: 3375_CR159 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.247702 – ident: 3375_CR23 doi: 10.1007/978-1-4757-3978-7 – volume: 71 start-page: 40 year: 2018 ident: 3375_CR314 publication-title: Phys. Today doi: 10.1063/PT.3.4020 – ident: #cr-split#-3375_CR180.2 – volume: 80 start-page: 046215 year: 2009 ident: 3375_CR244 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.046215 – volume: 77 start-page: 622 year: 1987 ident: 3375_CR225 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.77.622 – volume: 101 start-page: 084103 year: 2008 ident: 3375_CR231 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.084103 – volume: 17 start-page: 789 year: 2018 ident: 3375_CR202 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0123-4 – volume: 129 start-page: 171 year: 1999 ident: 3375_CR196 publication-title: Physica D doi: 10.1016/S0167-2789(99)00007-X – ident: 3375_CR153 – volume: 91 start-page: 035002 year: 2019 ident: 3375_CR59 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.035002 – volume: A55 start-page: 208 year: 2003 ident: 3375_CR120 publication-title: Tellus doi: 10.3402/tellusa.v55i3.12093 – ident: 3375_CR170 – volume: 112 start-page: 148102 year: 2014 ident: 3375_CR220 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.148102 – volume: 4 start-page: eaau9403 year: 2018 ident: 3375_CR92 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau9403 – ident: #cr-split#-3375_CR178.1 – volume: 58 start-page: 4828 year: 1998 ident: 3375_CR201 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.4828 – volume: 40 start-page: 1 year: 1991 ident: 3375_CR270 publication-title: Adv. Phys. doi: 10.1080/00018739100101462 – volume: 1 start-page: 023026 year: 2019 ident: 3375_CR218 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.1.023026 – volume: 118 start-page: 018101 year: 2017 ident: 3375_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.018101 – volume: 14 start-page: 473 year: 2002 ident: 3375_CR293 publication-title: Neural Comput. doi: 10.1162/089976602317250861 – volume: 70 start-page: 947 year: 2007 ident: 3375_CR112 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/70/6/R03 – volume: 94 start-page: 020408(R) year: 2016 ident: 3375_CR250 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.020408 – volume: 356 start-page: 299 year: 2001 ident: 3375_CR292 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2000.0769 – volume: 2 start-page: 043059 year: 2020 ident: 3375_CR94 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.043059 – volume: 46 start-page: 963 year: 1992 ident: 3375_CR272 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.46.963 – volume: 96 start-page: 042208 year: 2017 ident: 3375_CR235 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.042208 – volume: 164 start-page: 155 year: 1986 ident: 3375_CR306 publication-title: J. Fluid Mech. doi: 10.1017/S0022112086002513 – volume: 10 start-page: 1093 year: 1997 ident: 3375_CR268 publication-title: Nonlinearity doi: 10.1088/0951-7715/10/5/006 – ident: 3375_CR258 doi: 10.1201/b18360 – volume: 3 start-page: 191 year: 2004 ident: 3375_CR297 publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/030600503 – volume: 5 start-page: 011035 year: 2015 ident: 3375_CR8 publication-title: Phys. Rev. X – volume: 72 start-page: 603 year: 2000 ident: 3375_CR82 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.72.603 – ident: 3375_CR116 doi: 10.1016/B978-044452965-7/50004-0 – ident: 3375_CR295 doi: 10.1186/1471-2202-10-S1-P64 – volume: 15 start-page: 1188 year: 2019 ident: 3375_CR175 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0603-8 – volume: 43 start-page: 205 year: 2002 ident: 3375_CR106 publication-title: J. Math. Phys. doi: 10.1063/1.1418246 – volume: 19 start-page: 043104 year: 2009 ident: 3375_CR239 publication-title: Chaos doi: 10.1063/1.3247089 – ident: 3375_CR134 – volume: 537 start-page: 76 year: 2016 ident: 3375_CR246 publication-title: Nature doi: 10.1038/nature18605 – volume: 10 year: 2019 ident: 3375_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12599-3 – volume: 39 start-page: 129 year: 2007 ident: 3375_CR85 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.38.050304.092139 – volume: 105 start-page: 445 