Non-reciprocal phase transitions

Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter 1 – 6 , non-equilibrium systems 7 – 9 , networks of neurons 10 , 11 , social groups with conformist and contrarian members 12 , directional interface growth phenome...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature (London) Ročník 592; číslo 7854; s. 363 - 369
Hlavní autoři: Fruchart, Michel, Hanai, Ryo, Littlewood, Peter B., Vitelli, Vincenzo
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 15.04.2021
Nature Publishing Group
Témata:
ISSN:0028-0836, 1476-4687, 1476-4687
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter 1 – 6 , non-equilibrium systems 7 – 9 , networks of neurons 10 , 11 , social groups with conformist and contrarian members 12 , directional interface growth phenomena 13 – 15 and metamaterials 16 – 20 . Although wave propagation in non-reciprocal media has recently been closely studied 1 , 16 – 20 , less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points 21 . We describe the emergence of these phases using insights from bifurcation theory 22 , 23 and non-Hermitian quantum mechanics 24 , 25 . Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. A theoretical study of non-reciprocity in collective phenomena reveals the emergence of time-dependent phases heralded by exceptional points in contexts ranging from synchronization and flocking to pattern formation.
AbstractList Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter , non-equilibrium systems , networks of neurons , social groups with conformist and contrarian members , directional interface growth phenomena and metamaterials . Although wave propagation in non-reciprocal media has recently been closely studied , less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points . We describe the emergence of these phases using insights from bifurcation theory and non-Hermitian quantum mechanics . Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter 1 – 6 , non-equilibrium systems 7 – 9 , networks of neurons 10 , 11 , social groups with conformist and contrarian members 12 , directional interface growth phenomena 13 – 15 and metamaterials 16 – 20 . Although wave propagation in non-reciprocal media has recently been closely studied 1 , 16 – 20 , less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points 21 . We describe the emergence of these phases using insights from bifurcation theory 22 , 23 and non-Hermitian quantum mechanics 24 , 25 . Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. A theoretical study of non-reciprocity in collective phenomena reveals the emergence of time-dependent phases heralded by exceptional points in contexts ranging from synchronization and flocking to pattern formation.
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter.sup.1-6, non-equilibrium systems.sup.7-9, networks of neurons.sup.10,11, social groups with conformist and contrarian members.sup.12, directional interface growth phenomena.sup.13-15 and metamaterials.sup.16-20. Although wave propagation in non-reciprocal media has recently been closely studied.sup.1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points.sup.21. We describe the emergence of these phases using insights from bifurcation theory.sup.22,23 and non-Hermitian quantum mechanics.sup.24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter.sup.1-6, non-equilibrium systems.sup.7-9, networks of neurons.sup.10,11, social groups with conformist and contrarian members.sup.12, directional interface growth phenomena.sup.13-15 and metamaterials.sup.16-20. Although wave propagation in non-reciprocal media has recently been closely studied.sup.1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points.sup.21. We describe the emergence of these phases using insights from bifurcation theory.sup.22,23 and non-Hermitian quantum mechanics.sup.24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle. A theoretical study of non-reciprocity in collective phenomena reveals the emergence of time-dependent phases heralded by exceptional points in contexts ranging from synchronization and flocking to pattern formation.
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi) crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.
Audience Academic
Author Vitelli, Vincenzo
Fruchart, Michel
Littlewood, Peter B.
Hanai, Ryo
Author_xml – sequence: 1
  givenname: Michel
  surname: Fruchart
  fullname: Fruchart, Michel
  organization: James Franck Institute and Department of Physics, University of Chicago
– sequence: 2
  givenname: Ryo
  surname: Hanai
  fullname: Hanai, Ryo
  organization: James Franck Institute and Department of Physics, University of Chicago, Department of Physics, Osaka University, Pritzker School of Molecular Engineering, University of Chicago
– sequence: 3
  givenname: Peter B.
  surname: Littlewood
  fullname: Littlewood, Peter B.
  organization: James Franck Institute and Department of Physics, University of Chicago
– sequence: 4
  givenname: Vincenzo
  orcidid: 0000-0001-6328-8783
  surname: Vitelli
  fullname: Vitelli, Vincenzo
  email: vitelli@uchicago.edu
  organization: James Franck Institute and Department of Physics, University of Chicago, Kadanoff Center for Theoretical Physics, University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33854249$$D View this record in MEDLINE/PubMed
BookMark eNp90k9P2zAYBnBrAo3S7QvsMFVwASEz_7dzrCoYSIhJG9OOluM4xSh1WjuRtm-Ps1JBUUE5RIp-z6s39nMI9kIbHABfMDrHiKpviWGuBEQEQ0Sp5LD4AEaYSQGZUHIPjBAiCiJFxQE4TOkBIcSxZB_BAaWKM8KKEZjctgFGZ_0yttY0k-W9SW7SRROS73wb0iewX5smuc9P7zH4fXlxN7uCNz--X8-mN9AKzDpIhUHKIEwlYcRyXBokCiZtWZXIWCULTiwpyipvrGpScstETWpDS8ltJV1Fx-BkPTcvsupd6vTCJ-uaxgTX9kkTjilhsiAi0-NX9KHtY8jbDYpJpghhz2puGqd9qNv8V3YYqqeCK8YlFzgruEPNXXDRNPm4a58_b_mjHd4u_Uq_ROc7UH4qt_B259TTrUA2nfvbzU2fkr7-9XPbnr1tp3d_Zrfb-uvTWfXlwlV6Gf3CxH9604AM1BrY2KYUXa2t78xw9Xln32iM9FA2vS6bzmXT_8umhyh5Fd1MfzdE16GUcZi7-Hx576QeATup3q8
CitedBy_id crossref_primary_10_1088_1742_5468_add0a2
crossref_primary_10_1002_adfm_202316745
crossref_primary_10_1103_PhysRevLett_127_268001
crossref_primary_10_1038_s41567_022_01704_x
crossref_primary_10_1103_gkhv_rp16
crossref_primary_10_1103_PhysRevE_111_L023405
crossref_primary_10_1103_PhysRevResearch_5_023035
crossref_primary_10_1103_PhysRevResearch_6_013190
crossref_primary_10_1103_jvwg_l6jw
crossref_primary_10_1103_PRXQuantum_4_010306
crossref_primary_10_1016_j_trc_2024_104586
crossref_primary_10_1088_1751_8121_acd153
crossref_primary_10_1103_PhysRevE_111_024317
crossref_primary_10_1103_PRXQuantum_6_020101
crossref_primary_10_1063_5_0214730
crossref_primary_10_1038_s41567_021_01238_8
crossref_primary_10_1103_298n_q3tq
crossref_primary_10_1103_fbv7_m7sd
crossref_primary_10_1007_s41614_022_00083_3
crossref_primary_10_1103_PhysRevResearch_6_013062
crossref_primary_10_1103_PhysRevA_111_023702
crossref_primary_10_1088_1742_6596_2086_1_012202
crossref_primary_10_1038_s42005_022_00952_w
crossref_primary_10_1073_pnas_2502211122
crossref_primary_10_1103_PhysRevX_14_021052
crossref_primary_10_1016_j_newton_2025_100232
crossref_primary_10_1002_ange_202313885
crossref_primary_10_1103_PhysRevLett_134_193603
crossref_primary_10_1103_PhysRevX_14_011029
crossref_primary_10_1103_PhysRevApplied_21_054057
crossref_primary_10_1103_ttny_t2gs
crossref_primary_10_1103_PhysRevE_111_L023402
crossref_primary_10_1016_j_plrev_2022_09_004
crossref_primary_10_1088_1751_8121_ad72bc
crossref_primary_10_1088_1361_6463_ad50e6
crossref_primary_10_1088_2515_7639_ad06cc
crossref_primary_10_1016_j_ijmecsci_2025_109990
crossref_primary_10_1103_PhysRevResearch_7_013234
crossref_primary_10_1073_pnas_2307279120
crossref_primary_10_1038_s41467_022_35427_7
crossref_primary_10_1038_s41565_022_01268_0
crossref_primary_10_1103_PhysRevResearch_4_023211
crossref_primary_10_1016_j_chaos_2024_114809
crossref_primary_10_1103_PhysRevA_108_012221
crossref_primary_10_1103_PhysRevResearch_7_013250
crossref_primary_10_1146_annurev_conmatphys_040821_113439
crossref_primary_10_1103_r3dx_7lrd
crossref_primary_10_1016_j_chempr_2023_11_017
crossref_primary_10_1134_S1063780X22601511
crossref_primary_10_22331_q_2025_09_18_1861
crossref_primary_10_1039_D5SM00129C
crossref_primary_10_1063_5_0152144
crossref_primary_10_1209_0295_5075_acd472
crossref_primary_10_1007_s11467_023_1292_4
crossref_primary_10_1088_1367_2630_ac9cc3
crossref_primary_10_1038_s41467_021_25845_4
crossref_primary_10_1103_s6df_sng9
crossref_primary_10_1103_chxf_fq9v
crossref_primary_10_1016_j_chaos_2025_117118
crossref_primary_10_1103_PhysRevLett_134_167101
crossref_primary_10_1038_s41567_025_02927_4
crossref_primary_10_1063_5_0284977
crossref_primary_10_1038_d41586_021_00886_3
crossref_primary_10_1209_0295_5075_ac2adc
crossref_primary_10_7566_JPSJ_93_094003
crossref_primary_10_1103_PhysRevResearch_4_013047
crossref_primary_10_1073_pnas_2206994120
crossref_primary_10_3389_fncom_2022_642397
crossref_primary_10_1103_np7q_hxld
crossref_primary_10_1002_anie_202409382
crossref_primary_10_1088_1674_1056_acc803
crossref_primary_10_1088_1367_2630_adfd05
crossref_primary_10_1038_s41467_025_62707_9
crossref_primary_10_1088_1367_2630_add366
crossref_primary_10_3390_sym14040814
crossref_primary_10_1039_D3NR04646J
crossref_primary_10_1039_D4NR00105B
crossref_primary_10_1073_pnas_2219385121
crossref_primary_10_1103_PhysRevB_111_L121301
crossref_primary_10_1038_s41567_022_01874_8
crossref_primary_10_1088_1751_8121_addb92
crossref_primary_10_1103_PhysRevB_105_064302
crossref_primary_10_1103_tpzc_qms7
crossref_primary_10_7566_JPSJ_92_074801
crossref_primary_10_1038_s41578_025_00818_x
crossref_primary_10_1088_1367_2630_ae02be
crossref_primary_10_1103_PhysRevE_111_055410
crossref_primary_10_1038_s41467_025_61728_8
crossref_primary_10_1088_1367_2630_acfdc2
crossref_primary_10_1038_s42005_025_02220_z
crossref_primary_10_1039_D5SM00182J
crossref_primary_10_1038_s41565_022_01258_2
crossref_primary_10_1146_annurev_conmatphys_032922_101439
crossref_primary_10_1088_1361_6633_ad797d
crossref_primary_10_1038_s41467_024_47525_9
crossref_primary_10_1103_PhysRevResearch_6_L032012
crossref_primary_10_1103_PhysRevLett_129_070401
crossref_primary_10_1103_PhysRevResearch_6_033052
crossref_primary_10_1016_j_matt_2024_06_022
crossref_primary_10_1103_z5x1_4syg
crossref_primary_10_1088_1674_1056_adc666
crossref_primary_10_1103_RevModPhys_97_025004
crossref_primary_10_1016_j_jmps_2022_105163
crossref_primary_10_1088_1367_2630_ad9859
crossref_primary_10_1140_epje_s10189_025_00482_7
crossref_primary_10_1073_pnas_2508692122
crossref_primary_10_1016_j_vacuum_2022_111616
crossref_primary_10_1039_D5SM00573F
crossref_primary_10_1103_PRXLife_3_013010
crossref_primary_10_1088_1751_8121_ad5089
crossref_primary_10_1073_pnas_2407705121
crossref_primary_10_1103_PhysRevResearch_7_013055
crossref_primary_10_1063_5_0250643
crossref_primary_10_1038_s41566_025_01683_4
crossref_primary_10_1002_adma_202309835
crossref_primary_10_1016_j_cpc_2025_109689
crossref_primary_10_1103_PhysRevE_111_054104
crossref_primary_10_1088_1367_2630_ac924f
crossref_primary_10_1103_ht7n_bdp9
crossref_primary_10_1103_PhysRevX_15_011005
crossref_primary_10_1038_s41467_025_59729_8
crossref_primary_10_1103_93tr_phkw
crossref_primary_10_1103_PhysRevX_12_010501
crossref_primary_10_1002_adfm_202310932
crossref_primary_10_1038_s41467_024_47889_y
crossref_primary_10_1103_PhysRevLett_134_148301
crossref_primary_10_1103_PhysRevResearch_6_033016
crossref_primary_10_1038_s42005_024_01519_7
crossref_primary_10_1038_s41467_023_37190_9
crossref_primary_10_1038_s41467_025_60518_6
crossref_primary_10_1088_1367_2630_ad5b14
crossref_primary_10_7566_JPSJ_92_033001
crossref_primary_10_1088_1742_5468_accce7
crossref_primary_10_1103_gphr_d1bc
crossref_primary_10_1103_PhysRevResearch_3_043075
crossref_primary_10_1103_PhysRevE_106_034608
crossref_primary_10_1103_PhysRevB_111_L100305
crossref_primary_10_1103_PhysRevX_15_011010
crossref_primary_10_3389_fcpxs_2023_1111486
crossref_primary_10_1103_PhysRevE_111_014132
crossref_primary_10_1103_PhysRevE_111_014131
crossref_primary_10_1038_s41467_024_46058_5
crossref_primary_10_1038_s41467_022_31984_z
crossref_primary_10_1038_s41467_023_42713_5
crossref_primary_10_1103_flzv_lq7x
crossref_primary_10_1146_annurev_conmatphys_040821_125506
crossref_primary_10_1038_s42005_023_01173_5
crossref_primary_10_1103_PhysRevE_105_064602
crossref_primary_10_1109_MSSC_2024_3437290
crossref_primary_10_1038_s41377_023_01121_6
crossref_primary_10_1021_acs_chemrev_4c00912
crossref_primary_10_1103_w1fg_6qmv
crossref_primary_10_1103_PhysRevB_111_045130
crossref_primary_10_1038_s41567_024_02589_8
crossref_primary_10_1103_RevModPhys_97_015007
crossref_primary_10_1103_PhysRevLett_134_117103
crossref_primary_10_1103_RevModPhys_97_015002
crossref_primary_10_1103_PhysRevLett_134_066902
crossref_primary_10_1103_nrv2_9h8z
crossref_primary_10_1088_1402_4896_ad7f9c
crossref_primary_10_1140_epje_s10189_021_00118_6
crossref_primary_10_1002_lpor_202200976
crossref_primary_10_1038_s41567_024_02457_5
crossref_primary_10_1088_1742_5468_ad8f2b
crossref_primary_10_1103_PhysRevResearch_6_023162
crossref_primary_10_1073_pnas_2113912119
crossref_primary_10_1103_m28c_8ggl
crossref_primary_10_1007_s11467_023_1309_z
crossref_primary_10_1016_j_physa_2024_130338
crossref_primary_10_1209_0295_5075_ac8f69
crossref_primary_10_1002_lpor_202200177
crossref_primary_10_1103_PhysRevB_111_054515
crossref_primary_10_1103_PhysRevResearch_5_021001
crossref_primary_10_1038_s41586_022_04504_8
crossref_primary_10_1038_s42005_023_01291_0
crossref_primary_10_1016_j_chaos_2025_116461
crossref_primary_10_1016_j_ijmecsci_2025_110692
crossref_primary_10_1088_1742_5468_adc896
crossref_primary_10_1073_pnas_2412993122
crossref_primary_10_1103_PhysRevResearch_4_L022064
crossref_primary_10_1016_j_chaos_2024_114650
crossref_primary_10_1103_p5fv_c9dj
crossref_primary_10_1103_PhysRevResearch_5_033221
crossref_primary_10_1103_PhysRevResearch_5_L032038
crossref_primary_10_1063_5_0208107
crossref_primary_10_1038_s41567_021_01437_3
crossref_primary_10_1088_1402_4896_ad05ab
crossref_primary_10_1038_s42005_025_01999_1
crossref_primary_10_1088_1367_2630_adbc15
crossref_primary_10_1103_PhysRevResearch_5_043063
crossref_primary_10_1002_ange_202409382
crossref_primary_10_1038_s41567_022_01769_8
crossref_primary_10_1038_s41598_022_23597_9
crossref_primary_10_1103_PhysRevB_108_L121105
crossref_primary_10_7498_aps_74_20250689
crossref_primary_10_1002_anie_202313885
crossref_primary_10_1002_advs_202408460
crossref_primary_10_1103_PhysRevB_111_165131
crossref_primary_10_1038_s41598_023_39094_6
crossref_primary_10_1103_PhysRevLett_134_106901
crossref_primary_10_1038_s41467_021_26034_z
crossref_primary_10_1088_1674_1056_ade06f
crossref_primary_10_1007_s10338_025_00606_8
crossref_primary_10_1088_1751_8121_ac79e5
crossref_primary_10_1038_s41586_024_08514_6
crossref_primary_10_1103_PhysRevResearch_5_033217
crossref_primary_10_1103_Physics_18_142
crossref_primary_10_1038_s42005_021_00762_6
crossref_primary_10_1093_pnasnexus_pgae120
crossref_primary_10_1088_1751_8121_ad9efd
crossref_primary_10_3389_fchem_2022_803906
crossref_primary_10_1038_s41467_025_62620_1
crossref_primary_10_1103_PhysRevResearch_3_023206
crossref_primary_10_7566_JPSJ_94_084002
crossref_primary_10_1038_s41467_021_26699_6
crossref_primary_10_1038_s41586_021_03868_7
crossref_primary_10_1103_9y9w_lw92
crossref_primary_10_1103_dvb3_b2v8
crossref_primary_10_1103_213q_sqxf
crossref_primary_10_1038_s42005_025_02065_6
crossref_primary_10_1051_epn_2024305
crossref_primary_10_1103_PhysRevE_106_024604
crossref_primary_10_1103_PhysRevFluids_8_054101
crossref_primary_10_1016_j_physrep_2025_01_005
crossref_primary_10_1016_j_physrep_2024_01_006
crossref_primary_10_1103_PhysRevResearch_4_L042027
crossref_primary_10_1038_s41586_022_04970_0
crossref_primary_10_1088_1361_648X_adac98
crossref_primary_10_1038_s42005_021_00755_5
crossref_primary_10_1088_1402_4896_ad36f2
crossref_primary_10_1103_PhysRevResearch_7_023234
crossref_primary_10_1073_pnas_2505488122
crossref_primary_10_1088_1402_4896_ae00fc
crossref_primary_10_1103_PhysRevA_111_012221
crossref_primary_10_1088_1367_2630_ad2132
crossref_primary_10_1038_s42005_025_02211_0
crossref_primary_10_1088_1361_648X_ad81a5
crossref_primary_10_1038_s42005_024_01576_y
crossref_primary_10_1103_PhysRevResearch_5_043008
crossref_primary_10_1016_j_chaos_2025_116244
crossref_primary_10_1016_j_neuroscience_2023_08_012
crossref_primary_10_1038_s41586_025_08646_3
crossref_primary_10_1103_jc9p_m3rn
crossref_primary_10_1103_PhysRevResearch_5_L022033
crossref_primary_10_1103_pbtn_wsgv
crossref_primary_10_1038_s41467_024_48458_z
crossref_primary_10_1103_PhysRevB_111_165117
crossref_primary_10_1103_PhysRevResearch_6_013148
crossref_primary_10_1103_PhysRevX_14_021014
crossref_primary_10_1016_j_heliyon_2023_e22701
crossref_primary_10_1103_PhysRevLett_134_223601
crossref_primary_10_7566_JPSJ_92_093001
crossref_primary_10_1016_j_chaos_2024_115782
crossref_primary_10_1103_PhysRevE_111_024107
crossref_primary_10_31857_S0367292122600984
crossref_primary_10_1016_j_chaos_2024_115302
crossref_primary_10_1038_s41467_023_41129_5
crossref_primary_10_21468_SciPostPhysLectNotes_99
crossref_primary_10_1088_1742_5468_ade86d
crossref_primary_10_1103_PhysRevApplied_22_064072
crossref_primary_10_1126_sciadv_ady1211
crossref_primary_10_1016_j_physa_2025_130920
crossref_primary_10_1103_gl1t_t2c4
crossref_primary_10_1016_j_physa_2023_129452
crossref_primary_10_1103_PhysRevLett_134_033801
crossref_primary_10_1103_PhysRevE_111_034133
crossref_primary_10_1088_1674_1056_ad4327
crossref_primary_10_1088_1367_2630_ad50ff
crossref_primary_10_1073_pnas_2219900120
crossref_primary_10_1016_j_ymssp_2023_110501
crossref_primary_10_1126_science_adq2329
crossref_primary_10_1016_j_newton_2025_100206
crossref_primary_10_1016_j_physrep_2024_09_014
crossref_primary_10_1088_1751_8121_ac7182
crossref_primary_10_1103_PhysRevResearch_5_L022012
crossref_primary_10_1038_s42005_024_01866_5
crossref_primary_10_1038_s42005_025_02098_x
crossref_primary_10_1038_s41598_024_72557_y
crossref_primary_10_1103_PhysRevE_111_034124
crossref_primary_10_1088_1674_1056_ae030c
crossref_primary_10_1038_s41467_025_58920_1
crossref_primary_10_1038_s41598_023_31583_y
crossref_primary_10_1103_vvrx_mljg
crossref_primary_10_1103_xrph_vgf3
crossref_primary_10_1103_PhysRevResearch_5_043032
crossref_primary_10_1209_0295_5075_ac33cb
crossref_primary_10_1103_PhysRevResearch_7_023008
crossref_primary_10_1016_j_plrev_2023_12_006
crossref_primary_10_1038_s42256_024_00871_1
crossref_primary_10_1016_j_scib_2023_12_002
Cites_doi 10.1063/1.436761
10.1039/C8SM01836G
10.1063/1.1489072
10.1103/PhysRevE.97.042302
10.1103/PhysRevLett.63.1954
10.1103/PhysRevA.34.693
10.1103/PhysRevLett.110.195301
10.1209/epl/i2002-00280-2
10.1007/978-1-4612-4300-7
10.1103/PhysRevE.84.046202
10.1007/978-3-662-11832-0
10.1073/pnas.1118672109
10.1103/PhysRevE.51.4380
10.1007/978-3-540-29028-5
10.1103/RevModPhys.82.1767
10.1088/1367-2630/aa8ed7
10.1103/PhysRevLett.64.866
10.1103/PhysRevE.89.062924
10.1103/RevModPhys.49.435
10.1023/A:1023084404080
10.1103/PhysRevLett.108.251602
10.1103/PhysRevA.45.8605
10.1088/1367-2630/12/11/113035
10.1140/epjst/e2014-02193-y
10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
10.1143/PTP.76.576
10.1088/0305-4470/35/31/101
10.1103/PhysRevLett.112.068301
10.1103/PhysRevLett.65.1458
10.1016/j.neuron.2016.12.041
10.1007/978-1-4757-3484-3
10.1017/CBO9780511616051
10.1103/PhysRevLett.113.065303
10.1016/S0001-2092(07)64531-1
10.1007/BF01077511
10.1103/PhysRevLett.125.126402
10.1209/0295-5075/4/2/007
10.1103/PhysRevE.74.022101
10.1103/PhysRevLett.89.058101
10.1103/PhysRevLett.110.184102
10.1080/00268976.2019.1567849
10.1103/PhysRev.117.648
10.1073/pnas.2010580117
10.1051/jphyslet:019850046017078700
10.1063/1.1461427
10.1103/PhysRevLett.74.4839
10.1103/PhysRevA.88.053408
10.1090/S0002-9947-1980-0561832-4
10.1103/PhysRevE.83.030901
10.1103/PhysRevLett.104.178103
10.1103/PhysRevResearch.2.023173
10.1146/annurev-conmatphys-031119-050644
10.1126/science.aau5347
10.1103/PhysRevE.93.042310
10.1103/PhysRevE.85.056210
10.1088/0951-7715/7/6/008
10.21468/SciPostPhys.8.5.074
10.1515/zna-1988-8-901
10.1103/RevModPhys.85.1143
10.1063/1.1668896
10.1016/0370-1573(74)90023-4
10.1103/PhysRevLett.120.215301
10.1088/1751-8113/46/30/305001
10.1103/PhysRevE.94.032205
10.1103/PhysRevLett.61.2574
10.1063/1.4959804
10.1103/PhysRevLett.94.214301
10.1016/S0079-6123(04)47009-5
10.1103/PhysRevA.30.2548
10.1103/PhysRevLett.117.038103
10.1137/0143052
10.1209/0295-5075/9/8/007
10.1103/PhysRevLett.123.018101
10.1103/PhysRevLett.69.2915
10.1063/1.3136851
10.1103/PhysRevA.38.3593
10.1103/PhysRevA.77.013618
10.1038/s41563-020-0635-6
10.1103/PhysRev.95.1374
10.1088/1367-2630/18/9/093006
10.1209/epl/i1997-00421-1
10.1103/PhysRevLett.120.140401
10.1103/PhysRevLett.115.200402
10.1038/s41567-020-0922-9
10.1017/CBO9780511550485
10.1017/9781107278974
10.1142/S0129183105007261
10.1103/PhysRevLett.109.160402
10.1103/PhysRevB.99.201103
10.1088/1751-8113/42/44/445001
10.1021/acs.nanolett.8b04134
10.1007/BF01614072
10.1103/PhysRevE.99.012612
10.1103/PhysRevLett.110.091601
10.1016/j.neuron.2009.02.005
10.1080/01418639508238541
10.1142/4062
10.1088/0034-4885/67/5/R03
10.1016/0167-2789(88)90032-2
10.1017/CBO9780511627200
10.1103/RevModPhys.65.851
10.1103/PhysRevLett.55.496
10.1103/PhysRevLett.80.5243
10.1017/S0022112088000746
10.1103/PhysRevLett.96.044506
10.1103/PhysRevX.10.041009
10.1209/0295-5075/4/9/011
10.1007/978-3-319-18212-4_10
10.1103/PhysRevLett.117.248001
10.1103/PhysRevLett.125.118001
10.1103/PhysRevLett.123.016805
10.1038/nature08891
10.1088/1367-2630/ab20fd
10.1103/PhysRevLett.79.1150
10.1146/annurev.fl.23.010191.002013
10.1103/PhysRevA.42.4693
10.1126/science.261.5121.578
10.1063/1.2930766
10.1007/978-1-4612-4574-2
10.1103/PhysRevLett.122.247702
10.1007/978-1-4757-3978-7
10.1063/PT.3.4020
10.1103/PhysRevE.80.046215
10.1143/PTP.77.622
10.1103/PhysRevLett.101.084103
10.1038/s41563-018-0123-4
10.1016/S0167-2789(99)00007-X
10.1103/RevModPhys.91.035002
10.3402/tellusa.v55i3.12093
10.1103/PhysRevLett.112.148102
10.1126/sciadv.aau9403
10.1103/PhysRevE.58.4828
10.1080/00018739100101462
10.1103/PhysRevResearch.1.023026
10.1103/PhysRevLett.118.018101
10.1162/089976602317250861
10.1088/0034-4885/70/6/R03
10.1103/PhysRevB.94.020408
10.1098/rstb.2000.0769
10.1103/PhysRevResearch.2.043059
10.1103/PhysRevA.46.963
10.1103/PhysRevE.96.042208
10.1017/S0022112086002513
10.1088/0951-7715/10/5/006
10.1201/b18360
10.1137/030600503
10.1103/RevModPhys.72.603
10.1016/B978-044452965-7/50004-0
10.1186/1471-2202-10-S1-P64
10.1038/s41567-019-0603-8
10.1063/1.1418246
10.1063/1.3247089
10.1038/nature18605
10.1038/s41467-019-12599-3
10.1146/annurev.fluid.38.050304.092139
10.1016/0550-3213(76)90025-0
10.1137/0521081
10.1038/nphys3423
10.1007/978-3-642-69689-3
10.1038/s41567-020-0795-y
10.1103/PhysRevE.97.012130
10.1103/PhysRevLett.119.058002
10.1103/PhysRevLett.92.018101
10.1098/rsta.1987.0050
10.1103/PhysRevLett.123.218001
10.1007/978-3-0348-8167-8
10.1088/0305-4470/19/11/005
10.1038/s41598-019-53455-0
10.1103/PhysRevLett.120.244101
10.1103/PhysRevB.94.041104
10.1103/PhysRevE.47.1739
10.1103/PhysRevLett.64.184
10.1103/RevModPhys.90.031001
10.1090/conm/056/855089
10.1103/PhysRevLett.75.1226
10.1126/science.1230020
10.1038/ncomms15791
10.1103/PhysRevE.58.1383
10.1103/PhysRevLett.106.054102
10.1103/PhysRevE.78.031406
10.1103/PhysRevLett.108.248101
10.1103/PhysRevLett.75.4326
10.1007/978-3-642-66784-8
10.1038/s41467-017-01378-7
10.1007/978-1-4612-5034-0
10.1103/PhysRevE.61.1648
10.1103/RevModPhys.77.137
10.1073/pnas.1503749112
10.1103/PhysRevA.72.014104
10.1073/pnas.94.19.10426
10.1103/PhysRevLett.122.185301
10.1103/PhysRevLett.57.2861
10.1007/BF02812722
10.1103/PhysRevE.98.062219
10.1103/PhysRevA.92.063807
10.1088/0305-4470/25/15/015
10.1051/jphys:0198900500200308900
10.1016/0167-2789(88)90005-X
10.1103/PhysRevLett.72.1188
10.1103/PhysRevE.56.780
10.1515/9780691213101
10.1103/PhysRevE.91.012134
10.1103/PhysRevB.102.085151
10.1016/0167-2789(94)90196-1
10.1088/0305-4470/38/8/009
10.1209/0295-5075/10/4/005
10.1103/RevModPhys.74.99
10.1140/epje/i2018-11653-4
10.1088/1464-4266/5/3/380
10.1063/1.1703672
10.1103/PhysRevLett.64.1381
10.1103/PhysRevLett.122.128001
10.1103/PhysRevLett.70.2391
10.1103/PhysRevE.58.565
10.1137/0515001
10.1103/PhysRevA.92.052124
10.1103/PhysRevE.86.011909
10.1016/S0167-2789(97)00187-5
10.1103/PhysRevLett.106.213901
10.1017/jfm.2019.553
10.1103/PhysRevA.15.319
10.1103/PhysRevLett.120.264101
10.1038/s41467-017-01190-3
10.1103/PhysRevE.47.1727
10.1146/annurev.fluid.37.061903.175810
10.1103/PhysRevApplied.10.047001
10.1209/epl/i2001-00509-0
10.1088/1367-2630/ab81b6
10.1103/PhysRevE.95.020601
10.1103/PhysRevLett.101.264103
10.1007/978-3-642-61544-3
10.1103/PhysRevA.37.3909
10.1146/annurev-fluid-122316-045042
10.1007/978-3-662-05389-8
10.1016/j.physleta.2010.02.032
10.1103/PhysRevA.82.013629
10.1103/PhysRevLett.125.238005
10.1103/PhysRevLett.125.220601
10.1038/s41578-020-0206-0
10.1103/PhysRevE.54.5053
10.1103/PhysRev.127.965
10.1209/0295-5075/125/20008
10.1073/pnas.1609572113
10.1063/1.4958930
10.1103/PhysRevLett.109.160401
10.1103/PhysRevE.81.061916
10.1038/nphys3134
10.1103/PhysRevLett.68.1073
10.1126/science.1246957
10.1088/0305-4470/29/24/001
10.1007/978-90-481-2869-3
10.5479/sil.52126.39088015628399
10.1186/s13408-020-00086-9
10.1103/PhysRevLett.124.086801
10.1103/PhysRevLett.58.2318
10.1209/0295-5075/95/18003
10.1103/PhysRevResearch.2.023068
10.1063/1.522724
10.1111/j.1365-2664.2007.01333.x
10.1016/0167-2789(84)90005-8
10.1103/PhysRevE.49.483
10.1016/j.physrep.2015.01.001
10.1126/sciadv.aba2282
10.1038/nature21044
10.1103/PhysRevLett.57.2935
10.1007/978-3-662-04174-1
10.1016/j.physd.2011.01.002
10.1103/PhysRevE.69.056216
10.1103/PhysRevLett.92.025702
10.1038/s41377-018-0105-y
10.1103/PhysRevResearch.2.033018
10.1103/PhysRevE.58.3089
10.1103/PhysRevA.27.591
10.1103/PhysRevE.101.052601
10.1017/S0022112081002139
10.1103/PhysRevLett.55.2857
10.1016/j.ecolmodel.2004.05.001
10.1038/nphys2276
10.1038/nature12673
10.1088/1367-2630/18/9/095003
10.1103/PhysRevLett.77.570
10.1038/s41566-017-0031-1
10.1007/BF00280698
10.1103/RevModPhys.88.035002
10.1103/PhysRevE.79.026204
10.1126/science.aar7709
10.1126/science.aat9891
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
COPYRIGHT 2021 Nature Publishing Group
Copyright Nature Publishing Group Apr 15, 2021
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: Copyright Nature Publishing Group Apr 15, 2021
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
DOI 10.1038/s41586-021-03375-9
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed





Agricultural Science Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PATMY
  name: Environmental Science Database
  url: http://search.proquest.com/environmentalscience
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 369
ExternalDocumentID A658457561
33854249
10_1038_s41586_021_03375_9
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
Nigeria
Aba Nigeria
GeographicLocations_xml – name: United States
– name: Aba Nigeria
– name: Nigeria
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ABUFD
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
FAC
I-F
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NFIDA
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
ACMFV
AEIIB
PMFND
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
PUEGO
ID FETCH-LOGICAL-c614t-36a08a0137242c51ba06947cbdb0ac87952c29bd1588f2b5c46f2fa3b75cd7ed3
IEDL.DBID P5Z
ISICitedReferencesCount 404
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000683804100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0028-0836
1476-4687
IngestDate Wed Oct 01 08:19:11 EDT 2025
Tue Oct 07 07:19:04 EDT 2025
Tue Nov 11 10:13:49 EST 2025
Sat Nov 29 11:20:34 EST 2025
Tue Jun 10 15:32:40 EDT 2025
Tue Nov 04 18:02:54 EST 2025
Thu Nov 13 14:22:28 EST 2025
Thu Nov 13 15:17:46 EST 2025
Mon Jul 21 04:15:32 EDT 2025
Sat Nov 29 03:48:47 EST 2025
Tue Nov 18 21:54:27 EST 2025
Fri Feb 21 02:37:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7854
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c614t-36a08a0137242c51ba06947cbdb0ac87952c29bd1588f2b5c46f2fa3b75cd7ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6328-8783
PMID 33854249
PQID 2514748224
PQPubID 40569
PageCount 7
ParticipantIDs proquest_miscellaneous_2513247926
proquest_journals_2514748224
gale_infotracmisc_A658457561
gale_infotracgeneralonefile_A658457561
gale_infotraccpiq_658457561
gale_infotracacademiconefile_A658457561
gale_incontextgauss_ISR_A658457561
gale_incontextgauss_ATWCN_A658457561
pubmed_primary_33854249
crossref_citationtrail_10_1038_s41586_021_03375_9
crossref_primary_10_1038_s41586_021_03375_9
springer_journals_10_1038_s41586_021_03375_9
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Chossat, P. & Lauterbach, R. Methods in Equivariant Bifurcations and Dynamical Systems (World Scientific, 2000).
KonotopVVYangJZezyulinDANonlinear waves in PT-symmetric systemsRev. Mod. Phys.2016880350022016RvMP...88c5002K10.1103/RevModPhys.88.035002
Risken, H. The Fokker–Planck Equation (Springer, 1989).
MishraSBaskaranAMarchettiMCFluctuations and pattern formation in self-propelled particlesPhys. Rev. E2010810619162010PhRvE..81f1916M10.1103/PhysRevE.81.061916
LahiriRRamaswamySAre steadily moving crystals unstable?Phys. Rev. Lett.199779115011531997PhRvL..79.1150L1:CAS:528:DyaK2sXlsVOkuro%3D10.1103/PhysRevLett.79.1150
GutöhrleinRMainJCartariusHWunnerGBifurcations and exceptional points in dipolar Bose–Einstein condensatesJ. Phys. A20134630500130803251276.8203710.1088/1751-8113/46/30/305001
Arnold, V. I. Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1988).
SimonAJBechhoeferJLibchaberASolitary modes and the Eckhaus instability in directional solidificationPhys. Rev. Lett.19886125741988PhRvL..61.2574S1:STN:280:DC%2BC2sfosVKhtw%3D%3D1003916010.1103/PhysRevLett.61.2574
DauchotOMannevillePLocal versus global concepts in hydrodynamic stability theoryJ. Phys. II199773713891:CAS:528:DyaK2sXht1Ckt7g%3D
DangelmayrGHettelJKnoblochEParity-breaking bifurcation in inhomogeneous systemsNonlinearity19971010931997Nonli..10.1093D14733760995.3402710.1088/0951-7715/10/5/006
FieldMJEquivariant dynamical systemsTrans. Am. Math. Soc.19802591855618320447.5802910.1090/S0002-9947-1980-0561832-4
PalacciJSacannaSSteinbergAPPineDJChaikinPMLiving crystals of light-activated colloidal surfersScience20133399369402013Sci...339..936P1:CAS:528:DC%2BC3sXis1OisLY%3D2337155510.1126/science.1230020
GrossmannSThe onset of shear flow turbulenceRev. Mod. Phys.2000726036182000RvMP...72..603G10.1103/RevModPhys.72.603
LahiriRBarmaMRamaswamySStrong phase separation in a model of sedimenting latticesPhys. Rev. E20006116482000PhRvE..61.1648L1:CAS:528:DC%2BD3cXhtVGltrw%3D10.1103/PhysRevE.61.1648
WatanabeSStrogatzSHIntegrability of a globally coupled oscillator arrayPhys. Rev. Lett.19937023911993PhRvL..70.2391W12125591:STN:280:DC%2BC2sfpt12lsQ%3D%3D100535501063.3450510.1103/PhysRevLett.70.2391
WilczekFQuantum time crystalsPhys. Rev. Lett.20121091604012012PhRvL.109p0401W2321505610.1103/PhysRevLett.109.160401
BotPCadotOMutabaziISecondary instability mode of a roll pattern and transition to spatiotemporal chaos in the Taylor–Dean systemPhys. Rev. E199858308930971998PhRvE..58.3089B1:CAS:528:DyaK1cXlslyqtLs%3D10.1103/PhysRevE.58.3089
SiebererLMHuberSDAltmanEDiehlSDynamical critical phenomena in driven-dissipative systemsPhys. Rev. Lett.20131101953012013PhRvL.110s5301S1:STN:280:DC%2BC3snntF2lsA%3D%3D2370571510.1103/PhysRevLett.110.195301
MostafazadehAPseudo-Hermiticity versus PT-symmetry. II: A complete characterization of non-Hermitian Hamiltonians with a real spectrumJ. Math. Phys.20024328142002JMP....43.2814M18937011060.8102210.1063/1.1461427
KnoblochEMooreDRMinimal model of binary fluid convectionPhys. Rev. A199042469347091990PhRvA..42.4693K1:STN:280:DC%2BC2sjpt1Slug%3D%3D990457710.1103/PhysRevA.42.4693
AsllaniMCarlettiTTopological resilience in non-normal networked systemsPhys. Rev. E2018970423022018PhRvE..97d2302A1:CAS:528:DC%2BC1MXkvFOrs7s%3D2975871610.1103/PhysRevE.97.042302
PazóDMontbrióEExistence of hysteresis in the Kuramoto model with bimodal frequency distributionsPhys. Rev. E2009800462152009PhRvE..80d6215P10.1103/PhysRevE.80.046215
NicolaouZGNishikawaTNicholsonSBGreenJRMotterAENon-normality and non-monotonic dynamics in complex reaction networksPhys. Rev. Res.202020430591:CAS:528:DC%2BB3MXjtVygsro%3D10.1103/PhysRevResearch.2.043059
HongHStrogatzSHConformists and contrarians in a Kuramoto model with identical natural frequenciesPhys. Rev. E2011840462022011PhRvE..84d6202H10.1103/PhysRevE.84.046202
HanaiREdelmanAOhashiYLittlewoodPBNon-Hermitian phase transition from a polariton Bose–Einstein condensate to a photon laserPhys. Rev. Lett.20191221853012019PhRvL.122r5301H1:CAS:528:DC%2BC1MXhtFKlsb%2FK3114488110.1103/PhysRevLett.122.185301
OswaldPBechhoeferJLibchaberAInstabilities of a moving nematic–isotropic interfacePhys. Rev. Lett.198758231823211987PhRvL..58.2318O1:CAS:528:DyaL2sXkvVOlt7w%3D10.1103/PhysRevLett.58.2318
HohenbergPKrekhovAAn introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patternsPhys. Rep.20155721422015PhR...572....1H33202671357.8202210.1016/j.physrep.2015.01.001
Loos, S. A. M., Hermann, S. M. & Klapp, S. H. L. Non-reciprocal hidden degrees of freedom: a unifying perspective on memory, feedback, and activity. Preprint at https://arxiv.org/abs/1910.08372 (2019).
OttEAntonsenTMLow dimensional behavior of large systems of globally coupled oscillatorsChaos2008180371132008Chaos..18c7113O2464324190454871309.3405810.1063/1.2930766
MaitraALenzMVoituriezRChiral active hexatics: giant number fluctuations, waves and destruction of orderPhys. Rev. Lett.20201252380052020PhRvL.125w8005M1:CAS:528:DC%2BB3MXpsFOn3333720810.1103/PhysRevLett.125.238005
You, Z., Baskaran, A. & Marchetti, M. C. Nonreciprocity as a generic route to traveling states. Preprint at https://arxiv.org/abs/2005.07684 (2020).
RabaudMMichallandSCouderYDynamical regimes of directional viscous fingering: spatiotemporal chaos and wave propagationPhys. Rev. Lett.1990641841871990PhRvL..64..184R1:STN:280:DC%2BC2sfoslSksg%3D%3D1004167110.1103/PhysRevLett.64.184
van Kampen, N. G. Stochastic Processes in Physics and Chemistry Vol. 1 (Elsevier, 2007).
KerswellRNonlinear nonmodal stability theoryAnnu. Rev. Fluid Mech.2018503193452018AnRFM..50..319K37532131384.7602210.1146/annurev-fluid-122316-045042
Sornette, D. Critical Phenomena in Natural Sciences (Springer, 2000).
ChoMWKimSUnderstanding visual map formation through vortex dynamics of spin Hamiltonian modelsPhys. Rev. Lett.2004920181012004PhRvL..92a8101C1475402210.1103/PhysRevLett.92.018101
Guckenheimer, J. A codimension two bifurcation with circular symmetry. In Multiparameter Bifurcation Theory (eds Golubitsky, M. & Guckenheimer, J. M.) 175–184 (AMS, 1986).
MaltmanKLaidlawWGOnsager symmetry and the diagonalizability of the hydrodynamic matrixJ. Math. Phys.19751615611975JMP....16.1561M41862210.1063/1.522724
AronCChamonCLandau theory for non-equilibrium steady statesSciPost Phys.202080742020ScPP....8...74A418064710.21468/SciPostPhys.8.5.074
CoulletPGoldsteinREGunaratneGHParity-breaking transitions of modulated patterns in hydrodynamic systemsPhys. Rev. Lett.198963195419571989PhRvL..63.1954C1:STN:280:DC%2BC2sfos1Wnug%3D%3D1004072310.1103/PhysRevLett.63.1954
CrossMCHohenbergPCPattern formation outside of equilibriumRev. Mod. Phys.19936585111121993RvMP...65..851C1:CAS:528:DyaK2cXhtFShs7c%3D1371.3700110.1103/RevModPhys.65.851
Das, J., Rao, M. & Ramaswamy, S. Nonequilibrium steady states of the isotropic classical magnet. Preprint at https://arxiv.org/abs/cond-mat/0404071 (2004).
BrandHRHohenbergPCSteinbergVAmplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous mediumPhys. Rev. A1983275915931983PhRvA..27..591B1:CAS:528:DyaL3sXmtVOqsA%3D%3D10.1103/PhysRevA.27.591
HanaiRLittlewoodPBCritical fluctuations at a many-body exceptional pointPhys. Rev. Res.202020330181:CAS:528:DC%2BB3cXitVOku7zJ10.1103/PhysRevResearch.2.033018
PetersonCWParkerJRiceSASchererNFControlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradientsNano Lett.2019198979032019NanoL..19..897P3062407110.1021/acs.nanolett.8b04134
Henkel, M., Hinrichsen, H. & Lübeck, S. Non-equilibrium Phase Transitions Vol. 1 (Springer, 2008).
EstepNASounasDLSoricJAlùAMagnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loopsNat. Phys.2014109231:CAS:528:DC%2BC2cXhvFKlsrzE10.1038/nphys3134
LevisDPagonabarragaILiebchenBActivity induced synchronization: mutual flocking and chiral self-sortingPhys. Rev. Res.201910230261:CAS:528:DC%2BB3cXhvVOhtrbP10.1103/PhysRevResearch.1.023026
ChomazJ-MGlobal instabilities in spatially developing flows: non-normality and nonlinearityAnnu. Rev. Fluid Mech.2005373573922005AnRFM..37..357C21153471117.7602710.1146/annurev.fluid.37.061903.175810
AharonyanMTorreEGDMany-body exceptional points in colliding condensatesMol. Phys.201911719712019MolPh.117.1971A1:CAS:528:DC%2BC1MXhsF2qsL4%3D10.1080/00268976.2019.1567849
KepesidisKVPT-symmetry breaking in the steady state of microscopic gain–loss systemsNew J. Phys.2016180950032016NJPh...18i5003K10.1088/1367-2630/18/9/095003
FauveSDouadySThualODrift instabilities of cellular patternsJ. Phys. II19911311
ErmakDLMcCammonJABrownian dynamics with hydrodynamic interactionsJ. Chem. Phys.19786913521978JChPh..69.1352E1:CAS:528:DyaE1cXls12huro%3D10.1063/1.436761
CoulletPFauveSTirapeguiELarge scale instability of nonlinear standing wavesJ. Physique Lett.19854678779110.1051/jphyslet:019850046017078700
CugliandoloLFKurchanJWeak ergodicity breaking in mean-field spin-glass modelsPhilos. Mag. B1995715015141995PMagB..71..501C1:CAS:528:DyaK2MXltV2ktLw%3D10.1080/01418639508238541
Schnabel, M., Kaschube, M. & Wolf, F. Pinwheel stability, pattern selection and the geometry of visual space. Preprint at https://arxiv.org/abs/0801.3832 (2008).
Von Neumann, J. & Wigner, E. P. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen Physik. Zeit. 30, 467 (1929); translated in Symmetry in the Solid State (eds Knox, R. S. & Gold, A.) (Benjamin, New York, 1964).
BressloffPCCowanJDGolubitskyMThomasPJWienerMCGeometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortexPhil. Trans. R. Soc. Lond. B20013562993301:STN:280:DC%2BD3MzlsFemtQ%3D%3D10.1098/rstb.2000.0769
BricardACaussinJ-BDesreumauxNDauchotOBartoloDEmergence of macroscopic directed motion in populations of motile colloidsNature201350395982013Natur.503...95B1:CAS:528:DC%2BC3sXhslelt7nL2420128210.1038/nature12673
Hoyle, R. Pattern Formation (Cambridge Univ. Press, 2006).
GaldaAVinokurVMParity–time symmetry breaking in magne
3375_CR256
3375_CR134
3375_CR258
MG Neubert (3375_CR97) 2004; 179
3375_CR257
VV Konotop (3375_CR115) 2016; 88
FA Lavergne (3375_CR6) 2019; 364
E-M Graefe (3375_CR253) 2010; 82
A Pikovsky (3375_CR240) 2011; 240
T Ihle (3375_CR210) 2011; 83
N Bain (3375_CR203) 2019; 363
G Dangelmayr (3375_CR268) 1997; 10
B Pietras (3375_CR245) 2018; 98
AP Seyranian (3375_CR194) 2005; 38
K Zhang (3375_CR161) 2020; 125
KP O’Keeffe (3375_CR217) 2017; 8
3375_CR141
G Parisi (3375_CR132) 1986; 19
N Okuma (3375_CR158) 2020; 124
H Watanabe (3375_CR186) 2012; 108
3375_CR149
M Parto (3375_CR47) 2020; 19
ME Brachet (3375_CR261) 1987; 4
MC Cross (3375_CR279) 1988; 37
A Peshkov (3375_CR209) 2014; 223
J-B Caussin (3375_CR220) 2014; 112
H Sompolinsky (3375_CR11) 1986; 57
A Amir (3375_CR90) 2016; 93
JW Krakauer (3375_CR131) 2017; 93
D Pazó (3375_CR244) 2009; 80
F Wilczek (3375_CR313) 2012; 109
G Lan (3375_CR119) 2012; 8
JD Crawford (3375_CR70) 1991; 23
T Vicsek (3375_CR34) 1995; 75
FP Kemeth (3375_CR310) 2016; 26
3375_CR150
3375_CR153
KA Julien (3375_CR195) 1994; 7
M Rabaud (3375_CR41) 1990; 64
3375_CR111
B Mahault (3375_CR211) 2019; 123
H Hong (3375_CR135) 2011; 84
A Ghatak (3375_CR147) 2020; 117
JA Acebrón (3375_CR33) 2005; 77
3375_CR117
3375_CR116
3375_CR118
A Costanzo (3375_CR144) 2019; 125
B Liebchen (3375_CR216) 2017; 119
LL Bonilla (3375_CR39) 2019; 99
S Mishra (3375_CR221) 2010; 81
NR Bernier (3375_CR104) 2014; 113
S Fauve (3375_CR264) 1991; 1
cr-split#-3375_CR180.2
cr-split#-3375_CR180.1
N Uchida (3375_CR2) 2010; 104
C Bick (3375_CR243) 2020; 10
KV Kepesidis (3375_CR252) 2016; 18
R Lahiri (3375_CR9) 1997; 79
D Yllanes (3375_CR5) 2017; 19
K Makris (3375_CR101) 2014; 4
3375_CR121
S Autti (3375_CR317) 2018; 120
MIN Rosa (3375_CR148) 2020; 22
E Montbrió (3375_CR242) 2015; 5
LN Trefethen (3375_CR52) 1993; 261
SA Marvel (3375_CR239) 2009; 19
P Coullet (3375_CR14) 1989; 63
RJ Wiener (3375_CR305) 1992; 69
BF Farrell (3375_CR80) 1994; 72
K Giergiel (3375_CR316) 2018; 120
AU Hassan (3375_CR45) 2015; 92
A Ramos (3375_CR48) 2020; 10
J-M Flesselles (3375_CR270) 1991; 40
LM Sieberer (3375_CR28) 2013; 110
Y Ashida (3375_CR49) 2017; 8
FDC Farrell (3375_CR207) 2012; 108
M Nixon (3375_CR46) 2013; 110
MC Marchetti (3375_CR77) 2013; 85
Z Lin (3375_CR145) 2011; 106
H Daido (3375_CR225) 1987; 77
R Hanai (3375_CR31) 2020; 2
JE Avron (3375_CR172) 1998; 92
3375_CR177
3375_CR176
J Toner (3375_CR201) 1998; 58
3375_CR299
M Ginibre (3375_CR274) 1997; 56
HR Brand (3375_CR284) 1984; 30
MA Muñoz (3375_CR64) 2018; 90
H Hong (3375_CR229) 2012; 85
A Galda (3375_CR251) 2019; 9
CH Lee (3375_CR160) 2019; 123
R Aditi Simha (3375_CR223) 2002; 89
N Hatano (3375_CR24) 1996; 77
LP Dadhichi (3375_CR139) 2020; 101
T Helbig (3375_CR20) 2020; 16
G Baggio (3375_CR93) 2020; 6
A Pinter (3375_CR308) 2006; 96
A Pluchino (3375_CR136) 2005; 16
D Banerjee (3375_CR173) 2017; 8
CM Bender (3375_CR25) 1998; 80
B Derrida (3375_CR133) 1987; 4
Y Adini (3375_CR298) 1997; 94
H Daido (3375_CR37) 1992; 68
L Landau (3375_CR57) 1954; 96
EP Wigner (3375_CR114) 1960; 1
E Knobloch (3375_CR278) 1981; 108
T Biancalani (3375_CR51) 2017; 118
NA Estep (3375_CR165) 2014; 10
MW Cho (3375_CR294) 2004; 92
R Curtu (3375_CR297) 2004; 3
CD Andereck (3375_CR306) 1986; 164
PC Bressloff (3375_CR293) 2002; 14
L Leroy (3375_CR188) 1992; 25
R Soto (3375_CR126) 2014; 112
C-U Choe (3375_CR234) 2016; 94
3375_CR191
V Soni (3375_CR175) 2019; 15
3375_CR190
M Aharonyan (3375_CR105) 2019; 117
S Saha (3375_CR3) 2019; 21
MC Cross (3375_CR282) 1988; 38
3375_CR197
C Scheibner (3375_CR168) 2020; 125
3375_CR154
H Hong (3375_CR12) 2011; 106
P Coullet (3375_CR263) 1990; 64
C Counillon (3375_CR277) 1997; 40
M Golubitsky (3375_CR311) 1985; 87
3375_CR84
S Malzard (3375_CR155) 2015; 115
P Bot (3375_CR304) 1998; 58
NP Kryuchkov (3375_CR125) 2018; 14
P Hohenberg (3375_CR61) 2015; 572
C Aron (3375_CR76) 2020; 8
E Ott (3375_CR236) 2009; 19
CM Bender (3375_CR112) 2007; 70
M Durve (3375_CR143) 2018; 41
A Mostafazadeh (3375_CR108) 2002; 43
A Pikovsky (3375_CR232) 2008; 101
H Cartarius (3375_CR254) 2008; 77
I Prigogine (3375_CR315) 1968; 48
3375_CR162
3375_CR163
EA Martens (3375_CR233) 2016; 26
H Watanabe (3375_CR185) 2020; 11
E Knobloch (3375_CR290) 1990; 42
A Shapere (3375_CR312) 2012; 109
K Wilson (3375_CR62) 1974; 12
M Krupa (3375_CR199) 1990; 21
MC Cross (3375_CR280) 1986; 57
CW Peterson (3375_CR130) 2019; 19
I Mutabazi (3375_CR303) 1995; 51
CM Bender (3375_CR109) 2002; 35
D Nishiguchi (3375_CR214) 2017; 95
J Goldstone (3375_CR183) 1962; 127
3375_CR170
M Asllani (3375_CR92) 2018; 4
F Ginelli (3375_CR138) 2015; 112
3375_CR295
R Chajwa (3375_CR87) 2020; 10
SGK Tennakoon (3375_CR302) 1996; 54
A Morin (3375_CR137) 2015; 91
P Oswald (3375_CR42) 1987; 58
S Townley (3375_CR98) 2007; 44
C Dembowski (3375_CR247) 2004; 69
H Hong (3375_CR309) 2014; 89
3375_CR63
P Coullet (3375_CR288) 1985; 46
P Strack (3375_CR50) 2013; 88
R Gutöhrlein (3375_CR255) 2013; 46
3375_CR65
3375_CR66
NC Keim (3375_CR59) 2019; 91
3375_CR68
VI Arnold (3375_CR193) 1995; 1
3375_CR69
H Masoud (3375_CR167) 2019; 879
H Tasaki (3375_CR151) 2020; 125
A Bricard (3375_CR26) 2013; 503
AU Oza (3375_CR212) 2016; 18
M-A Miri (3375_CR18) 2019; 363
É Fodor (3375_CR152) 2016; 117
HR Brand (3375_CR283) 1983; 27
P Coullet (3375_CR260) 1985; 55
3375_CR300
L Van Hove (3375_CR60) 1954; 95
G Hennequin (3375_CR89) 2012; 86
ZG Nicolaou (3375_CR94) 2020; 2
S Watanabe (3375_CR237) 1993; 70
D Levis (3375_CR218) 2019; 1
J Guckenheimer (3375_CR285) 1984; 15
3375_CR71
3375_CR72
H Sakaguchi (3375_CR36) 1986; 76
3375_CR73
3375_CR74
R Lahiri (3375_CR124) 2000; 61
3375_CR75
S Grossmann (3375_CR82) 2000; 72
D Armbruster (3375_CR266) 1988; 29
F Melo (3375_CR271) 1990; 64
3375_CR78
A Mostafazadeh (3375_CR107) 2002; 43
R Di Leonardo (3375_CR123) 2008; 78
cr-split#-3375_CR179.2
cr-split#-3375_CR179.1
C Coulais (3375_CR146) 2017; 542
S Weigert (3375_CR113) 2003; 5
D Zhou (3375_CR169) 2020; 2
PH Coullet (3375_CR281) 1983; 43
K Dholakia (3375_CR128) 2010; 82
DM Abrams (3375_CR231) 2008; 101
T Hofmann (3375_CR159) 2019; 122
E Montbrió (3375_CR10) 2018; 120
C Caloz (3375_CR166) 2018; 10
D Geyer (3375_CR202) 2018; 17
J Toner (3375_CR35) 1995; 75
AJ Simon (3375_CR269) 1988; 61
KJ Burns (3375_CR219) 2020; 2
CM Bender (3375_CR110) 2010; 374
G Faivre (3375_CR43) 1989; 9
EA Martens (3375_CR227) 2009; 79
YY Renardy (3375_CR196) 1999; 129
L Feng (3375_CR100) 2017; 11
R Hanai (3375_CR30) 2019; 122
W Schöpf (3375_CR291) 1993; 47
A Metelmann (3375_CR29) 2015; 5
H Nielsen (3375_CR187) 1976; 105
R Fleury (3375_CR16) 2014; 343
TC Butler (3375_CR296) 2012; 109
MRE Proctor (3375_CR267) 1988; 188
RJ Potton (3375_CR164) 2004; 67
R Gallego (3375_CR235) 2017; 96
E Ott (3375_CR230) 2008; 18
A Mostafazadeh (3375_CR106) 2002; 43
3375_CR53
G Dangelmayr (3375_CR198) 1987; 322
3375_CR54
E Bertin (3375_CR205) 2006; 74
3375_CR55
D Bensimon (3375_CR289) 1989; 50
3375_CR56
O Dauchot (3375_CR81) 1997; 7
J Agudo-Canalejo (3375_CR127) 2019; 123
J Das (3375_CR38) 2002; 60
DR Nelson (3375_CR96) 1998; 58
R Kerswell (3375_CR86) 2018; 50
YD Yifat (3375_CR129) 2018; 7
E Bertin (3375_CR206) 2009; 42
J Goldstone (3375_CR182) 1961; 19
G Grégoire (3375_CR222) 2004; 92
L Bonilla (3375_CR228) 1998; 113
Y Nambu (3375_CR181) 1960; 117
E Knobloch (3375_CR265) 1995; 74
S Watanabe (3375_CR238) 1994; 74
3375_CR1
S Altmeyer (3375_CR307) 2010; 12
DS Dean (3375_CR204) 1996; 29
L Böberg (3375_CR79) 1988; 43
3375_CR21
3375_CR22
L Ridolfi (3375_CR99) 2011; 95
3375_CR23
LF Cugliandolo (3375_CR58) 1995; 71
G Faivre (3375_CR272) 1992; 46
A Souslov (3375_CR174) 2019; 122
B Malomed (3375_CR13) 1984; 14
J-M Chomaz (3375_CR83) 2005; 37
CH Lee (3375_CR156) 2019; 99
C Scheibner (3375_CR19) 2020; 16
A Maitra (3375_CR142) 2020; 125
L Pan (3375_CR15) 1994; 49
K Kassner (3375_CR273) 1990; 65
3375_CR102
3375_CR224
M Nagy (3375_CR4) 2010; 464
Y Minami (3375_CR189) 2018; 97
M Brandenbourger (3375_CR17) 2019; 10
RW Walden (3375_CR287) 1985; 55
AV Ivlev (3375_CR8) 2015; 5
S Omata (3375_CR226) 1988; 31
AA Mailybaev (3375_CR249) 2005; 72
L Barberis (3375_CR140) 2016; 117
S Douady (3375_CR262) 1989; 10
PJ Schmid (3375_CR85) 2007; 39
cr-split#-3375_CR192.1
JB Weiss (3375_CR120) 2003; A55
cr-split#-3375_CR192.2
J Swift (3375_CR259) 1977; 15
MJ Field (3375_CR200) 1980; 259
BK Murphy (3375_CR88) 2009; 61
J Doppler (3375_CR246) 2016; 537
E Moses (3375_CR286) 1986; 34
IS Aranson (3375_CR67) 2002; 74
Y Hidaka (3375_CR184) 2013; 110
BC van Zuiden (3375_CR7) 2016; 113
HZ Cummins (3375_CR275) 1993; 47
P Brunet (3375_CR44) 2001; 56
L Bellon (3375_CR276) 1998; 58
J-C Tsai (3375_CR215) 2005; 94
IV Tyulkina (3375_CR241) 2018; 120
MC Cross (3375_CR40) 1993; 65
3375_CR208
CH Lee (3375_CR157) 2020; 102
DL Ermak (3375_CR122) 1978; 69
K Maltman (3375_CR171) 1975; 16
PC Bressloff (3375_CR292) 2001; 356
J Palacci (3375_CR27) 2013; 339
cr-split#-3375_CR178.1
TJ Milburn (3375_CR248) 2015; 92
NY Yao (3375_CR314) 2018; 71
cr-split#-3375_CR178.2
M Asllani (3375_CR91) 2018; 97
R Suzuki (3375_CR213) 2015; 11
MG Neubert (3375_CR95) 1997; 78
A Galda (3375_CR250) 2016; 94
H Riecke (3375_CR301) 1992; 45
PC Hohenberg (3375_CR32) 1977; 49
V Tripathi (3375_CR103) 2016; 94
33854244 - Nature. 2021 Apr;592(7854):355-356
References_xml – reference: DeanDSLangevin equation for the density of a system of interacting Langevin processesJ. Phys. Math. Gen.199629L6131996JPhA...29L.613D14468821:CAS:528:DyaK2sXltFKhsQ%3D%3D10.1088/0305-4470/29/24/001
– reference: OttEAntonsenTMLong time evolution of phase oscillator systemsChaos2009190231172009Chaos..19b3117O2548751195662521309.3405910.1063/1.3136851
– reference: AshidaYFurukawaSUedaMParity-time-symmetric quantum critical phenomenaNat. Commun.201782017NatCo...815791A1:CAS:528:DC%2BC2sXpvFemur8%3D28593991547270910.1038/ncomms15791
– reference: TennakoonSGKAndereckCDHegsethJJRieckeHTemporal modulation of traveling waves in the flow between rotating cylinders with broken azimuthal symmetryPhys. Rev. E199654505350651996PhRvE..54.5053T1:CAS:528:DyaK28XntFehu7s%3D10.1103/PhysRevE.54.5053
– reference: BrandenbourgerMLocsinXLernerECoulaisCNon-reciprocal robotic metamaterialsNat. Commun.2019102019NatCo..10.4608B31601803678707110.1038/s41467-019-12599-3
– reference: PluchinoALatoraVRapisardaAChanging opinions in a changing world: a new perspective in sociophysicsInt. J. Mod. Phys. C2005165152005IJMPC..16..515P1121.9141210.1142/S0129183105007261
– reference: GinelliFIntermittent collective dynamics emerge from conflicting imperatives in sheep herdsProc. Natl Acad. Sci. USA2015112127292015PNAS..11212729G1:CAS:528:DC%2BC2MXhsFKnt7fJ2641708210.1073/pnas.1503749112
– reference: MontbrióEPazóDRoxinAMacroscopic description for networks of spiking neuronsPhys. Rev. X20155021028
– reference: CumminsHZFourtuneLRabaudMSuccessive bifurcations in directional viscous fingeringPhys. Rev. E199347172717381993PhRvE..47.1727C1:STN:280:DC%2BC2sfitlKrtg%3D%3D10.1103/PhysRevE.47.1727
– reference: SouslovADasbiswasKFruchartMVaikuntanathanSVitelliVTopological waves in fluids with odd viscosityPhys. Rev. Lett.20191221280012019PhRvL.122l8001S39381061:CAS:528:DC%2BC1MXpsFymsb8%3D3097803510.1103/PhysRevLett.122.128001
– reference: ShapereAWilczekFClassical time crystalsPhys. Rev. Lett.20121091604022012PhRvL.109p0402S2321505710.1103/PhysRevLett.109.160402
– reference: SahaSRamaswamySGolestanianRPairing, waltzing and scattering of chemotactic active colloidsNew J. Phys.2019210630062019NJPh...21f3006S39799841:CAS:528:DC%2BC1MXit1Wht7zJ10.1088/1367-2630/ab20fd
– reference: OswaldPBechhoeferJLibchaberAInstabilities of a moving nematic–isotropic interfacePhys. Rev. Lett.198758231823211987PhRvL..58.2318O1:CAS:528:DyaL2sXkvVOlt7w%3D10.1103/PhysRevLett.58.2318
– reference: AuttiSEltsovVVolovikGObservation of a time quasicrystal and its transition to a superfluid time crystalPhys. Rev. Lett.20181202153012018PhRvL.120u5301A1:CAS:528:DC%2BC1MXltVygu7Y%3D2988314810.1103/PhysRevLett.120.215301
– reference: CurtuRErmentroutBPattern formation in a network of excitatory and inhibitory cells with adaptationSIAM J. Appl. Dyn. Syst.200431912312004SJADS...3..191C21147341090.3403810.1137/030600503
– reference: NeubertMGCaswellHAlternatives to resilience for measuring the responses of ecological systems to perturbationsEcology19977865366510.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
– reference: Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Preprint at https://arxiv.org/abs/2006.01837 (2020).
– reference: BiancalaniTJafarpourFGoldenfeldNGiant amplification of noise in fluctuation-induced pattern formationPhys. Rev. Lett.20171180181012017PhRvL.118a8101B2810645310.1103/PhysRevLett.118.018101
– reference: WatanabeSStrogatzSHIntegrability of a globally coupled oscillator arrayPhys. Rev. Lett.19937023911993PhRvL..70.2391W12125591:STN:280:DC%2BC2sfpt12lsQ%3D%3D100535501063.3450510.1103/PhysRevLett.70.2391
– reference: Laguës, M. & Lesne, A. Invariances d’Échelle: des Changements d’États à la Turbulence (Belin, 2003).
– reference: Chossat, P. & Iooss, G. The Couette–Taylor Problem (Springer, 1994).
– reference: AronCChamonCLandau theory for non-equilibrium steady statesSciPost Phys.202080742020ScPP....8...74A418064710.21468/SciPostPhys.8.5.074
– reference: FaivreGMergyJDynamical wavelength selection by tilt domains in thin-film lamellar eutectic growthPhys. Rev. A1992469631992PhRvA..46..963F1:CAS:528:DyaK38XlsVSqt74%3D990819810.1103/PhysRevA.46.963
– reference: YifatYDReactive optical matter: light-induced motility in electrodynamically asymmetric nanoscale scatterersLight Sci. Appl.201872018LSA.....7..105Y1:CAS:528:DC%2BC1cXisVygsbnM30564311628999110.1038/s41377-018-0105-y
– reference: RenardyYYRenardyMFujimuraKTakens–Bogdanov bifurcation on the hexagonal lattice for double-layer convectionPhysica D19991291711999PhyD..129..171R16875920948.7602110.1016/S0167-2789(99)00007-X
– reference: FaivreGde CheveigneSGuthmannCKurowskiPSolitary tilt waves in thin lamellar eutecticsEurophys. Lett.198997797841989EL......9..779F10.1209/0295-5075/9/8/007
– reference: PalacciJSacannaSSteinbergAPPineDJChaikinPMLiving crystals of light-activated colloidal surfersScience20133399369402013Sci...339..936P1:CAS:528:DC%2BC3sXis1OisLY%3D2337155510.1126/science.1230020
– reference: MakrisKGeLTüreciHAnomalous transient amplification of waves in non-normal photonic mediaPhys. Rev. X20144041044
– reference: MilburnTJGeneral description of quasiadiabatic dynamical phenomena near exceptional pointsPhys. Rev. A2015920521242015PhRvA..92e2124M10.1103/PhysRevA.92.052124
– reference: MarchettiMCHydrodynamics of soft active matterRev. Mod. Phys.20138511432013RvMP...85.1143M1:CAS:528:DC%2BC3sXhvVWgtr3N10.1103/RevModPhys.85.1143
– reference: LeeCHLiLThomaleRGongJUnraveling non-Hermitian pumping: emergent spectral singularities and anomalous responsesPhys. Rev. B20201020851512020PhRvB.102h5151L1:CAS:528:DC%2BB3cXhvVCmurnM10.1103/PhysRevB.102.085151
– reference: BonillaLVicenteCPSpiglerRTime-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributionsPhysica D1998113791998PhyD..113...79B16102150935.3403110.1016/S0167-2789(97)00187-5
– reference: CrossMCTraveling and standing waves in binary-fluid convection in finite geometriesPhys. Rev. Lett.198657293529381986PhRvL..57.2935C1:STN:280:DC%2BC2sfotFejtQ%3D%3D1003391210.1103/PhysRevLett.57.2935
– reference: BarberisLPeruaniFLarge-scale patterns in a minimal cognitive flocking model: incidental leaders, nematic patterns, and aggregatesPhys. Rev. Lett.20161172480012016PhRvL.117x8001B2800918510.1103/PhysRevLett.117.248001
– reference: Shankar, S., Souslov, A., Bowick, M. J., Marchetti, M. C. & Vitelli, V. Topological active matter. Preprint at https://arxiv.org/abs/2010.00364 (2020).
– reference: UchidaNGolestanianRSynchronization and collective dynamics in a carpet of microfluidic rotorsPhys. Rev. Lett.20101041781032010PhRvL.104q8103U2048214610.1103/PhysRevLett.104.178103
– reference: SoniVThe odd free surface flows of a colloidal chiral fluidNat. Phys.201915118811941:CAS:528:DC%2BC1MXhsleitbnI10.1038/s41567-019-0603-8
– reference: MontbrióEPazóDKuramoto model for excitation-inhibition-based oscillationsPhys. Rev. Lett.20181202441012018PhRvL.120x4101M2995694610.1103/PhysRevLett.120.244101
– reference: GallegoRMontbrióEPazóDSynchronization scenarios in the Winfree model of coupled oscillatorsPhys. Rev. E2017960422082017PhRvE..96d2208G2934758910.1103/PhysRevE.96.042208
– reference: Groot, S. R. D. & Mazur, P. Non-Equilibrium Thermodynamics (Dover Publications, 1962).
– reference: BrachetMECoulletPFauveSPropagative phase dynamics in temporally intermittent systemsEurophys. Lett.1987410171987EL......4.1017B1:CAS:528:DyaL2sXmsVarsbY%3D10.1209/0295-5075/4/9/011
– reference: MetelmannAClerkAANonreciprocal photon transmission and amplification via reservoir engineeringPhys. Rev. X20155021025
– reference: OkumaNKawabataKShiozakiKSatoMTopological origin of non-Hermitian skin effectsPhys. Rev. Lett.20201240868012020PhRvL.124h6801O40717861:CAS:528:DC%2BB3cXmslygu7k%3D3216732410.1103/PhysRevLett.124.086801
– reference: CostanzoAMilling-induction and milling-destruction in a Vicsek-like binary-mixture modelEurophys. Lett.2019125200082019EL....12520008C10.1209/0295-5075/125/20008
– reference: Haken, H. (ed.) Synergetics (Springer, 1977).
– reference: GiergielKMiroszewskiASachaKTime crystal platform: from quasicrystal structures in time to systems with exotic interactionsPhys. Rev. Lett.20181201404012018PhRvL.120n0401G37884091:CAS:528:DC%2BC1MXltFSks7Y%3D2969411110.1103/PhysRevLett.120.140401
– reference: GaldaAVinokurVMParity–time symmetry breaking in magnetic systemsPhys. Rev. B201694020408(R)2016PhRvB..94b0408G10.1103/PhysRevB.94.020408erratum 100, 209902 (2019)
– reference: PartoMHayengaWMarandiAChristodoulidesDNKhajavikhanMRealizing spin Hamiltonians in nanoscale active photonic latticesNat. Mater.2020197257312020NatMa..19..725P1:CAS:528:DC%2BB3cXltFequ7k%3D3220345710.1038/s41563-020-0635-6
– reference: AltmeyerSHoffmannCSecondary bifurcation of mixed-cross-spirals connecting travelling wave solutionsNew J. Phys.2010121130352010NJPh...12k3035A10.1088/1367-2630/12/11/113035
– reference: LavergneFAWendehenneHBäuerleTBechingerCGroup formation and cohesion of active particles with visual perception–dependent motilityScience201936470742019Sci...364...70L1:CAS:528:DC%2BC1MXmsVSnurY%3D10.1126/science.aau5347
– reference: Guckenheimer, J. A codimension two bifurcation with circular symmetry. In Multiparameter Bifurcation Theory (eds Golubitsky, M. & Guckenheimer, J. M.) 175–184 (AMS, 1986).
– reference: DouadySFauveSThualOOscillatory phase modulation of parametrically forced surface wavesEurophys. Lett.1989103091989EL.....10..309D10.1209/0295-5075/10/4/005
– reference: O’KeeffeKPHongHStrogatzSHOscillators that sync and swarmNat. Commun.201782017NatCo...8.1504O29138413568622910.1038/s41467-017-01190-3
– reference: ProctorMREJonesCAThe interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonanceJ. Fluid Mech.19881883011988JFM...188..301P9441740649.7601810.1017/S0022112088000746
– reference: JulienKAStrong spatial interactions with 1:1 resonance: a three-layer convection problemNonlinearity1994716551994Nonli...7.1655J13044440812.3403410.1088/0951-7715/7/6/008
– reference: Dayan, P. & Abbott, L. Theoretical Neuroscience: Computational and Mathematical Modelling of Neural Systems (MIT Press, 2001).
– reference: NixonMRonenEFriesemAADavidsonNObserving geometric frustration with thousands of coupled lasersPhys. Rev. Lett.20131101841022013PhRvL.110r4102N2368319910.1103/PhysRevLett.110.184102
– reference: DangelmayrGHettelJKnoblochEParity-breaking bifurcation in inhomogeneous systemsNonlinearity19971010931997Nonli..10.1093D14733760995.3402710.1088/0951-7715/10/5/006
– reference: ZhouDZhangJNon-Hermitian topological metamaterials with odd elasticityPhys. Rev. Res.202020231731:CAS:528:DC%2BB3cXhsFCnurrJ10.1103/PhysRevResearch.2.023173
– reference: LeroyLOn spontaneous symmetry breakdown in dynamical systemsJ. Phys. Math. Gen.199225L9871992JPhA...25L.987L0755.5804610.1088/0305-4470/25/15/015
– reference: SeyranianAPKirillovONMailybaevAACoupling of eigenvalues of complex matrices at diabolic and exceptional pointsJ. Phys. Math. Gen.20053817232005JPhA...38.1723S21191821081.8103910.1088/0305-4470/38/8/009
– reference: PietrasBDeschleNDaffertshoferAFirst-order phase transitions in the Kuramoto model with compact bimodal frequency distributionsPhys. Rev. E2018980622192018PhRvE..98f2219P392313910.1103/PhysRevE.98.062219
– reference: GhatakABrandenbourgerMvan WezelJCoulaisCObservation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterialProc. Natl Acad. Sci. USA2020117295612020PNAS..11729561G1:CAS:528:DC%2BB3cXisVKnsr%2FN3316872210.1073/pnas.2010580117
– reference: CoulletPIoossGInstabilities of one-dimensional cellular patternsPhys. Rev. Lett.1990648661990PhRvL..64..866C10382661:STN:280:DC%2BC2sfoslCrug%3D%3D100421011050.8251810.1103/PhysRevLett.64.866
– reference: LinZUnidirectional invisibility induced by PT-symmetric periodic structuresPhys. Rev. Lett.20111062139012011PhRvL.106u3901L2169929710.1103/PhysRevLett.106.213901
– reference: TyulkinaIVGoldobinDSKlimenkoLSPikovskyADynamics of noisy oscillator populations beyond the Ott–Antonsen ansatzPhys. Rev. Lett.20181202641012018PhRvL.120z4101T1:CAS:528:DC%2BC1MXltVyisrs%3D3000477010.1103/PhysRevLett.120.264101
– reference: TripathiVGaldaABarmanHVinokurVMParity–time symmetry-breaking mechanism of dynamic Mott transitions in dissipative systemsPhys. Rev. B2016940411042016PhRvB..94d1104T10.1103/PhysRevB.94.041104
– reference: ZhangKYangZFangCCorrespondence between winding numbers and skin modes in non-Hermitian systemsPhys. Rev. Lett.20201251264022020PhRvL.125l6402Z41551441:CAS:528:DC%2BB3cXhvFKqsLfJ3301676610.1103/PhysRevLett.125.126402
– reference: OmataSYamaguchiYShimizuHEntrainment among coupled limit cycle oscillators with frustrationPhysica D1988313971988PhyD...31..397O9547780644.9200210.1016/0167-2789(88)90005-X
– reference: ChoeC-URiJ-SKimR-SIncoherent chimera and glassy states in coupled oscillators with frustrated interactionsPhys. Rev. E2016940322052016PhRvE..94c2205C2773969910.1103/PhysRevE.94.032205
– reference: GolubitskyMStewartIHopf bifurcation in the presence of symmetryArch. Ration. Mech. Anal.1985871071657655960588.3403010.1007/BF00280698
– reference: Achenbach, J. D. Reciprocity in Elastodynamics (Cambridge Univ. Press, 2004).
– reference: Loos, S. A. M., Hermann, S. M. & Klapp, S. H. L. Non-reciprocal hidden degrees of freedom: a unifying perspective on memory, feedback, and activity. Preprint at https://arxiv.org/abs/1910.08372 (2019).
– reference: CaussinJ-BEmergent spatial structures in flocking models: a dynamical system insightPhys. Rev. Lett.20141121481022014PhRvL.112n8102C2476602010.1103/PhysRevLett.112.148102
– reference: DadhichiLPKethapelliJChajwaRRamaswamySMaitraANonmutual torques and the unimportance of motility for long-range order in two-dimensional flocksPhys. Rev. E20201010526012020PhRvE.101e2601D1:CAS:528:DC%2BB3MXlsFWqsw%3D%3D3257519210.1103/PhysRevE.101.052601
– reference: MiriM-AAlùAExceptional points in optics and photonicsScience2019363eaar770938891901:CAS:528:DC%2BC1MXkvVyh1431.7800110.1126/science.aar7709
– reference: AransonISKramerLThe world of the complex Ginzburg–Landau equationRev. Mod. Phys.200274991432002RvMP...74...99A18950971205.3529910.1103/RevModPhys.74.99
– reference: MuñozMACriticality and dynamical scaling in living systemsRev. Mod. Phys.2018900310012018RvMP...90c1001M386123110.1103/RevModPhys.90.031001
– reference: HohenbergPKrekhovAAn introduction to the Ginzburg–Landau theory of phase transitions and nonequilibrium patternsPhys. Rep.20155721422015PhR...572....1H33202671357.8202210.1016/j.physrep.2015.01.001
– reference: ChajwaRMenonNRamaswamySGovindarajanRWaves, algebraic growth, and clumping in sedimenting disk arraysPhys. Rev. X2020100410161:CAS:528:DC%2BB3MXjtFSksbw%3D
– reference: HassanAUHodaeiHMiriM-AKhajavikhanMChristodoulidesDNNonlinear reversal of the PT-symmetric phase transition in a system of coupled semiconductor microring resonatorsPhys. Rev. A2015920638072015PhRvA..92f3807H10.1103/PhysRevA.92.063807
– reference: Kuznetsov, Y. A. Elements of Applied Bifurcation Theory (Springer, 2004).
– reference: FieldMJEquivariant dynamical systemsTrans. Am. Math. Soc.19802591855618320447.5802910.1090/S0002-9947-1980-0561832-4
– reference: NagyMÁkosZBiroDVicsekTHierarchical group dynamics in pigeon flocksNature20104648908932010Natur.464..890N1:CAS:528:DC%2BC3cXktlynsL8%3D2037614910.1038/nature08891
– reference: van Saarloos, W. The complex Ginzburg–Landau equation for beginners. Spatio-temporal Patterns in Nonequilibrium Complex Systems Vol. XXI (eds Cladis, P. E. & Palffy-Muhoray, P.) (Addison-Wesley, 1994).
– reference: TsaiJ-CYeFRodriguezJGollubJPLubenskyTCA chiral granular gasPhys. Rev. Lett.2005942143012005PhRvL..94u4301T1609032310.1103/PhysRevLett.94.214301
– reference: DerridaBGardnerEZippeliusAAn exactly solvable asymmetric neural network modelEurophys. Lett.198741671987EL......4..167D10.1209/0295-5075/4/2/007
– reference: KeimNCPaulsenJDZeravcicZSastrySNagelSRMemory formation in matterRev. Mod. Phys.2019910350022019RvMP...91c5002K40159301:CAS:528:DC%2BC1MXit1Clt7zK10.1103/RevModPhys.91.035002
– reference: CrossMCHohenbergPCPattern formation outside of equilibriumRev. Mod. Phys.19936585111121993RvMP...65..851C1:CAS:528:DyaK2cXhtFShs7c%3D1371.3700110.1103/RevModPhys.65.851
– reference: SuzukiRWeberCAFreyEBauschARPolar pattern formation in driven filament systems requires non-binary particle collisionsNat. Phys.2015118391:CAS:528:DC%2BC2MXhtlSltLnO27656244502791410.1038/nphys3423
– reference: AmirAHatanoNNelsonDRNon-Hermitian localization in biological networksPhys. Rev. E2016930423102016PhRvE..93d2310A37044582717631510.1103/PhysRevE.93.042310
– reference: BrandHRHohenbergPCSteinbergVAmplitude equation near a polycritical point for the convective instability of a binary fluid mixture in a porous mediumPhys. Rev. A1983275915931983PhRvA..27..591B1:CAS:528:DyaL3sXmtVOqsA%3D%3D10.1103/PhysRevA.27.591
– reference: MeloFOswaldPDestabilization of a faceted smectic-A–smectic-B interfacePhys. Rev. Lett.19906413811990PhRvL..64.1381M1:CAS:528:DyaK3cXhvV2nt7o%3D1004138110.1103/PhysRevLett.64.1381
– reference: Trefethen, L. N. & Embree, M. Spectra and Pseudospectra (Princeton Univ. Press, 2005).
– reference: Golubitsky, M., Stewart, I. & Schaeffer, D. G. Singularities and Groups in Bifurcation Theory Vol. II (Springer, 1988).
– reference: van Kampen, N. G. Stochastic Processes in Physics and Chemistry Vol. 1 (Elsevier, 2007).
– reference: CoulletPFauveSPropagative phase dynamics for systems with galilean invariancePhys. Rev. Lett.19855528571985PhRvL..55.2857C1:STN:280:DC%2BC2sfnvFKqsg%3D%3D1003225710.1103/PhysRevLett.55.2857
– reference: SompolinskyHKanterITemporal association in asymmetric neural networksPhys. Rev. Lett.198657286128641986PhRvL..57.2861S1:STN:280:DC%2BC2sfotFarsw%3D%3D1003388510.1103/PhysRevLett.57.2861
– reference: Newton, I. Philosophiæ Naturalis Principia Mathematica (1687).
– reference: ScheibnerCOdd elasticityNat. Phys.2020164754801:CAS:528:DC%2BB3cXktFelsL8%3D10.1038/s41567-020-0795-y
– reference: ArnoldVIRemarks on eigenvalues and eigenvectors of Hermitian matrices, Berry phase, adiabatic connections and quantum Hall effectSelecta Mathematica199511191995mmmc.conf.....A13272270841.5800810.1007/BF01614072
– reference: TownleySCarslakeDKellie-smithOMccarthyDHodgsonDPredicting transient amplification in perturbed ecological systemsJ. Appl. Ecol.200744124310.1111/j.1365-2664.2007.01333.x
– reference: Hensch, T. K. & Fagiolini, M. in Progress in Brain Research (eds van Pelt, J. et al.) 115–124 (Elsevier, 2005).
– reference: Takens, F. in Global Analysis of Dynamical Systems (eds Broer, H. W. et al.) 1–63 (IOP, 2001); reprinted from Commun. Math. Inst. Rijksuniv. Utrecht2, 1–111 (1974).
– reference: OzaAUDunkelJAntipolar ordering of topological defects in active liquid crystalsNew J. Phys.2016180930062016NJPh...18i3006O10.1088/1367-2630/18/9/093006
– reference: GutöhrleinRMainJCartariusHWunnerGBifurcations and exceptional points in dipolar Bose–Einstein condensatesJ. Phys. A20134630500130803251276.8203710.1088/1751-8113/46/30/305001
– reference: CoulletPGoldsteinREGunaratneGHParity-breaking transitions of modulated patterns in hydrodynamic systemsPhys. Rev. Lett.198963195419571989PhRvL..63.1954C1:STN:280:DC%2BC2sfos1Wnug%3D%3D1004072310.1103/PhysRevLett.63.1954
– reference: Henkel, M. & Pleimling, M. Non-equilibrium Phase Transitions Vol. 2 (Springer, 2010).
– reference: DembowskiCEncircling an exceptional pointPhys. Rev. E2004690562162004PhRvE..69e6216D1:STN:280:DC%2BD2czkslSluw%3D%3D10.1103/PhysRevE.69.056216
– reference: CalozCElectromagnetic nonreciprocityPhys. Rev. Appl.2018100470012018PhRvP..10d7001C1:CAS:528:DC%2BC1MXltVGnsbg%3D10.1103/PhysRevApplied.10.047001
– reference: BricardACaussinJ-BDesreumauxNDauchotOBartoloDEmergence of macroscopic directed motion in populations of motile colloidsNature201350395982013Natur.503...95B1:CAS:528:DC%2BC3sXhslelt7nL2420128210.1038/nature12673
– reference: Winfree, A. T. The Geometry of Biological Time (Springer, 2001).
– reference: HennequinGVogelsTPGerstnerWNon-normal amplification in random balanced neuronal networksPhys. Rev. E2012860119092012PhRvE..86a1909H10.1103/PhysRevE.86.011909
– reference: BotPCadotOMutabaziISecondary instability mode of a roll pattern and transition to spatiotemporal chaos in the Taylor–Dean systemPhys. Rev. E199858308930971998PhRvE..58.3089B1:CAS:528:DyaK1cXlslyqtLs%3D10.1103/PhysRevE.58.3089
– reference: Di LeonardoRHydrodynamic interactions in two dimensionsPhys. Rev. E2008780314062008PhRvE..78c1406D10.1103/PhysRevE.78.031406
– reference: KnoblochEMooreDRMinimal model of binary fluid convectionPhys. Rev. A199042469347091990PhRvA..42.4693K1:STN:280:DC%2BC2sjpt1Slug%3D%3D990457710.1103/PhysRevA.42.4693
– reference: Livi, R. & Politi, P. Nonequilibrium Statistical Physics: A Modern Perspective (Cambridge Univ. Press, 2017).
– reference: DauchotOMannevillePLocal versus global concepts in hydrodynamic stability theoryJ. Phys. II199773713891:CAS:528:DyaK2sXht1Ckt7g%3D
– reference: WaldenRWKolodnerPPassnerASurkoCMTraveling waves and chaos in convection in binary fluid mixturesPhys. Rev. Lett.1985554964991985PhRvL..55..496W1:CAS:528:DyaL2MXkvV2lsro%3D1003236810.1103/PhysRevLett.55.496
– reference: IhleTKinetic theory of flocking: derivation of hydrodynamic equationsPhys. Rev. E2011830309012011PhRvE..83c0901I10.1103/PhysRevE.83.030901
– reference: DaidoHQuasientrainment and slow relaxation in a population of oscillators with random and frustrated interactionsPhys. Rev. Lett.199268107310761992PhRvL..68.1073D1:STN:280:DC%2BC2sfptFersg%3D%3D1004607110.1103/PhysRevLett.68.1073
– reference: IvlevAVStatistical mechanics where Newton’s third law is brokenPhys. Rev. X20155011035
– reference: Sornette, D. Critical Phenomena in Natural Sciences (Springer, 2000).
– reference: SchmidPJNonmodal stability theoryAnnu. Rev. Fluid Mech.2007391291622007AnRFM..39..129S23094841296.7605510.1146/annurev.fluid.38.050304.092139
– reference: MurphyBKMillerKDBalanced amplification: a new mechanism of selective amplification of neural activity patternsNeuron2009616356481:CAS:528:DC%2BD1MXlt1Klsbs%3D19249282266795710.1016/j.neuron.2009.02.005correction 89, 235 (2016)
– reference: PottonRJReciprocity in opticsRep. Prog. Phys.2004677172004RPPh...67..717P10.1088/0034-4885/67/5/R03
– reference: FarrellFDCMarchettiMCMarenduzzoDTailleurJPattern formation in self-propelled particles with density-dependent motilityPhys. Rev. Lett.20121082481012012PhRvL.108x8101F1:STN:280:DC%2BC38bpsFertQ%3D%3D2300433610.1103/PhysRevLett.108.248101
– reference: HanaiRLittlewoodPBCritical fluctuations at a many-body exceptional pointPhys. Rev. Res.202020330181:CAS:528:DC%2BB3cXitVOku7zJ10.1103/PhysRevResearch.2.033018
– reference: Saha, S., Agudo-Canalejo, J. & Golestanian, R. Scalar active mixtures: the nonreciprocal Cahn–Hilliard model. Preprint at https://arxiv.org/abs/2005.07101 (2020).
– reference: WeigertSPT-symmetry and its spontaneous breakdown explained by anti-linearityJ. Opt. B20035S4162003JOptB...5S.416W10.1088/1464-4266/5/3/380
– reference: GrossmannSThe onset of shear flow turbulenceRev. Mod. Phys.2000726036182000RvMP...72..603G10.1103/RevModPhys.72.603
– reference: HatanoNNelsonDRLocalization transitions in non-Hermitian quantum mechanicsPhys. Rev. Lett.1996775705731996PhRvL..77..570H1:CAS:528:DyaK28XksVWhs74%3D1006284410.1103/PhysRevLett.77.570
– reference: BanerjeeDSouslovAAbanovAGVitelliVOdd viscosity in chiral active fluidsNat. Commun.201782017NatCo...8.1573B29146894569108610.1038/s41467-017-01378-7
– reference: Mostafazadeh, A. Physics of spectral singularities. In Trends in Mathematics (eds Kielanowski, P. et al.) 145–165 (Springer, 2015).
– reference: MasoudHStoneHAThe reciprocal theorem in fluid dynamics and transport phenomenaJ. Fluid Mech.2019879P12019JFM...879P...1M40189811430.7612910.1017/jfm.2019.553
– reference: NielsenHChadhaSOn how to count Goldstone bosonsNucl. Phys. B19761054451976NuPhB.105..445N10.1016/0550-3213(76)90025-0
– reference: GeyerDMorinABartoloDSounds and hydrodynamics of polar active fluidsNat. Mater.2018177892018NatMa..17..789G1:CAS:528:DC%2BC1cXht1OjsrnF2996746310.1038/s41563-018-0123-4
– reference: HongHStrogatzSHMean-field behavior in coupled oscillators with attractive and repulsive interactionsPhys. Rev. E2012850562102012PhRvE..85e6210H10.1103/PhysRevE.85.056210
– reference: RabaudMMichallandSCouderYDynamical regimes of directional viscous fingering: spatiotemporal chaos and wave propagationPhys. Rev. Lett.1990641841871990PhRvL..64..184R1:STN:280:DC%2BC2sfoslSksg%3D%3D1004167110.1103/PhysRevLett.64.184
– reference: MarvelSAMirolloREStrogatzSHIdentical phase oscillators with global sinusoidal coupling evolve by Möbius group actionChaos2009190431042009Chaos..19d3104M2603661200592001311.3408210.1063/1.3247089
– reference: Kato, T. Perturbation Theory for Linear Operators 2nd edn (Springer, 1984).
– reference: BertinEDrozMGrégoireGBoltzmann and hydrodynamic description for self-propelled particlesPhys. Rev. E2006740221012006PhRvE..74b2101B10.1103/PhysRevE.74.022101
– reference: KepesidisKVPT-symmetry breaking in the steady state of microscopic gain–loss systemsNew J. Phys.2016180950032016NJPh...18i5003K10.1088/1367-2630/18/9/095003
– reference: Henkel, M., Hinrichsen, H. & Lübeck, S. Non-equilibrium Phase Transitions Vol. 1 (Springer, 2008).
– reference: FlessellesJ-MSimonALibchaberADynamics of one-dimensional interfaces: an experimentalist’s viewAdv. Phys.19914011991AdPhy..40....1F1:CAS:528:DyaK3MXlt1Sltbo%3D10.1080/00018739100101462
– reference: CounillonCGlobal drift of a circular array of liquid columnsEurophys. Lett.199740371997EL.....40...37C1:CAS:528:DyaK2sXmslentLc%3D10.1209/epl/i1997-00421-1
– reference: YllanesDLeoniMMarchettiMCHow many dissenters does it take to disorder a flock?New J. Phys.2017191030262017NJPh...19j3026Y10.1088/1367-2630/aa8ed7
– reference: CoulaisCSounasDAlùAStatic non-reciprocity in mechanical metamaterialsNature20175424612017Natur.542..461C1:CAS:528:DC%2BC2sXisV2ktL4%3D2819278610.1038/nature21044
– reference: MorinACaussinJ-BEloyCBartoloDCollective motion with anticipation: flocking, spinning, and swarmingPhys. Rev. E2015910121342015PhRvE..91a2134M341664910.1103/PhysRevE.91.012134
– reference: NambuYQuasi-particles and gauge invariance in the theory of superconductivityPhys. Rev.19601176481960PhRv..117..648N12248510.1103/PhysRev.117.648
– reference: TonerJTuYLong-range order in a two-dimensional dynamical XY model: how birds fly togetherPhys. Rev. Lett.199575432643291995PhRvL..75.4326T1:CAS:528:DyaK2MXps1yhtLo%3D1005987610.1103/PhysRevLett.75.4326
– reference: BonillaLLTrenadoCContrarian compulsions produce exotic time-dependent flocking of active particlesPhys. Rev. E2019990126122019PhRvE..99a2612B1:CAS:528:DC%2BC1MXps1Ont7g%3D3078028910.1103/PhysRevE.99.012612
– reference: WienerRJMcAlisterDFParity breaking and solitary waves in axisymmetric Taylor vortex flowPhys. Rev. Lett.199269291529181992PhRvL..69.2915W1:STN:280:DC%2BC2sfptF2ktg%3D%3D1004667410.1103/PhysRevLett.69.2915
– reference: GinibreMAkamatsuSFaivreGExperimental determination of the stability diagram of a lamellar eutectic growth frontPhys. Rev. E1997567807961997PhRvE..56..780G1:CAS:528:DyaK2sXkvFGgur0%3D10.1103/PhysRevE.56.780
– reference: HohenbergPCHalperinBITheory of dynamic critical phenomenaRev. Mod. Phys.1977494354791977RvMP...49..435H1:CAS:528:DyaE2sXlt1artLw%3D10.1103/RevModPhys.49.435
– reference: RosaMINRuzzeneMDynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactionsNew J. Phys.2020220530042020NJPh...22e3004R412757610.1088/1367-2630/ab81b6
– reference: GrégoireGChatéHOnset of collective and cohesive motionPhys. Rev. Lett.2004920257022004PhRvL..92b5702G1475394610.1103/PhysRevLett.92.025702
– reference: HongHPeriodic synchronization and chimera in conformist and contrarian oscillatorsPhys. Rev. E2014890629242014PhRvE..89f2924H10.1103/PhysRevE.89.062924
– reference: DholakiaKZemánekPGripped by light: optical bindingRev. Mod. Phys.201082176717912010RvMP...82.1767D10.1103/RevModPhys.82.1767
– reference: Hoyle, R. Pattern Formation (Cambridge Univ. Press, 2006).
– reference: MaltmanKLaidlawWGOnsager symmetry and the diagonalizability of the hydrodynamic matrixJ. Math. Phys.19751615611975JMP....16.1561M41862210.1063/1.522724
– reference: van ZuidenBCPauloseJIrvineWTMBartoloDVitelliVSpatiotemporal order and emergent edge currents in active spinner materialsProc. Natl Acad. Sci. USA2016113129192016PNAS..11312919V2780332310.1073/pnas.1609572113
– reference: SakaguchiHKuramotoYA soluble active rotater model showing phase transitions via mutual entertainmentProg. Theor. Phys.1986765765811986PThPh..76..576S10.1143/PTP.76.576
– reference: NelsonDRShnerbNMNon-Hermitian localization and population biologyPhys. Rev. E19985813831998PhRvE..58.1383N16371171:CAS:528:DyaK1cXltVSmtbo%3D10.1103/PhysRevE.58.1383
– reference: AcebrónJABonillaLLVicenteCJPRitortFSpiglerRThe Kuramoto model: a simple paradigm for synchronization phenomenaRev. Mod. Phys.2005771371852005RvMP...77..137A10.1103/RevModPhys.77.137
– reference: SiebererLMHuberSDAltmanEDiehlSDynamical critical phenomena in driven-dissipative systemsPhys. Rev. Lett.20131101953012013PhRvL.110s5301S1:STN:280:DC%2BC3snntF2lsA%3D%3D2370571510.1103/PhysRevLett.110.195301
– reference: Aditi SimhaRRamaswamySHydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particlesPhys. Rev. Lett.2002890581012002PhRvL..89e8101A1:STN:280:DC%2BD38zps1Kqtg%3D%3D121444680994.7609910.1103/PhysRevLett.89.058101
– reference: BöbergLBrosaUOnset of turbulence in a pipeZ. Naturforsch. A1988436977261988ZNatA..43..697B10.1515/zna-1988-8-901
– reference: DurveMSahaASayeedAActive particle condensation by non-reciprocal and time-delayed interactionsEur. Phys. J. E2018412962626410.1140/epje/i2018-11653-4
– reference: LahiriRRamaswamySAre steadily moving crystals unstable?Phys. Rev. Lett.199779115011531997PhRvL..79.1150L1:CAS:528:DyaK2sXlsVOkuro%3D10.1103/PhysRevLett.79.1150
– reference: BressloffPCCowanJDGolubitskyMThomasPJWienerMCGeometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortexPhil. Trans. R. Soc. Lond. B20013562993301:STN:280:DC%2BD3MzlsFemtQ%3D%3D10.1098/rstb.2000.0769
– reference: ParisiGAsymmetric neural networks and the process of learningJ. Phys. Math. Gen.198619L6751986JPhA...19L.675P85167810.1088/0305-4470/19/11/005
– reference: BurnsKJVasilGMOishiJSLecoanetDBrownBPDedalus: a flexible framework for numerical simulations with spectral methodsPhys. Rev. Res.202020230681:CAS:528:DC%2BB3cXisVemtb3M10.1103/PhysRevResearch.2.023068
– reference: PikovskyARosenblumMPartially integrable dynamics of hierarchical populations of coupled oscillatorsPhys. Rev. Lett.20081012641032008PhRvL.101z4103P1943764210.1103/PhysRevLett.101.264103
– reference: LahiriRBarmaMRamaswamySStrong phase separation in a model of sedimenting latticesPhys. Rev. E20006116482000PhRvE..61.1648L1:CAS:528:DC%2BD3cXhtVGltrw%3D10.1103/PhysRevE.61.1648
– reference: CrossMCStructure of nonlinear traveling-wave states in finite geometriesPhys. Rev. A198838359336001988PhRvA..38.3593C1:STN:280:DC%2BC2sjovVarug%3D%3D10.1103/PhysRevA.38.3593
– reference: VicsekTCzirókABen-JacobECohenIShochetONovel type of phase transition in a system of self-driven particlesPhys. Rev. Lett.199575122612291995PhRvL..75.1226V33634211:CAS:528:DyaK2MXntlKntLo%3D10.1103/PhysRevLett.75.1226
– reference: HongHStrogatzSHConformists and contrarians in a Kuramoto model with identical natural frequenciesPhys. Rev. E2011840462022011PhRvE..84d6202H10.1103/PhysRevE.84.046202
– reference: PazóDMontbrióEExistence of hysteresis in the Kuramoto model with bimodal frequency distributionsPhys. Rev. E2009800462152009PhRvE..80d6215P10.1103/PhysRevE.80.046215
– reference: KassnerKMisbahCParity breaking in eutectic growthPhys. Rev. Lett.199065145814611990PhRvL..65.1458K1:STN:280:DC%2BC2sfoslKmtA%3D%3D1004227110.1103/PhysRevLett.65.1458
– reference: CrossMCKimKLinear instability and the codimension-2 region in binary fluid convection between rigid impermeable boundariesPhys. Rev. A198837390939201988PhRvA..37.3909C9419311:STN:280:DC%2BC2sjos12qtw%3D%3D10.1103/PhysRevA.37.3909
– reference: HongHStrogatzSHKuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillatorsPhys. Rev. Lett.20111060541022011PhRvL.106e4102H2140539910.1103/PhysRevLett.106.054102
– reference: CugliandoloLFKurchanJWeak ergodicity breaking in mean-field spin-glass modelsPhilos. Mag. B1995715015141995PMagB..71..501C1:CAS:528:DyaK2MXltV2ktLw%3D10.1080/01418639508238541
– reference: HelbigTGeneralized bulk–boundary correspondence in non-Hermitian topolectrical circuitsNat. Phys.2020167477501:CAS:528:DC%2BB3cXhtVGmtbzJ10.1038/s41567-020-0922-9
– reference: MishraSBaskaranAMarchettiMCFluctuations and pattern formation in self-propelled particlesPhys. Rev. E2010810619162010PhRvE..81f1916M10.1103/PhysRevE.81.061916
– reference: GoldstoneJField theories with superconductor solutionsNuovo Cim.1961191541641961NCim...19..154G1283740099.2300610.1007/BF02812722
– reference: Chaté, H. & Mahault, B. Dry, aligning, dilute, active matter: a synthetic and self-contained overview. Preprint at https://arxiv.org/abs/1906.05542 (2019).
– reference: NishiguchiDNagaiKHChatéHSanoMLong-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteriaPhys. Rev. E2017950206012017PhRvE..95b0601N2829791210.1103/PhysRevE.95.020601
– reference: Meron, E. Nonlinear Physics of Ecosystems (CRC Press, 2015).
– reference: BrunetPFlessellesJ-MLimatLParity breaking in a one-dimensional pattern: a quantitative study with controlled wavelengthEurophys. Lett.2001562212272001EL.....56..221B1:CAS:528:DC%2BD3MXosVKlsrg%3D10.1209/epl/i2001-00509-0
– reference: Chossat, P. & Lauterbach, R. Methods in Equivariant Bifurcations and Dynamical Systems (World Scientific, 2000).
– reference: AdiniYSagiDTsodyksMExcitatory–inhibitory network in the visual cortex: psychophysical evidenceProc. Natl Acad. Sci. USA19979410426104311997PNAS...9410426A1:CAS:528:DyaK2sXmt1GjtrY%3D929422710.1073/pnas.94.19.10426
– reference: You, Z., Baskaran, A. & Marchetti, M. C. Nonreciprocity as a generic route to traveling states. Preprint at https://arxiv.org/abs/2005.07684 (2020).
– reference: BernierNRTorreEGDDemlerEUnstable avoided crossing in coupled spinor condensatesPhys. Rev. Lett.20141130653032014PhRvL.113f5303B2514833410.1103/PhysRevLett.113.065303
– reference: BellonLFourtuneLMinassianVTRabaudMWave-number selection and parity-breaking bifurcation in directional viscous fingeringPhys. Rev. E1998585655741998PhRvE..58..565B1:CAS:528:DyaK1cXktlOltLg%3D10.1103/PhysRevE.58.565
– reference: KrupaMBifurcations of relative equilibriaSIAM J. Math. Anal.199021145310755870706.5804310.1137/0521081
– reference: BickCGoodfellowMLaingCRMartensEAUnderstanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a reviewJ. Math. Neurosci.20201041072123246228172535741448.9201110.1186/s13408-020-00086-9
– reference: ScheibnerCIrvineWTMVitelliVNon-Hermitian band topology and skin modes in active elastic mediaPhys. Rev. Lett.20201251180012020PhRvL.125k8001S41505881:CAS:528:DC%2BB3cXitVOktbfO3297601010.1103/PhysRevLett.125.118001
– reference: WilsonKThe renormalization group and the epsilon expansionPhys. Rep.197412751991974PhR....12...75W10.1016/0370-1573(74)90023-4
– reference: AbramsDMMirolloRStrogatzSHWileyDASolvable model for chimera states of coupled oscillatorsPhys. Rev. Lett.20081010841032008PhRvL.101h4103A1876461710.1103/PhysRevLett.101.084103
– reference: LevisDPagonabarragaILiebchenBActivity induced synchronization: mutual flocking and chiral self-sortingPhys. Rev. Res.201910230261:CAS:528:DC%2BB3cXhvVOhtrbP10.1103/PhysRevResearch.1.023026
– reference: PikovskyARosenblumMDynamics of heterogeneous oscillator ensembles in terms of collective variablesPhysica D20112408722011PhyD..240..872P27765891:CAS:528:DC%2BC3MXjsFyitrY%3D1233.3701410.1016/j.physd.2011.01.002
– reference: CrawfordJDKnoblochESymmetry and symmetry-breaking bifurcations in fluid dynamicsAnnu. Rev. Fluid Mech.1991233413871991AnRFM..23..341C10903320717.7600710.1146/annurev.fl.23.010191.002013
– reference: Hongo, M., Kim, S., Noumi, T. & Ota, A. Effective Lagrangian for Nambu–Goldstone modes in nonequilibrium open systems. Preprint at https://arxiv.org/abs/1907.08609 (2019).
– reference: ArmbrusterDGuckenheimerJHolmesPHeteroclinic cycles and modulated travelling waves in systems with O(2) symmetryPhysica D1988292571988PhyD...29..257A9392770634.3402710.1016/0167-2789(88)90032-2
– reference: BaggioGRuttenVHennequinGZampieriSEfficient communication over complex dynamical networks: the role of matrix non-normalitySci. Adv.20206eaba22822020SciA....6.2282B32518824725316610.1126/sciadv.aba2282
– reference: Arnold, V. I. Modes and quasimodes. Funct. Anal. Appl. 6, 94 (1972); translated from Funktsional. Anal. i Prilozhen. 6, 12–20 (1972).
– reference: SwiftJHohenbergPCHydrodynamic fluctuations at the convective instabilityPhys. Rev. A1977153191977PhRvA..15..319S10.1103/PhysRevA.15.319
– reference: RieckeHPaapH-GParity-breaking and Hopf bifurcations in axisymmetric Taylor vortex flowPhys. Rev. A199245860586101992PhRvA..45.8605R1:STN:280:DC%2BC2sjpsVCmsg%3D%3D990696010.1103/PhysRevA.45.8605
– reference: PinterALückeMHoffmannCCompetition between traveling fluid waves of left and right spiral vortices and their different amplitude combinationsPhys. Rev. Lett.2006960445062006PhRvL..96d4506P1:STN:280:DC%2BD287gtFyhug%3D%3D1648683210.1103/PhysRevLett.96.044506
– reference: AharonyanMTorreEGDMany-body exceptional points in colliding condensatesMol. Phys.201911719712019MolPh.117.1971A1:CAS:528:DC%2BC1MXhsF2qsL4%3D10.1080/00268976.2019.1567849
– reference: CartariusHMainJWunnerGDiscovery of exceptional points in the Bose–Einstein condensation of gases with attractive 1/r interactionPhys. Rev. A2008770136182008PhRvA..77a3618C10.1103/PhysRevA.77.013618
– reference: ButlerTCEvolutionary constraints on visual cortex architecture from the dynamics of hallucinationsProc. Natl Acad. Sci. USA20121096066092012PNAS..109..606B1:CAS:528:DC%2BC38Xht1entr8%3D2220396910.1073/pnas.1118672109
– reference: FauveSDouadySThualODrift instabilities of cellular patternsJ. Phys. II19911311
– reference: GaldaAVinokurVMExceptional points in classical spin dynamicsSci. Rep.201992019NatSR...917484G31767882687760910.1038/s41598-019-53455-0
– reference: MutabaziIAndereckCDMode resonance and wavelength-halving instability in the Taylor–Dean systemPhys. Rev. E199551438043901995PhRvE..51.4380M1:CAS:528:DyaK2MXlslOmtLo%3D10.1103/PhysRevE.51.4380
– reference: KrakauerJWGhazanfarAAGomez-MarinAMacIverMAPoeppelDNeuroscience needs behavior: correcting a reductionist biasNeuron2017934801:CAS:528:DC%2BC2sXjtVequrs%3D10.1016/j.neuron.2016.12.041
– reference: BenderCMBoettcherSReal spectra in non-Hermitian Hamiltonians having PT symmetryPhys. Rev. Lett.199880524352461998PhRvL..80.5243B16274421:CAS:528:DyaK1cXjvVyjsrw%3D0947.8101810.1103/PhysRevLett.80.5243
– reference: FleuryRSounasDLSieckCFHabermanMRAlùASound isolation and giant linear nonreciprocity in a compact acoustic circulatorScience20143435165192014Sci...343..516F1:CAS:528:DC%2BC2cXhtlajurs%3D2448247710.1126/science.1246957
– reference: ChomazJ-MGlobal instabilities in spatially developing flows: non-normality and nonlinearityAnnu. Rev. Fluid Mech.2005373573922005AnRFM..37..357C21153471117.7602710.1146/annurev.fluid.37.061903.175810
– reference: LanGSartoriPNeumannSSourjikVTuYThe energy–speed–accuracy trade-off in sensory adaptationNat. Phys.201284221:CAS:528:DC%2BC38XksVehsb4%3D22737175337806510.1038/nphys2276
– reference: MartensEAExact results for the Kuramoto model with a bimodal frequency distributionPhys. Rev. E2009790262042009PhRvE..79b6204M24972641:STN:280:DC%2BD1MzgtFyhtw%3D%3D10.1103/PhysRevE.79.026204
– reference: BertinEDrozMGrégoireGHydrodynamic equations for self-propelled particles: microscopic derivation and stability analysisJ. Phys. A Math. Theor.2009424450011422.7621410.1088/1751-8113/42/44/445001
– reference: WatanabeHCounting rules of Nambu–Goldstone modesAnnu. Rev. Condens. Matter Phys.2020111691:CAS:528:DC%2BC1MXitFOlurbN10.1146/annurev-conmatphys-031119-050644
– reference: Cross, M. & Greenside, H. Pattern Formation and Dynamics in Nonequilibrium Systems (Cambridge Univ. Press, 2009).
– reference: GuckenheimerJMultiple bifurcation problems of codimension twoSIAM J. Math. Anal.1984151491984SJMA...15....1G7286800543.3403410.1137/0515001
– reference: NicolaouZGNishikawaTNicholsonSBGreenJRMotterAENon-normality and non-monotonic dynamics in complex reaction networksPhys. Rev. Res.202020430591:CAS:528:DC%2BB3MXjtVygsro%3D10.1103/PhysRevResearch.2.043059
– reference: WignerEPNormal form of antiunitary operatorsJ. Math. Phys.196014091960JMP.....1..409W1175570096.4340110.1063/1.1703672
– reference: Agudo-CanalejoJGolestanianRActive phase separation in mixtures of chemically interacting particlesPhys. Rev. Lett.20191230181012019PhRvL.123a8101A1:CAS:528:DC%2BC1MXhvFelsLvO3138642010.1103/PhysRevLett.123.018101
– reference: MosesESteinbergVFlow patterns and nonlinear behavior of traveling waves in a convective binary fluidPhys. Rev. A1986346936961986PhRvA..34..693M1:CAS:528:DyaL28XkvVWmsb8%3D10.1103/PhysRevA.34.693erratum 35, 1444–1445 (1987)
– reference: TonerJTuYFlocks, herds, and schools: a quantitative theory of flockingPhys. Rev. E19985848281998PhRvE..58.4828T16513241:CAS:528:DyaK1cXmsFGjsbs%3D10.1103/PhysRevE.58.4828
– reference: Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Rev. Mater. (2020).
– reference: BenderCMBerryMVMandilaraAGeneralized PT symmetry and real spectraJ. Phys. Math. Gen.200235L4672002JPhA...35L.467B19288421066.8153710.1088/0305-4470/35/31/101
– reference: AvronJEOdd viscosityJ. Stat. Phys.19989254355716490140939.7600510.1023/A:1023084404080
– reference: TasakiHHohenberg–Mermin–Wagner-type theorems for equilibrium models of flockingPhys. Rev. Lett.20201252206012020PhRvL.125v0601T41884831:CAS:528:DC%2BB3cXisFyltrfK3331545410.1103/PhysRevLett.125.220601
– reference: WatanabeSStrogatzSHConstants of motion for superconducting Josephson arraysPhysica D1994741971994PhyD...74..197W0812.3404310.1016/0167-2789(94)90196-1
– reference: AsllaniMLambiotteRCarlettiTStructure and dynamical behavior of non-normal networksSci. Adv.20184eaau94032018SciA....4.9403A30547090629130910.1126/sciadv.aau9403
– reference: AsllaniMCarlettiTTopological resilience in non-normal networked systemsPhys. Rev. E2018970423022018PhRvE..97d2302A1:CAS:528:DC%2BC1MXkvFOrs7s%3D2975871610.1103/PhysRevE.97.042302
– reference: FodorÉHow far from equilibrium is active matter?Phys. Rev. Lett.20161170381032016PhRvL.117c8103F36269622747214510.1103/PhysRevLett.117.038103
– reference: OttEAntonsenTMLow dimensional behavior of large systems of globally coupled oscillatorsChaos2008180371132008Chaos..18c7113O2464324190454871309.3405810.1063/1.2930766
– reference: MalzardSPoliCSchomerusHTopologically protected defect states in open photonic systems with non-Hermitian charge conjugation and parity–time symmetryPhys. Rev. Lett.20151152004022015PhRvL.115t0402M2661342210.1103/PhysRevLett.115.200402
– reference: Schnabel, M., Kaschube, M. & Wolf, F. Pinwheel stability, pattern selection and the geometry of visual space. Preprint at https://arxiv.org/abs/0801.3832 (2008).
– reference: Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Self-sensing metamaterials with odd micropolarity. Preprint at https://arxiv.org/abs/2009.07329 (2020).
– reference: LiebchenBLevisDCollective behavior of chiral active matter: pattern formation and enhanced flockingPhys. Rev. Lett.20171190580022017PhRvL.119e8002L2894973210.1103/PhysRevLett.119.058002
– reference: Van HoveLTime-dependent correlations between spins and neutron scattering in ferromagnetic crystalsPhys. Rev.195495137413841954PhRv...95.1374V0057.4500410.1103/PhysRev.95.1374
– reference: PeshkovABertinEGinelliFChatéHBoltzmann–Ginzburg–Landau approach for continuous descriptions of generic Vicsek-like models. Eur. PhysJ. Spec. Top.2014223131510.1140/epjst/e2014-02193-y
– reference: ErmakDLMcCammonJABrownian dynamics with hydrodynamic interactionsJ. Chem. Phys.19786913521978JChPh..69.1352E1:CAS:528:DyaE1cXls12huro%3D10.1063/1.436761
– reference: MinamiYHidakaYSpontaneous symmetry breaking and Nambu–Goldstone modes in dissipative systemsPhys. Rev. E2018970121302018PhRvE..97a2130M10.1103/PhysRevE.97.012130
– reference: Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).
– reference: SimonAJBechhoeferJLibchaberASolitary modes and the Eckhaus instability in directional solidificationPhys. Rev. Lett.19886125741988PhRvL..61.2574S1:STN:280:DC%2BC2sfosVKhtw%3D%3D1003916010.1103/PhysRevLett.61.2574
– reference: MahaultBGinelliFChatéHQuantitative assessment of the Toner and Tu theory of polar flocksPhys. Rev. Lett.20191232180012019PhRvL.123u8001M1:CAS:528:DC%2BB3cXhvFylsLw%3D3180914410.1103/PhysRevLett.123.218001
– reference: LeeCHLiLGongJHybrid higher-order skin-topological modes in nonreciprocal systemsPhys. Rev. Lett.20191230168052019PhRvL.123a6805L1:CAS:528:DC%2BC1MXhvFanur%2FI3138640410.1103/PhysRevLett.123.016805
– reference: MaitraALenzMVoituriezRChiral active hexatics: giant number fluctuations, waves and destruction of orderPhys. Rev. Lett.20201252380052020PhRvL.125w8005M1:CAS:528:DC%2BB3MXpsFOn3333720810.1103/PhysRevLett.125.238005
– reference: MailybaevAAKirillovONSeyranianAPGeometric phase around exceptional pointsPhys. Rev. A2005720141042005PhRvA..72a4104M10.1103/PhysRevA.72.014104
– reference: KnoblochEProctorMRENonlinear periodic convection in double-diffusive systemsJ. Fluid Mech.19811082913161981JFM...108..291K6272300478.7605010.1017/S0022112081002139
– reference: FengLEl-GanainyRGeLNon-Hermitian photonics based on parity–time symmetryNat. Photon.2017117522017NaPho..11..752F1:CAS:528:DC%2BC2sXitVWnsL%2FK10.1038/s41566-017-0031-1
– reference: DaidoHPopulation dynamics of randomly interacting self-oscillators. I: Tractable models without frustrationProg. Theor. Phys.1987776221987PThPh..77..622D89882010.1143/PTP.77.622
– reference: HidakaYCounting rule for Nambu–Goldstone modes in nonrelativistic SystemsPhys. Rev. Lett.20131100916012013PhRvL.110i1601H2349670110.1103/PhysRevLett.110.091601
– reference: NeubertMGKlanjscekTCaswellHReactivity and transient dynamics of predator–prey and food web modelsEcol. Modell.20041792910.1016/j.ecolmodel.2004.05.001
– reference: Golubitsky, M. & Schaeffer, D. G. Singularities and Groups in Bifurcation Theory Vol. I (Springer, 1985).
– reference: PetersonCWParkerJRiceSASchererNFControlling the dynamics and optical binding of nanoparticle homodimers with transverse phase gradientsNano Lett.2019198979032019NanoL..19..897P3062407110.1021/acs.nanolett.8b04134
– reference: Khemani, V., Moessner, R. & Sondhi, S. L. A brief history of time crystals. Preprint at https://arxiv.org/abs/1910.10745 (2019).
– reference: KerswellRNonlinear nonmodal stability theoryAnnu. Rev. Fluid Mech.2018503193452018AnRFM..50..319K37532131384.7602210.1146/annurev-fluid-122316-045042
– reference: TrefethenLNTrefethenAEReddySCDriscollTAHydrodynamic stability without eigenvaluesScience19932615785841993Sci...261..578T12294951:STN:280:DC%2BC3cvis1Wnsg%3D%3D177581671226.7601310.1126/science.261.5121.578
– reference: MostafazadehAPseudo-Hermiticity versus PT-symmetry. III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetriesJ. Math. Phys.20024339442002JMP....43.3944M19156361061.8107510.1063/1.1489072
– reference: Golubitsky, M. & Stewart, I. The Symmetry Perspective (Birkhäuser, 2002).
– reference: LandauLKhalatnikovIOn the anomalous absorption of sound near a second-order phase transition pointDokl. Akad. Nauk SSSR195496469472
– reference: SotoRGolestanianRSelf-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistryPhys. Rev. Lett.20141120683012014PhRvL.112f8301S2458071210.1103/PhysRevLett.112.068301
– reference: Das, J., Rao, M. & Ramaswamy, S. Nonequilibrium steady states of the isotropic classical magnet. Preprint at https://arxiv.org/abs/cond-mat/0404071 (2004).
– reference: ChoMWKimSUnderstanding visual map formation through vortex dynamics of spin Hamiltonian modelsPhys. Rev. Lett.2004920181012004PhRvL..92a8101C1475402210.1103/PhysRevLett.92.018101
– reference: KemethFPHauglandSWSchmidtLKevrekidisIGKrischerKA classification scheme for chimera statesChaos2016260948152016Chaos..26i4815K2778148010.1063/1.4959804
– reference: LeeCHThomaleRAnatomy of skin modes and topology in non-Hermitian systemsPhys. Rev. B2019992011032019PhRvB..99t1103L1:CAS:528:DC%2BC1MXhsVOitrzM10.1103/PhysRevB.99.201103
– reference: BainNBartoloDDynamic response and hydrodynamics of polarized crowdsScience2019363462019Sci...363...46B38891911:CAS:528:DC%2BC1MXkvVOh306068371431.7613710.1126/science.aat9891
– reference: GraefeE-MKorschHJNiederleAEQuantum–classical correspondence for a non-Hermitian Bose–Hubbard dimerPhys. Rev. A2010820136292010PhRvA..82a3629G10.1103/PhysRevA.82.013629
– reference: AndereckCDLiuSSSwinneyHLFlow regimes in a circular Couette system with independently rotating cylindersJ. Fluid Mech.19861641551831986JFM...164..155A10.1017/S0022112086002513
– reference: Han, M. et al. Statistical mechanics of a chiral active fluid. Preprint at https://arxiv.org/abs/2002.07679 (2020).
– reference: Loos, S. A. M. & Klapp, S. H. L. Thermodynamic implications of non-reciprocity. Preprint at https://arxiv.org/abs/2008.00894 (2020).
– reference: KnoblochEHettelJDangelmayrGParity-breaking bifurcation in inhomogeneous systemsPhys. Rev. Lett.19957448391995PhRvL..74.4839K1:CAS:528:DyaK2MXmtFOltrw%3D100586120995.3402710.1103/PhysRevLett.74.4839
– reference: BressloffPCCowanJDGolubitskyMThomasPJWienerMCWhat geometric visual hallucinations tell us about the visual cortexNeural Comput.200214473491118606791037.9108310.1162/089976602317250861
– reference: BenderCMMannheimPDPT symmetry and necessary and sufficient conditions for the reality of energy eigenvaluesPhys. Lett. A2010374161616202010PhLA..374.1616B26018101:CAS:528:DC%2BC3cXjs1antLo%3D1236.8109510.1016/j.physleta.2010.02.032
– reference: MostafazadehAPseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian HamiltonianJ. Math. Phys.2002432052002JMP....43..205M18724941059.8107010.1063/1.1418246
– reference: WeissJBCoordinate invariance in stochastic dynamical systemsTellus2003A552082182003TellA..55..208W10.3402/tellusa.v55i3.12093
– reference: RidolfiLCamporealeCD’OdoricoPLaioFTransient growth induces unexpected deterministic spatial patterns in the Turing processEurophys. Lett.201195180032011EL.....9518003R10.1209/0295-5075/95/18003
– reference: RamosAFernández-AlcázarLKottosTShapiroBOptical phase transitions in photonic networks: a spin-system formulationPhys. Rev. X2020100310241:CAS:528:DC%2BB3cXitV2itLbP
– reference: CoulletPFauveSTirapeguiELarge scale instability of nonlinear standing wavesJ. Physique Lett.19854678779110.1051/jphyslet:019850046017078700
– reference: DangelmayrGKnoblochEThe Takens–Bogdanov bifurcation with O(2) symmetryPhil. Trans. R. Soc. Lond. A19873222432791987RSPTA.322..243D9021140635.5803210.1098/rsta.1987.0050
– reference: CoulletPHSpiegelEAAmplitude equations for systems with competing instabilitiesSIAM J. Appl. Math.1983437768217097380534.3500410.1137/0143052
– reference: Bogdanov, R. I. Versal deformations of a singularity of a vector field on the plane in the case of zero eigenvalues. Selecta Math. Sov. 1, 389 (1981); translated from Trudy Sem. Petrovsk. 2, 37–65 (1976).
– reference: DopplerJDynamically encircling an exceptional point for asymmetric mode switchingNature2016537762016Natur.537...76D1:CAS:528:DC%2BC28Xht1GrurjL2745455410.1038/nature18605
– reference: BrandHRHohenbergPCSteinbergVCodimension-2 bifurcations for convection in binary fluid mixturesPhys. Rev. A198430254825611984PhRvA..30.2548B1:CAS:528:DyaL2MXovFOm10.1103/PhysRevA.30.2548
– reference: KonotopVVYangJZezyulinDANonlinear waves in PT-symmetric systemsRev. Mod. Phys.2016880350022016RvMP...88c5002K10.1103/RevModPhys.88.035002
– reference: KryuchkovNPIvlevAVYurchenkoSODissipative phase transitions in systems with nonreciprocal effective interactionsSoft Matter20181497202018SMat...14.9720K1:CAS:528:DC%2BC1cXit1WhsrfM3046844010.1039/C8SM01836G
– reference: HofmannTHelbigTLeeCHGreiterMThomaleRChiral voltage propagation and calibration in a topolectrical Chern circuitPhys. Rev. Lett.20191222477022019PhRvL.122x7702H1:CAS:528:DC%2BC1MXhs12ltLjF3132240910.1103/PhysRevLett.122.247702
– reference: WatanabeHMurayamaHUnified description of Nambu–Goldstone bosons without Lorentz invariancePhys. Rev. Lett.20121082516022012PhRvL.108y1602W2300458410.1103/PhysRevLett.108.251602
– reference: WilczekFQuantum time crystalsPhys. Rev. Lett.20121091604012012PhRvL.109p0401W2321505610.1103/PhysRevLett.109.160401
– reference: Gardiner, C. W. Handbook of Stochastic Methods (Springer, 2004).
– reference: Von Neumann, J. & Wigner, E. P. Über das Verhalten von Eigenwerten bei adiabatischen Prozessen Physik. Zeit. 30, 467 (1929); translated in Symmetry in the Solid State (eds Knox, R. S. & Gold, A.) (Benjamin, New York, 1964).
– reference: MalomedBTribelskyMBifurcations in distributed kinetic systems with aperiodic instabilityPhysica D19841467871984PhyD...14...67M7815110587.3500710.1016/0167-2789(84)90005-8
– reference: DasJRaoMRamaswamySDriven Heisenberg magnets: nonequilibrium criticality, spatiotemporal chaos and controlEurophys. Lett.2002604184242002EL.....60..418D1:CAS:528:DC%2BD38XpslWktbc%3D10.1209/epl/i2002-00280-2
– reference: GoldstoneJSalamAWeinbergSBroken symmetriesPhys. Rev.19621279651962PhRv..127..965G1605000106.2060110.1103/PhysRev.127.965
– reference: BenderCMMaking sense of non-Hermitian HamiltoniansRep. Prog. Phys.2007709472007RPPh...70..947B233129410.1088/0034-4885/70/6/R03
– reference: MartensEABickCPanaggioMJChimera states in two populations with heterogeneous phase-lagChaos2016260948192016Chaos..26i4819M3538492277814711382.9222410.1063/1.4958930
– reference: PrigogineILefeverRSymmetry-breaking instabilities in dissipative systemsII. J. Chem. Phys.196848169517001968JChPh..48.1695P10.1063/1.1668896
– reference: HanaiREdelmanAOhashiYLittlewoodPBNon-Hermitian phase transition from a polariton Bose–Einstein condensate to a photon laserPhys. Rev. Lett.20191221853012019PhRvL.122r5301H1:CAS:528:DC%2BC1MXhtFKlsb%2FK3114488110.1103/PhysRevLett.122.185301
– reference: Arnold, V. I. Geometrical Methods in the Theory of Ordinary Differential Equations (Springer, 1988).
– reference: MostafazadehAPseudo-Hermiticity versus PT-symmetry. II: A complete characterization of non-Hermitian Hamiltonians with a real spectrumJ. Math. Phys.20024328142002JMP....43.2814M18937011060.8102210.1063/1.1461427
– reference: SchöpfWZimmermannWConvection in binary fluids: amplitude equations, codimension-2 bifurcation, and thermal fluctuationsPhys. Rev. E199347173917641993PhRvE..47.1739S137588610.1103/PhysRevE.47.1739
– reference: Gupta, R. K., Kant, R., Soni, H., Sood, A. K. & Ramaswamy, S. Active nonreciprocal attraction between motile particles in an elastic medium. Preprint at https://arxiv.org/abs/2007.04860 (2020).
– reference: StrackPVitelliVSoft quantum vibrations of a PT-symmetric nonlinear ion chainPhys. Rev. A2013880534082013PhRvA..88e3408S10.1103/PhysRevA.88.053408
– reference: EstepNASounasDLSoricJAlùAMagnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loopsNat. Phys.2014109231:CAS:528:DC%2BC2cXhvFKlsrzE10.1038/nphys3134
– reference: YaoNYNayakCTime crystals in periodically driven systemsPhys. Today2018714010.1063/PT.3.4020
– reference: FarrellBFIoannouPJVariance maintained by stochastic forcing of non-normal dynamical systems associated with linearly stable shear flowsPhys. Rev. Lett.199472118811911994PhRvL..72.1188F1:STN:280:DC%2BC2sfps1Sjsg%3D%3D1005664510.1103/PhysRevLett.72.1188
– reference: Bogdanov, R. I. Bifurcations of a limit cycle for a family of vector fields on the plane. Selecta Math. Sov. 1, 373 (1981); translated from Trudy Sem. Petrovsk. 2, 23–35 (1976).
– reference: PanLde BruynJRSpatially uniform traveling cellular patterns at a driven interfacePhys. Rev. E1994494834931994PhRvE..49..483P1:CAS:528:DyaK2cXitVWju7k%3D10.1103/PhysRevE.49.483
– reference: Risken, H. The Fokker–Planck Equation (Springer, 1989).
– reference: Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. Vorticity And Vortex Dynamics (Springer, 2006).
– reference: BensimonDPumirAShraimanBNonlinear theory of traveling wave convection in binary mixturesJ. Phys. France1989503089310810.1051/jphys:0198900500200308900
– volume: 69
  start-page: 1352
  year: 1978
  ident: 3375_CR122
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.436761
– volume: 14
  start-page: 9720
  year: 2018
  ident: 3375_CR125
  publication-title: Soft Matter
  doi: 10.1039/C8SM01836G
– volume: 43
  start-page: 3944
  year: 2002
  ident: 3375_CR108
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1489072
– volume: 97
  start-page: 042302
  year: 2018
  ident: 3375_CR91
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.042302
– volume: 63
  start-page: 1954
  year: 1989
  ident: 3375_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.1954
– volume: 34
  start-page: 693
  year: 1986
  ident: 3375_CR286
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.34.693
– ident: 3375_CR154
– volume: 110
  start-page: 195301
  year: 2013
  ident: 3375_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.195301
– volume: 60
  start-page: 418
  year: 2002
  ident: 3375_CR38
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2002-00280-2
– ident: 3375_CR300
  doi: 10.1007/978-1-4612-4300-7
– volume: 84
  start-page: 046202
  year: 2011
  ident: 3375_CR135
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.046202
– ident: 3375_CR177
  doi: 10.1007/978-3-662-11832-0
– volume: 109
  start-page: 606
  year: 2012
  ident: 3375_CR296
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1118672109
– volume: 51
  start-page: 4380
  year: 1995
  ident: 3375_CR303
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.51.4380
– ident: 3375_CR84
  doi: 10.1007/978-3-540-29028-5
– volume: 82
  start-page: 1767
  year: 2010
  ident: 3375_CR128
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1767
– volume: 19
  start-page: 103026
  year: 2017
  ident: 3375_CR5
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa8ed7
– volume: 96
  start-page: 469
  year: 1954
  ident: 3375_CR57
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 64
  start-page: 866
  year: 1990
  ident: 3375_CR263
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.866
– volume: 89
  start-page: 062924
  year: 2014
  ident: 3375_CR309
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.062924
– volume: 49
  start-page: 435
  year: 1977
  ident: 3375_CR32
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.49.435
– volume: 92
  start-page: 543
  year: 1998
  ident: 3375_CR172
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1023084404080
– volume: 108
  start-page: 251602
  year: 2012
  ident: 3375_CR186
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.251602
– volume: 45
  start-page: 8605
  year: 1992
  ident: 3375_CR301
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8605
– volume: 12
  start-page: 113035
  year: 2010
  ident: 3375_CR307
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/11/113035
– volume: 223
  start-page: 1315
  year: 2014
  ident: 3375_CR209
  publication-title: J. Spec. Top.
  doi: 10.1140/epjst/e2014-02193-y
– volume: 78
  start-page: 653
  year: 1997
  ident: 3375_CR95
  publication-title: Ecology
  doi: 10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2
– volume: 76
  start-page: 576
  year: 1986
  ident: 3375_CR36
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.76.576
– volume: 35
  start-page: L467
  year: 2002
  ident: 3375_CR109
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/35/31/101
– volume: 112
  start-page: 068301
  year: 2014
  ident: 3375_CR126
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.068301
– ident: 3375_CR102
– volume: 65
  start-page: 1458
  year: 1990
  ident: 3375_CR273
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.65.1458
– volume: 93
  start-page: 480
  year: 2017
  ident: 3375_CR131
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.12.041
– ident: 3375_CR53
  doi: 10.1007/978-1-4757-3484-3
– volume: 4
  start-page: 041044
  year: 2014
  ident: 3375_CR101
  publication-title: Phys. Rev. X
– ident: 3375_CR256
  doi: 10.1017/CBO9780511616051
– volume: 113
  start-page: 065303
  year: 2014
  ident: 3375_CR104
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.065303
– ident: #cr-split#-3375_CR178.2
  doi: 10.1016/S0001-2092(07)64531-1
– ident: #cr-split#-3375_CR179.1
– ident: #cr-split#-3375_CR192.1
  doi: 10.1007/BF01077511
– ident: 3375_CR73
– volume: 125
  start-page: 126402
  year: 2020
  ident: 3375_CR161
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.126402
– volume: 4
  start-page: 167
  year: 1987
  ident: 3375_CR133
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/4/2/007
– volume: 74
  start-page: 022101
  year: 2006
  ident: 3375_CR205
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.022101
– volume: 89
  start-page: 058101
  year: 2002
  ident: 3375_CR223
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.058101
– volume: 110
  start-page: 184102
  year: 2013
  ident: 3375_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.184102
– volume: 117
  start-page: 1971
  year: 2019
  ident: 3375_CR105
  publication-title: Mol. Phys.
  doi: 10.1080/00268976.2019.1567849
– volume: 117
  start-page: 648
  year: 1960
  ident: 3375_CR181
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.117.648
– volume: 117
  start-page: 29561
  year: 2020
  ident: 3375_CR147
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2010580117
– volume: 46
  start-page: 787
  year: 1985
  ident: 3375_CR288
  publication-title: J. Physique Lett.
  doi: 10.1051/jphyslet:019850046017078700
– volume: 43
  start-page: 2814
  year: 2002
  ident: 3375_CR107
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1461427
– volume: 74
  start-page: 4839
  year: 1995
  ident: 3375_CR265
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.4839
– volume: 88
  start-page: 053408
  year: 2013
  ident: 3375_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.053408
– volume: 259
  start-page: 185
  year: 1980
  ident: 3375_CR200
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1980-0561832-4
– volume: 83
  start-page: 030901
  year: 2011
  ident: 3375_CR210
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.030901
– ident: #cr-split#-3375_CR180.1
– volume: 104
  start-page: 178103
  year: 2010
  ident: 3375_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.178103
– volume: 2
  start-page: 023173
  year: 2020
  ident: 3375_CR169
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023173
– volume: 11
  start-page: 169
  year: 2020
  ident: 3375_CR185
  publication-title: Annu. Rev. Condens. Matter Phys.
  doi: 10.1146/annurev-conmatphys-031119-050644
– volume: 364
  start-page: 70
  year: 2019
  ident: 3375_CR6
  publication-title: Science
  doi: 10.1126/science.aau5347
– volume: 93
  start-page: 042310
  year: 2016
  ident: 3375_CR90
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.042310
– volume: 85
  start-page: 056210
  year: 2012
  ident: 3375_CR229
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.056210
– volume: 7
  start-page: 1655
  year: 1994
  ident: 3375_CR195
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/7/6/008
– volume: 8
  start-page: 074
  year: 2020
  ident: 3375_CR76
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.8.5.074
– volume: 43
  start-page: 697
  year: 1988
  ident: 3375_CR79
  publication-title: Z. Naturforsch. A
  doi: 10.1515/zna-1988-8-901
– volume: 85
  start-page: 1143
  year: 2013
  ident: 3375_CR77
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1143
– volume: 48
  start-page: 1695
  year: 1968
  ident: 3375_CR315
  publication-title: II. J. Chem. Phys.
  doi: 10.1063/1.1668896
– volume: 12
  start-page: 75
  year: 1974
  ident: 3375_CR62
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(74)90023-4
– volume: 120
  start-page: 215301
  year: 2018
  ident: 3375_CR317
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.215301
– volume: 46
  start-page: 305001
  year: 2013
  ident: 3375_CR255
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/46/30/305001
– volume: 94
  start-page: 032205
  year: 2016
  ident: 3375_CR234
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.032205
– volume: 61
  start-page: 2574
  year: 1988
  ident: 3375_CR269
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2574
– volume: 26
  start-page: 094815
  year: 2016
  ident: 3375_CR310
  publication-title: Chaos
  doi: 10.1063/1.4959804
– volume: 94
  start-page: 214301
  year: 2005
  ident: 3375_CR215
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.214301
– ident: 3375_CR299
  doi: 10.1016/S0079-6123(04)47009-5
– volume: 30
  start-page: 2548
  year: 1984
  ident: 3375_CR284
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.30.2548
– volume: 117
  start-page: 038103
  year: 2016
  ident: 3375_CR152
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.038103
– volume: 43
  start-page: 776
  year: 1983
  ident: 3375_CR281
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0143052
– volume: 9
  start-page: 779
  year: 1989
  ident: 3375_CR43
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/9/8/007
– volume: 123
  start-page: 018101
  year: 2019
  ident: 3375_CR127
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.018101
– volume: 69
  start-page: 2915
  year: 1992
  ident: 3375_CR305
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2915
– volume: 19
  start-page: 023117
  year: 2009
  ident: 3375_CR236
  publication-title: Chaos
  doi: 10.1063/1.3136851
– volume: 38
  start-page: 3593
  year: 1988
  ident: 3375_CR282
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3593
– volume: 77
  start-page: 013618
  year: 2008
  ident: 3375_CR254
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.77.013618
– volume: 19
  start-page: 725
  year: 2020
  ident: 3375_CR47
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0635-6
– volume: 95
  start-page: 1374
  year: 1954
  ident: 3375_CR60
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.95.1374
– volume: 18
  start-page: 093006
  year: 2016
  ident: 3375_CR212
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/9/093006
– volume: 40
  start-page: 37
  year: 1997
  ident: 3375_CR277
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1997-00421-1
– volume: 120
  start-page: 140401
  year: 2018
  ident: 3375_CR316
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.140401
– volume: 115
  start-page: 200402
  year: 2015
  ident: 3375_CR155
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.200402
– volume: 16
  start-page: 747
  year: 2020
  ident: 3375_CR20
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0922-9
– ident: 3375_CR162
  doi: 10.1017/CBO9780511550485
– ident: 3375_CR75
  doi: 10.1017/9781107278974
– volume: 16
  start-page: 515
  year: 2005
  ident: 3375_CR136
  publication-title: Int. J. Mod. Phys. C
  doi: 10.1142/S0129183105007261
– volume: 109
  start-page: 160402
  year: 2012
  ident: 3375_CR312
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.160402
– volume: 10
  start-page: 041016
  year: 2020
  ident: 3375_CR87
  publication-title: Phys. Rev. X
– ident: 3375_CR141
– volume: 99
  start-page: 201103
  year: 2019
  ident: 3375_CR156
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.201103
– volume: 42
  start-page: 445001
  year: 2009
  ident: 3375_CR206
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8113/42/44/445001
– volume: 19
  start-page: 897
  year: 2019
  ident: 3375_CR130
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04134
– volume: 1
  start-page: 1
  year: 1995
  ident: 3375_CR193
  publication-title: Selecta Mathematica
  doi: 10.1007/BF01614072
– volume: 99
  start-page: 012612
  year: 2019
  ident: 3375_CR39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.012612
– volume: 110
  start-page: 091601
  year: 2013
  ident: 3375_CR184
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.091601
– volume: 61
  start-page: 635
  year: 2009
  ident: 3375_CR88
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.02.005
– volume: 71
  start-page: 501
  year: 1995
  ident: 3375_CR58
  publication-title: Philos. Mag. B
  doi: 10.1080/01418639508238541
– ident: 3375_CR71
  doi: 10.1142/4062
– volume: 67
  start-page: 717
  year: 2004
  ident: 3375_CR164
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/67/5/R03
– ident: 3375_CR176
– volume: 29
  start-page: 257
  year: 1988
  ident: 3375_CR266
  publication-title: Physica D
  doi: 10.1016/0167-2789(88)90032-2
– ident: 3375_CR63
– ident: 3375_CR257
  doi: 10.1017/CBO9780511627200
– volume: 65
  start-page: 851
  year: 1993
  ident: 3375_CR40
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.851
– volume: 55
  start-page: 496
  year: 1985
  ident: 3375_CR287
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.496
– volume: 80
  start-page: 5243
  year: 1998
  ident: 3375_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5243
– volume: 188
  start-page: 301
  year: 1988
  ident: 3375_CR267
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112088000746
– volume: 96
  start-page: 044506
  year: 2006
  ident: 3375_CR308
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.044506
– ident: 3375_CR56
  doi: 10.1103/PhysRevX.10.041009
– volume: 4
  start-page: 1017
  year: 1987
  ident: 3375_CR261
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/4/9/011
– ident: 3375_CR111
  doi: 10.1007/978-3-319-18212-4_10
– volume: 117
  start-page: 248001
  year: 2016
  ident: 3375_CR140
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.248001
– volume: 125
  start-page: 118001
  year: 2020
  ident: 3375_CR168
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.118001
– volume: 123
  start-page: 016805
  year: 2019
  ident: 3375_CR160
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.016805
– volume: 464
  start-page: 890
  year: 2010
  ident: 3375_CR4
  publication-title: Nature
  doi: 10.1038/nature08891
– volume: 21
  start-page: 063006
  year: 2019
  ident: 3375_CR3
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab20fd
– volume: 79
  start-page: 1150
  year: 1997
  ident: 3375_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1150
– volume: 23
  start-page: 341
  year: 1991
  ident: 3375_CR70
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.23.010191.002013
– volume: 42
  start-page: 4693
  year: 1990
  ident: 3375_CR290
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.42.4693
– volume: 261
  start-page: 578
  year: 1993
  ident: 3375_CR52
  publication-title: Science
  doi: 10.1126/science.261.5121.578
– volume: 18
  start-page: 037113
  year: 2008
  ident: 3375_CR230
  publication-title: Chaos
  doi: 10.1063/1.2930766
– ident: 3375_CR69
  doi: 10.1007/978-1-4612-4574-2
– volume: 122
  start-page: 247702
  year: 2019
  ident: 3375_CR159
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.247702
– ident: 3375_CR23
  doi: 10.1007/978-1-4757-3978-7
– volume: 71
  start-page: 40
  year: 2018
  ident: 3375_CR314
  publication-title: Phys. Today
  doi: 10.1063/PT.3.4020
– ident: #cr-split#-3375_CR180.2
– volume: 80
  start-page: 046215
  year: 2009
  ident: 3375_CR244
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.046215
– volume: 77
  start-page: 622
  year: 1987
  ident: 3375_CR225
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.77.622
– volume: 101
  start-page: 084103
  year: 2008
  ident: 3375_CR231
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.084103
– volume: 17
  start-page: 789
  year: 2018
  ident: 3375_CR202
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0123-4
– volume: 129
  start-page: 171
  year: 1999
  ident: 3375_CR196
  publication-title: Physica D
  doi: 10.1016/S0167-2789(99)00007-X
– ident: 3375_CR153
– volume: 91
  start-page: 035002
  year: 2019
  ident: 3375_CR59
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.035002
– volume: A55
  start-page: 208
  year: 2003
  ident: 3375_CR120
  publication-title: Tellus
  doi: 10.3402/tellusa.v55i3.12093
– ident: 3375_CR170
– volume: 112
  start-page: 148102
  year: 2014
  ident: 3375_CR220
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.148102
– volume: 4
  start-page: eaau9403
  year: 2018
  ident: 3375_CR92
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau9403
– ident: #cr-split#-3375_CR178.1
– volume: 58
  start-page: 4828
  year: 1998
  ident: 3375_CR201
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.4828
– volume: 40
  start-page: 1
  year: 1991
  ident: 3375_CR270
  publication-title: Adv. Phys.
  doi: 10.1080/00018739100101462
– volume: 1
  start-page: 023026
  year: 2019
  ident: 3375_CR218
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.1.023026
– volume: 118
  start-page: 018101
  year: 2017
  ident: 3375_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.018101
– volume: 14
  start-page: 473
  year: 2002
  ident: 3375_CR293
  publication-title: Neural Comput.
  doi: 10.1162/089976602317250861
– volume: 70
  start-page: 947
  year: 2007
  ident: 3375_CR112
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/70/6/R03
– volume: 94
  start-page: 020408(R)
  year: 2016
  ident: 3375_CR250
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.020408
– volume: 356
  start-page: 299
  year: 2001
  ident: 3375_CR292
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2000.0769
– volume: 2
  start-page: 043059
  year: 2020
  ident: 3375_CR94
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.043059
– volume: 46
  start-page: 963
  year: 1992
  ident: 3375_CR272
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.46.963
– volume: 96
  start-page: 042208
  year: 2017
  ident: 3375_CR235
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.042208
– volume: 164
  start-page: 155
  year: 1986
  ident: 3375_CR306
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112086002513
– volume: 10
  start-page: 1093
  year: 1997
  ident: 3375_CR268
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/10/5/006
– ident: 3375_CR258
  doi: 10.1201/b18360
– volume: 3
  start-page: 191
  year: 2004
  ident: 3375_CR297
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/030600503
– volume: 5
  start-page: 011035
  year: 2015
  ident: 3375_CR8
  publication-title: Phys. Rev. X
– volume: 72
  start-page: 603
  year: 2000
  ident: 3375_CR82
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.72.603
– ident: 3375_CR116
  doi: 10.1016/B978-044452965-7/50004-0
– ident: 3375_CR295
  doi: 10.1186/1471-2202-10-S1-P64
– volume: 15
  start-page: 1188
  year: 2019
  ident: 3375_CR175
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0603-8
– volume: 43
  start-page: 205
  year: 2002
  ident: 3375_CR106
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1418246
– volume: 19
  start-page: 043104
  year: 2009
  ident: 3375_CR239
  publication-title: Chaos
  doi: 10.1063/1.3247089
– ident: 3375_CR134
– volume: 537
  start-page: 76
  year: 2016
  ident: 3375_CR246
  publication-title: Nature
  doi: 10.1038/nature18605
– volume: 10
  year: 2019
  ident: 3375_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12599-3
– volume: 39
  start-page: 129
  year: 2007
  ident: 3375_CR85
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.38.050304.092139
– volume: 105
  start-page: 445
  year: 1976
  ident: 3375_CR187
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(76)90025-0
– volume: 21
  start-page: 1453
  year: 1990
  ident: 3375_CR199
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0521081
– volume: 11
  start-page: 839
  year: 2015
  ident: 3375_CR213
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3423
– ident: 3375_CR224
  doi: 10.1007/978-3-642-69689-3
– volume: 16
  start-page: 475
  year: 2020
  ident: 3375_CR19
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0795-y
– volume: 97
  start-page: 012130
  year: 2018
  ident: 3375_CR189
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.012130
– volume: 119
  start-page: 058002
  year: 2017
  ident: 3375_CR216
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.058002
– volume: 92
  start-page: 018101
  year: 2004
  ident: 3375_CR294
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.018101
– ident: #cr-split#-3375_CR192.2
– volume: 322
  start-page: 243
  year: 1987
  ident: 3375_CR198
  publication-title: Phil. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.1987.0050
– volume: 123
  start-page: 218001
  year: 2019
  ident: 3375_CR211
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.218001
– ident: 3375_CR22
  doi: 10.1007/978-3-0348-8167-8
– volume: 19
  start-page: L675
  year: 1986
  ident: 3375_CR132
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/19/11/005
– volume: 9
  year: 2019
  ident: 3375_CR251
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53455-0
– volume: 120
  start-page: 244101
  year: 2018
  ident: 3375_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.244101
– volume: 94
  start-page: 041104
  year: 2016
  ident: 3375_CR103
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.041104
– volume: 47
  start-page: 1739
  year: 1993
  ident: 3375_CR291
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.1739
– volume: 64
  start-page: 184
  year: 1990
  ident: 3375_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.184
– volume: 90
  start-page: 031001
  year: 2018
  ident: 3375_CR64
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.031001
– ident: 3375_CR197
  doi: 10.1090/conm/056/855089
– volume: 75
  start-page: 1226
  year: 1995
  ident: 3375_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.1226
– volume: 339
  start-page: 936
  year: 2013
  ident: 3375_CR27
  publication-title: Science
  doi: 10.1126/science.1230020
– volume: 7
  start-page: 371
  year: 1997
  ident: 3375_CR81
  publication-title: J. Phys. II
– volume: 8
  year: 2017
  ident: 3375_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15791
– volume: 58
  start-page: 1383
  year: 1998
  ident: 3375_CR96
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.1383
– volume: 106
  start-page: 054102
  year: 2011
  ident: 3375_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.054102
– volume: 78
  start-page: 031406
  year: 2008
  ident: 3375_CR123
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.031406
– volume: 108
  start-page: 248101
  year: 2012
  ident: 3375_CR207
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.248101
– ident: 3375_CR191
– ident: 3375_CR54
– volume: 75
  start-page: 4326
  year: 1995
  ident: 3375_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4326
– ident: 3375_CR72
  doi: 10.1007/978-3-642-66784-8
– volume: 8
  year: 2017
  ident: 3375_CR173
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01378-7
– ident: 3375_CR68
  doi: 10.1007/978-1-4612-5034-0
– volume: 61
  start-page: 1648
  year: 2000
  ident: 3375_CR124
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.1648
– volume: 77
  start-page: 137
  year: 2005
  ident: 3375_CR33
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.137
– volume: 112
  start-page: 12729
  year: 2015
  ident: 3375_CR138
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1503749112
– ident: 3375_CR208
– volume: 72
  start-page: 014104
  year: 2005
  ident: 3375_CR249
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.014104
– volume: 94
  start-page: 10426
  year: 1997
  ident: 3375_CR298
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.94.19.10426
– volume: 122
  start-page: 185301
  year: 2019
  ident: 3375_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.185301
– volume: 57
  start-page: 2861
  year: 1986
  ident: 3375_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2861
– volume: 19
  start-page: 154
  year: 1961
  ident: 3375_CR182
  publication-title: Nuovo Cim.
  doi: 10.1007/BF02812722
– volume: 98
  start-page: 062219
  year: 2018
  ident: 3375_CR245
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.98.062219
– volume: 92
  start-page: 063807
  year: 2015
  ident: 3375_CR45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.063807
– volume: 25
  start-page: L987
  year: 1992
  ident: 3375_CR188
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/25/15/015
– volume: 50
  start-page: 3089
  year: 1989
  ident: 3375_CR289
  publication-title: J. Phys. France
  doi: 10.1051/jphys:0198900500200308900
– volume: 31
  start-page: 397
  year: 1988
  ident: 3375_CR226
  publication-title: Physica D
  doi: 10.1016/0167-2789(88)90005-X
– volume: 72
  start-page: 1188
  year: 1994
  ident: 3375_CR80
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.1188
– volume: 56
  start-page: 780
  year: 1997
  ident: 3375_CR274
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.780
– ident: 3375_CR78
  doi: 10.1515/9780691213101
– volume: 91
  start-page: 012134
  year: 2015
  ident: 3375_CR137
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.012134
– volume: 102
  start-page: 085151
  year: 2020
  ident: 3375_CR157
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.102.085151
– volume: 74
  start-page: 197
  year: 1994
  ident: 3375_CR238
  publication-title: Physica D
  doi: 10.1016/0167-2789(94)90196-1
– volume: 38
  start-page: 1723
  year: 2005
  ident: 3375_CR194
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/38/8/009
– volume: 10
  start-page: 309
  year: 1989
  ident: 3375_CR262
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/10/4/005
– volume: 74
  start-page: 99
  year: 2002
  ident: 3375_CR67
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.99
– volume: 41
  year: 2018
  ident: 3375_CR143
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2018-11653-4
– volume: 5
  start-page: S416
  year: 2003
  ident: 3375_CR113
  publication-title: J. Opt. B
  doi: 10.1088/1464-4266/5/3/380
– volume: 1
  start-page: 409
  year: 1960
  ident: 3375_CR114
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1703672
– volume: 64
  start-page: 1381
  year: 1990
  ident: 3375_CR271
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.1381
– volume: 5
  start-page: 021025
  year: 2015
  ident: 3375_CR29
  publication-title: Phys. Rev. X
– volume: 122
  start-page: 128001
  year: 2019
  ident: 3375_CR174
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.128001
– volume: 70
  start-page: 2391
  year: 1993
  ident: 3375_CR237
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.2391
– volume: 58
  start-page: 565
  year: 1998
  ident: 3375_CR276
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.565
– volume: 15
  start-page: 1
  year: 1984
  ident: 3375_CR285
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0515001
– volume: 92
  start-page: 052124
  year: 2015
  ident: 3375_CR248
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.92.052124
– volume: 10
  start-page: 031024
  year: 2020
  ident: 3375_CR48
  publication-title: Phys. Rev. X
– volume: 86
  start-page: 011909
  year: 2012
  ident: 3375_CR89
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.011909
– volume: 113
  start-page: 79
  year: 1998
  ident: 3375_CR228
  publication-title: Physica D
  doi: 10.1016/S0167-2789(97)00187-5
– volume: 106
  start-page: 213901
  year: 2011
  ident: 3375_CR145
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.213901
– volume: 879
  start-page: P1
  year: 2019
  ident: 3375_CR167
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.553
– volume: 15
  start-page: 319
  year: 1977
  ident: 3375_CR259
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.15.319
– volume: 120
  start-page: 264101
  year: 2018
  ident: 3375_CR241
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.264101
– volume: 8
  year: 2017
  ident: 3375_CR217
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01190-3
– volume: 47
  start-page: 1727
  year: 1993
  ident: 3375_CR275
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.47.1727
– volume: 37
  start-page: 357
  year: 2005
  ident: 3375_CR83
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175810
– volume: 10
  start-page: 047001
  year: 2018
  ident: 3375_CR166
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.047001
– volume: 56
  start-page: 221
  year: 2001
  ident: 3375_CR44
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2001-00509-0
– volume: 22
  start-page: 053004
  year: 2020
  ident: 3375_CR148
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab81b6
– ident: 3375_CR150
– volume: 95
  start-page: 020601
  year: 2017
  ident: 3375_CR214
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.95.020601
– volume: 101
  start-page: 264103
  year: 2008
  ident: 3375_CR232
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.264103
– volume: 5
  start-page: 021028
  year: 2015
  ident: 3375_CR242
  publication-title: Phys. Rev. X
– ident: 3375_CR117
  doi: 10.1007/978-3-642-61544-3
– ident: 3375_CR149
– ident: 3375_CR66
– volume: 37
  start-page: 3909
  year: 1988
  ident: 3375_CR279
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.37.3909
– volume: 50
  start-page: 319
  year: 2018
  ident: 3375_CR86
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122316-045042
– ident: 3375_CR118
  doi: 10.1007/978-3-662-05389-8
– ident: #cr-split#-3375_CR179.2
– volume: 374
  start-page: 1616
  year: 2010
  ident: 3375_CR110
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2010.02.032
– volume: 82
  start-page: 013629
  year: 2010
  ident: 3375_CR253
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.013629
– volume: 125
  start-page: 238005
  year: 2020
  ident: 3375_CR142
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.238005
– volume: 125
  start-page: 220601
  year: 2020
  ident: 3375_CR151
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.220601
– ident: 3375_CR163
  doi: 10.1038/s41578-020-0206-0
– volume: 54
  start-page: 5053
  year: 1996
  ident: 3375_CR302
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.54.5053
– volume: 127
  start-page: 965
  year: 1962
  ident: 3375_CR183
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.127.965
– volume: 125
  start-page: 20008
  year: 2019
  ident: 3375_CR144
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/125/20008
– volume: 113
  start-page: 12919
  year: 2016
  ident: 3375_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1609572113
– volume: 26
  start-page: 094819
  year: 2016
  ident: 3375_CR233
  publication-title: Chaos
  doi: 10.1063/1.4958930
– volume: 109
  start-page: 160401
  year: 2012
  ident: 3375_CR313
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.160401
– volume: 81
  start-page: 061916
  year: 2010
  ident: 3375_CR221
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.81.061916
– ident: 3375_CR1
– volume: 10
  start-page: 923
  year: 2014
  ident: 3375_CR165
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3134
– volume: 68
  start-page: 1073
  year: 1992
  ident: 3375_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.1073
– volume: 343
  start-page: 516
  year: 2014
  ident: 3375_CR16
  publication-title: Science
  doi: 10.1126/science.1246957
– volume: 1
  start-page: 311
  year: 1991
  ident: 3375_CR264
  publication-title: J. Phys. II
– ident: 3375_CR21
– volume: 29
  start-page: L613
  year: 1996
  ident: 3375_CR204
  publication-title: J. Phys. Math. Gen.
  doi: 10.1088/0305-4470/29/24/001
– ident: 3375_CR74
  doi: 10.1007/978-90-481-2869-3
– ident: 3375_CR121
  doi: 10.5479/sil.52126.39088015628399
– volume: 10
  year: 2020
  ident: 3375_CR243
  publication-title: J. Math. Neurosci.
  doi: 10.1186/s13408-020-00086-9
– volume: 124
  start-page: 086801
  year: 2020
  ident: 3375_CR158
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.086801
– volume: 58
  start-page: 2318
  year: 1987
  ident: 3375_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2318
– volume: 95
  start-page: 18003
  year: 2011
  ident: 3375_CR99
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/95/18003
– volume: 2
  start-page: 023068
  year: 2020
  ident: 3375_CR219
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023068
– volume: 16
  start-page: 1561
  year: 1975
  ident: 3375_CR171
  publication-title: J. Math. Phys.
  doi: 10.1063/1.522724
– volume: 44
  start-page: 1243
  year: 2007
  ident: 3375_CR98
  publication-title: J. Appl. Ecol.
  doi: 10.1111/j.1365-2664.2007.01333.x
– volume: 14
  start-page: 67
  year: 1984
  ident: 3375_CR13
  publication-title: Physica D
  doi: 10.1016/0167-2789(84)90005-8
– volume: 49
  start-page: 483
  year: 1994
  ident: 3375_CR15
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.483
– volume: 572
  start-page: 1
  year: 2015
  ident: 3375_CR61
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2015.01.001
– volume: 6
  start-page: eaba2282
  year: 2020
  ident: 3375_CR93
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba2282
– volume: 542
  start-page: 461
  year: 2017
  ident: 3375_CR146
  publication-title: Nature
  doi: 10.1038/nature21044
– volume: 57
  start-page: 2935
  year: 1986
  ident: 3375_CR280
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.57.2935
– ident: 3375_CR65
  doi: 10.1007/978-3-662-04174-1
– volume: 240
  start-page: 872
  year: 2011
  ident: 3375_CR240
  publication-title: Physica D
  doi: 10.1016/j.physd.2011.01.002
– volume: 69
  start-page: 056216
  year: 2004
  ident: 3375_CR247
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.056216
– volume: 92
  start-page: 025702
  year: 2004
  ident: 3375_CR222
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.025702
– volume: 7
  year: 2018
  ident: 3375_CR129
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-018-0105-y
– volume: 2
  start-page: 033018
  year: 2020
  ident: 3375_CR31
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033018
– volume: 58
  start-page: 3089
  year: 1998
  ident: 3375_CR304
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.3089
– volume: 27
  start-page: 591
  year: 1983
  ident: 3375_CR283
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.27.591
– volume: 101
  start-page: 052601
  year: 2020
  ident: 3375_CR139
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.052601
– volume: 108
  start-page: 291
  year: 1981
  ident: 3375_CR278
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112081002139
– ident: 3375_CR55
– ident: 3375_CR190
– volume: 55
  start-page: 2857
  year: 1985
  ident: 3375_CR260
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.55.2857
– volume: 179
  start-page: 29
  year: 2004
  ident: 3375_CR97
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2004.05.001
– volume: 8
  start-page: 422
  year: 2012
  ident: 3375_CR119
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2276
– volume: 503
  start-page: 95
  year: 2013
  ident: 3375_CR26
  publication-title: Nature
  doi: 10.1038/nature12673
– volume: 18
  start-page: 095003
  year: 2016
  ident: 3375_CR252
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/9/095003
– volume: 77
  start-page: 570
  year: 1996
  ident: 3375_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.570
– volume: 11
  start-page: 752
  year: 2017
  ident: 3375_CR100
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-017-0031-1
– volume: 87
  start-page: 107
  year: 1985
  ident: 3375_CR311
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00280698
– volume: 88
  start-page: 035002
  year: 2016
  ident: 3375_CR115
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.88.035002
– volume: 79
  start-page: 026204
  year: 2009
  ident: 3375_CR227
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.026204
– volume: 363
  start-page: eaar7709
  year: 2019
  ident: 3375_CR18
  publication-title: Science
  doi: 10.1126/science.aar7709
– volume: 363
  start-page: 46
  year: 2019
  ident: 3375_CR203
  publication-title: Science
  doi: 10.1126/science.aat9891
– reference: 33854244 - Nature. 2021 Apr;592(7854):355-356
SSID ssj0005174
Score 2.7349286
Snippet Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter 1 – 6 , non-equilibrium...
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter , non-equilibrium...
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter.sup.1-6,...
Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 363
SubjectTerms 639/705/1041
639/766/530
Bifurcation theory
Critical phenomena
Crystals
Dynamical systems
Eigenvalues
Equilibrium
Humanities and Social Sciences
multidisciplinary
Noise
Optimization
Pattern formation
Phase transformations (Statistical physics)
Phase transitions
Reciprocity
Science
Science (multidisciplinary)
Singularities
Synchronism
Synchronization
Time dependence
Wave propagation
Title Non-reciprocal phase transitions
URI https://link.springer.com/article/10.1038/s41586-021-03375-9
https://www.ncbi.nlm.nih.gov/pubmed/33854249
https://www.proquest.com/docview/2514748224
https://www.proquest.com/docview/2513247926
Volume 592
WOSCitedRecordID wos000683804100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: RNT
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.nature.com
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M0K
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PCBAR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M7S
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: PATMY
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7X7
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: KB.
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 7RV
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: P5Z
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: BENPR
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2M
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: 8C1
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2O
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4687
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0005174
  issn: 0028-0836
  databaseCode: M2P
  dateStart: 19880107
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRegI2vsFEVNPEhZpY4H3aeUFdtAo2Wqiuj7MVynGRMQkm3tPz9-By3XaqxF15Oqny2Et-df258_h3Abh5FKeOZJJGb-CTQG1oicxoQniaBzJkrY0P2fPqV9ft8PI4H9oNbZdMq52uiWajTUuE38n2NwwELMOfx0-SSYNUoPF21JTTWYANZEjAwB-HZMsVjhYXZXppxfb5faeDimH6LCUU-C0ncAKbV5fkaPq0cmBocOnr4v2_wCB7YHWi7U7vMJtzJii24ZzJBVbUFmzbaq_Y7S0n9_jG0-2VBkAcD8U53nvzS4NeeIs7VKV9P4PvR4aj7mdjaCkRpQJ4SP5Iul8g3qDFahV4i8QYsU0mauFJhBXKqaJykepZ4TpNQBVFOc-knLFQpy1L_KawXZZE9h7YneR7lYZCGSgaZCmOqB6NZHidIbUUzB7z5xAplicex_sVvYQ7AfS5qYwhtDGGMIWIHPiz6TGrajVu1d9FeAvksCkyYOZezqhKd0Y9uX3Rwj6U3pZHnwOub1L6cDBtKb61SXuqnVNJeU9DvikxZDc3thqaaXFyKa61vGq3ntcluGmanoajDWzWb594k7PJSiaUrOfBq0Yw9MWWuyMqZ0dGbZRbTyIFntfMuptL3eRjoP94O7M29eTn4v-f5xe3Psg33qQmogHjhDqxPr2bZS7ir_kwvqqsWrLHhKcoxM5JrybteCzYODvuDof51fPBRy557jJL2jPxm5AAlq-VJywS57jfojHo__wKb6EXG
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aAwQvwMYtbEBA4yawljhO7DwgVA2mVSsVggJ9M47jjEko6ZYWxJ_iN-KTS7tUY2974NnHluvjcz6n_vwdgK0silIujCKRlwSE2QMtURllRKQJUxn3VFyJPX8Z8OFQjMfxhxX4076FQVplmxOrRJ0WGv8j37Y4zDhDzuObyRHBqlF4u9qW0Ki3xb75_ct-spWv-2-tf59QuvtutLNHmqoCRFsompIgUp5QqLRn0UmHfqLw7SfXSZp4SmPtbappnKR-KERGk1CzKKOZChIe6pSbNLDjXoCLNo9zpJDxMV9QSpZUn5tHOl4gtksLlALpvkhgCnhI4g4QLsPBCTxcuqCtcG_3-v-2YjfgWnPCdnt1SKzBisnX4XLFdNXlOqw12ax0nzeS2y9ugjsscoI6H4jntvPkuwV3d4o4XlPabsHnc5nzbVjNi9zcBddXIouykKWhVszoMKZ2MGqyOEHpLmoc8FtHSt0Iq2N9jx-yuuAPhKydL63zZeV8GTvwct5nUsuKnGm9hftDol5HjoSgAzUrS9kbfd0Zyh6eIe2hO_IdeHyaWf_Tx47Rs8YoK-wstWqeYdjfikpgHcuNjqWeHB7JE61PO60HtctOG2azY2jTl-42t7tXNumzlIut68CjeTP2REpgbopZZWM_BnhMIwfu1MEyX8ogECGjzC7cqzZ6FoP_e53vnT2Xh3Blb_R-IAf94f4GXKVVMDPih5uwOj2emftwSf-cHpbHD6q04MK3846qv9x3lUI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4yJegI0BZQMCGjeB1caxE-cBoWqjotoUVWywiRfjOPGYhJJuaUH8NX4dPrm0SzX2tgeefWw5PpfPjo-_A7BpfD8JRKqI34s9wuyGlihDGRFJzJQJeiosyZ6_7AZRJA4Pw9ES_GnewmBaZRMTy0Cd5Br_kXctDrOAYc5j19RpEaPtwfvxCcEKUnjT2pTTqExkJ_39yx7finfDbavr55QOPuxvfSR1hQGiLSxNiOernlDIumeRSnM3VvgONNBxEveUxjrcVNMwTlwuhKEx18w31CgvDrhOgjTx7LhX4Gpgz5h48Bvxr_P0kgUG6PrBTs8T3cKCpsDUX0xm8gJOwhYoLkLDGWxcuKwtMXBw-39evTtwq955O_3KVVZgKc1W4XqZAauLVVipo1zhvKqpuF_fBSfKM4L8H4jztvP4uwV9Z4L4XqW6rcHnS5nzPVjO8ix9AI6rhPENZwnXiqWah9QORlMTxkjpRdMOuI1Spa4J17Huxw9ZXvx7QlaGIK0hyNIQZNiBN7M-44pu5ELpTbQViTweGer0SE2LQvb3D7Yi2ce9pd2M-24Hnp0nNtz71BJ6WQuZ3M5Sq_p5hv1WZAhrSa63JPX4-ESeaX3Raj2qVHbeMBstQRvWdLu5sWRZh9VCzs24A09nzdgTUwWzNJ-WMvaQEITU78D9ynFmS-l5gjPK7MK9bTxpPvi_1_nhxXN5AjesM8ndYbSzDjdp6deMuHwDlien0_QRXNM_J8fF6eMyQjjw7bKd6i8flp41
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-reciprocal+phase+transitions&rft.jtitle=Nature+%28London%29&rft.au=Fruchart%2C+Michel&rft.au=Hanai%2C+Ryo&rft.au=Littlewood%2C+Peter+B&rft.au=Vitelli%2C+Vincenzo&rft.date=2021-04-15&rft.eissn=1476-4687&rft.volume=592&rft.issue=7854&rft.spage=363&rft_id=info:doi/10.1038%2Fs41586-021-03375-9&rft_id=info%3Apmid%2F33854249&rft.externalDocID=33854249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon