A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback
The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch pertur...
Saved in:
| Published in: | Brain research Vol. 1636; pp. 1 - 12 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.04.2016
|
| Subjects: | |
| ISSN: | 0006-8993, 1872-6240 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.
•Humans use auditory feedback to control their voice during speaking.•Temporally-unpredictable changes in auditory feedback trigger opposing vocal responses.•Temporally-predictable changes in auditory feedback trigger following vocal responses.•The brain activity is suppressed for temporally-predictable changes in voice feedback.•Temporal predictability of changes in auditory feedback modulates voice motor control. |
|---|---|
| AbstractList | The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control.
•Humans use auditory feedback to control their voice during speaking.•Temporally-unpredictable changes in auditory feedback trigger opposing vocal responses.•Temporally-predictable changes in auditory feedback trigger following vocal responses.•The brain activity is suppressed for temporally-predictable changes in voice feedback.•Temporal predictability of changes in auditory feedback modulates voice motor control. The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control. The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control. Abstract The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and sensory feedback is detected and used to correct vocal motor behavior. In this study, we investigated how predictions about timing of pitch perturbations in voice auditory feedback would modulate ERP and behavioral responses during vocal production. We designed six counterbalanced blocks in which a +100 cents pitch-shift stimulus perturbed voice auditory feedback during vowel sound vocalizations. In three blocks, there was a fixed delay (500, 750 or 1000 ms) between voice and pitch-shift stimulus onset (predictable), whereas in the other three blocks, stimulus onset delay was randomized between 500, 750 and 1000 ms (unpredictable). We found that subjects produced compensatory (opposing) vocal responses that started at 80 ms after the onset of the unpredictable stimuli. However, for predictable stimuli, subjects initiated vocal responses at 20 ms before and followed the direction of pitch shifts in voice feedback. Analysis of ERPs showed that the amplitudes of the N1 and P2 components were significantly reduced in response to predictable compared with unpredictable stimuli. These findings indicate that predictions about temporal features of sensory feedback can modulate vocal motor behavior. In the context of the predictive coding model, temporally-predictable stimuli are learned and reinforced by the internal feedforward system, and as indexed by the ERP suppression, the sensory feedback contribution is reduced for their processing. These findings provide new insights into the neural mechanisms of vocal production and motor control. |
| Author | Korzyukov, Oleg Sangtian, Stacey Larson, Charles R. Behroozmand, Roozbeh |
| AuthorAffiliation | 1 2 |
| AuthorAffiliation_xml | – name: 2 – name: 1 |
| Author_xml | – sequence: 1 givenname: Roozbeh surname: Behroozmand fullname: Behroozmand, Roozbeh email: r-behroozmand@sc.edu organization: Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, United States – sequence: 2 givenname: Stacey surname: Sangtian fullname: Sangtian, Stacey organization: Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, United States – sequence: 3 givenname: Oleg surname: Korzyukov fullname: Korzyukov, Oleg organization: Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, United States – sequence: 4 givenname: Charles R. surname: Larson fullname: Larson, Charles R. organization: Speech Physiology Lab, Department of Communication Sciences and Disorders, Northwestern University, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26835556$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu3CAUtapUzaP9hYhlN56CwRhXVdQomj6kSK36WCMGLh0mtnGBsTTL_HlxJ1O1WTRZwYVzzz1wzmlxNPgBiuKc4AXBhL_aLFZBuSFAXFS5XmCywAw_KU6IaKqSVwwfFScYY16KtqXHxWmMm1xS2uJnxXHFBa3rmp8Ut5coQT_6oDo0BjBOJzcB0t4Asj6gyTsNqPcp77UfUvDda7ScnIEhn9vge7T88hmpwaAVrNXkfjNlWaMfIkSUPBpd0usyrp1NYJDaGpfJdsgCmJXSN8-Lp1Z1EV7crWfF93fLb1cfyutP7z9eXV6XmhOWSspI28DK1BoD1FwIQRmw2rSaWWGEsTW1xoIixlpNmaWNqDUTpm0YVIxSelZc7HnH7aoHoyE_RnVyDK5XYSe9cvLfm8Gt5Q8_SSaw4FWdCV7eEQT_cwsxyd5FDV2nBvDbKEmeWNUMt-wR0Ibzqm2qGXr-t6w_eg4WZcCbPUAHH2MAK7VLKrnZDOU6SbCcEyE38pAIOSdCYiJzInI7v9d-mPBg49t9I2RTJgdBRu1m140LoJM03j1McXGPQnducFp1N7CDuPHbMGTLJZGxklh-nfM6x5VwinH-zv8TPEbBLz3_AcI |
| CitedBy_id | crossref_primary_10_1016_j_brainres_2020_146703 crossref_primary_10_1016_j_neuropsychologia_2025_109242 crossref_primary_10_1080_00222895_2018_1528204 crossref_primary_10_1007_s40520_018_0902_4 crossref_primary_10_1016_j_bpsc_2019_05_011 crossref_primary_10_1016_j_psychres_2025_116461 crossref_primary_10_7554_eLife_28197 crossref_primary_10_1017_S1366728923000019 crossref_primary_10_1007_s00221_025_07130_8 crossref_primary_10_1016_j_bbr_2018_03_028 crossref_primary_10_3389_fnins_2019_01146 crossref_primary_10_1177_0023830917713775 crossref_primary_10_1016_j_neuropsychologia_2019_107200 crossref_primary_10_3389_fnhum_2024_1462922 crossref_primary_10_3389_fnins_2024_1347614 crossref_primary_10_1007_s00221_019_05549_4 crossref_primary_10_1162_jocn_a_02318 crossref_primary_10_1016_j_humov_2017_03_005 crossref_primary_10_1016_j_neuroimage_2019_04_038 crossref_primary_10_3390_app13137512 crossref_primary_10_1007_s00221_017_4900_0 crossref_primary_10_1016_j_neuropsychologia_2019_04_001 crossref_primary_10_1093_cercor_bhab222 crossref_primary_10_1162_jocn_a_01747 |
| Cites_doi | 10.1016/j.neuroimage.2014.01.003 10.1002/(SICI)1097-0193(200004)9:4<183::AID-HBM1>3.0.CO;2-Z 10.1126/science.7569931 10.1002/mds.25588 10.1038/81497 10.1016/j.jneumeth.2003.10.009 10.1016/j.neuroimage.2012.02.068 10.1523/JNEUROSCI.1008-13.2013 10.1016/S0960-9822(01)00432-8 10.1162/jocn.2010.21447 10.1097/01.wnr.0000233102.43526.e9 10.1016/j.neuroimage.2007.09.054 10.1111/ejn.12734 10.1162/jocn.2009.21324 10.3389/fpsyg.2012.00180 10.1523/JNEUROSCI.2137-13.2013 10.1176/appi.ajp.158.12.2069 10.1121/1.4746984 10.1016/j.biopsych.2007.09.013 10.1038/nrn3158 10.1162/089892902760807140 10.1016/j.bandl.2005.06.001 10.3389/fnhum.2011.00082 10.1111/j.1460-6984.2011.00111.x 10.1162/jocn.2009.21055 10.1016/j.neuroimage.2015.01.040 10.1371/journal.pone.0041830 10.1186/1471-2202-13-55 10.1038/nrn2113 10.1001/archpsyc.64.3.286 10.1371/journal.pone.0041216 10.1016/j.neuroimage.2009.10.023 10.1007/s00221-008-1529-z 10.1111/j.1469-8986.2005.00272.x 10.1371/journal.pone.0082925 10.1186/1471-2202-10-58 10.1016/j.brainres.2013.06.030 10.1186/1471-2202-12-54 10.1038/nrn3112 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. Elsevier B.V. Copyright © 2016 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Elsevier B.V. – notice: Copyright © 2016 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QG 7TK 5PM |
| DOI | 10.1016/j.brainres.2016.01.040 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Animal Behavior Abstracts Neurosciences Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts Animal Behavior Abstracts |
| DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1872-6240 |
| EndPage | 12 |
| ExternalDocumentID | PMC4808625 26835556 10_1016_j_brainres_2016_01_040 S0006899316300178 1_s2_0_S0006899316300178 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDCD NIH HHS grantid: 1R01DC006243 – fundername: NIDCD NIH HHS grantid: R01 DC006243 |
| GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5RE 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABIVO ABJNI ABLJU ABMAC ABTEW ABUFD ACDAQ ACGFO ACGFS ACIUM ACLOT ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPCBC SSN SSZ T5K Z5R ZGI ~G- ~HD .55 .GJ 41~ 53G 5VS AACTN AAQXK AAYJJ ABWVN ABXDB ACRPL ADIYS ADMUD ADNMO AFCTW AFJKZ AFKWA AGHFR AHHHB AI. AJOXV AMFUW ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HMQ HVGLF HZ~ MVM PKN R2- RIG SEW SNS VH1 WUQ X7M XPP AADPK AAIAV ABYKQ AJBFU 9DU AAYXX AGQPQ AIGII CITATION CGR CUY CVF ECM EIF NPM SSH 7X8 7QG 7TK 5PM |
| ID | FETCH-LOGICAL-c614t-34197ebd5c0ee5688834e45d9c4f8d8df53fdfea1dffc34f3785c48d974e24333 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374611800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-8993 |
| IngestDate | Tue Nov 04 02:01:15 EST 2025 Thu Oct 02 05:45:23 EDT 2025 Sat Sep 27 16:49:22 EDT 2025 Thu Apr 03 07:02:36 EDT 2025 Sat Nov 29 06:46:48 EST 2025 Tue Nov 18 19:39:49 EST 2025 Fri Feb 23 02:19:45 EST 2024 Tue Feb 25 19:56:12 EST 2025 Tue Oct 14 19:29:31 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Event-related potential Voice motor control Predictive code Auditory feedback Pitch-shift stimulus Internal forward model |
| Language | English |
| License | Copyright © 2016 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c614t-34197ebd5c0ee5688834e45d9c4f8d8df53fdfea1dffc34f3785c48d974e24333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://doi.org/10.1016/j.brainres.2016.01.040 |
| PMID | 26835556 |
| PQID | 1776629724 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4808625 proquest_miscellaneous_1785254094 proquest_miscellaneous_1776629724 pubmed_primary_26835556 crossref_citationtrail_10_1016_j_brainres_2016_01_040 crossref_primary_10_1016_j_brainres_2016_01_040 elsevier_sciencedirect_doi_10_1016_j_brainres_2016_01_040 elsevier_clinicalkeyesjournals_1_s2_0_S0006899316300178 elsevier_clinicalkey_doi_10_1016_j_brainres_2016_01_040 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-01 |
| PublicationDateYYYYMMDD | 2016-04-01 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Brain research |
| PublicationTitleAlternate | Brain Res |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Aliu, Houde, Nagarajan (bib1) 2009; 21 Behroozmand, Korzyukov, Sattler, Larson (bib2) 2012; 132 Behroozmand, Larson (bib3) 2011; 12 Heinks-Maldonado, Mathalon, Houde, Gray, Faustman, Ford (bib19) 2007; 64 Liu, Wang, Metman, Larson (bib26) 2012; 7 Niziolek, Guenther (bib29) 2013; 33 Behroozmand, Shebek, Hansen, Oya, Robin, Howard, Greenlee (bib5) 2015 Parkinson, Flagmeier, Manes, Larson, Rogers, Robin (bib31) 2012; 61 Golfinopoulos, Tourville, Guenther (bib16) 2010; 52 Butler, Trainor (bib8) 2012; 3 Heinks-Maldonado, Nagarajan, Houde (bib20) 2006; 17 Tourville, Reilly, Guenther (bib34) 2008; 39 Wolpert, Flanagan (bib38) 2001; 11 Guenther, Ghosh, Tourville (bib17) 2006; 96 Ventura, Nagarajan, Houde (bib35) 2009; 10 Ford, Mathalon, Heinks, Kalba, Faustman, Roth (bib14) 2001; 158 Boersma, Weenik (bib6) 1996 Cai, Beal, Ghosh, Tiede, Guenther, Perkell (bib9) 2012; 7 Wang, Mathalon, Roach, Reilly, Keedy, Sweeney, Ford (bib36) 2014; 91 Chen, Zhu, Wang, Chen, Li, Chen, Liu (bib10) 2013; 1527 Houde, Nagarajan (bib23) 2011; 5 Delorme, Makeig (bib13) 2004; 134 Ford, Roach, Faustman, Mathalon (bib15) 2008; 63 Wolpert, Ghahramani, Jordan (bib40) 1995; 269 Loucks, Chon, Han (bib27) 2012; 47 Chen, Chen, Liu, Huang, Liu (bib11) 2012; 13 Wolpert, Ghahramani (bib39) 2000; 3 Curio, Neuloh, Numminen, Jousmäki, Hari (bib12) 2000; 9 Houde, Nagarajan, Sekihara, Merzenich (bib24) 2002; 14 Scheerer, Jones (bib32) 2014; 40 Wolpert, Diedrichsen, Flanagan (bib37) 2011; 12 Hickok, Poeppel (bib22) 2007; 8 Zheng, Munhall, Johnsrude (bib41) 2010; 22 Korzyukov, Sattler, Behroozmand, Larson (bib25) 2012; 7 Mollaei, Shiller, Gracco (bib28) 2013; 28 Sitek, Mathalon, Roach, Houde, Niziolek, Ford (bib33) 2013; 8 Niziolek, Nagarajan, Houde (bib30) 2013; 33 Heinks-Maldonado, Mathalon, Gray, Ford (bib18) 2005; 42 Behroozmand, Liu, Larson (bib4) 2011; 23 Burnett, McCurdy, Bright (bib7) 2008; 191 Hickok (bib21) 2012 Behroozmand (10.1016/j.brainres.2016.01.040_bib2) 2012; 132 Parkinson (10.1016/j.brainres.2016.01.040_bib31) 2012; 61 Heinks-Maldonado (10.1016/j.brainres.2016.01.040_bib20) 2006; 17 Sitek (10.1016/j.brainres.2016.01.040_bib33) 2013; 8 Behroozmand (10.1016/j.brainres.2016.01.040_bib3) 2011; 12 Ford (10.1016/j.brainres.2016.01.040_bib14) 2001; 158 Curio (10.1016/j.brainres.2016.01.040_bib12) 2000; 9 Wolpert (10.1016/j.brainres.2016.01.040_bib40) 1995; 269 Behroozmand (10.1016/j.brainres.2016.01.040_bib5) 2015 Korzyukov (10.1016/j.brainres.2016.01.040_bib25) 2012; 7 Loucks (10.1016/j.brainres.2016.01.040_bib27) 2012; 47 Delorme (10.1016/j.brainres.2016.01.040_bib13) 2004; 134 Aliu (10.1016/j.brainres.2016.01.040_bib1) 2009; 21 Zheng (10.1016/j.brainres.2016.01.040_bib41) 2010; 22 Houde (10.1016/j.brainres.2016.01.040_bib23) 2011; 5 Mollaei (10.1016/j.brainres.2016.01.040_bib28) 2013; 28 Hickok (10.1016/j.brainres.2016.01.040_bib21) 2012 Golfinopoulos (10.1016/j.brainres.2016.01.040_bib16) 2010; 52 Tourville (10.1016/j.brainres.2016.01.040_bib34) 2008; 39 Wolpert (10.1016/j.brainres.2016.01.040_bib38) 2001; 11 Hickok (10.1016/j.brainres.2016.01.040_bib22) 2007; 8 Behroozmand (10.1016/j.brainres.2016.01.040_bib4) 2011; 23 Boersma (10.1016/j.brainres.2016.01.040_bib6) 1996 Ventura (10.1016/j.brainres.2016.01.040_bib35) 2009; 10 Wolpert (10.1016/j.brainres.2016.01.040_bib39) 2000; 3 Butler (10.1016/j.brainres.2016.01.040_bib8) 2012; 3 Niziolek (10.1016/j.brainres.2016.01.040_bib30) 2013; 33 Cai (10.1016/j.brainres.2016.01.040_bib9) 2012; 7 Wolpert (10.1016/j.brainres.2016.01.040_bib37) 2011; 12 Guenther (10.1016/j.brainres.2016.01.040_bib17) 2006; 96 Liu (10.1016/j.brainres.2016.01.040_bib26) 2012; 7 Wang (10.1016/j.brainres.2016.01.040_bib36) 2014; 91 Scheerer (10.1016/j.brainres.2016.01.040_bib32) 2014; 40 Niziolek (10.1016/j.brainres.2016.01.040_bib29) 2013; 33 Chen (10.1016/j.brainres.2016.01.040_bib11) 2012; 13 Heinks-Maldonado (10.1016/j.brainres.2016.01.040_bib18) 2005; 42 Heinks-Maldonado (10.1016/j.brainres.2016.01.040_bib19) 2007; 64 Burnett (10.1016/j.brainres.2016.01.040_bib7) 2008; 191 Chen (10.1016/j.brainres.2016.01.040_bib10) 2013; 1527 Ford (10.1016/j.brainres.2016.01.040_bib15) 2008; 63 Houde (10.1016/j.brainres.2016.01.040_bib24) 2002; 14 12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38 22740836 - Front Psychol. 2012 Jun 26;3:180 11566114 - Curr Biol. 2001 Sep 18;11(18):R729-32 19837177 - Neuroimage. 2010 Sep;52(3):862-74 16040108 - Brain Lang. 2006 Mar;96(3):280-301 25623499 - Neuroimage. 2015 Apr 1;109:418-28 17339517 - Arch Gen Psychiatry. 2007 Mar;64(3):286-96 25263844 - Eur J Neurosci. 2014 Dec;40(12):3793-806 23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77 22815974 - PLoS One. 2012;7(7):e41216 22406500 - Neuroimage. 2012 May 15;61(1):314-22 24423729 - Neuroimage. 2014 May 1;91:91-8 18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43 22448258 - PLoS One. 2012;7(3):e33629 17981264 - Biol Psychiatry. 2008 Apr 15;63(8):736-43 24349399 - PLoS One. 2013;8(12):e82925 7569931 - Science. 1995 Sep 29;269(5232):1880-2 22046152 - Front Hum Neurosci. 2011 Oct 25;5:82 23864694 - J Neurosci. 2013 Jul 17;33(29):12090-8 18712372 - Exp Brain Res. 2008 Nov;191(3):341-51 22646514 - BMC Neurosci. 2012;13:55 18593265 - J Cogn Neurosci. 2009 Apr;21(4):791-802 10770228 - Hum Brain Mapp. 2000 Apr;9(4):183-91 19523234 - BMC Neurosci. 2009;10:58 23861349 - Mov Disord. 2013 Oct;28(12):1668-74 16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9 22788230 - Int J Lang Commun Disord. 2012 Jul-Aug;47(4):451-6 20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17 24107944 - J Neurosci. 2013 Oct 9;33(41):16110-6 11729029 - Am J Psychiatry. 2001 Dec;158(12):2069-71 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 15787855 - Psychophysiology. 2005 Mar;42(2):180-90 19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81 22911857 - PLoS One. 2012;7(7):e41830 21645406 - BMC Neurosci. 2011;12:54 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7 23820424 - Brain Res. 2013 Aug 21;1527:99-107 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402 22218206 - Nat Rev Neurosci. 2012 Feb;13(2):135-45 22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51 |
| References_xml | – volume: 17 start-page: 1375 year: 2006 end-page: 1379 ident: bib20 article-title: Magnetoencephalographic evidence for a precise forward model in speech production publication-title: Neuroreport – volume: 52 start-page: 862 year: 2010 end-page: 874 ident: bib16 article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control publication-title: Neuroimage – volume: 10 start-page: 58 year: 2009 ident: bib35 article-title: Speech target modulates speaking induced suppression in auditory cortex publication-title: BMC Neurosci. – volume: 47 start-page: 451 year: 2012 end-page: 456 ident: bib27 article-title: Audiovocal integration in adults who stutter publication-title: Int. J. Lang. Commun. Disord. – volume: 9 start-page: 183 year: 2000 end-page: 191 ident: bib12 article-title: Speaking modifies voice-evoked activity in the human auditory cortex publication-title: Hum. Brain Mapp. – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib13 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – volume: 21 start-page: 791 year: 2009 end-page: 802 ident: bib1 article-title: Motor-induced suppression of the auditory cortex publication-title: J. Cogn. Neurosci. – volume: 11 start-page: R729 year: 2001 end-page: R732 ident: bib38 article-title: Motor prediction publication-title: Curr. Biol. – volume: 61 start-page: 314 year: 2012 end-page: 322 ident: bib31 article-title: Understanding the neural mechanisms involved in sensory control of voice production publication-title: Neuroimage – volume: 3 start-page: 1 year: 2012 end-page: 13 ident: bib8 article-title: Sequencing the cortical processing of pitch-evoking stimuli using EEG analysis and source estimation publication-title: Front. Psychol. – volume: 33 start-page: 12090 year: 2013 end-page: 12098 ident: bib29 article-title: Vowel category boundaries enhance cortical and behavioral responses to speech feedback alterations publication-title: J. Neurosci. – year: 2015 ident: bib5 article-title: Sensory-motor networks involved in speech production and motor control: an fMRI study publication-title: Neuroimage. – volume: 7 year: 2012 ident: bib26 article-title: Vocal responses to perturbations in voice auditory feedback in individuals with parkinson’s disease publication-title: PLoS One – volume: 191 start-page: 341 year: 2008 end-page: 351 ident: bib7 article-title: Reflexive and volitional voice fundamental frequency responses to an anticipated feedback pitch error publication-title: Exp. Brain Res. – volume: 132 start-page: 2468 year: 2012 end-page: 2477 ident: bib2 article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control publication-title: J. Acoust. Soc. Am. – volume: 13 start-page: 55 year: 2012 ident: bib11 article-title: Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization publication-title: BMC Neurosci. – year: 2012 ident: bib21 article-title: Computational neuroanatomy of speech production publication-title: Nat. Rev. Neurosci – year: 1996 ident: bib6 article-title: PRAAT: a system for doing phonetics by computer – volume: 63 start-page: 736 year: 2008 end-page: 743 ident: bib15 article-title: Out-of-synch and out-of-sorts: dysfunction of motor-sensory communication in schizophrenia publication-title: Biol. Psychiatry – volume: 42 start-page: 180 year: 2005 end-page: 190 ident: bib18 article-title: Fine-tuning of auditory cortex during speech production publication-title: Psychophysiology – volume: 1527 start-page: 99 year: 2013 end-page: 107 ident: bib10 article-title: Sensorimotor control of vocal pitch production in Parkinson’s disease publication-title: Brain Res. – volume: 14 start-page: 1125 year: 2002 end-page: 1138 ident: bib24 article-title: Modulation of the auditory cortex during speech: an MEG study publication-title: J. Cogn. Neurosci. – volume: 33 start-page: 16110 year: 2013 end-page: 16116 ident: bib30 article-title: What does motor efference copy represent? Evidence from speech production publication-title: J. Neurosci. – volume: 22 start-page: 1770 year: 2010 end-page: 1781 ident: bib41 article-title: Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production publication-title: J. Cogn. Neurosci. – volume: 8 start-page: e82925 year: 2013 ident: bib33 article-title: Auditory cortex processes variation in our own speech publication-title: PLoS One – volume: 12 start-page: 739 year: 2011 end-page: 751 ident: bib37 article-title: Principles of sensorimotor learning publication-title: Nat. Rev. Neurosci. – volume: 269 start-page: 1880 year: 1995 end-page: 1882 ident: bib40 article-title: An internal model for sensorimotor integration publication-title: Science – volume: 158 start-page: 2069 year: 2001 end-page: 2071 ident: bib14 article-title: Neurophysiological evidence of corollary discharge dysfunction in schizophrenia publication-title: Am. J. Psychiatry – volume: 7 year: 2012 ident: bib25 article-title: Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback publication-title: PLoS One – volume: 40 start-page: 3793 year: 2014 end-page: 3806 ident: bib32 article-title: The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control publication-title: Eur. J. Neurosci. – volume: 23 start-page: 1205 year: 2011 end-page: 1217 ident: bib4 article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection publication-title: J. Cogn. Neurosci. – volume: 7 start-page: 1 year: 2012 end-page: 14 ident: bib9 article-title: Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation publication-title: PLoS One – volume: 3 start-page: 1212 year: 2000 end-page: 1217 ident: bib39 article-title: Computational principles of movement neuroscience publication-title: Nat. Neurosci. – volume: 91 start-page: 91 year: 2014 end-page: 98 ident: bib36 article-title: Action planning and predictive coding when speaking publication-title: Neuroimage – volume: 64 start-page: 286 year: 2007 end-page: 296 ident: bib19 article-title: Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations publication-title: Arch. Gen. Psychiatry – volume: 28 start-page: 1668 year: 2013 end-page: 1674 ident: bib28 article-title: Sensorimotor adaptation of speech in Parkinson’s disease publication-title: Mov. Disord. – volume: 5 start-page: 82 year: 2011 ident: bib23 article-title: Speech production as state feedback control publication-title: Front. Hum. Neurosci. – volume: 96 start-page: 280 year: 2006 end-page: 301 ident: bib17 article-title: Neural modeling and imaging of the cortical interactions underlying syllable production publication-title: Brain Lang. – volume: 8 start-page: 393 year: 2007 end-page: 403 ident: bib22 article-title: The cortical organization of speech processing publication-title: Nat. Rev. Neurosci. – volume: 39 start-page: 1429 year: 2008 end-page: 1443 ident: bib34 article-title: Neural mechanisms underlying auditory feedback control of speech publication-title: Neuroimage – volume: 12 start-page: 54 year: 2011 ident: bib3 article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback publication-title: BMC Neurosci. – year: 1996 ident: 10.1016/j.brainres.2016.01.040_bib6 – volume: 91 start-page: 91 year: 2014 ident: 10.1016/j.brainres.2016.01.040_bib36 article-title: Action planning and predictive coding when speaking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.01.003 – volume: 9 start-page: 183 year: 2000 ident: 10.1016/j.brainres.2016.01.040_bib12 article-title: Speaking modifies voice-evoked activity in the human auditory cortex publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(200004)9:4<183::AID-HBM1>3.0.CO;2-Z – volume: 269 start-page: 1880 issue: 80- year: 1995 ident: 10.1016/j.brainres.2016.01.040_bib40 article-title: An internal model for sensorimotor integration publication-title: Science doi: 10.1126/science.7569931 – volume: 28 start-page: 1668 year: 2013 ident: 10.1016/j.brainres.2016.01.040_bib28 article-title: Sensorimotor adaptation of speech in Parkinson’s disease publication-title: Mov. Disord. doi: 10.1002/mds.25588 – volume: 3 start-page: 1212 issue: Suppl. year: 2000 ident: 10.1016/j.brainres.2016.01.040_bib39 article-title: Computational principles of movement neuroscience publication-title: Nat. Neurosci. doi: 10.1038/81497 – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.brainres.2016.01.040_bib13 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 61 start-page: 314 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib31 article-title: Understanding the neural mechanisms involved in sensory control of voice production publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.068 – volume: 33 start-page: 12090 year: 2013 ident: 10.1016/j.brainres.2016.01.040_bib29 article-title: Vowel category boundaries enhance cortical and behavioral responses to speech feedback alterations publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1008-13.2013 – volume: 11 start-page: R729 year: 2001 ident: 10.1016/j.brainres.2016.01.040_bib38 article-title: Motor prediction publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00432-8 – volume: 23 start-page: 1205 year: 2011 ident: 10.1016/j.brainres.2016.01.040_bib4 article-title: Time-dependent neural processing of auditory feedback during voice pitch error detection publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2010.21447 – volume: 17 start-page: 1375 year: 2006 ident: 10.1016/j.brainres.2016.01.040_bib20 article-title: Magnetoencephalographic evidence for a precise forward model in speech production publication-title: Neuroreport doi: 10.1097/01.wnr.0000233102.43526.e9 – volume: 39 start-page: 1429 year: 2008 ident: 10.1016/j.brainres.2016.01.040_bib34 article-title: Neural mechanisms underlying auditory feedback control of speech publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.054 – volume: 40 start-page: 3793 year: 2014 ident: 10.1016/j.brainres.2016.01.040_bib32 article-title: The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12734 – volume: 22 start-page: 1770 year: 2010 ident: 10.1016/j.brainres.2016.01.040_bib41 article-title: Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2009.21324 – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib8 article-title: Sequencing the cortical processing of pitch-evoking stimuli using EEG analysis and source estimation publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00180 – volume: 33 start-page: 16110 year: 2013 ident: 10.1016/j.brainres.2016.01.040_bib30 article-title: What does motor efference copy represent? Evidence from speech production publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2137-13.2013 – volume: 158 start-page: 2069 year: 2001 ident: 10.1016/j.brainres.2016.01.040_bib14 article-title: Neurophysiological evidence of corollary discharge dysfunction in schizophrenia publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.158.12.2069 – volume: 132 start-page: 2468 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib2 article-title: Opposing and following vocal responses to pitch-shifted auditory feedback: evidence for different mechanisms of voice pitch control publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4746984 – volume: 63 start-page: 736 year: 2008 ident: 10.1016/j.brainres.2016.01.040_bib15 article-title: Out-of-synch and out-of-sorts: dysfunction of motor-sensory communication in schizophrenia publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2007.09.013 – year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib21 article-title: Computational neuroanatomy of speech production publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn3158 – volume: 14 start-page: 1125 year: 2002 ident: 10.1016/j.brainres.2016.01.040_bib24 article-title: Modulation of the auditory cortex during speech: an MEG study publication-title: J. Cogn. Neurosci. doi: 10.1162/089892902760807140 – volume: 96 start-page: 280 year: 2006 ident: 10.1016/j.brainres.2016.01.040_bib17 article-title: Neural modeling and imaging of the cortical interactions underlying syllable production publication-title: Brain Lang. doi: 10.1016/j.bandl.2005.06.001 – volume: 5 start-page: 82 year: 2011 ident: 10.1016/j.brainres.2016.01.040_bib23 article-title: Speech production as state feedback control publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2011.00082 – volume: 7 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib26 article-title: Vocal responses to perturbations in voice auditory feedback in individuals with parkinson’s disease publication-title: PLoS One – volume: 47 start-page: 451 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib27 article-title: Audiovocal integration in adults who stutter publication-title: Int. J. Lang. Commun. Disord. doi: 10.1111/j.1460-6984.2011.00111.x – volume: 21 start-page: 791 year: 2009 ident: 10.1016/j.brainres.2016.01.040_bib1 article-title: Motor-induced suppression of the auditory cortex publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2009.21055 – year: 2015 ident: 10.1016/j.brainres.2016.01.040_bib5 article-title: Sensory-motor networks involved in speech production and motor control: an fMRI study publication-title: Neuroimage. doi: 10.1016/j.neuroimage.2015.01.040 – volume: 7 start-page: 1 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib9 article-title: Weak responses to auditory feedback perturbation during articulation in persons who stutter: Evidence for abnormal auditory-motor transformation publication-title: PLoS One doi: 10.1371/journal.pone.0041830 – volume: 13 start-page: 55 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib11 article-title: Effect of temporal predictability on the neural processing of self-triggered auditory stimulation during vocalization publication-title: BMC Neurosci. doi: 10.1186/1471-2202-13-55 – volume: 8 start-page: 393 year: 2007 ident: 10.1016/j.brainres.2016.01.040_bib22 article-title: The cortical organization of speech processing publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2113 – volume: 64 start-page: 286 year: 2007 ident: 10.1016/j.brainres.2016.01.040_bib19 article-title: Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations publication-title: Arch. Gen. Psychiatry doi: 10.1001/archpsyc.64.3.286 – volume: 7 year: 2012 ident: 10.1016/j.brainres.2016.01.040_bib25 article-title: Neuronal mechanisms of voice control are affected by implicit expectancy of externally triggered perturbations in auditory feedback publication-title: PLoS One doi: 10.1371/journal.pone.0041216 – volume: 52 start-page: 862 year: 2010 ident: 10.1016/j.brainres.2016.01.040_bib16 article-title: The integration of large-scale neural network modeling and functional brain imaging in speech motor control publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.023 – volume: 191 start-page: 341 year: 2008 ident: 10.1016/j.brainres.2016.01.040_bib7 article-title: Reflexive and volitional voice fundamental frequency responses to an anticipated feedback pitch error publication-title: Exp. Brain Res. doi: 10.1007/s00221-008-1529-z – volume: 42 start-page: 180 year: 2005 ident: 10.1016/j.brainres.2016.01.040_bib18 article-title: Fine-tuning of auditory cortex during speech production publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2005.00272.x – volume: 8 start-page: e82925 year: 2013 ident: 10.1016/j.brainres.2016.01.040_bib33 article-title: Auditory cortex processes variation in our own speech publication-title: PLoS One doi: 10.1371/journal.pone.0082925 – volume: 10 start-page: 58 year: 2009 ident: 10.1016/j.brainres.2016.01.040_bib35 article-title: Speech target modulates speaking induced suppression in auditory cortex publication-title: BMC Neurosci. doi: 10.1186/1471-2202-10-58 – volume: 1527 start-page: 99 year: 2013 ident: 10.1016/j.brainres.2016.01.040_bib10 article-title: Sensorimotor control of vocal pitch production in Parkinson’s disease publication-title: Brain Res. doi: 10.1016/j.brainres.2013.06.030 – volume: 12 start-page: 54 year: 2011 ident: 10.1016/j.brainres.2016.01.040_bib3 article-title: Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback publication-title: BMC Neurosci. doi: 10.1186/1471-2202-12-54 – volume: 12 start-page: 739 year: 2011 ident: 10.1016/j.brainres.2016.01.040_bib37 article-title: Principles of sensorimotor learning publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3112 – reference: 22448258 - PLoS One. 2012;7(3):e33629 – reference: 21645406 - BMC Neurosci. 2011;12:54 – reference: 24423729 - Neuroimage. 2014 May 1;91:91-8 – reference: 22218206 - Nat Rev Neurosci. 2012 Feb;13(2):135-45 – reference: 15787855 - Psychophysiology. 2005 Mar;42(2):180-90 – reference: 10770228 - Hum Brain Mapp. 2000 Apr;9(4):183-91 – reference: 15102499 - J Neurosci Methods. 2004 Mar 15;134(1):9-21 – reference: 17431404 - Nat Rev Neurosci. 2007 May;8(5):393-402 – reference: 22406500 - Neuroimage. 2012 May 15;61(1):314-22 – reference: 22911857 - PLoS One. 2012;7(7):e41830 – reference: 18035557 - Neuroimage. 2008 Feb 1;39(3):1429-43 – reference: 23861349 - Mov Disord. 2013 Oct;28(12):1668-74 – reference: 19837177 - Neuroimage. 2010 Sep;52(3):862-74 – reference: 18712372 - Exp Brain Res. 2008 Nov;191(3):341-51 – reference: 23864694 - J Neurosci. 2013 Jul 17;33(29):12090-8 – reference: 16932142 - Neuroreport. 2006 Sep 18;17(13):1375-9 – reference: 22788230 - Int J Lang Commun Disord. 2012 Jul-Aug;47(4):451-6 – reference: 11566114 - Curr Biol. 2001 Sep 18;11(18):R729-32 – reference: 20146608 - J Cogn Neurosci. 2011 May;23(5):1205-17 – reference: 17339517 - Arch Gen Psychiatry. 2007 Mar;64(3):286-96 – reference: 24349399 - PLoS One. 2013;8(12):e82925 – reference: 22646514 - BMC Neurosci. 2012;13:55 – reference: 22740836 - Front Psychol. 2012 Jun 26;3:180 – reference: 22033537 - Nat Rev Neurosci. 2011 Dec;12(12):739-51 – reference: 23039441 - J Acoust Soc Am. 2012 Oct;132(4):2468-77 – reference: 25263844 - Eur J Neurosci. 2014 Dec;40(12):3793-806 – reference: 19523234 - BMC Neurosci. 2009;10:58 – reference: 22815974 - PLoS One. 2012;7(7):e41216 – reference: 11127840 - Nat Neurosci. 2000 Nov;3 Suppl:1212-7 – reference: 11729029 - Am J Psychiatry. 2001 Dec;158(12):2069-71 – reference: 25623499 - Neuroimage. 2015 Apr 1;109:418-28 – reference: 18593265 - J Cogn Neurosci. 2009 Apr;21(4):791-802 – reference: 22046152 - Front Hum Neurosci. 2011 Oct 25;5:82 – reference: 23820424 - Brain Res. 2013 Aug 21;1527:99-107 – reference: 17981264 - Biol Psychiatry. 2008 Apr 15;63(8):736-43 – reference: 24107944 - J Neurosci. 2013 Oct 9;33(41):16110-6 – reference: 16040108 - Brain Lang. 2006 Mar;96(3):280-301 – reference: 12495520 - J Cogn Neurosci. 2002 Nov 15;14(8):1125-38 – reference: 19642886 - J Cogn Neurosci. 2010 Aug;22(8):1770-81 – reference: 7569931 - Science. 1995 Sep 29;269(5232):1880-2 |
| SSID | ssj0003390 |
| Score | 2.3189607 |
| Snippet | The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions and... Abstract The predictive coding model suggests that voice motor control is regulated by a process in which the mismatch (error) between feedforward predictions... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Acoustic Stimulation Adolescent Attention - physiology Auditory feedback Brain Mapping Electroencephalography Event-related potential Evoked Potentials, Auditory - physiology Feedback, Sensory - physiology Female Humans Internal forward model Male Neurology Pitch Perception - physiology Pitch-shift stimulus Predictive code Predictive Value of Tests Psychoacoustics Reaction Time - physiology Time Factors Voice Voice motor control Young Adult |
| Title | A temporal predictive code for voice motor control: Evidence from ERP and behavioral responses to pitch-shifted auditory feedback |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0006899316300178 https://www.clinicalkey.es/playcontent/1-s2.0-S0006899316300178 https://dx.doi.org/10.1016/j.brainres.2016.01.040 https://www.ncbi.nlm.nih.gov/pubmed/26835556 https://www.proquest.com/docview/1776629724 https://www.proquest.com/docview/1785254094 https://pubmed.ncbi.nlm.nih.gov/PMC4808625 |
| Volume | 1636 |
| WOSCitedRecordID | wos000374611800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-6240 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003390 issn: 0006-8993 databaseCode: AIEXJ dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2jgdeEDAu5TIZCfEyBRo7jh3eKlTETWMaQ-qb5STO2tElVdtV2974HfxZjh07S8cGA4mXKIpjW875cnx8fM5nhJ6nJMnTpKeDLCNpABY4C1LK8iBhaU8TpXKeC3vYBN_ZEcNhsru29sPnwiwnvCzFyUky_a-ihmcgbJM6-xfibhqFB3APQocriB2u1xJ8f9vRTU0MAUA-tgpt26Su25DCZQWqYRsEBPcuTt14BfzponW-yWBv1-4qtJL4Z3Uwbc0IMR2DsIP5aFwYg1WZzA6zV1_AVJgqR7PfsCYpmzLT8prZtKARmOxnRy6scg_uoa_G3aPKA6N56jA0lenG7_-xmp2dHn-rlqbo80Qf-IJPajZfCSBwkZDOoRHGrTgYXSthwUkQk5rGqdHSMW0r2vBS9V97Ig5fpmZoMDITuhdbWta6sZb4p0dW_iQGE5SxC2zcdn73Retog3CWiA7a6L8fDD80Ez2lSa-VdH55t4Zt2jV0lenz69LmYoRuy-TZv41uubUK7tcYu4PWdHkXbfZLtaiOTvELbKOH7bbMJvrexx52-Bx22MAOA-ywhR22sMMOdq-xBx02oMMAOgx4wOegww3o8KLCK6DDHnTYg-4e-vp2sP_mXeCO9wgysAkXgWES5DrNWdbTmsVCCBrpiOVJFhUiF3nBaJEXWoV5UWQ0KigXLItEDitgTSJK6X3UKatSP0SYkShOFNUFLaJIc5Wm8GYK3YQKWkrDLmL-y8vMcd-bI1gm0gc5HkovPGmEJ3uhBOF10aum3rRmf_ljDe4FK31uM8zGEhD6bzX13OmWuQzlnMie_GJMTAHritDQ5YVcdFHS1HR2c20PX6vXZx59EiYWs1uoSl0dQ2-cxzFJOIl-945ghBkXURc9qBHbfCePehjXCpabFwyx_WpJOR5ZgvtIGEcLe3Rlm4_RzXPN8QR1FrNj_RTdyJaL8Xy2hdb5UGy5v_UnR3kdNg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+temporal+predictive+code+for+voice+motor+control%3A+Evidence+from+ERP+and+behavioral+responses+to+pitch-shifted+auditory+feedback&rft.jtitle=Brain+research&rft.au=Behroozmand%2C+Roozbeh&rft.au=Sangtian%2C+Stacey&rft.au=Korzyukov%2C+Oleg&rft.au=Larson%2C+Charles+R&rft.date=2016-04-01&rft.eissn=1872-6240&rft.volume=1636&rft.spage=1&rft_id=info:doi/10.1016%2Fj.brainres.2016.01.040&rft_id=info%3Apmid%2F26835556&rft.externalDocID=26835556 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8993&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8993&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8993&client=summon |