year: 1976 ident: 3375_CR187 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(76)90025-0 – volume: 21 start-page: 1453 year: 1990 ident: 3375_CR199 publication-title: SIAM J. Math. Anal. doi: 10.1137/0521081 – volume: 11 start-page: 839 year: 2015 ident: 3375_CR213 publication-title: Nat. Phys. doi: 10.1038/nphys3423 – ident: 3375_CR224 doi: 10.1007/978-3-642-69689-3 – volume: 16 start-page: 475 year: 2020 ident: 3375_CR19 publication-title: Nat. Phys. doi: 10.1038/s41567-020-0795-y – volume: 97 start-page: 012130 year: 2018 ident: 3375_CR189 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.012130 – volume: 119 start-page: 058002 year: 2017 ident: 3375_CR216 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.058002 – volume: 92 start-page: 018101 year: 2004 ident: 3375_CR294 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.018101 – ident: #cr-split#-3375_CR192.2 – volume: 322 start-page: 243 year: 1987 ident: 3375_CR198 publication-title: Phil. Trans. R. Soc. Lond. A doi: 10.1098/rsta.1987.0050 – volume: 123 start-page: 218001 year: 2019 ident: 3375_CR211 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.218001 – ident: 3375_CR22 doi: 10.1007/978-3-0348-8167-8 – volume: 19 start-page: L675 year: 1986 ident: 3375_CR132 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/19/11/005 – volume: 9 year: 2019 ident: 3375_CR251 publication-title: Sci. Rep. doi: 10.1038/s41598-019-53455-0 – volume: 120 start-page: 244101 year: 2018 ident: 3375_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.244101 – volume: 94 start-page: 041104 year: 2016 ident: 3375_CR103 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.041104 – volume: 47 start-page: 1739 year: 1993 ident: 3375_CR291 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.1739 – volume: 64 start-page: 184 year: 1990 ident: 3375_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.184 – volume: 90 start-page: 031001 year: 2018 ident: 3375_CR64 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.90.031001 – ident: 3375_CR197 doi: 10.1090/conm/056/855089 – volume: 75 start-page: 1226 year: 1995 ident: 3375_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.1226 – volume: 339 start-page: 936 year: 2013 ident: 3375_CR27 publication-title: Science doi: 10.1126/science.1230020 – volume: 7 start-page: 371 year: 1997 ident: 3375_CR81 publication-title: J. Phys. II – volume: 8 year: 2017 ident: 3375_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms15791 – volume: 58 start-page: 1383 year: 1998 ident: 3375_CR96 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.1383 – volume: 106 start-page: 054102 year: 2011 ident: 3375_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.054102 – volume: 78 start-page: 031406 year: 2008 ident: 3375_CR123 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.031406 – volume: 108 start-page: 248101 year: 2012 ident: 3375_CR207 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.248101 – ident: 3375_CR191 – ident: 3375_CR54 – volume: 75 start-page: 4326 year: 1995 ident: 3375_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.75.4326 – ident: 3375_CR72 doi: 10.1007/978-3-642-66784-8 – volume: 8 year: 2017 ident: 3375_CR173 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01378-7 – ident: 3375_CR68 doi: 10.1007/978-1-4612-5034-0 – volume: 61 start-page: 1648 year: 2000 ident: 3375_CR124 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.1648 – volume: 77 start-page: 137 year: 2005 ident: 3375_CR33 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.137 – volume: 112 start-page: 12729 year: 2015 ident: 3375_CR138 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1503749112 – ident: 3375_CR208 – volume: 72 start-page: 014104 year: 2005 ident: 3375_CR249 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.014104 – volume: 94 start-page: 10426 year: 1997 ident: 3375_CR298 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.94.19.10426 – volume: 122 start-page: 185301 year: 2019 ident: 3375_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.185301 – volume: 57 start-page: 2861 year: 1986 ident: 3375_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.2861 – volume: 19 start-page: 154 year: 1961 ident: 3375_CR182 publication-title: Nuovo Cim. doi: 10.1007/BF02812722 – volume: 98 start-page: 062219 year: 2018 ident: 3375_CR245 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.98.062219 – volume: 92 start-page: 063807 year: 2015 ident: 3375_CR45 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.063807 – volume: 25 start-page: L987 year: 1992 ident: 3375_CR188 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/25/15/015 – volume: 50 start-page: 3089 year: 1989 ident: 3375_CR289 publication-title: J. Phys. France doi: 10.1051/jphys:0198900500200308900 – volume: 31 start-page: 397 year: 1988 ident: 3375_CR226 publication-title: Physica D doi: 10.1016/0167-2789(88)90005-X – volume: 72 start-page: 1188 year: 1994 ident: 3375_CR80 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.1188 – volume: 56 start-page: 780 year: 1997 ident: 3375_CR274 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.780 – ident: 3375_CR78 doi: 10.1515/9780691213101 – volume: 91 start-page: 012134 year: 2015 ident: 3375_CR137 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.012134 – volume: 102 start-page: 085151 year: 2020 ident: 3375_CR157 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.102.085151 – volume: 74 start-page: 197 year: 1994 ident: 3375_CR238 publication-title: Physica D doi: 10.1016/0167-2789(94)90196-1 – volume: 38 start-page: 1723 year: 2005 ident: 3375_CR194 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/38/8/009 – volume: 10 start-page: 309 year: 1989 ident: 3375_CR262 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/10/4/005 – volume: 74 start-page: 99 year: 2002 ident: 3375_CR67 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.74.99 – volume: 41 year: 2018 ident: 3375_CR143 publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2018-11653-4 – volume: 5 start-page: S416 year: 2003 ident: 3375_CR113 publication-title: J. Opt. B doi: 10.1088/1464-4266/5/3/380 – volume: 1 start-page: 409 year: 1960 ident: 3375_CR114 publication-title: J. Math. Phys. doi: 10.1063/1.1703672 – volume: 64 start-page: 1381 year: 1990 ident: 3375_CR271 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.1381 – volume: 5 start-page: 021025 year: 2015 ident: 3375_CR29 publication-title: Phys. Rev. X – volume: 122 start-page: 128001 year: 2019 ident: 3375_CR174 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.128001 – volume: 70 start-page: 2391 year: 1993 ident: 3375_CR237 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.70.2391 – volume: 58 start-page: 565 year: 1998 ident: 3375_CR276 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.565 – volume: 15 start-page: 1 year: 1984 ident: 3375_CR285 publication-title: SIAM J. Math. Anal. doi: 10.1137/0515001 – volume: 92 start-page: 052124 year: 2015 ident: 3375_CR248 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.92.052124 – volume: 10 start-page: 031024 year: 2020 ident: 3375_CR48 publication-title: Phys. Rev. X – volume: 86 start-page: 011909 year: 2012 ident: 3375_CR89 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.011909 – volume: 113 start-page: 79 year: 1998 ident: 3375_CR228 publication-title: Physica D doi: 10.1016/S0167-2789(97)00187-5 – volume: 106 start-page: 213901 year: 2011 ident: 3375_CR145 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.213901 – volume: 879 start-page: P1 year: 2019 ident: 3375_CR167 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.553 – volume: 15 start-page: 319 year: 1977 ident: 3375_CR259 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.15.319 – volume: 120 start-page: 264101 year: 2018 ident: 3375_CR241 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.264101 – volume: 8 year: 2017 ident: 3375_CR217 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01190-3 – volume: 47 start-page: 1727 year: 1993 ident: 3375_CR275 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.47.1727 – volume: 37 start-page: 357 year: 2005 ident: 3375_CR83 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.061903.175810 – volume: 10 start-page: 047001 year: 2018 ident: 3375_CR166 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.047001 – volume: 56 start-page: 221 year: 2001 ident: 3375_CR44 publication-title: Europhys. Lett. doi: 10.1209/epl/i2001-00509-0 – volume: 22 start-page: 053004 year: 2020 ident: 3375_CR148 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab81b6 – ident: 3375_CR150 – volume: 95 start-page: 020601 year: 2017 ident: 3375_CR214 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.95.020601 – volume: 101 start-page: 264103 year: 2008 ident: 3375_CR232 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.264103 – volume: 5 start-page: 021028 year: 2015 ident: 3375_CR242 publication-title: Phys. Rev. X – ident: 3375_CR117 doi: 10.1007/978-3-642-61544-3 – ident: 3375_CR149 – ident: 3375_CR66 – volume: 37 start-page: 3909 year: 1988 ident: 3375_CR279 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.37.3909 – volume: 50 start-page: 319 year: 2018 ident: 3375_CR86 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122316-045042 – ident: 3375_CR118 doi: 10.1007/978-3-662-05389-8 – ident: #cr-split#-3375_CR179.2 – volume: 374 start-page: 1616 year: 2010 ident: 3375_CR110 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2010.02.032 – volume: 82 start-page: 013629 year: 2010 ident: 3375_CR253 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.82.013629 – volume: 125 start-page: 238005 year: 2020 ident: 3375_CR142 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.238005 – volume: 125 start-page: 220601 year: 2020 ident: 3375_CR151 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.220601 – ident: 3375_CR163 doi: 10.1038/s41578-020-0206-0 – volume: 54 start-page: 5053 year: 1996 ident: 3375_CR302 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.54.5053 – volume: 127 start-page: 965 year: 1962 ident: 3375_CR183 publication-title: Phys. Rev. doi: 10.1103/PhysRev.127.965 – volume: 125 start-page: 20008 year: 2019 ident: 3375_CR144 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/125/20008 – volume: 113 start-page: 12919 year: 2016 ident: 3375_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1609572113 – volume: 26 start-page: 094819 year: 2016 ident: 3375_CR233 publication-title: Chaos doi: 10.1063/1.4958930 – volume: 109 start-page: 160401 year: 2012 ident: 3375_CR313 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.160401 – volume: 81 start-page: 061916 year: 2010 ident: 3375_CR221 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.81.061916 – ident: 3375_CR1 – volume: 10 start-page: 923 year: 2014 ident: 3375_CR165 publication-title: Nat. Phys. doi: 10.1038/nphys3134 – volume: 68 start-page: 1073 year: 1992 ident: 3375_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1073 – volume: 343 start-page: 516 year: 2014 ident: 3375_CR16 publication-title: Science doi: 10.1126/science.1246957 – volume: 1 start-page: 311 year: 1991 ident: 3375_CR264 publication-title: J. Phys. II – ident: 3375_CR21 – volume: 29 start-page: L613 year: 1996 ident: 3375_CR204 publication-title: J. Phys. Math. Gen. doi: 10.1088/0305-4470/29/24/001 – ident: 3375_CR74 doi: 10.1007/978-90-481-2869-3 – ident: 3375_CR121 doi: 10.5479/sil.52126.39088015628399 – volume: 10 year: 2020 ident: 3375_CR243 publication-title: J. Math. Neurosci. doi: 10.1186/s13408-020-00086-9 – volume: 124 start-page: 086801 year: 2020 ident: 3375_CR158 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.086801 – volume: 58 start-page: 2318 year: 1987 ident: 3375_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2318 – volume: 95 start-page: 18003 year: 2011 ident: 3375_CR99 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/95/18003 – volume: 2 start-page: 023068 year: 2020 ident: 3375_CR219 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023068 – volume: 16 start-page: 1561 year: 1975 ident: 3375_CR171 publication-title: J. Math. Phys. doi: 10.1063/1.522724 – volume: 44 start-page: 1243 year: 2007 ident: 3375_CR98 publication-title: J. Appl. Ecol. doi: 10.1111/j.1365-2664.2007.01333.x – volume: 14 start-page: 67 year: 1984 ident: 3375_CR13 publication-title: Physica D doi: 10.1016/0167-2789(84)90005-8 – volume: 49 start-page: 483 year: 1994 ident: 3375_CR15 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.483 – volume: 572 start-page: 1 year: 2015 ident: 3375_CR61 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.01.001 – volume: 6 start-page: eaba2282 year: 2020 ident: 3375_CR93 publication-title: Sci. Adv. doi: 10.1126/sciadv.aba2282 – volume: 542 start-page: 461 year: 2017 ident: 3375_CR146 publication-title: Nature doi: 10.1038/nature21044 – volume: 57 start-page: 2935 year: 1986 ident: 3375_CR280 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.57.2935 – ident: 3375_CR65 doi: 10.1007/978-3-662-04174-1 – volume: 240 start-page: 872 year: 2011 ident: 3375_CR240 publication-title: Physica D doi: 10.1016/j.physd.2011.01.002 – volume: 69 start-page: 056216 year: 2004 ident: 3375_CR247 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.056216 – volume: 92 start-page: 025702 year: 2004 ident: 3375_CR222 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.025702 – volume: 7 year: 2018 ident: 3375_CR129 publication-title: Light Sci. Appl. doi: 10.1038/s41377-018-0105-y – volume: 2 start-page: 033018 year: 2020 ident: 3375_CR31 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033018 – volume: 58 start-page: 3089 year: 1998 ident: 3375_CR304 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.58.3089 – volume: 27 start-page: 591 year: 1983 ident: 3375_CR283 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.27.591 – volume: 101 start-page: 052601 year: 2020 ident: 3375_CR139 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.052601 – volume: 108 start-page: 291 year: 1981 ident: 3375_CR278 publication-title: J. Fluid Mech. doi: 10.1017/S0022112081002139 – ident: 3375_CR55 – ident: 3375_CR190 – volume: 55 start-page: 2857 year: 1985 ident: 3375_CR260 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.55.2857 – volume: 179 start-page: 29 year: 2004 ident: 3375_CR97 publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2004.05.001 – volume: 8 start-page: 422 year: 2012 ident: 3375_CR119 publication-title: Nat. Phys. doi: 10.1038/nphys2276 – volume: 503 start-page: 95 year: 2013 ident: 3375_CR26 publication-title: Nature doi: 10.1038/nature12673 – volume: 18 start-page: 095003 year: 2016 ident: 3375_CR252 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/9/095003 – volume: 77 start-page: 570 year: 1996 ident: 3375_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.570 – volume: 11 start-page: 752 year: 2017 ident: 3375_CR100 publication-title: Nat. Photon. doi: 10.1038/s41566-017-0031-1 – volume: 87 start-page: 107 year: 1985 ident: 3375_CR311 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00280698 – volume: 88 start-page: 035002 year: 2016 ident: 3375_CR115 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.88.035002 – volume: 79 start-page: 026204 year: 2009 ident: 3375_CR227 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.026204 – volume: 363 start-page: eaar7709 year: 2019 ident: 3375_CR18 publication-title: Science doi: 10.1126/science.aar7709 – volume: 363 start-page: 46 year: 2019 ident: 3375_CR203 publication-title: Science doi: 10.1126/science.aat9891 – reference: 33854244 - Nature. 2021 Apr;592(7854):355-356 |
| SSID | ssj0005174 |
| Score | 2.735103 |
| Snippet | Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter
1
–
6
, non-equilibrium... Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter , non-equilibrium... Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter.sup.1-6,... Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium... |
| SourceID | proquest gale pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 363 |
| SubjectTerms | 639/705/1041 639/766/530 Bifurcation theory Critical phenomena Crystals Dynamical systems Eigenvalues Equilibrium Humanities and Social Sciences multidisciplinary Noise Optimization Pattern formation Phase transformations (Statistical physics) Phase transitions Reciprocity Science Science (multidisciplinary) Singularities Synchronism Synchronization Time dependence Wave propagation |
| Title | Non-reciprocal phase transitions |
| URI | https://link.springer.com/article/10.1038/s41586-021-03375-9 https://www.ncbi.nlm.nih.gov/pubmed/33854249 https://www.proquest.com/docview/2514748224 https://www.proquest.com/docview/2513247926 |
| Volume | 592 |
| WOSCitedRecordID | wos000683804100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQT databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1476-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: RNT dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.nature.com providerName: Nature Publishing – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M0K dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7P dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PCBAR dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M7S dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: PATMY dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7X7 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: KB. dateStart: 19880107 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & allied health premium. customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 7RV dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: P5Z dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: BENPR dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest research library customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2O dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2M dateStart: 19880107 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: 8C1 dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4687 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0005174 issn: 0028-0836 databaseCode: M2P dateStart: 19880107 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRegI2vslEVNPEhCEudDztPqKs2gaaGqCtQeLFiJxmTUNotLX8_d47bLtXYCy8nRT5byZ3Pv4t9vgPYDwSiRu56Do8y30GPWDvKbHOg846AoZjyU1NsgsexGI-jxG64VTascrEmmoU6m2jaIz9AHPa5TzGPH6cXDlWNotNVW0JjA7YoSwIZZhL8XIV4rGVhtpdmXE8cVAhcgsJvKaDI44ETNYBpfXm-gk9rB6YGh47v_-8XPIB71gPt9Oopsw238nIH7phIUF3twLa19qrzxqakfvsQOvGkdCgPBuEddp7-QvDrzAjn6pCvR_D1-GjU_-TY2gqORkCeOV6YuiKlfIOI0TroqpRuwHKtMuWmmiqQM80ilaGURMFUoP2wYEXqKR7ojOeZ9xg2y0mZP4UOHfuiH6aEwn-5IipwWFX4TBVMu2Hm-y3oLgQrtU08TvUvfktzAO4JWStDojKkUYaMWvBu2Wdap924kXuf9CUpn0VJATNn6byqZG_0vR_LHvlY6JSG3Ra8vI7t8-mwwfTaMhUTfEud2msK-K2UKavBudvg1NPzC3ml9VWj9axW2XXD7DUY0bx1s3kxm6RdXiq5mkoteLFspp4UMlfmk7nhQWeZRyxswZN68i5F6XkiQFNEwb1fzObV4P-W87Ob32UX7jJjUL7TDfZgc3Y5z5_Dbf1ndl5dtmGDD78RHXNDBVLR77Zh6_AoTob4dHL4AenAPSHKBoZ-MTQhymt62jZGjv2S3mjw4y81C0P9 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL0PIKLRBQgSKwmjgPJweEVoWqq5YVKovYmxs7SamEkm2zC-JP8RuZcZLdZlV664Gzx5bj8cw3jj_PAGwEEaJG5nhMxKnPMCLWTJnfHBi8I2AorvzEFJsQg0E0GsWfl-BP-xaGaJWtTzSOOi01_SPfQhz2hU-cx_fjE0ZVo-h2tS2hUW-Lvez3LzyyVe_6H1C_Lzjf-Tjc3mVNVQGmEYomzAsTJ0oo0x6ikw5cldDbT6FVqpxEU-1trnmsUhc_I-cq0H6Y8zzxlAh0KrLUw3GvwFX044IoZGIk5pSShazPzSMdx4u2KgTKiOi-RGDyRMDiDhAuwsEZPFy4oDW4t3P7f1uxO3CribDtXm0SK7CUFatw3TBddbUKK403q-zNJuX267tgD8qCUZ4PwnPsPP6O4G5PCMdrSts9-Hopc74Py0VZZA_BpmttjDNVpPCsmsc5Dqtyn6ucaydMfd8Ct1Wk1E1idarv8UOaC34vkrXyJSpfGuXL2II3sz7jOq3IhdIbtD8k5esoiBB0lEyrSvaG37YHskcxJAbdoWvB8_PE-l8OOkKvGqG8xFnqpHmGgd9KmcA6kmsdST0-PpFnWl92Wo9qlZ03zHpHEN2X7ja3u1c27rOS861rwbNZM_UkSmCRlVMjg4cBEfPQgge1scyW0vOiAF0NLtzb1nrmg_97nR9dPJencGN3-Glf7vcHe2twkxtj9pkbrMPy5HSaPYZr-ufkuDp9YtyCDYeXbVV_AVdGk3k |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAXoOUVWiCg8hJYmzjvA0KrlhWrotWKFlFxMbGTlEoo2Ta7IP4av44Zx9ltVqW3Hjh7bPkxM9-MPZ4B2ApiRI3c8ViUZD5Di1gxqa850HhHwJBc-qkuNhGNRvHBQTJegT_tXxgKq2x1olbUWaXojryHOOxHPsU89goTFjHeGbybHDOqIEUvrW05jYZFdvPfv9B9q98Od_Csn3E-eL-__YGZCgNMISxNmRemTpxS1j1EKhW4MqV_oJGSmXRSRXW4ueKJzFxcUsFloPyw4EXqyShQWZRnHo57CS5H6GOS4zcOvi7CS5YyQJsPO44X92oEzZhCfymYyYsClnRAcRkaTmHj0mOtxsDBzf95927BDWN52_1GVNZgJS_X4aqOgFX1OqwZLVfbL00q7le3wR5VJaP8H4Tz2HnyHUHfnhK-N6Fud-Dzhcz5LqyWVZnfB5ueu9H-lLFEH7ZIChxWFj6XBVdOmPm-BW57qEKZhOtU9-OH0A__XiwaRhDICEIzgkgseD3vM2nSjZxLvUW8IiiPR0lnepjO6lr0979sj0SfbEs0xkPXgqdnkQ33PnWIXhiiosJZqtR8z8C1UoawDuVGh1JNjo7FqdbnndbD5sjOGmazQ4hqTXWbW04WRq3WYsHGFjyZN1NPChUs82qmadBJiBIeWnCvEZz5VnpeHKAKwo1700rSYvB_7_OD8-fyGK6hMImPw9HuBlznWq595gabsDo9meUP4Yr6OT2qTx5pDWHDt4sWqr-C_5xs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-reciprocal+phase+transitions&rft.jtitle=Nature+%28London%29&rft.au=Fruchart%2C+Michel&rft.au=Hanai%2C+Ryo&rft.au=Littlewood%2C+Peter+B&rft.au=Vitelli%2C+Vincenzo&rft.date=2021-04-15&rft.eissn=1476-4687&rft.volume=592&rft.issue=7854&rft.spage=363&rft_id=info:doi/10.1038%2Fs41586-021-03375-9&rft_id=info%3Apmid%2F33854249&rft.externalDocID=33854249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |