Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat

Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 16; no. 1; p. 63
Main Authors: Stein, Caleb K, Qu, Pingping, Epstein, Joshua, Buros, Amy, Rosenthal, Adam, Crowley, John, Morgan, Gareth, Barlogie, Bart
Format: Journal Article
Language:English
Published: London BioMed Central 25.02.2015
BioMed Central Ltd
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, ‘gold-standard’ batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a ‘gold-standard’ batch. Results We combined data from MIRT across two batches (‘Old’ and ‘New’ Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98 % of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the ‘gold-standard’ batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects. Conclusion M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data.
AbstractList Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, 'gold-standard' batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a 'gold-standard' batch. Results We combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98% of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the 'gold-standard' batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects. Conclusion M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data. Keywords: Microarray analysis, Gene expression profiling (GEP), Batch effect, Meta-analysis, Multiple myeloma (MM), ComBat, M-ComBat
Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, 'gold-standard' batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a 'gold-standard' batch. We combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98% of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the 'gold-standard' batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects. M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data.
Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, ‘gold-standard’ batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a ‘gold-standard’ batch. Results We combined data from MIRT across two batches (‘Old’ and ‘New’ Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98 % of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the ‘gold-standard’ batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects. Conclusion M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data.
BACKGROUNDGene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, 'gold-standard' batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a 'gold-standard' batch.RESULTSWe combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98% of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the 'gold-standard' batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects.CONCLUSIONM-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data.
Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data.
ArticleNumber 63
Audience Academic
Author Barlogie, Bart
Stein, Caleb K
Epstein, Joshua
Qu, Pingping
Rosenthal, Adam
Morgan, Gareth
Buros, Amy
Crowley, John
Author_xml – sequence: 1
  givenname: Caleb K
  surname: Stein
  fullname: Stein, Caleb K
  email: CKStein@uams.edu
  organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences
– sequence: 2
  givenname: Pingping
  surname: Qu
  fullname: Qu, Pingping
  organization: Cancer Research and Biostatistics
– sequence: 3
  givenname: Joshua
  surname: Epstein
  fullname: Epstein, Joshua
  organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences
– sequence: 4
  givenname: Amy
  surname: Buros
  fullname: Buros, Amy
  organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences
– sequence: 5
  givenname: Adam
  surname: Rosenthal
  fullname: Rosenthal, Adam
  organization: Cancer Research and Biostatistics
– sequence: 6
  givenname: John
  surname: Crowley
  fullname: Crowley, John
  organization: Cancer Research and Biostatistics
– sequence: 7
  givenname: Gareth
  surname: Morgan
  fullname: Morgan, Gareth
  organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences
– sequence: 8
  givenname: Bart
  surname: Barlogie
  fullname: Barlogie, Bart
  organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25887219$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1r3iAYxcPoWD-2P2A3Q9jNdpFOo0ZzM2hf9lEoDLrtWkx8kteS6Ds1Xfvfz5B29B2jeKHE3zl4cp7j4sB5B0XxmuBTQmT9IZJK8qbEhJeYCVnSZ8URYYKUFcH84NH5sDiO8RpjIiTmL4rDikspKtIcFfoKJn9j3YBanbotgr6HLkXUBz-h3Rxsb8Gg3ajjpFEH44gGcIDgdhcgRusdmmwXvA5B30X026YtmrxZVRs_nev0snje6zHCq_v9pPj5-dOPzdfy8tuXi83ZZdnVhKbSSEJpp0kLxjBaAzetwCCoJEQwzUTba2oMIaQxVLIed61uKKecNZThlgM9KT6uvru5ncB04FLQo9oFO-lwp7y2av_G2a0a_I1ilPOmqbLBu3uD4H_NEJOabFwiawd-jorUgtWybijN6NsVHfQIyrreZ8duwdUZZ4RyIQXP1Ol_qLwM5J-Wq-xt_r4neL8nyEyC2zToOUZ18f1qn33zOO7fnA_VZkCsQK4nxgC96mzSKVeWX2FHRbBahkitQ6TyEKlliNSSjvyjfDB_SlOtmphZN0BQ134OLhf-hOgPa0fYpg
CitedBy_id crossref_primary_10_1016_j_fbio_2024_104541
crossref_primary_10_1002_path_5129
crossref_primary_10_1038_s41467_025_61725_x
crossref_primary_10_1016_j_cell_2017_11_010
crossref_primary_10_1093_nar_gkz974
crossref_primary_10_1038_s41467_024_55340_5
crossref_primary_10_1007_s12630_021_01967_7
crossref_primary_10_1371_journal_pone_0205968
crossref_primary_10_3389_fneur_2022_923988
crossref_primary_10_1038_s41746_025_01862_1
crossref_primary_10_1093_bib_bbae515
crossref_primary_10_1186_s13059_024_03401_9
crossref_primary_10_1038_s41582_023_00809_y
crossref_primary_10_1186_s12864_018_5193_9
crossref_primary_10_1016_j_ebiom_2019_08_002
crossref_primary_10_1186_s12859_015_0870_z
crossref_primary_10_1088_1361_6560_ad03d1
crossref_primary_10_1016_j_eswa_2025_126659
crossref_primary_10_1038_s41467_022_32145_y
crossref_primary_10_1111_aji_13481
crossref_primary_10_1002_adbi_202400064
crossref_primary_10_1038_s41467_017_00296_y
crossref_primary_10_1177_11779322231160397
crossref_primary_10_3390_cancers13194809
crossref_primary_10_1371_journal_pone_0253653
crossref_primary_10_1016_j_immuni_2017_06_017
crossref_primary_10_1007_s00500_023_08049_4
crossref_primary_10_1038_s41420_025_02497_7
crossref_primary_10_1002_hbm_70068
crossref_primary_10_1007_s00259_020_05049_6
crossref_primary_10_1016_j_parkreldis_2019_05_035
crossref_primary_10_1038_s41596_020_00409_w
crossref_primary_10_1038_s43588_021_00124_w
crossref_primary_10_3390_cancers12092532
crossref_primary_10_1038_s41597_019_0202_7
crossref_primary_10_1002_mp_17266
crossref_primary_10_1038_s41598_022_16609_1
crossref_primary_10_1002_mds_30223
crossref_primary_10_1016_j_phro_2022_12_001
crossref_primary_10_3390_cancers15153842
crossref_primary_10_1002_jcb_27677
crossref_primary_10_1016_j_inffus_2022_01_001
crossref_primary_10_3389_fgene_2022_931938
crossref_primary_10_1038_s43588_021_00114_y
crossref_primary_10_1016_j_jgg_2023_03_009
crossref_primary_10_1002_acm2_70061
crossref_primary_10_1038_nmeth_4397
crossref_primary_10_1016_j_ygeno_2021_02_017
crossref_primary_10_1161_ATVBAHA_115_306477
crossref_primary_10_1155_2023_3276319
crossref_primary_10_1038_s41467_019_12071_2
crossref_primary_10_1515_med_2025_1156
crossref_primary_10_1016_j_mam_2017_07_002
crossref_primary_10_1016_j_neuroimage_2023_119912
crossref_primary_10_1001_jamanetworkopen_2022_52140
crossref_primary_10_15252_msb_20177701
crossref_primary_10_1186_s40644_024_00732_5
crossref_primary_10_1038_s41598_021_84824_3
crossref_primary_10_1186_s12967_023_03898_x
crossref_primary_10_3389_fnins_2023_1225606
crossref_primary_10_3390_biom10091207
crossref_primary_10_3390_ijms23052469
Cites_doi 10.1038/tpj.2010.57
10.1182/blood-2011-06-357038
10.1038/nrg2825
10.1038/leu.2012.127
10.1182/blood-2013-07-515239
10.1182/blood-2002-06-1737
10.1371/journal.pone.0017238
10.1038/leu.2009.174
10.1182/blood-2010-12-328252
10.1186/1755-8794-5-23
10.1182/blood-2006-07-038430
10.1038/leu.2014.232
10.1182/blood-2006-09-044974
10.1200/JCO.2007.13.8545
10.1093/biostatistics/kxj037
10.1111/j.1365-2141.2007.06586.x
10.1073/pnas.1530509100
10.1158/1078-0432.CCR-09-2831
10.1182/blood.V122.21.1865.1865
10.1371/journal.pone.0018202
10.1182/blood.V99.5.1745
ContentType Journal Article
Copyright Stein et al.; licensee BioMed Central. 2015
COPYRIGHT 2015 BioMed Central Ltd.
Copyright_xml – notice: Stein et al.; licensee BioMed Central. 2015
– notice: COPYRIGHT 2015 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
DOI 10.1186/s12859-015-0478-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 63
ExternalDocumentID PMC4355992
A541357875
25887219
10_1186_s12859_015_0478_3
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c613t-d8133ca1bedd436e5db70e7381174a47bfa3dd1119d384f0cba9353549340b5e3
IEDL.DBID RSV
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350619400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 02:05:43 EST 2025
Thu Oct 02 10:37:19 EDT 2025
Tue Nov 11 11:02:35 EST 2025
Tue Nov 04 18:20:27 EST 2025
Thu Nov 13 16:40:18 EST 2025
Mon Jul 21 06:05:30 EDT 2025
Sat Nov 29 05:39:57 EST 2025
Tue Nov 18 21:49:21 EST 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords M-ComBat
ComBat
Gene expression profiling (GEP)
Batch effect
Microarray analysis
Meta-analysis
Multiple myeloma (MM)
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-d8133ca1bedd436e5db70e7381174a47bfa3dd1119d384f0cba9353549340b5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s12859-015-0478-3
PMID 25887219
PQID 1674686933
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4355992
proquest_miscellaneous_1674686933
gale_infotracmisc_A541357875
gale_infotracacademiconefile_A541357875
gale_incontextgauss_ISR_A541357875
pubmed_primary_25887219
crossref_citationtrail_10_1186_s12859_015_0478_3
crossref_primary_10_1186_s12859_015_0478_3
springer_journals_10_1186_s12859_015_0478_3
PublicationCentury 2000
PublicationDate 2015-02-25
PublicationDateYYYYMMDD 2015-02-25
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-25
  day: 25
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2015
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References NJ Dickens (478_CR8) 2010; 16
J Luo (478_CR14) 2010; 10
F Zhan (478_CR2) 2002; 99
J Shaughnessy (478_CR6) 2011; 118
P Kupfer (478_CR15) 2012; 5
PA Konstantinopoulos (478_CR21) 2011; 6
N Biran (478_CR12) 2013; 11
R Kuiper (478_CR7) 2012; 26
JD Shaughnessy (478_CR11) 2009; 137
JD Storey (478_CR22) 2003; 100
O Decaux (478_CR10) 2008; 26
JT Leek (478_CR16) 2010; 11
F Zhan (478_CR3) 2003; 101
MV Dhodapkar (478_CR13) 2014; 123
WE Johnson (478_CR19) 2007; 8
J Shaughnessy (478_CR5) 2007; 109
C Heuck (478_CR4) 2014; 28
G Morgan (478_CR18) 2012; 119
R Fonseca (478_CR1) 2009; 23
Q Zhang (478_CR17) 2013; 122
C Chen (478_CR20) 2011; 6
G Mulligan (478_CR9) 2007; 109
21386892 - PLoS One. 2011;6(2):e17238
12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
11861292 - Blood. 2002 Mar 1;99(5):1745-57
22682473 - BMC Med Genomics. 2012;5:23
19798094 - Leukemia. 2009 Dec;23(12):2210-21
22722715 - Leukemia. 2012 Nov;26(11):2406-13
21628408 - Blood. 2011 Sep 29;118(13):3512-24
12393520 - Blood. 2003 Feb 1;101(3):1128-40
20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9
18591550 - J Clin Oncol. 2008 Oct 10;26(29):4798-805
16632515 - Biostatistics. 2007 Jan;8(1):118-27
20676067 - Pharmacogenomics J. 2010 Aug;10(4):278-91
24144643 - Blood. 2014 Jan 2;123(1):78-85
24518420 - Clin Adv Hematol Oncol. 2013 Aug;11(8):489-503
20215539 - Clin Cancer Res. 2010 Mar 15;16(6):1856-64
17185464 - Blood. 2007 Apr 15;109(8):3177-88
17105813 - Blood. 2007 Mar 15;109(6):2276-84
25079174 - Leukemia. 2014 Dec;28(12):2410-3
22021371 - Blood. 2012 Jan 5;119(1):7-15
21479231 - PLoS One. 2011;6(3):e18202
17489983 - Br J Haematol. 2007 Jun;137(6):530-6
References_xml – volume: 10
  start-page: 278
  year: 2010
  ident: 478_CR14
  publication-title: Pharmacogenomics J.
  doi: 10.1038/tpj.2010.57
– volume: 119
  start-page: 7
  issue: 1
  year: 2012
  ident: 478_CR18
  publication-title: Blood.
  doi: 10.1182/blood-2011-06-357038
– volume: 11
  start-page: 733
  year: 2010
  ident: 478_CR16
  publication-title: Nat Rev Genet.
  doi: 10.1038/nrg2825
– volume: 26
  start-page: 2406
  year: 2012
  ident: 478_CR7
  publication-title: Leukemia.
  doi: 10.1038/leu.2012.127
– volume: 123
  start-page: 78
  issue: 1
  year: 2014
  ident: 478_CR13
  publication-title: Blood.
  doi: 10.1182/blood-2013-07-515239
– volume: 101
  start-page: 1128
  issue: 3
  year: 2003
  ident: 478_CR3
  publication-title: Blood.
  doi: 10.1182/blood-2002-06-1737
– volume: 6
  start-page: 17238
  issue: 2
  year: 2011
  ident: 478_CR20
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0017238
– volume: 23
  start-page: 2210
  issue: 12
  year: 2009
  ident: 478_CR1
  publication-title: Leukemia.
  doi: 10.1038/leu.2009.174
– volume: 118
  start-page: 3512
  issue: 13
  year: 2011
  ident: 478_CR6
  publication-title: Blood.
  doi: 10.1182/blood-2010-12-328252
– volume: 5
  start-page: 23
  year: 2012
  ident: 478_CR15
  publication-title: BMC Med Genomics.
  doi: 10.1186/1755-8794-5-23
– volume: 109
  start-page: 2276
  issue: 6
  year: 2007
  ident: 478_CR5
  publication-title: Blood.
  doi: 10.1182/blood-2006-07-038430
– volume: 28
  start-page: 2410
  year: 2014
  ident: 478_CR4
  publication-title: Leukemia.
  doi: 10.1038/leu.2014.232
– volume: 109
  start-page: 3177
  issue: 8
  year: 2007
  ident: 478_CR9
  publication-title: Blood.
  doi: 10.1182/blood-2006-09-044974
– volume: 11
  start-page: 489
  issue: 8
  year: 2013
  ident: 478_CR12
  publication-title: Clical Adv Hematol Oncol
– volume: 26
  start-page: 4798
  issue: 29
  year: 2008
  ident: 478_CR10
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2007.13.8545
– volume: 8
  start-page: 118
  issue: 1
  year: 2007
  ident: 478_CR19
  publication-title: Biostatistics.
  doi: 10.1093/biostatistics/kxj037
– volume: 137
  start-page: 530
  issue: 6
  year: 2009
  ident: 478_CR11
  publication-title: Br J Haematology.
  doi: 10.1111/j.1365-2141.2007.06586.x
– volume: 100
  start-page: 9440
  issue: 16
  year: 2003
  ident: 478_CR22
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1530509100
– volume: 16
  start-page: 1856
  issue: 6
  year: 2010
  ident: 478_CR8
  publication-title: Clin Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-2831
– volume: 122
  start-page: 1865
  issue: 21
  year: 2013
  ident: 478_CR17
  publication-title: Blood.
  doi: 10.1182/blood.V122.21.1865.1865
– volume: 6
  start-page: 18202
  issue: 3
  year: 2011
  ident: 478_CR21
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0018202
– volume: 99
  start-page: 1745
  issue: 5
  year: 2002
  ident: 478_CR2
  publication-title: Blood.
  doi: 10.1182/blood.V99.5.1745
– reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9
– reference: 24518420 - Clin Adv Hematol Oncol. 2013 Aug;11(8):489-503
– reference: 19798094 - Leukemia. 2009 Dec;23(12):2210-21
– reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
– reference: 22682473 - BMC Med Genomics. 2012;5:23
– reference: 21628408 - Blood. 2011 Sep 29;118(13):3512-24
– reference: 22021371 - Blood. 2012 Jan 5;119(1):7-15
– reference: 21479231 - PLoS One. 2011;6(3):e18202
– reference: 20215539 - Clin Cancer Res. 2010 Mar 15;16(6):1856-64
– reference: 21386892 - PLoS One. 2011;6(2):e17238
– reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27
– reference: 17489983 - Br J Haematol. 2007 Jun;137(6):530-6
– reference: 24144643 - Blood. 2014 Jan 2;123(1):78-85
– reference: 17105813 - Blood. 2007 Mar 15;109(6):2276-84
– reference: 17185464 - Blood. 2007 Apr 15;109(8):3177-88
– reference: 22722715 - Leukemia. 2012 Nov;26(11):2406-13
– reference: 11861292 - Blood. 2002 Mar 1;99(5):1745-57
– reference: 20676067 - Pharmacogenomics J. 2010 Aug;10(4):278-91
– reference: 12393520 - Blood. 2003 Feb 1;101(3):1128-40
– reference: 18591550 - J Clin Oncol. 2008 Oct 10;26(29):4798-805
– reference: 25079174 - Leukemia. 2014 Dec;28(12):2410-3
SSID ssj0017805
Score 2.427243
Snippet Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings....
Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However,...
Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings....
BACKGROUNDGene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 63
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Bone Marrow - metabolism
Complications and side effects
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Interpretation, Statistical
Gene expression
Gene Expression Profiling - standards
Humans
Life Sciences
Medical research
Medicine, Experimental
Methodology
Methodology Article
Microarray Analysis - methods
Microarrays
Multiple myeloma
Plasma Cells - metabolism
Transcriptome analysis
Title Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat
URI https://link.springer.com/article/10.1186/s12859-015-0478-3
https://www.ncbi.nlm.nih.gov/pubmed/25887219
https://www.proquest.com/docview/1674686933
https://pubmed.ncbi.nlm.nih.gov/PMC4355992
Volume 16
WOSCitedRecordID wos000350619400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYBhIvfMMCIzIICQkUrYnjxH7c0CYmoIo6QIUXy7EdVmlNq6RF7L_nLh8VqQAJXvzis-LYd7-7s-_OhLwQsZFSR2kQFkYHcSFCwEEuAxsmVkuhmW4Thd-n47GYTmXW5XHXfbR7fyXZIHUj1iI5rEOstQauLw-wokzAdsgeaDuB0jg5_7y5OsAi_d315W-HDRTQNgz_ooe2YyS3Lkob_XN6-79mfofc6sxNetTyx11yzZX3yI32Acqr-0RP3Lw5UqA5QPIF7aI7KCad0OW6mhVgodIlWNhzTfGMnwK_Oep-dOGzJZ1jQJ-uKn1VUzzTpfOFbUcB0hzr1QPy6fTk45u3QffoQmBAs68CK8BrNTrMnbUxSxy3eTpyKcOE1FjHaV5oZi0gpLRMxMXI5FoyzsDNZPEo5449JLvlonT7hHKwVpzRrpDgtEjYdpsXudFcRzYVIPceGfU7oUxXkRwfxrhUjWciEtWunIKVU7hyinnk1WbIsi3H8Tfi57i9CstclBhH802v61qdnU_UEQfljWDFPfKyIyoW8HGju7QE-AWsjDWgPBhQghyaQfeznosUdmHwWukW61phokciEslgRo9artpMPuKA8qA1PJIO-G1DgOW_hz3l7KIpAw6GLpcy8sjrnutUhz_1n9fk8T9RPyE3o4ZtoyDiB2R3Va3dU3LdfF_N6sonO-k0bVrhk73jk3E28ZszDWjfpYGPcbQZtBn_Cv3Z2Yfsi9_I6k8agTNB
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdggMYL3x-BAQYhIYEsmjhO7MeBmDZRKtQNtDfLsR1WaU2rpEXsv-cucSpSARI8-6w49vl3d_bdz4S8lKlVyiQ5i0trWFrKGHBQKObizBklDTddofA4n0zk6an6HOq4mz7bvb-SbJG63dYye9vEyLUGoa9gyCjD-GVyJQWDhXl80-Ovm6sDJOkP15e_7TYwQNsw_Isd2s6R3Loobe3Pwc3_GvktciO4m3S_04_b5JKv7pBr3QOUF3eJmfp5e6RAC4DkMxqyOygWndDlup6V4KHSJXjYc0PxjJ-Cvnnqf4T02YrOMaHP1LW5aCie6dL5wnW9AGnemdU98uXgw8n7QxYeXWAWLPuKOQlRqzVx4Z1LeeaFK_KRzzkWpKYmzYvScOcAIZXjMi1HtjCKCw5hJk9HhfD8PtmpFpV_SKgAb8Vb40sFQYuCZXdFWVgjTOJyCfs-IqN-JbQNjOT4MMa5biMTmelu5jTMnMaZ0zwirzddlh0dx9-EX-DyaqS5qDCP5ptZN40-Op7qfQHGG8FKRORVECoX8HFrQlkC_AIyYw0k9waSsA_toPl5r0UamzB5rfKLdaOx0COTmeIwogedVm0GnwhAebAaEckH-rYRQPrvYUs1O2tpwMHRFUolEXnTa50O-NP8eU4e_ZP0M7J7ePJprMdHk4-PyfWkVeGEJWKP7KzqtX9Crtrvq1lTP2334E-oJy1Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA96PvCL70f11CiCoITbNk2bfDwfi4fHctyp3LeQJqm34HaXtivef-9Mmy52UUH8nAlt08lvZpKZ3xDyQqZWKZPkLC6tYWkpY8BBoZiLM2eUNNz0hcKH-WwmT0_VUehz2gzZ7sOVZF_TgCxNVbu3cmW_xWW218TIuwZhsGDILsP4RXIpxZ5BGK6ffNlcIyBhf7jK_O20kTHahuRfbNJ2vuTWpWlni6Y3_vsrbpLrwQ2l-73e3CIXfHWbXOkbU57fIebYL7qjBloAVJ_RkPVBsRiFrtb1vATPla7A814Yimf_FPTQU_8jpNVWdIGJfqauzXlD8ayXLpaunwUI9Ma0d8nn6ftPbz-w0IyBWbD4LXMSollr4sI7l_LMC1fkE59zLFRNTZoXpeHOAXIqx2VaTmxhFBccwk-eTgrh-T2yUy0r_4BQAV6Mt8aXCoIZBergirKwRpjE5RLwICKT4a9oG5jKsWHGN91FLDLT_cppWDmNK6d5RF5tpqx6mo6_CT_HX62R_qLC_JqvZt00-uDkWO8LMOoIYiIiL4NQuYSHWxPKFeATkDFrJLk7koT9aUfDzwaN0jiESW2VX64bjQUgmcwUhze632vY5uUTAegP1iQi-Uj3NgJICz4eqeZnHT04OMBCqSQirwcN1AGXmj-vycN_kn5Krh69m-rDg9nHR-Ra0mlwwhKxS3baeu0fk8v2eztv6ifddvwJwZY2NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removing+batch+effects+from+purified+plasma+cell+gene+expression+microarrays+with+modified+ComBat&rft.jtitle=BMC+bioinformatics&rft.au=Stein%2C+Caleb+K&rft.au=Qu%2C+Pingping&rft.au=Epstein%2C+Joshua&rft.au=Buros%2C+Amy&rft.date=2015-02-25&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-015-0478-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_015_0478_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon