A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback

The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch pertur...

Full description

Saved in:
Bibliographic Details
Published in:Brain research Vol. 1636; pp. 1 - 12
Main Authors: Behroozmand, Roozbeh, Sangtian, Stacey, Korzyukov, Oleg, Larson, Charles R.
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.04.2016
Subjects:
ISSN:0006-8993, 1872-6240
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control. •Humans use auditory feedback to control their voice during speaking.•Temporally-unpredictable changes in auditory feedback trigger opposing vocal responses.•Temporally-predictable changes in auditory feedback trigger following vocal responses.•The brain activity is suppressed for temporally-predictable changes in voice feedback.•Temporal predictability of changes in auditory feedback modulates voice motor control.
AbstractList The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control. •Humans use auditory feedback to control their voice during speaking.•Temporally-unpredictable changes in auditory feedback trigger opposing vocal responses.•Temporally-predictable changes in auditory feedback trigger following vocal responses.•The brain activity is suppressed for temporally-predictable changes in voice feedback.•Temporal predictability of changes in auditory feedback modulates voice motor control.
The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.
The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.
Abstract The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.
Author Korzyukov, Oleg
Sangtian, Stacey
Larson, Charles R.
Behroozmand, Roozbeh
AuthorAffiliation 1
2
AuthorAffiliation_xml – name: 2
– name: 1
Author_xml – sequence: 1
  givenname: Roozbeh
  surname: Behroozmand
  fullname: Behroozmand, Roozbeh
  email: r-behroozmand@sc.edu
  organization: Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, United States
– sequence: 2
  givenname: Stacey
  surname: Sangtian
  fullname: Sangtian, Stacey
  organization: Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, United States
– sequence: 3
  givenname: Oleg
  surname: Korzyukov
  fullname: Korzyukov, Oleg
  organization: Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, United States
– sequence: 4
  givenname: Charles R.
  surname: Larson
  fullname: Larson, Charles R.
  organization: Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26835556$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu3CAUtapUzaP9hYhlN56CwRhXVdQomj6kSK36WCMGLh0mtnGBsTTL_HlxJ1O1WTRZwYVzzz1wzmlxNPgBiuKc4AXBhL_aLFZBuSFAXFS5XmCywAw_KU6IaKqSVwwfFScYY16KtqXHxWmMm1xS2uJnxXHFBa3rmp8Ut5coQT_6oDo0BjBOJzcB0t4Asj6gyTsNqPcp77UfUvDda7ScnIEhn9vge7T88hmpwaAVrNXkfjNlWaMfIkSUPBpd0usyrp1NYJDaGpfJdsgCmJXSN8-Lp1Z1EV7crWfF93fLb1cfyutP7z9eXV6XmhOWSspI28DK1BoD1FwIQRmw2rSaWWGEsTW1xoIixlpNmaWNqDUTpm0YVIxSelZc7HnH7aoHoyE_RnVyDK5XYSe9cvLfm8Gt5Q8_SSaw4FWdCV7eEQT_cwsxyd5FDV2nBvDbKEmeWNUMt-wR0Ibzqm2qGXr-t6w_eg4WZcCbPUAHH2MAK7VLKrnZDOU6SbCcEyE38pAIOSdCYiJzInI7v9d-mPBg49t9I2RTJgdBRu1m140LoJM03j1McXGPQnducFp1N7CDuPHbMGTLJZGxklh-nfM6x5VwinH-zv8TPEbBLz3_AcI
CitedBy_id crossref_primary_10_1016_j_brainres_2020_146703
crossref_primary_10_1016_j_neuropsychologia_2025_109242
crossref_primary_10_1080_00222895_2018_1528204
crossref_primary_10_1007_s40520_018_0902_4
crossref_primary_10_1016_j_bpsc_2019_05_011
crossref_primary_10_1016_j_psychres_2025_116461
crossref_primary_10_7554_eLife_28197
crossref_primary_10_1017_S1366728923000019
crossref_primary_10_1007_s00221_025_07130_8
crossref_primary_10_1016_j_bbr_2018_03_028
crossref_primary_10_3389_fnins_2019_01146
crossref_primary_10_1177_0023830917713775
crossref_primary_10_1016_j_neuropsychologia_2019_107200
crossref_primary_10_3389_fnhum_2024_1462922
crossref_primary_10_3389_fnins_2024_1347614
crossref_primary_10_1007_s00221_019_05549_4
crossref_primary_10_1162_jocn_a_02318
crossref_primary_10_1016_j_humov_2017_03_005
crossref_primary_10_1016_j_neuroimage_2019_04_038
crossref_primary_10_3390_app13137512
crossref_primary_10_1007_s00221_017_4900_0
crossref_primary_10_1016_j_neuropsychologia_2019_04_001
crossref_primary_10_1093_cercor_bhab222
crossref_primary_10_1162_jocn_a_01747
Cites_doi 10.1016/j.neuroimage.2014.01.003
10.1002/(SICI)1097-0193(200004)9:4<183::AID-HBM1>3.0.CO;2-Z
10.1126/science.7569931
10.1002/mds.25588
10.1038/81497
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2012.02.068
10.1523/JNEUROSCI.1008-13.2013
10.1016/S0960-9822(01)00432-8
10.1162/jocn.2010.21447
10.1097/01.wnr.0000233102.43526.e9
10.1016/j.neuroimage.2007.09.054
10.1111/ejn.12734
10.1162/jocn.2009.21324
10.3389/fpsyg.2012.00180
10.1523/JNEUROSCI.2137-13.2013
10.1176/appi.ajp.158.12.2069
10.1121/1.4746984
10.1016/j.biopsych.2007.09.013
10.1038/nrn3158
10.1162/089892902760807140
10.1016/j.bandl.2005.06.001
10.3389/fnhum.2011.00082
10.1111/j.1460-6984.2011.00111.x
10.1162/jocn.2009.21055
10.1016/j.neuroimage.2015.01.040
10.1371/journal.pone.0041830
10.1186/1471-2202-13-55
10.1038/nrn2113
10.1001/archpsyc.64.3.286
10.1371/journal.pone.0041216
10.1016/j.neuroimage.2009.10.023
10.1007/s00221-008-1529-z
10.1111/j.1469-8986.2005.00272.x
10.1371/journal.pone.0082925
10.1186/1471-2202-10-58
10.1016/j.brainres.2013.06.030
10.1186/1471-2202-12-54
10.1038/nrn3112
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Elsevier B.V.
Copyright © 2016 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Elsevier B.V.
– notice: Copyright © 2016 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
DOI 10.1016/j.brainres.2016.01.040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Animal Behavior Abstracts
DatabaseTitleList
Neurosciences Abstracts
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1872-6240
EndPage 12
ExternalDocumentID PMC4808625
26835556
10_1016_j_brainres_2016_01_040
S0006899316300178
1_s2_0_S0006899316300178
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: 1R01DC006243
– fundername: NIDCD NIH HHS
  grantid: R01 DC006243
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5RE
6J9
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABLJU
ABMAC
ABTEW
ABUFD
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPCBC
SSN
SSZ
T5K
Z5R
ZGI
~G-
~HD
.55
.GJ
41~
53G
5VS
AACTN
AAQXK
AAYJJ
ABWVN
ABXDB
ACRPL
ADIYS
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AGHFR
AHHHB
AI.
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
MVM
PKN
R2-
RIG
SEW
SNS
VH1
WUQ
X7M
XPP
AADPK
AAIAV
ABYKQ
AJBFU
9DU
AAYXX
AGQPQ
AIGII
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7QG
7TK
5PM
ID FETCH-LOGICAL-c614t-34197ebd5c0ee5688834e45d9c4f8d8df53fdfea1dffc34f3785c48d974e24333
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374611800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-8993
IngestDate Tue Nov 04 02:01:15 EST 2025
Thu Oct 02 05:45:23 EDT 2025
Sat Sep 27 16:49:22 EDT 2025
Thu Apr 03 07:02:36 EDT 2025
Sat Nov 29 06:46:48 EST 2025
Tue Nov 18 19:39:49 EST 2025
Fri Feb 23 02:19:45 EST 2024
Tue Feb 25 19:56:12 EST 2025
Tue Oct 14 19:29:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Event-related potential
Voice motor control
Predictive code
Auditory feedback
Pitch-shift stimulus
Internal forward model
Language English
License Copyright © 2016 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c614t-34197ebd5c0ee5688834e45d9c4f8d8df53fdfea1dffc34f3785c48d974e24333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1016/j.brainres.2016.01.040
PMID 26835556
PQID 1776629724
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808625
proquest_miscellaneous_1785254094
proquest_miscellaneous_1776629724
pubmed_primary_26835556
crossref_citationtrail_10_1016_j_brainres_2016_01_040
crossref_primary_10_1016_j_brainres_2016_01_040
elsevier_sciencedirect_doi_10_1016_j_brainres_2016_01_040
elsevier_clinicalkeyesjournals_1_s2_0_S0006899316300178
elsevier_clinicalkey_doi_10_1016_j_brainres_2016_01_040
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Brain research
PublicationTitleAlternate Brain Res
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Aliu, Houde, Nagarajan (bib1) 2009; 21
Behroozmand, Korzyukov, Sattler, Larson (bib2) 2012; 132
Behroozmand, Larson (bib3) 2011; 12
Heinks-Maldonado, Mathalon, Houde, Gray, Faustman, Ford (bib19) 2007; 64
Liu, Wang, Metman, Larson (bib26) 2012; 7
Niziolek, Guenther (bib29) 2013; 33
Behroozmand, Shebek, Hansen, Oya, Robin, Howard, Greenlee (bib5) 2015
Parkinson, Flagmeier, Manes, Larson, Rogers, Robin (bib31) 2012; 61
Golfinopoulos, Tourville, Guenther (bib16) 2010; 52
Butler, Trainor (bib8) 2012; 3
Heinks-Maldonado, Nagarajan, Houde (bib20) 2006; 17
Tourville, Reilly, Guenther (bib34) 2008; 39
Wolpert, Flanagan (bib38) 2001; 11
Guenther, Ghosh, Tourville (bib17) 2006; 96
Ventura, Nagarajan, Houde (bib35) 2009; 10
Ford, Mathalon, Heinks, Kalba, Faustman, Roth (bib14) 2001; 158
Boersma, Weenik (bib6) 1996
Cai, Beal, Ghosh, Tiede, Guenther, Perkell (bib9) 2012; 7
Wang, Mathalon, Roach, Reilly, Keedy, Sweeney, Ford (bib36) 2014; 91
Chen, Zhu, Wang, Chen, Li, Chen, Liu (bib10) 2013; 1527
Houde, Nagarajan (bib23) 2011; 5
Delorme, Makeig (bib13) 2004; 134
Ford, Roach, Faustman, Mathalon (bib15) 2008; 63
Wolpert, Ghahramani, Jordan (bib40) 1995; 269
Loucks, Chon, Han (bib27) 2012; 47
Chen, Chen, Liu, Huang, Liu (bib11) 2012; 13
Wolpert, Ghahramani (bib39) 2000; 3
Curio, Neuloh, Numminen, Jousmäki, Hari (bib12) 2000; 9
Houde, Nagarajan, Sekihara, Merzenich (bib24) 2002; 14
Scheerer, Jones (bib32) 2014; 40
Wolpert, Diedrichsen, Flanagan (bib37) 2011; 12
Hickok, Poeppel (bib22) 2007; 8
Zheng, Munhall, Johnsrude (bib41) 2010; 22
Korzyukov, Sattler, Behroozmand, Larson (bib25) 2012; 7
Mollaei, Shiller, Gracco (bib28) 2013; 28
Sitek, Mathalon, Roach, Houde, Niziolek, Ford (bib33) 2013; 8
Niziolek, Nagarajan, Houde (bib30) 2013; 33
Heinks-Maldonado, Mathalon, Gray, Ford (bib18) 2005; 42
Behroozmand, Liu, Larson (bib4) 2011; 23
Burnett, McCurdy, Bright (bib7) 2008; 191
Hickok (bib21) 2012
Behroozmand (10.1016/j.brainres.2016.01.040_bib2) 2012; 132
Parkinson (10.1016/j.brainres.2016.01.040_bib31) 2012; 61
Heinks-Maldonado (10.1016/j.brainres.2016.01.040_bib20) 2006; 17
Sitek (10.1016/j.brainres.2016.01.040_bib33) 2013; 8
Behroozmand (10.1016/j.brainres.2016.01.040_bib3) 2011; 12
Ford (10.1016/j.brainres.2016.01.040_bib14) 2001; 158
Curio (10.1016/j.brainres.2016.01.040_bib12) 2000; 9
Wolpert (10.1016/j.brainres.2016.01.040_bib40) 1995; 269
Behroozmand (10.1016/j.brainres.2016.01.040_bib5) 2015
Korzyukov (10.1016/j.brainres.2016.01.040_bib25) 2012; 7
Loucks (10.1016/j.brainres.2016.01.040_bib27) 2012; 47
Delorme (10.1016/j.brainres.2016.01.040_bib13) 2004; 134
Aliu (10.1016/j.brainres.2016.01.040_bib1) 2009; 21
Zheng (10.1016/j.brainres.2016.01.040_bib41) 2010; 22
Houde (10.1016/j.brainres.2016.01.040_bib23) 2011; 5
Mollaei (10.1016/j.brainres.2016.01.040_bib28) 2013; 28
Hickok (10.1016/j.brainres.2016.01.040_bib21) 2012
Golfinopoulos (10.1016/j.brainres.2016.01.040_bib16) 2010; 52
Tourville (10.1016/j.brainres.2016.01.040_bib34) 2008; 39
Wolpert (10.1016/j.brainres.2016.01.040_bib38) 2001; 11
Hickok (10.1016/j.brainres.2016.01.040_bib22) 2007; 8
Behroozmand (10.1016/j.brainres.2016.01.040_bib4) 2011; 23
Boersma (10.1016/j.brainres.2016.01.040_bib6) 1996
Ventura (10.1016/j.brainres.2016.01.040_bib35) 2009; 10
Wolpert (10.1016/j.brainres.2016.01.040_bib39) 2000; 3
Butler (10.1016/j.brainres.2016.01.040_bib8) 2012; 3
Niziolek (10.1016/j.brainres.2016.01.040_bib30) 2013; 33
Cai (10.1016/j.brainres.2016.01.040_bib9) 2012; 7
Wolpert (10.1016/j.brainres.2016.01.040_bib37) 2011; 12
Guenther (10.1016/j.brainres.2016.01.040_bib17) 2006; 96
Liu (10.1016/j.brainres.2016.01.040_bib26) 2012; 7
Wang (10.1016/j.brainres.2016.01.040_bib36) 2014; 91
Scheerer (10.1016/j.brainres.2016.01.040_bib32) 2014; 40
Niziolek (10.1016/j.brainres.2016.01.040_bib29) 2013; 33
Chen (10.1016/j.brainres.2016.01.040_bib11) 2012; 13
Heinks-Maldonado (10.1016/j.brainres.2016.01.040_bib18) 2005; 42
Heinks-Maldonado (10.1016/j.brainres.2016.01.040_bib19) 2007; 64
Burnett (10.1016/j.brainres.2016.01.040_bib7) 2008; 191
Chen (10.1016/j.brainres.2016.01.040_bib10) 2013; 1527
Ford (10.1016/j.brainres.2016.01.040_bib15) 2008; 63
Houde (10.1016/j.brainres.2016.01.040_bib24) 2002; 14
12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38
22740836 - Front Psychol. 2012 Jun 26;3:180
11566114 - Curr Biol. 2001 Sep 18;11(18):R729-32
19837177 - Neuroimage. 2010 Sep;52(3):862-74
16040108 - Brain Lang. 2006 Mar;96(3):280-301
25623499 - Neuroimage. 2015 Apr 1;109:418-28
17339517 - Arch Gen Psychiatry. 2007 Mar;64(3):286-96
25263844 - Eur J Neurosci. 2014 Dec;40(12):3793-806
23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77
22815974 - PLoS One. 2012;7(7):e41216
22406500 - Neuroimage. 2012 May 15;61(1):314-22
24423729 - Neuroimage. 2014 May 1;91:91-8
18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43
22448258 - PLoS One. 2012;7(3):e33629
17981264 - Biol Psychiatry. 2008 Apr 15;63(8):736-43
24349399 - PLoS One. 2013;8(12):e82925
7569931 - Science. 1995 Sep 29;269(5232):1880-2
22046152 - Front Hum Neurosci. 2011 Oct 25;5:82
23864694 - J Neurosci. 2013 Jul 17;33(29):12090-8
18712372 - Exp Brain Res. 2008 Nov;191(3):341-51
22646514 - BMC Neurosci. 2012;13:55
18593265 - J Cogn Neurosci. 2009 Apr;21(4):791-802
10770228 - Hum Brain Mapp. 2000 Apr;9(4):183-91
19523234 - BMC Neurosci. 2009;10:58
23861349 - Mov Disord. 2013 Oct;28(12):1668-74
16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9
22788230 - Int J Lang Commun Disord. 2012 Jul-Aug;47(4):451-6
20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17
24107944 - J Neurosci. 2013 Oct 9;33(41):16110-6
11729029 - Am J Psychiatry. 2001 Dec;158(12):2069-71
15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
15787855 - Psychophysiology. 2005 Mar;42(2):180-90
19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81
22911857 - PLoS One. 2012;7(7):e41830
21645406 - BMC Neurosci. 2011;12:54
11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7
23820424 - Brain Res. 2013 Aug 21;1527:99-107
17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
22218206 - Nat Rev Neurosci. 2012 Feb;13(2):135-45
22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51
References_xml – volume: 17
  start-page: 1375
  year: 2006
  end-page: 1379
  ident: bib20
  article-title: Magnetoencephalographic evidence for a precise forward model in speech production
  publication-title: Neuroreport
– volume: 52
  start-page: 862
  year: 2010
  end-page: 874
  ident: bib16
  article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control
  publication-title: Neuroimage
– volume: 10
  start-page: 58
  year: 2009
  ident: bib35
  article-title: Speech target modulates speaking induced suppression in auditory cortex
  publication-title: BMC Neurosci.
– volume: 47
  start-page: 451
  year: 2012
  end-page: 456
  ident: bib27
  article-title: Audiovocal integration in adults who stutter
  publication-title: Int. J. Lang. Commun. Disord.
– volume: 9
  start-page: 183
  year: 2000
  end-page: 191
  ident: bib12
  article-title: Speaking modifies voice-evoked activity in the human auditory cortex
  publication-title: Hum. Brain Mapp.
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib13
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– volume: 21
  start-page: 791
  year: 2009
  end-page: 802
  ident: bib1
  article-title: Motor-induced suppression of the auditory cortex
  publication-title: J. Cogn. Neurosci.
– volume: 11
  start-page: R729
  year: 2001
  end-page: R732
  ident: bib38
  article-title: Motor prediction
  publication-title: Curr. Biol.
– volume: 61
  start-page: 314
  year: 2012
  end-page: 322
  ident: bib31
  article-title: Understanding the neural mechanisms involved in sensory control of voice production
  publication-title: Neuroimage
– volume: 3
  start-page: 1
  year: 2012
  end-page: 13
  ident: bib8
  article-title: Sequencing the cortical processing of pitch-evoking stimuli using EEG analysis and source estimation
  publication-title: Front. Psychol.
– volume: 33
  start-page: 12090
  year: 2013
  end-page: 12098
  ident: bib29
  article-title: Vowel category boundaries enhance cortical and behavioral responses to speech feedback alterations
  publication-title: J. Neurosci.
– year: 2015
  ident: bib5
  article-title: Sensory-motor networks involved in speech production and motor control: an fMRI study
  publication-title: Neuroimage.
– volume: 7
  year: 2012
  ident: bib26
  article-title: Vocal responses to perturbations in voice auditory feedback in individuals with parkinson’s disease
  publication-title: PLoS One
– volume: 191
  start-page: 341
  year: 2008
  end-page: 351
  ident: bib7
  article-title: Reflexive and volitional voice fundamental frequency responses to an anticipated feedback pitch error
  publication-title: Exp. Brain Res.
– volume: 132
  start-page: 2468
  year: 2012
  end-page: 2477
  ident: bib2
  article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control
  publication-title: J. Acoust. Soc. Am.
– volume: 13
  start-page: 55
  year: 2012
  ident: bib11
  article-title: Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization
  publication-title: BMC Neurosci.
– year: 2012
  ident: bib21
  article-title: Computational neuroanatomy of speech production
  publication-title: Nat. Rev. Neurosci
– year: 1996
  ident: bib6
  article-title: PRAAT: a system for doing phonetics by computer
– volume: 63
  start-page: 736
  year: 2008
  end-page: 743
  ident: bib15
  article-title: Out-of-synch and out-of-sorts: dysfunction of motor-sensory communication in schizophrenia
  publication-title: Biol. Psychiatry
– volume: 42
  start-page: 180
  year: 2005
  end-page: 190
  ident: bib18
  article-title: Fine-tuning of auditory cortex during speech production
  publication-title: Psychophysiology
– volume: 1527
  start-page: 99
  year: 2013
  end-page: 107
  ident: bib10
  article-title: Sensorimotor control of vocal pitch production in Parkinson’s disease
  publication-title: Brain Res.
– volume: 14
  start-page: 1125
  year: 2002
  end-page: 1138
  ident: bib24
  article-title: Modulation of the auditory cortex during speech: an MEG study
  publication-title: J. Cogn. Neurosci.
– volume: 33
  start-page: 16110
  year: 2013
  end-page: 16116
  ident: bib30
  article-title: What does motor efference copy represent? Evidence from speech production
  publication-title: J. Neurosci.
– volume: 22
  start-page: 1770
  year: 2010
  end-page: 1781
  ident: bib41
  article-title: Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production
  publication-title: J. Cogn. Neurosci.
– volume: 8
  start-page: e82925
  year: 2013
  ident: bib33
  article-title: Auditory cortex processes variation in our own speech
  publication-title: PLoS One
– volume: 12
  start-page: 739
  year: 2011
  end-page: 751
  ident: bib37
  article-title: Principles of sensorimotor learning
  publication-title: Nat. Rev. Neurosci.
– volume: 269
  start-page: 1880
  year: 1995
  end-page: 1882
  ident: bib40
  article-title: An internal model for sensorimotor integration
  publication-title: Science
– volume: 158
  start-page: 2069
  year: 2001
  end-page: 2071
  ident: bib14
  article-title: Neurophysiological evidence of corollary discharge dysfunction in schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 7
  year: 2012
  ident: bib25
  article-title: Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback
  publication-title: PLoS One
– volume: 40
  start-page: 3793
  year: 2014
  end-page: 3806
  ident: bib32
  article-title: The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control
  publication-title: Eur. J. Neurosci.
– volume: 23
  start-page: 1205
  year: 2011
  end-page: 1217
  ident: bib4
  article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection
  publication-title: J. Cogn. Neurosci.
– volume: 7
  start-page: 1
  year: 2012
  end-page: 14
  ident: bib9
  article-title: Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation
  publication-title: PLoS One
– volume: 3
  start-page: 1212
  year: 2000
  end-page: 1217
  ident: bib39
  article-title: Computational principles of movement neuroscience
  publication-title: Nat. Neurosci.
– volume: 91
  start-page: 91
  year: 2014
  end-page: 98
  ident: bib36
  article-title: Action planning and predictive coding when speaking
  publication-title: Neuroimage
– volume: 64
  start-page: 286
  year: 2007
  end-page: 296
  ident: bib19
  article-title: Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations
  publication-title: Arch. Gen. Psychiatry
– volume: 28
  start-page: 1668
  year: 2013
  end-page: 1674
  ident: bib28
  article-title: Sensorimotor adaptation of speech in Parkinson’s disease
  publication-title: Mov. Disord.
– volume: 5
  start-page: 82
  year: 2011
  ident: bib23
  article-title: Speech production as state feedback control
  publication-title: Front. Hum. Neurosci.
– volume: 96
  start-page: 280
  year: 2006
  end-page: 301
  ident: bib17
  article-title: Neural modeling and imaging of the cortical interactions underlying syllable production
  publication-title: Brain Lang.
– volume: 8
  start-page: 393
  year: 2007
  end-page: 403
  ident: bib22
  article-title: The cortical organization of speech processing
  publication-title: Nat. Rev. Neurosci.
– volume: 39
  start-page: 1429
  year: 2008
  end-page: 1443
  ident: bib34
  article-title: Neural mechanisms underlying auditory feedback control of speech
  publication-title: Neuroimage
– volume: 12
  start-page: 54
  year: 2011
  ident: bib3
  article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback
  publication-title: BMC Neurosci.
– year: 1996
  ident: 10.1016/j.brainres.2016.01.040_bib6
– volume: 91
  start-page: 91
  year: 2014
  ident: 10.1016/j.brainres.2016.01.040_bib36
  article-title: Action planning and predictive coding when speaking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.01.003
– volume: 9
  start-page: 183
  year: 2000
  ident: 10.1016/j.brainres.2016.01.040_bib12
  article-title: Speaking modifies voice-evoked activity in the human auditory cortex
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(200004)9:4<183::AID-HBM1>3.0.CO;2-Z
– volume: 269
  start-page: 1880
  issue: 80-
  year: 1995
  ident: 10.1016/j.brainres.2016.01.040_bib40
  article-title: An internal model for sensorimotor integration
  publication-title: Science
  doi: 10.1126/science.7569931
– volume: 28
  start-page: 1668
  year: 2013
  ident: 10.1016/j.brainres.2016.01.040_bib28
  article-title: Sensorimotor adaptation of speech in Parkinson’s disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25588
– volume: 3
  start-page: 1212
  issue: Suppl.
  year: 2000
  ident: 10.1016/j.brainres.2016.01.040_bib39
  article-title: Computational principles of movement neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/81497
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.brainres.2016.01.040_bib13
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 61
  start-page: 314
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib31
  article-title: Understanding the neural mechanisms involved in sensory control of voice production
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.068
– volume: 33
  start-page: 12090
  year: 2013
  ident: 10.1016/j.brainres.2016.01.040_bib29
  article-title: Vowel category boundaries enhance cortical and behavioral responses to speech feedback alterations
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1008-13.2013
– volume: 11
  start-page: R729
  year: 2001
  ident: 10.1016/j.brainres.2016.01.040_bib38
  article-title: Motor prediction
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00432-8
– volume: 23
  start-page: 1205
  year: 2011
  ident: 10.1016/j.brainres.2016.01.040_bib4
  article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2010.21447
– volume: 17
  start-page: 1375
  year: 2006
  ident: 10.1016/j.brainres.2016.01.040_bib20
  article-title: Magnetoencephalographic evidence for a precise forward model in speech production
  publication-title: Neuroreport
  doi: 10.1097/01.wnr.0000233102.43526.e9
– volume: 39
  start-page: 1429
  year: 2008
  ident: 10.1016/j.brainres.2016.01.040_bib34
  article-title: Neural mechanisms underlying auditory feedback control of speech
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.054
– volume: 40
  start-page: 3793
  year: 2014
  ident: 10.1016/j.brainres.2016.01.040_bib32
  article-title: The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12734
– volume: 22
  start-page: 1770
  year: 2010
  ident: 10.1016/j.brainres.2016.01.040_bib41
  article-title: Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2009.21324
– volume: 3
  start-page: 1
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib8
  article-title: Sequencing the cortical processing of pitch-evoking stimuli using EEG analysis and source estimation
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00180
– volume: 33
  start-page: 16110
  year: 2013
  ident: 10.1016/j.brainres.2016.01.040_bib30
  article-title: What does motor efference copy represent? Evidence from speech production
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2137-13.2013
– volume: 158
  start-page: 2069
  year: 2001
  ident: 10.1016/j.brainres.2016.01.040_bib14
  article-title: Neurophysiological evidence of corollary discharge dysfunction in schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.158.12.2069
– volume: 132
  start-page: 2468
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib2
  article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4746984
– volume: 63
  start-page: 736
  year: 2008
  ident: 10.1016/j.brainres.2016.01.040_bib15
  article-title: Out-of-synch and out-of-sorts: dysfunction of motor-sensory communication in schizophrenia
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.09.013
– year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib21
  article-title: Computational neuroanatomy of speech production
  publication-title: Nat. Rev. Neurosci
  doi: 10.1038/nrn3158
– volume: 14
  start-page: 1125
  year: 2002
  ident: 10.1016/j.brainres.2016.01.040_bib24
  article-title: Modulation of the auditory cortex during speech: an MEG study
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/089892902760807140
– volume: 96
  start-page: 280
  year: 2006
  ident: 10.1016/j.brainres.2016.01.040_bib17
  article-title: Neural modeling and imaging of the cortical interactions underlying syllable production
  publication-title: Brain Lang.
  doi: 10.1016/j.bandl.2005.06.001
– volume: 5
  start-page: 82
  year: 2011
  ident: 10.1016/j.brainres.2016.01.040_bib23
  article-title: Speech production as state feedback control
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2011.00082
– volume: 7
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib26
  article-title: Vocal responses to perturbations in voice auditory feedback in individuals with parkinson’s disease
  publication-title: PLoS One
– volume: 47
  start-page: 451
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib27
  article-title: Audiovocal integration in adults who stutter
  publication-title: Int. J. Lang. Commun. Disord.
  doi: 10.1111/j.1460-6984.2011.00111.x
– volume: 21
  start-page: 791
  year: 2009
  ident: 10.1016/j.brainres.2016.01.040_bib1
  article-title: Motor-induced suppression of the auditory cortex
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2009.21055
– year: 2015
  ident: 10.1016/j.brainres.2016.01.040_bib5
  article-title: Sensory-motor networks involved in speech production and motor control: an fMRI study
  publication-title: Neuroimage.
  doi: 10.1016/j.neuroimage.2015.01.040
– volume: 7
  start-page: 1
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib9
  article-title: Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041830
– volume: 13
  start-page: 55
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib11
  article-title: Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-13-55
– volume: 8
  start-page: 393
  year: 2007
  ident: 10.1016/j.brainres.2016.01.040_bib22
  article-title: The cortical organization of speech processing
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2113
– volume: 64
  start-page: 286
  year: 2007
  ident: 10.1016/j.brainres.2016.01.040_bib19
  article-title: Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archpsyc.64.3.286
– volume: 7
  year: 2012
  ident: 10.1016/j.brainres.2016.01.040_bib25
  article-title: Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0041216
– volume: 52
  start-page: 862
  year: 2010
  ident: 10.1016/j.brainres.2016.01.040_bib16
  article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.023
– volume: 191
  start-page: 341
  year: 2008
  ident: 10.1016/j.brainres.2016.01.040_bib7
  article-title: Reflexive and volitional voice fundamental frequency responses to an anticipated feedback pitch error
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-008-1529-z
– volume: 42
  start-page: 180
  year: 2005
  ident: 10.1016/j.brainres.2016.01.040_bib18
  article-title: Fine-tuning of auditory cortex during speech production
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2005.00272.x
– volume: 8
  start-page: e82925
  year: 2013
  ident: 10.1016/j.brainres.2016.01.040_bib33
  article-title: Auditory cortex processes variation in our own speech
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0082925
– volume: 10
  start-page: 58
  year: 2009
  ident: 10.1016/j.brainres.2016.01.040_bib35
  article-title: Speech target modulates speaking induced suppression in auditory cortex
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-10-58
– volume: 1527
  start-page: 99
  year: 2013
  ident: 10.1016/j.brainres.2016.01.040_bib10
  article-title: Sensorimotor control of vocal pitch production in Parkinson’s disease
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2013.06.030
– volume: 12
  start-page: 54
  year: 2011
  ident: 10.1016/j.brainres.2016.01.040_bib3
  article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-12-54
– volume: 12
  start-page: 739
  year: 2011
  ident: 10.1016/j.brainres.2016.01.040_bib37
  article-title: Principles of sensorimotor learning
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3112
– reference: 22448258 - PLoS One. 2012;7(3):e33629
– reference: 21645406 - BMC Neurosci. 2011;12:54
– reference: 24423729 - Neuroimage. 2014 May 1;91:91-8
– reference: 22218206 - Nat Rev Neurosci. 2012 Feb;13(2):135-45
– reference: 15787855 - Psychophysiology. 2005 Mar;42(2):180-90
– reference: 10770228 - Hum Brain Mapp. 2000 Apr;9(4):183-91
– reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21
– reference: 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402
– reference: 22406500 - Neuroimage. 2012 May 15;61(1):314-22
– reference: 22911857 - PLoS One. 2012;7(7):e41830
– reference: 18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43
– reference: 23861349 - Mov Disord. 2013 Oct;28(12):1668-74
– reference: 19837177 - Neuroimage. 2010 Sep;52(3):862-74
– reference: 18712372 - Exp Brain Res. 2008 Nov;191(3):341-51
– reference: 23864694 - J Neurosci. 2013 Jul 17;33(29):12090-8
– reference: 16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9
– reference: 22788230 - Int J Lang Commun Disord. 2012 Jul-Aug;47(4):451-6
– reference: 11566114 - Curr Biol. 2001 Sep 18;11(18):R729-32
– reference: 20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17
– reference: 17339517 - Arch Gen Psychiatry. 2007 Mar;64(3):286-96
– reference: 24349399 - PLoS One. 2013;8(12):e82925
– reference: 22646514 - BMC Neurosci. 2012;13:55
– reference: 22740836 - Front Psychol. 2012 Jun 26;3:180
– reference: 22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51
– reference: 23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77
– reference: 25263844 - Eur J Neurosci. 2014 Dec;40(12):3793-806
– reference: 19523234 - BMC Neurosci. 2009;10:58
– reference: 22815974 - PLoS One. 2012;7(7):e41216
– reference: 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7
– reference: 11729029 - Am J Psychiatry. 2001 Dec;158(12):2069-71
– reference: 25623499 - Neuroimage. 2015 Apr 1;109:418-28
– reference: 18593265 - J Cogn Neurosci. 2009 Apr;21(4):791-802
– reference: 22046152 - Front Hum Neurosci. 2011 Oct 25;5:82
– reference: 23820424 - Brain Res. 2013 Aug 21;1527:99-107
– reference: 17981264 - Biol Psychiatry. 2008 Apr 15;63(8):736-43
– reference: 24107944 - J Neurosci. 2013 Oct 9;33(41):16110-6
– reference: 16040108 - Brain Lang. 2006 Mar;96(3):280-301
– reference: 12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38
– reference: 19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81
– reference: 7569931 - Science. 1995 Sep 29;269(5232):1880-2
SSID ssj0003390
Score 2.3189607
Snippet The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and...
Abstract The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Acoustic Stimulation
Adolescent
Attention - physiology
Auditory feedback
Brain Mapping
Electroencephalography
Event-related potential
Evoked Potentials, Auditory - physiology
Feedback, Sensory - physiology
Female
Humans
Internal forward model
Male
Neurology
Pitch Perception - physiology
Pitch-shift stimulus
Predictive code
Predictive Value of Tests
Psychoacoustics
Reaction Time - physiology
Time Factors
Voice
Voice motor control
Young Adult
Title A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0006899316300178
https://www.clinicalkey.es/playcontent/1-s2.0-S0006899316300178
https://dx.doi.org/10.1016/j.brainres.2016.01.040
https://www.ncbi.nlm.nih.gov/pubmed/26835556
https://www.proquest.com/docview/1776629724
https://www.proquest.com/docview/1785254094
https://pubmed.ncbi.nlm.nih.gov/PMC4808625
Volume 1636
WOSCitedRecordID wos000374611800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-6240
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003390
  issn: 0006-8993
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2jgdeEDAu5TIZCfEyBRo7jh3eKlTETWMaQ-qb5STO2tElVdtV2974HfxZjh07S8cGA4mXKIpjW875cnx8fM5nhJ6nJMnTpKeDLCNpABY4C1LK8iBhaU8TpXKeC3vYBN_ZEcNhsru29sPnwiwnvCzFyUky_a-ihmcgbJM6-xfibhqFB3APQocriB2u1xJ8f9vRTU0MAUA-tgpt26Su25DCZQWqYRsEBPcuTt14BfzponW-yWBv1-4qtJL4Z3Uwbc0IMR2DsIP5aFwYg1WZzA6zV1_AVJgqR7PfsCYpmzLT8prZtKARmOxnRy6scg_uoa_G3aPKA6N56jA0lenG7_-xmp2dHn-rlqbo80Qf-IJPajZfCSBwkZDOoRHGrTgYXSthwUkQk5rGqdHSMW0r2vBS9V97Ig5fpmZoMDITuhdbWta6sZb4p0dW_iQGE5SxC2zcdn73Retog3CWiA7a6L8fDD80Ez2lSa-VdH55t4Zt2jV0lenz69LmYoRuy-TZv41uubUK7tcYu4PWdHkXbfZLtaiOTvELbKOH7bbMJvrexx52-Bx22MAOA-ywhR22sMMOdq-xBx02oMMAOgx4wOegww3o8KLCK6DDHnTYg-4e-vp2sP_mXeCO9wgysAkXgWES5DrNWdbTmsVCCBrpiOVJFhUiF3nBaJEXWoV5UWQ0KigXLItEDitgTSJK6X3UKatSP0SYkShOFNUFLaJIc5Wm8GYK3YQKWkrDLmL-y8vMcd-bI1gm0gc5HkovPGmEJ3uhBOF10aum3rRmf_ljDe4FK31uM8zGEhD6bzX13OmWuQzlnMie_GJMTAHritDQ5YVcdFHS1HR2c20PX6vXZx59EiYWs1uoSl0dQ2-cxzFJOIl-945ghBkXURc9qBHbfCePehjXCpabFwyx_WpJOR5ZgvtIGEcLe3Rlm4_RzXPN8QR1FrNj_RTdyJaL8Xy2hdb5UGy5v_UnR3kdNg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+temporal+predictive+code+for+voice+motor+control%3A+Evidence+from+ERP+and+behavioral+responses+to+pitch-shifted+auditory+feedback&rft.jtitle=Brain+research&rft.au=Behroozmand%2C+Roozbeh&rft.au=Sangtian%2C+Stacey&rft.au=Korzyukov%2C+Oleg&rft.au=Larson%2C+Charles+R&rft.date=2016-04-01&rft.eissn=1872-6240&rft.volume=1636&rft.spage=1&rft_id=info:doi/10.1016%2Fj.brainres.2016.01.040&rft_id=info%3Apmid%2F26835556&rft.externalDocID=26835556
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8993&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8993&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8993&client=summon