Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat
Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects...
Saved in:
| Published in: | BMC bioinformatics Vol. 16; no. 1; p. 63 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
25.02.2015
BioMed Central Ltd |
| Subjects: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data.
We propose a modification to ComBat that centers data to the location and scale of a pre-determined, ‘gold-standard’ batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a ‘gold-standard’ batch.
Results
We combined data from MIRT across two batches (‘Old’ and ‘New’ Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets.
Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98
%
of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the ‘gold-standard’ batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects.
Conclusion
M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data. |
|---|---|
| AbstractList | Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, 'gold-standard' batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a 'gold-standard' batch. Results We combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98% of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the 'gold-standard' batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects. Conclusion M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data. Keywords: Microarray analysis, Gene expression profiling (GEP), Batch effect, Meta-analysis, Multiple myeloma (MM), ComBat, M-ComBat Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, 'gold-standard' batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a 'gold-standard' batch. We combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98% of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the 'gold-standard' batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects. M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data. Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, ‘gold-standard’ batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a ‘gold-standard’ batch. Results We combined data from MIRT across two batches (‘Old’ and ‘New’ Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98 % of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the ‘gold-standard’ batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects. Conclusion M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data. BACKGROUNDGene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We propose a modification to ComBat that centers data to the location and scale of a pre-determined, 'gold-standard' batch. This modified ComBat (M-Combat) is designed specifically in the context of meta-analysis and batch effect adjustment for use with predictive models that are validated and fixed on historical data from a 'gold-standard' batch.RESULTSWe combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. Both ComBat and M-ComBat eliminated all of the differences among probes caused by systematic batch effects (over 98% of all untransformed probes were significantly different by ANOVA with 0.01 q-value threshold reduced to zero significant probes with ComBat and M-ComBat). The agreement in mean and distribution of risk scores, as well as the proportion of high-risk subjects identified, coincided with the 'gold-standard' batch more with M-ComBat than with ComBat. The performance of risk scores improved overall using either ComBat or M-Combat; however, using M-ComBat and the original, optimal risk cutoffs allowed for greater ability in our study to identify smaller cohorts of high-risk subjects.CONCLUSIONM-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data. Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However, non-biological factors such as systematic changes in sample preparation, differences in scanners, and other potential batch effects are often unavoidable in long-term studies and meta-analysis. In order to reduce the impact of batch effects on microarray data, Johnson, Rabinovic, and Li developed ComBat for use when combining batches of gene expression microarray data. We combined data from MIRT across two batches ('Old' and 'New' Kit sample preparation) as well as external data sets from the HOVON-65/GMMG-HD4 and MRC-IX trials into a combined set, first without transformation and then with both ComBat and M-ComBat transformations. Fixed and validated gene risk signatures developed at MIRT on the Old Kit standard (GEP5, GEP70, and GEP80 risk scores) were compared across these combined data sets. M-ComBat is a practical modification to an accepted method that offers greater power to control the location and scale of batch-effect adjusted data. M-ComBat allows for historical models to function as intended on future samples despite known, often unavoidable systematic changes to gene expression data. |
| ArticleNumber | 63 |
| Audience | Academic |
| Author | Barlogie, Bart Stein, Caleb K Epstein, Joshua Qu, Pingping Rosenthal, Adam Morgan, Gareth Buros, Amy Crowley, John |
| Author_xml | – sequence: 1 givenname: Caleb K surname: Stein fullname: Stein, Caleb K email: CKStein@uams.edu organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences – sequence: 2 givenname: Pingping surname: Qu fullname: Qu, Pingping organization: Cancer Research and Biostatistics – sequence: 3 givenname: Joshua surname: Epstein fullname: Epstein, Joshua organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences – sequence: 4 givenname: Amy surname: Buros fullname: Buros, Amy organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences – sequence: 5 givenname: Adam surname: Rosenthal fullname: Rosenthal, Adam organization: Cancer Research and Biostatistics – sequence: 6 givenname: John surname: Crowley fullname: Crowley, John organization: Cancer Research and Biostatistics – sequence: 7 givenname: Gareth surname: Morgan fullname: Morgan, Gareth organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences – sequence: 8 givenname: Bart surname: Barlogie fullname: Barlogie, Bart organization: Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25887219$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kt1r3iAYxcPoWD-2P2A3Q9jNdpFOo0ZzM2hf9lEoDLrtWkx8kteS6Ds1Xfvfz5B29B2jeKHE3zl4cp7j4sB5B0XxmuBTQmT9IZJK8qbEhJeYCVnSZ8URYYKUFcH84NH5sDiO8RpjIiTmL4rDikspKtIcFfoKJn9j3YBanbotgr6HLkXUBz-h3Rxsb8Gg3ajjpFEH44gGcIDgdhcgRusdmmwXvA5B30X026YtmrxZVRs_nev0snje6zHCq_v9pPj5-dOPzdfy8tuXi83ZZdnVhKbSSEJpp0kLxjBaAzetwCCoJEQwzUTba2oMIaQxVLIed61uKKecNZThlgM9KT6uvru5ncB04FLQo9oFO-lwp7y2av_G2a0a_I1ilPOmqbLBu3uD4H_NEJOabFwiawd-jorUgtWybijN6NsVHfQIyrreZ8duwdUZZ4RyIQXP1Ol_qLwM5J-Wq-xt_r4neL8nyEyC2zToOUZ18f1qn33zOO7fnA_VZkCsQK4nxgC96mzSKVeWX2FHRbBahkitQ6TyEKlliNSSjvyjfDB_SlOtmphZN0BQ134OLhf-hOgPa0fYpg |
| CitedBy_id | crossref_primary_10_1016_j_fbio_2024_104541 crossref_primary_10_1002_path_5129 crossref_primary_10_1038_s41467_025_61725_x crossref_primary_10_1016_j_cell_2017_11_010 crossref_primary_10_1093_nar_gkz974 crossref_primary_10_1038_s41467_024_55340_5 crossref_primary_10_1007_s12630_021_01967_7 crossref_primary_10_1371_journal_pone_0205968 crossref_primary_10_3389_fneur_2022_923988 crossref_primary_10_1038_s41746_025_01862_1 crossref_primary_10_1093_bib_bbae515 crossref_primary_10_1186_s13059_024_03401_9 crossref_primary_10_1038_s41582_023_00809_y crossref_primary_10_1186_s12864_018_5193_9 crossref_primary_10_1016_j_ebiom_2019_08_002 crossref_primary_10_1186_s12859_015_0870_z crossref_primary_10_1088_1361_6560_ad03d1 crossref_primary_10_1016_j_eswa_2025_126659 crossref_primary_10_1038_s41467_022_32145_y crossref_primary_10_1111_aji_13481 crossref_primary_10_1002_adbi_202400064 crossref_primary_10_1038_s41467_017_00296_y crossref_primary_10_1177_11779322231160397 crossref_primary_10_3390_cancers13194809 crossref_primary_10_1371_journal_pone_0253653 crossref_primary_10_1016_j_immuni_2017_06_017 crossref_primary_10_1007_s00500_023_08049_4 crossref_primary_10_1038_s41420_025_02497_7 crossref_primary_10_1002_hbm_70068 crossref_primary_10_1007_s00259_020_05049_6 crossref_primary_10_1016_j_parkreldis_2019_05_035 crossref_primary_10_1038_s41596_020_00409_w crossref_primary_10_1038_s43588_021_00124_w crossref_primary_10_3390_cancers12092532 crossref_primary_10_1038_s41597_019_0202_7 crossref_primary_10_1002_mp_17266 crossref_primary_10_1038_s41598_022_16609_1 crossref_primary_10_1002_mds_30223 crossref_primary_10_1016_j_phro_2022_12_001 crossref_primary_10_3390_cancers15153842 crossref_primary_10_1002_jcb_27677 crossref_primary_10_1016_j_inffus_2022_01_001 crossref_primary_10_3389_fgene_2022_931938 crossref_primary_10_1038_s43588_021_00114_y crossref_primary_10_1016_j_jgg_2023_03_009 crossref_primary_10_1002_acm2_70061 crossref_primary_10_1038_nmeth_4397 crossref_primary_10_1016_j_ygeno_2021_02_017 crossref_primary_10_1161_ATVBAHA_115_306477 crossref_primary_10_1155_2023_3276319 crossref_primary_10_1038_s41467_019_12071_2 crossref_primary_10_1515_med_2025_1156 crossref_primary_10_1016_j_mam_2017_07_002 crossref_primary_10_1016_j_neuroimage_2023_119912 crossref_primary_10_1001_jamanetworkopen_2022_52140 crossref_primary_10_15252_msb_20177701 crossref_primary_10_1186_s40644_024_00732_5 crossref_primary_10_1038_s41598_021_84824_3 crossref_primary_10_1186_s12967_023_03898_x crossref_primary_10_3389_fnins_2023_1225606 crossref_primary_10_3390_biom10091207 crossref_primary_10_3390_ijms23052469 |
| Cites_doi | 10.1038/tpj.2010.57 10.1182/blood-2011-06-357038 10.1038/nrg2825 10.1038/leu.2012.127 10.1182/blood-2013-07-515239 10.1182/blood-2002-06-1737 10.1371/journal.pone.0017238 10.1038/leu.2009.174 10.1182/blood-2010-12-328252 10.1186/1755-8794-5-23 10.1182/blood-2006-07-038430 10.1038/leu.2014.232 10.1182/blood-2006-09-044974 10.1200/JCO.2007.13.8545 10.1093/biostatistics/kxj037 10.1111/j.1365-2141.2007.06586.x 10.1073/pnas.1530509100 10.1158/1078-0432.CCR-09-2831 10.1182/blood.V122.21.1865.1865 10.1371/journal.pone.0018202 10.1182/blood.V99.5.1745 |
| ContentType | Journal Article |
| Copyright | Stein et al.; licensee BioMed Central. 2015 COPYRIGHT 2015 BioMed Central Ltd. |
| Copyright_xml | – notice: Stein et al.; licensee BioMed Central. 2015 – notice: COPYRIGHT 2015 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM |
| DOI | 10.1186/s12859-015-0478-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 63 |
| ExternalDocumentID | PMC4355992 A541357875 25887219 10_1186_s12859_015_0478_3 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c613t-d8133ca1bedd436e5db70e7381174a47bfa3dd1119d384f0cba9353549340b5e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 76 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000350619400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Tue Nov 04 02:05:43 EST 2025 Thu Oct 02 10:37:19 EDT 2025 Tue Nov 11 11:02:35 EST 2025 Tue Nov 04 18:20:27 EST 2025 Thu Nov 13 16:40:18 EST 2025 Mon Jul 21 06:05:30 EDT 2025 Sat Nov 29 05:39:57 EST 2025 Tue Nov 18 21:49:21 EST 2025 Sat Sep 06 07:27:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | M-ComBat ComBat Gene expression profiling (GEP) Batch effect Microarray analysis Meta-analysis Multiple myeloma (MM) |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c613t-d8133ca1bedd436e5db70e7381174a47bfa3dd1119d384f0cba9353549340b5e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s12859-015-0478-3 |
| PMID | 25887219 |
| PQID | 1674686933 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4355992 proquest_miscellaneous_1674686933 gale_infotracmisc_A541357875 gale_infotracacademiconefile_A541357875 gale_incontextgauss_ISR_A541357875 pubmed_primary_25887219 crossref_citationtrail_10_1186_s12859_015_0478_3 crossref_primary_10_1186_s12859_015_0478_3 springer_journals_10_1186_s12859_015_0478_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-25 |
| PublicationDateYYYYMMDD | 2015-02-25 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2015 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | NJ Dickens (478_CR8) 2010; 16 J Luo (478_CR14) 2010; 10 F Zhan (478_CR2) 2002; 99 J Shaughnessy (478_CR6) 2011; 118 P Kupfer (478_CR15) 2012; 5 PA Konstantinopoulos (478_CR21) 2011; 6 N Biran (478_CR12) 2013; 11 R Kuiper (478_CR7) 2012; 26 JD Shaughnessy (478_CR11) 2009; 137 JD Storey (478_CR22) 2003; 100 O Decaux (478_CR10) 2008; 26 JT Leek (478_CR16) 2010; 11 F Zhan (478_CR3) 2003; 101 MV Dhodapkar (478_CR13) 2014; 123 WE Johnson (478_CR19) 2007; 8 J Shaughnessy (478_CR5) 2007; 109 C Heuck (478_CR4) 2014; 28 G Morgan (478_CR18) 2012; 119 R Fonseca (478_CR1) 2009; 23 Q Zhang (478_CR17) 2013; 122 C Chen (478_CR20) 2011; 6 G Mulligan (478_CR9) 2007; 109 21386892 - PLoS One. 2011;6(2):e17238 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 11861292 - Blood. 2002 Mar 1;99(5):1745-57 22682473 - BMC Med Genomics. 2012;5:23 19798094 - Leukemia. 2009 Dec;23(12):2210-21 22722715 - Leukemia. 2012 Nov;26(11):2406-13 21628408 - Blood. 2011 Sep 29;118(13):3512-24 12393520 - Blood. 2003 Feb 1;101(3):1128-40 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9 18591550 - J Clin Oncol. 2008 Oct 10;26(29):4798-805 16632515 - Biostatistics. 2007 Jan;8(1):118-27 20676067 - Pharmacogenomics J. 2010 Aug;10(4):278-91 24144643 - Blood. 2014 Jan 2;123(1):78-85 24518420 - Clin Adv Hematol Oncol. 2013 Aug;11(8):489-503 20215539 - Clin Cancer Res. 2010 Mar 15;16(6):1856-64 17185464 - Blood. 2007 Apr 15;109(8):3177-88 17105813 - Blood. 2007 Mar 15;109(6):2276-84 25079174 - Leukemia. 2014 Dec;28(12):2410-3 22021371 - Blood. 2012 Jan 5;119(1):7-15 21479231 - PLoS One. 2011;6(3):e18202 17489983 - Br J Haematol. 2007 Jun;137(6):530-6 |
| References_xml | – volume: 10 start-page: 278 year: 2010 ident: 478_CR14 publication-title: Pharmacogenomics J. doi: 10.1038/tpj.2010.57 – volume: 119 start-page: 7 issue: 1 year: 2012 ident: 478_CR18 publication-title: Blood. doi: 10.1182/blood-2011-06-357038 – volume: 11 start-page: 733 year: 2010 ident: 478_CR16 publication-title: Nat Rev Genet. doi: 10.1038/nrg2825 – volume: 26 start-page: 2406 year: 2012 ident: 478_CR7 publication-title: Leukemia. doi: 10.1038/leu.2012.127 – volume: 123 start-page: 78 issue: 1 year: 2014 ident: 478_CR13 publication-title: Blood. doi: 10.1182/blood-2013-07-515239 – volume: 101 start-page: 1128 issue: 3 year: 2003 ident: 478_CR3 publication-title: Blood. doi: 10.1182/blood-2002-06-1737 – volume: 6 start-page: 17238 issue: 2 year: 2011 ident: 478_CR20 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0017238 – volume: 23 start-page: 2210 issue: 12 year: 2009 ident: 478_CR1 publication-title: Leukemia. doi: 10.1038/leu.2009.174 – volume: 118 start-page: 3512 issue: 13 year: 2011 ident: 478_CR6 publication-title: Blood. doi: 10.1182/blood-2010-12-328252 – volume: 5 start-page: 23 year: 2012 ident: 478_CR15 publication-title: BMC Med Genomics. doi: 10.1186/1755-8794-5-23 – volume: 109 start-page: 2276 issue: 6 year: 2007 ident: 478_CR5 publication-title: Blood. doi: 10.1182/blood-2006-07-038430 – volume: 28 start-page: 2410 year: 2014 ident: 478_CR4 publication-title: Leukemia. doi: 10.1038/leu.2014.232 – volume: 109 start-page: 3177 issue: 8 year: 2007 ident: 478_CR9 publication-title: Blood. doi: 10.1182/blood-2006-09-044974 – volume: 11 start-page: 489 issue: 8 year: 2013 ident: 478_CR12 publication-title: Clical Adv Hematol Oncol – volume: 26 start-page: 4798 issue: 29 year: 2008 ident: 478_CR10 publication-title: J Clin Oncol. doi: 10.1200/JCO.2007.13.8545 – volume: 8 start-page: 118 issue: 1 year: 2007 ident: 478_CR19 publication-title: Biostatistics. doi: 10.1093/biostatistics/kxj037 – volume: 137 start-page: 530 issue: 6 year: 2009 ident: 478_CR11 publication-title: Br J Haematology. doi: 10.1111/j.1365-2141.2007.06586.x – volume: 100 start-page: 9440 issue: 16 year: 2003 ident: 478_CR22 publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1530509100 – volume: 16 start-page: 1856 issue: 6 year: 2010 ident: 478_CR8 publication-title: Clin Cancer Res. doi: 10.1158/1078-0432.CCR-09-2831 – volume: 122 start-page: 1865 issue: 21 year: 2013 ident: 478_CR17 publication-title: Blood. doi: 10.1182/blood.V122.21.1865.1865 – volume: 6 start-page: 18202 issue: 3 year: 2011 ident: 478_CR21 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0018202 – volume: 99 start-page: 1745 issue: 5 year: 2002 ident: 478_CR2 publication-title: Blood. doi: 10.1182/blood.V99.5.1745 – reference: 20838408 - Nat Rev Genet. 2010 Oct;11(10):733-9 – reference: 24518420 - Clin Adv Hematol Oncol. 2013 Aug;11(8):489-503 – reference: 19798094 - Leukemia. 2009 Dec;23(12):2210-21 – reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 – reference: 22682473 - BMC Med Genomics. 2012;5:23 – reference: 21628408 - Blood. 2011 Sep 29;118(13):3512-24 – reference: 22021371 - Blood. 2012 Jan 5;119(1):7-15 – reference: 21479231 - PLoS One. 2011;6(3):e18202 – reference: 20215539 - Clin Cancer Res. 2010 Mar 15;16(6):1856-64 – reference: 21386892 - PLoS One. 2011;6(2):e17238 – reference: 16632515 - Biostatistics. 2007 Jan;8(1):118-27 – reference: 17489983 - Br J Haematol. 2007 Jun;137(6):530-6 – reference: 24144643 - Blood. 2014 Jan 2;123(1):78-85 – reference: 17105813 - Blood. 2007 Mar 15;109(6):2276-84 – reference: 17185464 - Blood. 2007 Apr 15;109(8):3177-88 – reference: 22722715 - Leukemia. 2012 Nov;26(11):2406-13 – reference: 11861292 - Blood. 2002 Mar 1;99(5):1745-57 – reference: 20676067 - Pharmacogenomics J. 2010 Aug;10(4):278-91 – reference: 12393520 - Blood. 2003 Feb 1;101(3):1128-40 – reference: 18591550 - J Clin Oncol. 2008 Oct 10;26(29):4798-805 – reference: 25079174 - Leukemia. 2014 Dec;28(12):2410-3 |
| SSID | ssj0017805 |
| Score | 2.427243 |
| Snippet | Background
Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings.... Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings. However,... Background Gene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings.... BACKGROUNDGene expression profiling (GEP) via microarray analysis is a widely used tool for assessing risk and other patient diagnostics in clinical settings.... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 63 |
| SubjectTerms | Algorithms Analysis Bioinformatics Biomedical and Life Sciences Bone Marrow - metabolism Complications and side effects Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data Interpretation, Statistical Gene expression Gene Expression Profiling - standards Humans Life Sciences Medical research Medicine, Experimental Methodology Methodology Article Microarray Analysis - methods Microarrays Multiple myeloma Plasma Cells - metabolism Transcriptome analysis |
| Title | Removing batch effects from purified plasma cell gene expression microarrays with modified ComBat |
| URI | https://link.springer.com/article/10.1186/s12859-015-0478-3 https://www.ncbi.nlm.nih.gov/pubmed/25887219 https://www.proquest.com/docview/1674686933 https://pubmed.ncbi.nlm.nih.gov/PMC4355992 |
| Volume | 16 |
| WOSCitedRecordID | wos000350619400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYBhIvfMMCIzIICQkUrYnjxH7c0CYmoIo6QIUXy7EdVmlNq6RF7L_nLh8VqQAJXvzis-LYd7-7s-_OhLwQsZFSR2kQFkYHcSFCwEEuAxsmVkuhmW4Thd-n47GYTmXW5XHXfbR7fyXZIHUj1iI5rEOstQauLw-wokzAdsgeaDuB0jg5_7y5OsAi_d315W-HDRTQNgz_ooe2YyS3Lkob_XN6-79mfofc6sxNetTyx11yzZX3yI32Acqr-0RP3Lw5UqA5QPIF7aI7KCad0OW6mhVgodIlWNhzTfGMnwK_Oep-dOGzJZ1jQJ-uKn1VUzzTpfOFbUcB0hzr1QPy6fTk45u3QffoQmBAs68CK8BrNTrMnbUxSxy3eTpyKcOE1FjHaV5oZi0gpLRMxMXI5FoyzsDNZPEo5449JLvlonT7hHKwVpzRrpDgtEjYdpsXudFcRzYVIPceGfU7oUxXkRwfxrhUjWciEtWunIKVU7hyinnk1WbIsi3H8Tfi57i9CstclBhH802v61qdnU_UEQfljWDFPfKyIyoW8HGju7QE-AWsjDWgPBhQghyaQfeznosUdmHwWukW61phokciEslgRo9artpMPuKA8qA1PJIO-G1DgOW_hz3l7KIpAw6GLpcy8sjrnutUhz_1n9fk8T9RPyE3o4ZtoyDiB2R3Va3dU3LdfF_N6sonO-k0bVrhk73jk3E28ZszDWjfpYGPcbQZtBn_Cv3Z2Yfsi9_I6k8agTNB |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdggMYL3x-BAQYhIYEsmjhO7MeBmDZRKtQNtDfLsR1WaU2rpEXsv-cucSpSARI8-6w49vl3d_bdz4S8lKlVyiQ5i0trWFrKGHBQKObizBklDTddofA4n0zk6an6HOq4mz7bvb-SbJG63dYye9vEyLUGoa9gyCjD-GVyJQWDhXl80-Ovm6sDJOkP15e_7TYwQNsw_Isd2s6R3Loobe3Pwc3_GvktciO4m3S_04_b5JKv7pBr3QOUF3eJmfp5e6RAC4DkMxqyOygWndDlup6V4KHSJXjYc0PxjJ-Cvnnqf4T02YrOMaHP1LW5aCie6dL5wnW9AGnemdU98uXgw8n7QxYeXWAWLPuKOQlRqzVx4Z1LeeaFK_KRzzkWpKYmzYvScOcAIZXjMi1HtjCKCw5hJk9HhfD8PtmpFpV_SKgAb8Vb40sFQYuCZXdFWVgjTOJyCfs-IqN-JbQNjOT4MMa5biMTmelu5jTMnMaZ0zwirzddlh0dx9-EX-DyaqS5qDCP5ptZN40-Op7qfQHGG8FKRORVECoX8HFrQlkC_AIyYw0k9waSsA_toPl5r0UamzB5rfKLdaOx0COTmeIwogedVm0GnwhAebAaEckH-rYRQPrvYUs1O2tpwMHRFUolEXnTa50O-NP8eU4e_ZP0M7J7ePJprMdHk4-PyfWkVeGEJWKP7KzqtX9Crtrvq1lTP2334E-oJy1Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ri9QwEA96PvCL70f11CiCoITbNk2bfDwfi4fHctyp3LeQJqm34HaXtivef-9Mmy52UUH8nAlt08lvZpKZ3xDyQqZWKZPkLC6tYWkpY8BBoZiLM2eUNNz0hcKH-WwmT0_VUehz2gzZ7sOVZF_TgCxNVbu3cmW_xWW218TIuwZhsGDILsP4RXIpxZ5BGK6ffNlcIyBhf7jK_O20kTHahuRfbNJ2vuTWpWlni6Y3_vsrbpLrwQ2l-73e3CIXfHWbXOkbU57fIebYL7qjBloAVJ_RkPVBsRiFrtb1vATPla7A814Yimf_FPTQU_8jpNVWdIGJfqauzXlD8ayXLpaunwUI9Ma0d8nn6ftPbz-w0IyBWbD4LXMSollr4sI7l_LMC1fkE59zLFRNTZoXpeHOAXIqx2VaTmxhFBccwk-eTgrh-T2yUy0r_4BQAV6Mt8aXCoIZBergirKwRpjE5RLwICKT4a9oG5jKsWHGN91FLDLT_cppWDmNK6d5RF5tpqx6mo6_CT_HX62R_qLC_JqvZt00-uDkWO8LMOoIYiIiL4NQuYSHWxPKFeATkDFrJLk7koT9aUfDzwaN0jiESW2VX64bjQUgmcwUhze632vY5uUTAegP1iQi-Uj3NgJICz4eqeZnHT04OMBCqSQirwcN1AGXmj-vycN_kn5Krh69m-rDg9nHR-Ra0mlwwhKxS3baeu0fk8v2eztv6ifddvwJwZY2NA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removing+batch+effects+from+purified+plasma+cell+gene+expression+microarrays+with+modified+ComBat&rft.jtitle=BMC+bioinformatics&rft.au=Stein%2C+Caleb+K&rft.au=Qu%2C+Pingping&rft.au=Epstein%2C+Joshua&rft.au=Buros%2C+Amy&rft.date=2015-02-25&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=16&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-015-0478-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_015_0478_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |