The essential kinase ATR: ensuring faithful duplication of a challenging genome

Key Points Ataxia telangiectasia and Rad3-related (ATR) is an essential kinase that is active in S phase, senses stressed replication forks and orchestrates a multifaceted response to DNA replication stress. This response helps ensure completion of DNA replication and maintains the integrity of the...

Full description

Saved in:
Bibliographic Details
Published in:Nature reviews. Molecular cell biology Vol. 18; no. 10; pp. 622 - 636
Main Authors: Saldivar, Joshua C., Cortez, David, Cimprich, Karlene A.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.10.2017
Nature Publishing Group
Subjects:
ISSN:1471-0072, 1471-0080, 1471-0080
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Key Points Ataxia telangiectasia and Rad3-related (ATR) is an essential kinase that is active in S phase, senses stressed replication forks and orchestrates a multifaceted response to DNA replication stress. This response helps ensure completion of DNA replication and maintains the integrity of the genome. ATR and its binding partner, ATR-interacting protein (ATRIP), are recruited to stalled forks through direct interactions with the replication protein A–single-stranded DNA (RPA–ssDNA) complex that forms at stressed replication forks. When bound to ssDNA, the kinase activity of ATR is stimulated by the ATR-activating domains of topoisomerase II binding protein 1 (TOPBP1) or Ewing tumour-associated antigen 1 (ETAA1), which are independently recruited to junctions between ssDNA and double-stranded DNA (dsDNA) and to RPA–ssDNA, respectively. ATR activity can be amplified by generating more ssDNA–dsDNA junctions at individual replication forks, through feed-forward signalling loops and by post-translational modifications of the signalling complexes. When activated, ATR directs the replication stress response to arrest the cell cycle, block origin of replication firing and stabilize and repair stalled replication forks. ATR and its effector, checkpoint kinase 1 (CHK1), are active both during an unperturbed S phase, to prevent excessive origin firing, and in response to replication stress, to slow DNA replication. However, this negative regulation of replication initiation does not prevent the firing of dormant origins within a replication domain, which can rescue replication completion without requiring the damaged fork to restart. ATR phosphorylates numerous replisome proteins and repair factors that prevent fork collapse and the formation of DNA breaks. These post-translational modifications regulate the remodelling of replication forks and subsequent nuclease-dependent cleavage and/or resection of forks. They also regulate pathways needed to repair stalled forks and restart DNA synthesis. Replication stress is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR), which senses and resolves threats to DNA integrity. ATR activation is complex and involves a core set of components that recruit ATR to stressed replication forks, stimulate its kinase activity and amplify downstream signalling to maintain the stability of replication forks. One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
AbstractList One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Key Points Ataxia telangiectasia and Rad3-related (ATR) is an essential kinase that is active in S phase, senses stressed replication forks and orchestrates a multifaceted response to DNA replication stress. This response helps ensure completion of DNA replication and maintains the integrity of the genome. ATR and its binding partner, ATR-interacting protein (ATRIP), are recruited to stalled forks through direct interactions with the replication protein A–single-stranded DNA (RPA–ssDNA) complex that forms at stressed replication forks. When bound to ssDNA, the kinase activity of ATR is stimulated by the ATR-activating domains of topoisomerase II binding protein 1 (TOPBP1) or Ewing tumour-associated antigen 1 (ETAA1), which are independently recruited to junctions between ssDNA and double-stranded DNA (dsDNA) and to RPA–ssDNA, respectively. ATR activity can be amplified by generating more ssDNA–dsDNA junctions at individual replication forks, through feed-forward signalling loops and by post-translational modifications of the signalling complexes. When activated, ATR directs the replication stress response to arrest the cell cycle, block origin of replication firing and stabilize and repair stalled replication forks. ATR and its effector, checkpoint kinase 1 (CHK1), are active both during an unperturbed S phase, to prevent excessive origin firing, and in response to replication stress, to slow DNA replication. However, this negative regulation of replication initiation does not prevent the firing of dormant origins within a replication domain, which can rescue replication completion without requiring the damaged fork to restart. ATR phosphorylates numerous replisome proteins and repair factors that prevent fork collapse and the formation of DNA breaks. These post-translational modifications regulate the remodelling of replication forks and subsequent nuclease-dependent cleavage and/or resection of forks. They also regulate pathways needed to repair stalled forks and restart DNA synthesis. Replication stress is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR), which senses and resolves threats to DNA integrity. ATR activation is complex and involves a core set of components that recruit ATR to stressed replication forks, stimulate its kinase activity and amplify downstream signalling to maintain the stability of replication forks. One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault. In this review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. These involve a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signaling. We focus on the activities of ATR in control of cell cycle checkpoints, origin firing and replication fork stability, and how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.
Audience Academic
Author Saldivar, Joshua C.
Cortez, David
Cimprich, Karlene A.
AuthorAffiliation b Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
a Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
AuthorAffiliation_xml – name: b Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
– name: a Department of Chemical and Systems Biology, Stanford University School of Medicine, 318 Campus Drive, Stanford, CA 94305-5441, USA
Author_xml – sequence: 1
  givenname: Joshua C.
  surname: Saldivar
  fullname: Saldivar, Joshua C.
  organization: Department of Chemical and Systems Biology, Stanford University School of Medicine
– sequence: 2
  givenname: David
  surname: Cortez
  fullname: Cortez, David
  organization: Department of Biochemistry, School of Medicine, Vanderbilt University
– sequence: 3
  givenname: Karlene A.
  surname: Cimprich
  fullname: Cimprich, Karlene A.
  email: cimprich@stanford.edu
  organization: Department of Chemical and Systems Biology, Stanford University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28811666$$D View this record in MEDLINE/PubMed
BookMark eNptkstv1DAQxiNURB9w4o4icaGCXexkYzsckFYVj0qVKpXlbE2ccdbFsbd2gsp_j8O2pVvtydb4N5_n8R1nB847zLLXlMwpKcVHF_p5QSifM_4sO6ILTmeECHLwcOfFYXYc4zUhlFFevcgOCyEoZYwdZZerNeYYI7rBgM1_GQcR8-Xq6lOOLo7BuC7XYIa1Hm3ejhtrFAzGu9zrHHK1BmvRdRPVofM9vsyea7ARX92dJ9nPr19WZ99nF5ffzs-WFzPFaDnM6rYmvBSU1EDEokANCrTiwETTclGoha5JyUoGqKBF3oim0WVTibasmxTR5Un2eau7GZseW5XqD2DlJpgewh_pwcjdF2fWsvO_ZcVrVhUsCby7Ewj-ZsQ4yN5EhdaCQz9GSeuiFjVj1YS-fYJe-zG41F6iFpwshGDlf6oDi9I47dO_ahKVy4pUjBSMk0TN91AwddkblRarTYrvJJzuJCRmwNuhgzFGef7japd983goD9O4X3cC6BZQwccYUEtlhn_7TFUYKymRk6VkspScLCUZTznvn-Tcy-6nP2zpuJm8g-HRrPbgfwGh8Np9
CitedBy_id crossref_primary_10_1016_j_molcel_2019_04_003
crossref_primary_10_1158_0008_5472_CAN_18_3959
crossref_primary_10_1038_s41594_023_00949_1
crossref_primary_10_1073_pnas_2115638119
crossref_primary_10_1186_s12943_024_02147_z
crossref_primary_10_1242_jcs_223123
crossref_primary_10_3390_biom15020168
crossref_primary_10_5802_crbiol_123_fr
crossref_primary_10_1038_s41598_021_82780_6
crossref_primary_10_7554_eLife_104718_2
crossref_primary_10_3390_ijms241914941
crossref_primary_10_3390_cancers13081957
crossref_primary_10_26508_lsa_202101249
crossref_primary_10_1038_s41467_019_10179_z
crossref_primary_10_15252_embj_2019101801
crossref_primary_10_3390_genes11040409
crossref_primary_10_1038_s41598_021_86957_x
crossref_primary_10_3390_ijms241511890
crossref_primary_10_3390_molecules27154736
crossref_primary_10_1158_1541_7786_MCR_19_0585
crossref_primary_10_12688_wellcomeopenres_19617_1
crossref_primary_10_1016_j_molcel_2018_11_036
crossref_primary_10_1177_1758835920982853
crossref_primary_10_1016_j_jbc_2024_105671
crossref_primary_10_1016_j_molcel_2018_10_001
crossref_primary_10_1158_2159_8290_CD_22_1220
crossref_primary_10_1002_1878_0261_12573
crossref_primary_10_1158_2159_8290_CD_17_1461
crossref_primary_10_1093_hmg_ddz206
crossref_primary_10_1111_tpj_15567
crossref_primary_10_3390_cells10061464
crossref_primary_10_1007_s00018_021_03926_3
crossref_primary_10_1002_cbdv_202302071
crossref_primary_10_1002_smll_202300736
crossref_primary_10_1016_j_jbc_2023_102905
crossref_primary_10_3390_cancers16152725
crossref_primary_10_1016_j_celrep_2024_114178
crossref_primary_10_1186_s13148_025_01915_y
crossref_primary_10_1016_j_jbc_2022_101992
crossref_primary_10_1016_j_molcel_2021_02_027
crossref_primary_10_1083_jcb_201905064
crossref_primary_10_3390_ijms19102909
crossref_primary_10_1016_j_dnarep_2020_102973
crossref_primary_10_1016_j_molcel_2020_08_018
crossref_primary_10_1002_ame2_12274
crossref_primary_10_1016_j_celrep_2023_112805
crossref_primary_10_3390_v9090261
crossref_primary_10_1371_journal_pbio_3000468
crossref_primary_10_1093_nar_gkaa508
crossref_primary_10_1093_nar_gkz436
crossref_primary_10_7554_eLife_104718
crossref_primary_10_3390_cancers13184601
crossref_primary_10_1002_path_6032
crossref_primary_10_1038_s41467_024_50836_6
crossref_primary_10_1158_0008_5472_CAN_20_2694
crossref_primary_10_3390_cancers11091320
crossref_primary_10_7554_eLife_72286
crossref_primary_10_1134_S0006297923080084
crossref_primary_10_1016_j_dnarep_2021_103179
crossref_primary_10_3390_cells9010238
crossref_primary_10_1016_j_molcel_2022_12_034
crossref_primary_10_1007_s10549_018_05113_8
crossref_primary_10_1111_gtc_13056
crossref_primary_10_1016_j_jbc_2022_101777
crossref_primary_10_1016_j_tibs_2019_03_011
crossref_primary_10_1016_j_ajoms_2025_05_011
crossref_primary_10_26508_lsa_201900547
crossref_primary_10_3390_cancers14215278
crossref_primary_10_1038_s42003_024_05855_w
crossref_primary_10_1172_JCI128903
crossref_primary_10_1016_j_semcancer_2021_04_012
crossref_primary_10_1016_j_dnarep_2021_103063
crossref_primary_10_1038_s41467_022_33535_y
crossref_primary_10_1016_j_dnarep_2020_102875
crossref_primary_10_1038_s41467_025_58183_w
crossref_primary_10_1158_1078_0432_CCR_21_1010
crossref_primary_10_1021_acs_jmedchem_5c00927
crossref_primary_10_1016_j_molcel_2021_01_004
crossref_primary_10_1371_journal_ppat_1008228
crossref_primary_10_1038_s41477_021_00855_8
crossref_primary_10_1158_0008_5472_CAN_21_4335
crossref_primary_10_3389_fcell_2022_826576
crossref_primary_10_3390_children11111323
crossref_primary_10_1093_nar_gkad839
crossref_primary_10_1093_nar_gkae807
crossref_primary_10_1038_s41467_025_59509_4
crossref_primary_10_3390_ijms25147817
crossref_primary_10_1126_science_adg3224
crossref_primary_10_3389_fcell_2020_00813
crossref_primary_10_1016_j_molp_2023_07_002
crossref_primary_10_1042_BST20191118
crossref_primary_10_1016_j_cancergen_2025_09_002
crossref_primary_10_1186_s13578_020_0376_x
crossref_primary_10_1093_nar_gkae811
crossref_primary_10_1038_s44319_024_00207_5
crossref_primary_10_1111_vco_13014
crossref_primary_10_1080_15384101_2019_1598728
crossref_primary_10_1038_s41573_022_00558_5
crossref_primary_10_1158_0008_5472_CAN_21_4339
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1093_nar_gkab311
crossref_primary_10_1002_1878_0261_12402
crossref_primary_10_1038_s41388_021_02085_w
crossref_primary_10_1101_gad_348314_121
crossref_primary_10_1073_pnas_1821475116
crossref_primary_10_1038_s44318_024_00066_9
crossref_primary_10_1016_j_bbrc_2017_10_062
crossref_primary_10_1016_j_tcb_2020_11_007
crossref_primary_10_1038_s41598_020_80626_1
crossref_primary_10_1038_s41467_023_40843_4
crossref_primary_10_1016_j_drudis_2024_104056
crossref_primary_10_1158_1078_0432_CCR_22_2444
crossref_primary_10_1016_j_molcel_2024_10_035
crossref_primary_10_1038_s41467_021_27172_0
crossref_primary_10_1016_j_biopha_2022_113797
crossref_primary_10_1038_s41594_024_01395_3
crossref_primary_10_1186_s13058_022_01586_0
crossref_primary_10_3390_cells12040659
crossref_primary_10_1007_s10072_024_07413_y
crossref_primary_10_1038_s41467_022_32023_7
crossref_primary_10_1093_nar_gkae1311
crossref_primary_10_1016_j_dnarep_2021_103155
crossref_primary_10_1042_BST20220729
crossref_primary_10_3390_ijms232012300
crossref_primary_10_1016_j_jbc_2021_100455
crossref_primary_10_1017_erm_2023_10
crossref_primary_10_1016_j_dnarep_2022_103435
crossref_primary_10_1093_nar_gkac853
crossref_primary_10_1016_j_canlet_2022_215804
crossref_primary_10_1038_s41467_021_23806_5
crossref_primary_10_3389_fcell_2021_731308
crossref_primary_10_3389_fcell_2020_00711
crossref_primary_10_1016_j_cell_2024_05_018
crossref_primary_10_1007_s13402_023_00817_6
crossref_primary_10_1080_10409238_2020_1841089
crossref_primary_10_1371_journal_pbio_3002552
crossref_primary_10_3390_genes10020094
crossref_primary_10_5802_crbiol_123
crossref_primary_10_1016_j_molcel_2023_06_025
crossref_primary_10_1074_jbc_RA120_015142
crossref_primary_10_1038_s41416_018_0286_4
crossref_primary_10_1038_s41418_020_00655_1
crossref_primary_10_34133_research_0862
crossref_primary_10_1146_annurev_biochem_011520_104722
crossref_primary_10_1016_j_ejmech_2020_112524
crossref_primary_10_1128_jvi_01269_22
crossref_primary_10_1038_s41388_024_03117_x
crossref_primary_10_3389_fcell_2020_00324
crossref_primary_10_1111_cas_15845
crossref_primary_10_1126_sciadv_adu0437
crossref_primary_10_1038_s41467_020_17127_2
crossref_primary_10_1126_science_aap9346
crossref_primary_10_1016_j_molcel_2020_10_016
crossref_primary_10_1016_j_ceb_2019_05_005
crossref_primary_10_1038_s41580_020_0257_5
crossref_primary_10_1093_nar_gkz054
crossref_primary_10_1016_j_mrfmmm_2023_111834
crossref_primary_10_1016_j_ejmech_2025_117804
crossref_primary_10_1016_j_lfs_2023_122131
crossref_primary_10_3389_fpls_2019_00653
crossref_primary_10_1093_nar_gkaa130
crossref_primary_10_1038_s41419_020_03090_9
crossref_primary_10_1016_j_jid_2018_07_039
crossref_primary_10_3390_ijms19082376
crossref_primary_10_1016_j_taap_2025_117375
crossref_primary_10_1371_journal_pgen_1009176
crossref_primary_10_1007_s00294_019_01039_w
crossref_primary_10_3390_genes11060642
crossref_primary_10_1021_jacs_7b10284
crossref_primary_10_1002_adhm_202303762
crossref_primary_10_1083_jcb_202003148
crossref_primary_10_1038_s41467_018_07798_3
crossref_primary_10_1038_s44318_024_00323_x
crossref_primary_10_3390_microorganisms7070191
crossref_primary_10_1016_j_molcel_2022_05_004
crossref_primary_10_1016_j_ctrv_2020_102026
crossref_primary_10_3389_fmolb_2025_1604313
crossref_primary_10_3390_genes12040552
crossref_primary_10_1371_journal_ppat_1008403
crossref_primary_10_3389_fonc_2024_1441222
crossref_primary_10_3390_ijms21186684
crossref_primary_10_1158_0008_5472_CAN_18_2480
crossref_primary_10_3390_cancers14153794
crossref_primary_10_3390_v14050948
crossref_primary_10_1038_s41467_024_55637_5
crossref_primary_10_1016_j_jbc_2023_102991
crossref_primary_10_3390_cancers14081988
crossref_primary_10_1007_s00705_020_04531_8
crossref_primary_10_1111_php_13245
crossref_primary_10_3390_cancers13246215
crossref_primary_10_1038_s41467_020_15170_7
crossref_primary_10_1042_BSR20222591
crossref_primary_10_1083_jcb_201902085
crossref_primary_10_3390_cancers11091289
crossref_primary_10_1016_j_molcel_2020_02_021
crossref_primary_10_3389_fimmu_2022_968755
crossref_primary_10_1038_s44319_025_00497_3
crossref_primary_10_1083_jcb_201810058
crossref_primary_10_3390_cancers12010026
crossref_primary_10_3390_genes13111921
crossref_primary_10_1038_s41467_023_36149_0
crossref_primary_10_1126_science_adi2436
crossref_primary_10_1098_rsob_190156
crossref_primary_10_4103_jcrt_jcrt_1723_22
crossref_primary_10_1158_0008_5472_CAN_20_2960
crossref_primary_10_1016_j_molcel_2021_05_027
crossref_primary_10_1080_15384101_2021_1897271
crossref_primary_10_3390_ijms21041506
crossref_primary_10_1093_toxsci_kfz178
crossref_primary_10_1158_0008_5472_CAN_18_3631
crossref_primary_10_1038_s41467_021_26624_x
crossref_primary_10_1038_s41594_023_01092_7
crossref_primary_10_1158_1078_0432_CCR_22_0568
crossref_primary_10_1371_journal_pone_0271905
crossref_primary_10_1099_jgv_0_001813
crossref_primary_10_1038_s41467_021_24217_2
crossref_primary_10_1158_1078_0432_CCR_22_2861
crossref_primary_10_1186_s13045_019_0733_6
crossref_primary_10_1016_j_semcancer_2018_08_003
crossref_primary_10_1016_j_celrep_2024_113845
crossref_primary_10_1038_s41392_023_01548_8
crossref_primary_10_1158_0008_5472_CAN_18_2439
crossref_primary_10_3389_fcell_2020_00416
crossref_primary_10_1002_em_22401
crossref_primary_10_1002_em_22400
crossref_primary_10_1038_s41467_021_26077_2
crossref_primary_10_1111_php_13164
crossref_primary_10_1038_s41467_020_19162_5
crossref_primary_10_1002_bies_202200229
crossref_primary_10_1002_cam4_2115
crossref_primary_10_1177_10732748241298329
crossref_primary_10_1016_j_molcel_2024_01_018
crossref_primary_10_15252_emmm_202216431
crossref_primary_10_1158_1541_7786_MCR_19_0490
crossref_primary_10_1016_j_pharmthera_2021_108009
crossref_primary_10_3390_ijms241210212
crossref_primary_10_1093_nar_gkac122
crossref_primary_10_1016_j_jbc_2025_108408
crossref_primary_10_1111_php_13279
crossref_primary_10_1016_j_ijrobp_2019_06_2508
crossref_primary_10_1016_j_ajhg_2021_04_021
crossref_primary_10_1007_s00018_018_2900_2
crossref_primary_10_1038_s41388_018_0606_4
crossref_primary_10_1038_s41467_023_39332_5
crossref_primary_10_3389_fcell_2022_1020643
crossref_primary_10_1038_s41698_025_00819_7
crossref_primary_10_1016_j_jbior_2022_100938
crossref_primary_10_1093_genetics_iyaf104
crossref_primary_10_1017_erm_2020_3
crossref_primary_10_1038_s41580_018_0064_4
crossref_primary_10_1016_j_molcel_2018_09_014
crossref_primary_10_1038_nrm_2017_116
crossref_primary_10_3389_fimmu_2022_1088690
crossref_primary_10_3390_antiox12112005
crossref_primary_10_1016_j_mrgentox_2018_02_004
crossref_primary_10_1155_2021_1522250
crossref_primary_10_1016_j_tig_2021_09_008
crossref_primary_10_1038_s41586_022_05469_4
crossref_primary_10_3390_cancers16081510
crossref_primary_10_1016_j_gde_2021_07_003
crossref_primary_10_7554_eLife_68677
crossref_primary_10_1007_s10565_018_9429_x
crossref_primary_10_1016_j_ejmech_2025_117834
crossref_primary_10_1016_j_lfs_2023_122085
crossref_primary_10_1080_15384101_2022_2131163
crossref_primary_10_1007_s42764_020_00019_6
crossref_primary_10_1016_j_devcel_2020_03_001
crossref_primary_10_1172_JCI165448
crossref_primary_10_1016_j_scitotenv_2024_171567
crossref_primary_10_1073_pnas_2011278118
crossref_primary_10_3390_genes11070730
crossref_primary_10_1016_j_molcel_2019_08_023
crossref_primary_10_1038_s41467_019_08886_8
crossref_primary_10_1158_0008_5472_CAN_18_3394
crossref_primary_10_3390_cancers13071583
crossref_primary_10_1016_j_molcel_2020_12_010
crossref_primary_10_1016_j_biocel_2024_106724
crossref_primary_10_1038_s41556_020_00605_6
crossref_primary_10_1016_j_molcel_2023_09_003
crossref_primary_10_1038_s41467_024_52112_z
crossref_primary_10_1093_nar_gkaf544
crossref_primary_10_1002_mco2_103
crossref_primary_10_1016_j_tibs_2022_06_007
crossref_primary_10_3389_fonc_2023_1136248
crossref_primary_10_1016_j_jbc_2021_100831
crossref_primary_10_1093_nar_gkad363
crossref_primary_10_1016_j_jep_2021_114938
crossref_primary_10_1016_j_omton_2024_200785
crossref_primary_10_1016_j_isci_2025_112567
crossref_primary_10_1016_j_compbiomed_2025_110570
crossref_primary_10_1093_nar_gkad369
crossref_primary_10_1016_j_pharmthera_2020_107492
crossref_primary_10_1016_j_dnarep_2025_103877
crossref_primary_10_1038_s41420_024_02083_3
crossref_primary_10_3389_fcell_2020_602956
crossref_primary_10_1016_j_bbamcr_2023_119484
crossref_primary_10_1038_s41598_021_86490_x
crossref_primary_10_1083_jcb_201809012
crossref_primary_10_15252_embj_2020104400
crossref_primary_10_1016_j_molcel_2020_04_031
crossref_primary_10_1007_s00761_024_01528_9
crossref_primary_10_1016_j_tig_2024_02_006
crossref_primary_10_1038_s41467_021_27057_2
crossref_primary_10_1002_gcc_22684
crossref_primary_10_1177_1758835920956900
crossref_primary_10_3390_genes11070752
crossref_primary_10_1016_j_canlet_2025_218009
crossref_primary_10_1016_j_bbrc_2018_06_038
crossref_primary_10_7554_eLife_68648
crossref_primary_10_1007_s13402_024_00942_w
crossref_primary_10_1093_nar_gkab1223
crossref_primary_10_1186_s12935_023_03041_2
crossref_primary_10_1093_neuonc_noae016
crossref_primary_10_1186_s13045_020_00874_6
crossref_primary_10_3390_genes12121960
crossref_primary_10_1200_JCO_2017_77_1857
crossref_primary_10_1016_j_molcel_2024_04_004
crossref_primary_10_1093_nar_gkac011
crossref_primary_10_1016_j_molcel_2019_01_024
crossref_primary_10_1038_s41467_019_13667_4
crossref_primary_10_1111_boc_202100061
crossref_primary_10_3390_ijms21249715
crossref_primary_10_1083_jcb_201808134
crossref_primary_10_7554_eLife_69726
crossref_primary_10_1158_2159_8290_CD_23_0641
crossref_primary_10_1016_j_gendis_2024_101401
crossref_primary_10_1016_j_devcel_2022_06_003
crossref_primary_10_1093_nar_gkab176
crossref_primary_10_3390_cancers13092195
crossref_primary_10_1038_s41467_024_46578_0
crossref_primary_10_1186_s13046_022_02334_0
crossref_primary_10_1101_gad_351084_123
crossref_primary_10_1016_j_pbiomolbio_2019_04_002
crossref_primary_10_3390_ijms241411684
crossref_primary_10_3390_genes10050398
crossref_primary_10_3390_plants12051178
crossref_primary_10_1016_j_fct_2020_111919
crossref_primary_10_1074_jbc_RA118_003940
crossref_primary_10_1083_jcb_201910157
crossref_primary_10_1002_cam4_3831
crossref_primary_10_1371_journal_pgen_1008294
crossref_primary_10_1002_osi2_1102
crossref_primary_10_1007_s00018_023_04738_3
crossref_primary_10_1016_j_molcel_2023_01_003
crossref_primary_10_1002_ctm2_765
crossref_primary_10_1016_j_bbrc_2019_07_076
crossref_primary_10_1016_j_pharmthera_2018_03_005
crossref_primary_10_1146_annurev_virology_092917_043534
crossref_primary_10_1016_j_tcb_2021_06_002
crossref_primary_10_1126_science_aar4799
crossref_primary_10_1016_j_celrep_2019_04_032
crossref_primary_10_3390_cancers13143415
crossref_primary_10_1016_j_molstruc_2020_129851
crossref_primary_10_1038_s41467_018_05031_9
crossref_primary_10_3390_cancers13102384
crossref_primary_10_1016_j_tig_2020_09_008
crossref_primary_10_3389_fimmu_2019_01113
crossref_primary_10_1101_gad_333237_119
crossref_primary_10_1016_j_cellsig_2020_109602
crossref_primary_10_1038_s41598_022_10821_9
crossref_primary_10_1038_s41598_022_09308_4
crossref_primary_10_1038_s12276_020_00533_3
crossref_primary_10_1038_s41467_024_48988_6
crossref_primary_10_1038_s41568_018_0034_3
crossref_primary_10_3390_cancers14194874
crossref_primary_10_1016_j_molcel_2019_10_010
crossref_primary_10_1084_jem_20241432
crossref_primary_10_1073_pnas_2015654118
crossref_primary_10_1016_j_molcel_2018_08_047
crossref_primary_10_1186_s12964_025_02242_8
crossref_primary_10_3390_cancers16010083
crossref_primary_10_1128_JVI_01012_17
crossref_primary_10_1158_2159_8290_CD_18_0474
crossref_primary_10_1038_s41467_024_52820_6
crossref_primary_10_1038_s41573_024_01060_w
crossref_primary_10_3389_fcell_2024_1472906
crossref_primary_10_3390_v9110341
crossref_primary_10_1002_em_22268
crossref_primary_10_1080_10409238_2022_2027336
crossref_primary_10_1093_nar_gky1233
crossref_primary_10_1016_j_molcel_2020_12_049
crossref_primary_10_1016_j_molcel_2019_10_008
crossref_primary_10_1158_2159_8290_CD_20_1375
crossref_primary_10_3389_fcell_2021_738502
crossref_primary_10_1007_s42764_024_00129_5
crossref_primary_10_1007_s00412_023_00807_5
crossref_primary_10_1016_j_bcp_2022_115340
crossref_primary_10_3389_fonc_2020_00371
crossref_primary_10_3390_cancers12051095
crossref_primary_10_1128_spectrum_02132_22
crossref_primary_10_26508_lsa_201800096
crossref_primary_10_1096_fj_202001636RRR
crossref_primary_10_1093_nar_gkx1203
crossref_primary_10_1002_aac2_12047
crossref_primary_10_1371_journal_pgen_1010691
crossref_primary_10_26508_lsa_202302111
crossref_primary_10_1002_mc_23451
crossref_primary_10_1074_jbc_RA120_013726
crossref_primary_10_1038_s41467_022_34295_5
crossref_primary_10_1016_j_devcel_2024_05_010
crossref_primary_10_3390_genes15030360
crossref_primary_10_1101_gad_337287_120
crossref_primary_10_1158_1541_7786_MCR_21_0581
crossref_primary_10_3390_ijms25126403
crossref_primary_10_3390_ijms25052767
crossref_primary_10_1111_febs_16535
crossref_primary_10_1007_s42764_019_00003_9
crossref_primary_10_1016_j_semcancer_2022_07_008
crossref_primary_10_1007_s00018_024_05465_z
crossref_primary_10_1016_j_celrep_2024_114205
crossref_primary_10_1038_s41388_022_02491_8
crossref_primary_10_1093_jxb_erab355
crossref_primary_10_3390_ijms24076778
crossref_primary_10_1002_1878_0261_13020
crossref_primary_10_1038_s41467_024_46207_w
crossref_primary_10_1016_j_phrs_2024_107099
crossref_primary_10_3390_genes10030232
crossref_primary_10_1016_j_prp_2024_155405
crossref_primary_10_1073_pnas_2403038121
crossref_primary_10_3390_genes11090990
crossref_primary_10_1016_j_bbadis_2024_167625
crossref_primary_10_1016_j_dnarep_2024_103776
crossref_primary_10_1007_s10549_018_4683_4
crossref_primary_10_1038_s41420_025_02383_2
crossref_primary_10_1002_advs_202000157
crossref_primary_10_1038_s41467_021_27704_8
crossref_primary_10_3389_fcell_2025_1638964
crossref_primary_10_3390_cancers16203536
crossref_primary_10_1016_j_mrfmmm_2020_111689
crossref_primary_10_3390_cancers16071360
crossref_primary_10_1038_s41388_022_02527_z
crossref_primary_10_1158_0008_5472_CAN_20_4340
crossref_primary_10_3390_ijms241310488
crossref_primary_10_1016_j_molcel_2018_12_021
crossref_primary_10_1016_j_molcel_2022_03_034
crossref_primary_10_1016_j_dnarep_2024_103786
crossref_primary_10_1038_s41420_025_02306_1
crossref_primary_10_4155_fmc_2023_0216
crossref_primary_10_1007_s12035_024_04033_7
crossref_primary_10_1016_j_tcb_2021_01_008
crossref_primary_10_3389_fonc_2022_915662
crossref_primary_10_1111_cas_16289
crossref_primary_10_1128_MCB_00472_17
crossref_primary_10_3390_genes9120589
crossref_primary_10_1016_j_ejmech_2025_117347
crossref_primary_10_1007_s42764_021_00045_y
crossref_primary_10_1158_1078_0432_CCR_24_2306
crossref_primary_10_1093_nar_gkae154
crossref_primary_10_1016_j_mrgentox_2021_503422
crossref_primary_10_1073_pnas_2315242121
crossref_primary_10_1083_jcb_202009147
crossref_primary_10_1084_jem_20241248
crossref_primary_10_3390_biom14030263
crossref_primary_10_3390_cancers13040795
crossref_primary_10_15252_embj_2021108290
crossref_primary_10_1016_j_tranon_2021_101147
crossref_primary_10_1016_j_tranon_2023_101743
crossref_primary_10_1038_s41523_021_00353_2
crossref_primary_10_1038_s41389_019_0147_x
crossref_primary_10_1038_s41594_018_0075_z
crossref_primary_10_3390_cells11091466
crossref_primary_10_12688_f1000research_20201_1
crossref_primary_10_1016_j_pharmthera_2020_107518
crossref_primary_10_3390_antiox10111820
crossref_primary_10_1158_1078_0432_CCR_24_2556
crossref_primary_10_1016_S1875_5364_24_60694_1
crossref_primary_10_1016_j_tcb_2024_04_002
crossref_primary_10_3390_ijms26020667
crossref_primary_10_1093_nar_gkaa963
crossref_primary_10_1098_rsos_201932
crossref_primary_10_1016_j_dnarep_2023_103567
crossref_primary_10_1016_j_tibs_2025_07_004
crossref_primary_10_1016_j_dnarep_2023_103571
crossref_primary_10_1002_mco2_788
crossref_primary_10_1161_JAHA_121_021768
crossref_primary_10_1038_s41418_019_0318_5
crossref_primary_10_1016_j_molcel_2021_08_009
crossref_primary_10_3389_fcell_2021_727429
crossref_primary_10_1038_s41594_022_00741_7
crossref_primary_10_1016_j_dnarep_2024_103733
crossref_primary_10_1016_j_mrrev_2018_03_004
crossref_primary_10_1016_j_taap_2023_116696
crossref_primary_10_1080_15384101_2020_1849979
crossref_primary_10_3390_cancers13215346
crossref_primary_10_1007_s00294_018_0923_8
crossref_primary_10_1074_jbc_RA119_008154
crossref_primary_10_3390_pathogens9060506
crossref_primary_10_1016_j_biocel_2022_106230
crossref_primary_10_1080_10409238_2021_1925218
crossref_primary_10_14791_btrt_2025_0017
crossref_primary_10_1016_j_dnarep_2025_103841
crossref_primary_10_1016_j_molcel_2025_06_004
crossref_primary_10_1016_j_molcel_2025_06_002
crossref_primary_10_1038_s41418_020_00733_4
crossref_primary_10_1016_j_molcel_2025_06_001
crossref_primary_10_1186_s13059_022_02638_6
crossref_primary_10_1038_s41418_020_0570_8
crossref_primary_10_3390_cells11152361
crossref_primary_10_1093_nar_gkaa1082
crossref_primary_10_7554_eLife_84320
crossref_primary_10_3389_fmolb_2021_791792
crossref_primary_10_1146_annurev_virology_111821_103452
crossref_primary_10_3390_genes14091806
crossref_primary_10_1016_j_ejmech_2022_114580
crossref_primary_10_1083_jcb_202011014
crossref_primary_10_3390_ijms24032404
crossref_primary_10_1016_j_cell_2024_08_034
crossref_primary_10_1101_gad_349431_122
crossref_primary_10_3390_cancers13133130
crossref_primary_10_1016_j_cels_2018_05_011
crossref_primary_10_1098_rsob_230068
crossref_primary_10_1177_10556656241228124
crossref_primary_10_1242_dmm_045807
crossref_primary_10_1016_j_dnarep_2022_103393
crossref_primary_10_1038_s41392_022_01182_w
crossref_primary_10_3389_fcell_2021_636615
crossref_primary_10_1016_j_ccell_2022_07_012
crossref_primary_10_1038_s41467_025_60817_y
crossref_primary_10_1016_j_canlet_2022_01_010
crossref_primary_10_1038_s41467_024_45760_8
crossref_primary_10_1016_j_dnarep_2020_102947
crossref_primary_10_1042_BST20200751
crossref_primary_10_1186_s12929_021_00743_5
crossref_primary_10_1016_j_dnarep_2020_102946
crossref_primary_10_1016_j_dnarep_2024_103758
crossref_primary_10_1073_pnas_2105440118
crossref_primary_10_1016_j_snb_2021_130941
crossref_primary_10_1158_0008_5472_CAN_24_1404
crossref_primary_10_1038_s41571_024_00863_5
crossref_primary_10_1093_nar_gkae082
crossref_primary_10_3389_fphar_2024_1400699
crossref_primary_10_1038_s41598_024_70589_y
crossref_primary_10_1186_s40364_024_00653_2
crossref_primary_10_1016_j_molcel_2018_11_025
crossref_primary_10_1093_nar_gkaf178
Cites_doi 10.1007/s10577-009-9098-y
10.1126/science.1203430
10.1016/S0955-0674(00)00201-5
10.1038/ncb1337
10.1038/nature05112
10.1101/gad.178459.111
10.1128/MCB.00863-09
10.1016/j.molcel.2014.05.030
10.1038/ncb2897
10.1074/jbc.M611292200
10.1038/nsmb.1932
10.1016/S1097-2765(00)80277-4
10.1083/jcb.201406099
10.1371/journal.pbio.0000033
10.1016/j.molcel.2013.03.006
10.1038/ncb3344
10.1074/jbc.M701770200
10.1016/S1535-6108(03)00048-5
10.1128/MCB.24.3.1279-1291.2004
10.1126/science.289.5487.2133
10.1016/j.molcel.2008.10.014
10.1101/gad.291807.116
10.1101/gad.1301205
10.1074/jbc.M806739200
10.1038/nsmb.2719
10.4161/cc.28212
10.1016/j.molcel.2010.01.021
10.1101/gad.238535.114
10.1242/jcs.096701
10.1038/nsmb1313
10.1038/nrm3935
10.4161/cc.7.18.6689
10.1101/cshperspect.a012708
10.1371/journal.pgen.1005675
10.1101/gad.219477.113
10.1074/jbc.M111.248914
10.1038/nrm.2016.171
10.1101/gad.204750.112
10.1371/journal.pgen.1003702
10.1038/35087613
10.1016/j.celrep.2014.04.007
10.1016/j.molcel.2013.09.025
10.1016/j.molcel.2015.02.031
10.1016/j.molcel.2016.12.007
10.1038/nrm4002
10.1101/gad.1522607
10.1073/pnas.93.7.2850
10.1146/annurev.genet.34.1.479
10.1093/emboj/cdg391
10.1083/jcb.201404111
10.1016/j.molcel.2013.11.002
10.1038/emboj.2009.385
10.1002/j.1460-2075.1996.tb01054.x
10.1126/science.1065521
10.1073/pnas.0437927100
10.1038/nature01368
10.1074/jbc.M704635200
10.1002/1873-3468.12556
10.1038/nsmb.1927
10.1016/j.celrep.2016.01.018
10.1093/emboj/17.1.159
10.4161/cc.6.22.4932
10.1016/j.celrep.2015.12.093
10.1016/j.molcel.2015.07.029
10.1371/journal.pgen.1003910
10.1158/0008-5472.CAN-07-0495
10.1242/jcs.053702
10.1091/mbc.e13-01-0025
10.1016/j.molcel.2014.12.003
10.1128/MCB.26.8.3319-3326.2006
10.4103/2319-4170.110398
10.1038/nature14285
10.1038/nature09350
10.1101/cshperspect.a012724
10.1016/j.dnarep.2005.04.001
10.1083/jcb.200805154
10.1038/ncb3422
10.1083/jcb.201406100
10.1016/j.cell.2012.03.043
10.1126/science.277.5331.1497
10.1016/j.molcel.2013.08.035
10.1016/j.molcel.2009.10.014
10.1074/jbc.M401574200
10.1016/j.molcel.2013.10.035
10.1016/S0092-8674(02)01113-3
10.1083/jcb.201007074
10.1126/science.1074023
10.1038/nature09373
10.1038/ncb1145
10.4161/cc.5.19.3256
10.1158/0008-5472.CAN-12-3976
10.1091/mbc.e04-11-1006
10.1111/php.12667
10.1073/pnas.0806621105
10.1073/pnas.0403410101
10.1073/pnas.0809350106
10.1038/emboj.2008.29
10.1038/sj.emboj.7601714
10.1074/jbc.M115.708263
10.1038/ng1129
10.1093/nar/gku1022
10.1101/gad.223180.113
10.1101/gad.1666208
10.1093/nar/gkv799
10.1016/j.ceb.2006.02.003
10.1158/0008-5472.CAN-07-0369
10.1038/ng.420
10.1128/MCB.02238-06
10.1038/nrm2450
10.4161/15384101.2014.967076
10.1073/pnas.1005031107
10.1016/j.molcel.2016.03.006
10.1016/j.molcel.2011.06.019
10.1101/gad.214080.113
10.1038/ncb3415
10.1016/j.molcel.2010.01.002
10.1038/27001
10.1093/hmg/dds013
10.1101/gad.2029711
10.1016/j.cell.2013.10.043
10.1016/j.tcb.2006.04.002
10.1038/embor.2013.159
10.1128/MCB.01521-12
10.1371/journal.pone.0023517
10.1083/jcb.201008076
10.1158/1078-0432.CCR-15-0479
10.1074/jbc.M807435200
10.1371/journal.pgen.1003643
10.1074/jbc.M504961200
10.1016/S1097-2765(02)00799-2
10.15252/embj.201593552
10.1083/jcb.200810185
10.1016/S0092-8674(00)81601-3
10.1016/j.cub.2016.10.030
10.1016/j.molcel.2013.07.023
10.1128/MCB.02278-06
10.1038/emboj.2010.205
10.1038/35087607
10.1016/j.molcel.2015.01.043
10.15252/embr.201541455
10.1073/pnas.182557299
10.1128/MCB.01319-08
10.1242/jcs.081372
10.1016/S0960-9822(00)00447-4
10.1074/jbc.M110.166710
10.1042/BST0390600
10.1126/science.288.5470.1425
10.1091/mbc.e05-05-0427
10.1126/science.277.5331.1501
10.1083/jcb.200911037
10.1083/jcb.201101047
10.3109/10409238.2012.655374
10.1016/S1097-2765(05)00092-4
10.1016/j.molcel.2012.01.007
10.1016/j.molcel.2004.11.032
10.1016/j.cell.2005.12.041
10.1371/journal.pgen.1002786
10.1101/gad.1547007
10.1016/j.cell.2014.05.046
10.1073/pnas.2336100100
10.1016/j.devcel.2016.11.017
10.1101/gad.256958.114
10.1016/j.molcel.2015.07.030
10.1038/nature09377
10.1101/gad.14.4.397
10.1083/jcb.200909105
10.1126/science.1083430
10.4331/wjbc.v5.i2.141
ContentType Journal Article
Copyright Springer Nature Limited 2017
COPYRIGHT 2017 Nature Publishing Group
Copyright Nature Publishing Group Oct 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: COPYRIGHT 2017 Nature Publishing Group
– notice: Copyright Nature Publishing Group Oct 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QL
7QP
7QR
7RV
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7N
M7P
NAPCQ
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/nrm.2017.67
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Proquest Nursing & Allied Health Source
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Download PDF from ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Nursing and Allied Health Premium
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest Central Student

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-0080
EndPage 636
ExternalDocumentID PMC5796526
A505602670
28811666
10_1038_nrm_2017_67
Genre Journal Article
Review
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES016486
– fundername: NIGMS NIH HHS
  grantid: R01 GM119334
– fundername: NCI NIH HHS
  grantid: R01 CA102729
– fundername: NIGMS NIH HHS
  grantid: R01 GM100489
GroupedDBID ---
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D0L
D1J
DB5
DU5
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PCBAR
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AFANA
AFFHD
AGSTI
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c613t-9d90738109a0842efacafc7a68bd782c4f903636aecade7b8bbf3b58d39bcadf3
IEDL.DBID M7P
ISICitedReferencesCount 612
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411377400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-0072
1471-0080
IngestDate Tue Nov 04 02:01:30 EST 2025
Sun Nov 09 09:23:15 EST 2025
Sun Nov 30 04:04:01 EST 2025
Tue Nov 11 10:55:31 EST 2025
Tue Nov 04 18:23:57 EST 2025
Thu Nov 13 16:11:01 EST 2025
Mon Jul 21 06:07:15 EDT 2025
Sat Nov 29 07:46:27 EST 2025
Tue Nov 18 21:26:44 EST 2025
Fri Feb 21 02:37:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c613t-9d90738109a0842efacafc7a68bd782c4f903636aecade7b8bbf3b58d39bcadf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink http://doi.org/10.1038/nrm.2017.67
PMID 28811666
PQID 1947048863
PQPubID 27585
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5796526
proquest_miscellaneous_1929896656
proquest_journals_1947048863
gale_infotracmisc_A505602670
gale_infotracacademiconefile_A505602670
gale_incontextgauss_ISR_A505602670
pubmed_primary_28811666
crossref_citationtrail_10_1038_nrm_2017_67
crossref_primary_10_1038_nrm_2017_67
springer_journals_10_1038_nrm_2017_67
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Molecular cell biology
PublicationTitleAbbrev Nat Rev Mol Cell Biol
PublicationTitleAlternate Nat Rev Mol Cell Biol
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References García-Gómez (CR71) 2013; 52
Gong, Handa, Kowalczykowski, de Lange (CR60) 2017; 31
Zegerman, Diffley (CR105) 2010; 467
Duda (CR130) 2016; 39
Kumar, Huberman (CR139) 2009; 29
Mordes, Nam, Cortez (CR19) 2008; 105
Nam (CR81) 2011; 286
Pepe, West (CR132) 2014; 7
Lee, Dunphy (CR37) 2013; 24
Sale (CR150) 2013; 5
Gong, Kim, Leung, Glover, Chen (CR53) 2010; 37
Patro, Frøhlich, Bohr, Stevnsner (CR56) 2011; 124
Yoo, Kumagai, Shevchenko, Shevchenko, Dunphy (CR76) 2007; 282
Maréchal (CR74) 2014; 53
Ball (CR165) 2007; 27
Neelsen, Lopes (CR45) 2015; 16
Lee, Kumagai, Dunphy (CR29) 2007; 282
Tercero, Diffley (CR122) 2001; 412
MacDougall, Byun, Van, Yee, Cimprich (CR16) 2007; 21
Singh (CR52) 2013; 73
Lopez-Contreras (CR158) 2015; 29
Lindsey-Boltz (CR61) 2017; 93
Peng (CR93) 1997; 277
Zhang (CR79) 2016; 14
Chen (CR120) 2015; 58
Marheineke, Hyrien (CR97) 2004; 279
Couch, Cortez (CR46) 2014; 13
Cortez, Guntuku, Qin, Elledge (CR14) 2001; 294
Petermann, Woodcock, Helleday (CR114) 2010; 107
Buisson, Boisvert, Benes, Zou (CR136) 2015; 59
Zhao, Watkins, Piwnica-Worms (CR106) 2002; 99
Toledo (CR142) 2013; 155
Cobb, Bjergbaek, Shimada, Frei, Gasser (CR124) 2003; 22
Crabbé (CR34) 2010; 17
Cortez, Glick, Elledge (CR118) 2004; 101
Kolinjivadi (CR149) 2017; 591
Wyatt, Sarbajna, Matos, West (CR129) 2013; 52
Venere, Snyder, Zgheib, Halazonetis (CR77) 2007; 67
Jazayeri (CR59) 2006; 8
Dungrawala (CR126) 2015; 59
Hanada (CR135) 2007; 14
Lee, Zhou, Chen, Yuan (CR25) 2016; 26
Collis (CR51) 2008; 32
Petermann, Orta, Issaeva, Schultz, Helleday (CR148) 2010; 37
Navadgi-Patil, Burgers (CR20) 2008; 283
Kumar, Burgers (CR18) 2013; 27
Garcia, Furuya, Carr (CR27) 2005; 4
Huang, Zhou, Elledge (CR155) 1998; 94
Wu (CR58) 2015; 11
Ellison, Stillman (CR32) 2003; 1
Kumagai, Lee, Yoo, Dunphy (CR22) 2006; 124
Wu (CR75) 2014; 28
Costanzo (CR100) 2003; 11
Aze, Sannino, Soffientini, Bachi, Costanzo (CR62) 2016; 18
Murakami (CR33) 2010; 285
Shechter, Costanzo, Gautier (CR96) 2004; 6
Royo (CR9) 2013; 27
Zhou (CR26) 2013; 9
Hashimoto, Ray Chaudhuri, Lopes, Costanzo (CR42) 2010; 17
Forment, Blasius, Guerini, Jackson (CR133) 2011; 6
Sirbu, Cortez (CR8) 2013; 5
Zhao, Muller, Rothstein (CR154) 1998; 2
Durocher, Jackson (CR7) 2001; 13
O'Driscoll, Ruiz-Perez, Woods, Jeggo, Goodship (CR4) 2003; 33
Davies, North, Dart, Lakin, Hickson (CR152) 2004; 24
Couch (CR115) 2013; 27
Chanoux (CR123) 2009; 284
Murphy (CR143) 2014; 206
CR68
Petermann (CR111) 2006; 26
Bentley (CR6) 1996; 15
Ragland (CR128) 2013; 27
Domínguez-Kelly (CR131) 2011; 194
Wan (CR72) 2013; 14
Murga (CR159) 2009; 41
Ball, Cortez (CR164) 2005; 280
Santocanale, Diffley (CR99) 1998; 395
Ge, Blow (CR110) 2010; 191
Haahr (CR24) 2016; 18
Jarrett (CR85) 2014; 54
Zou, Elledge (CR15) 2003; 300
Ball, Myers, Cortez (CR163) 2005; 16
Xie (CR54) 2012; 8
Göhler, Sabbioneda, Green, Lehmann (CR151) 2011; 192
Zeman, Cimprich (CR1) 2014; 16
Lindsey-Boltz, Kemp, Capp, Sancar (CR39) 2015; 14
de Oliveira (CR64) 2015; 57
Thomson, Gillespie, Blow (CR117) 2010; 188
Sawicka (CR167) 2016; 291
Blastyák, Hajdú, Unk, Haracska (CR49) 2010; 30
Bétous (CR48) 2012; 26
Vassin, Anantha, Sokolova, Kanner, Borowiec (CR144) 2009; 122
Bass (CR23) 2016; 18
Thangavel (CR47) 2015; 208
Karnitz, Zou (CR160) 2015; 21
Técher (CR116) 2016; 14
Meirelles (CR86) 2014; 5
Liu (CR107) 2010; 467
García-Rodríguez (CR35) 2015; 43
Yan, Michael (CR73) 2009; 184
Cimprich, Cortez (CR12) 2008; 9
D'Angiolella (CR157) 2012; 149
Delacroix, Wagner, Kobayashi, Yamamoto, Karnitz (CR28) 2007; 21
Sogo, Lopes, Foiani (CR43) 2002; 297
Zou, Liu, Elledge (CR31) 2003; 100
Cliby (CR65) 1998; 17
Sanchez (CR94) 1997; 277
Sanvisens, de Llanos, Puig (CR156) 2013; 36
Duursma, Driscoll, Elias, Cimprich (CR36) 2013; 50
Zellweger (CR41) 2015; 208
Kumagai, Dunphy (CR88) 2000; 6
Yekezare, Gómez-González, Diffley (CR102) 2013; 126
Cotta-Ramusino (CR38) 2011; 332
Deegan, Yeeles, Diffley (CR103) 2016; 35
Lopez-Mosqueda (CR108) 2010; 467
Pellegrini (CR84) 2006; 443
Murfuni (CR134) 2013; 9
Mordes, Cortez (CR168) 2008; 7
De Piccoli (CR125) 2012; 45
Blackford (CR55) 2012; 21
Ruiz (CR63) 2016; 62
Katsuno (CR98) 2009; 106
Bermudez (CR30) 2003; 100
Buisson (CR145) 2017; 65
Brown, Baltimore (CR2) 2000; 14
Seiler, Conti, Syed, Aladjem, Pommier (CR140) 2007; 27
Errico, Costanzo (CR137) 2012; 47
Conti, Seiler, Pommier (CR141) 2007; 6
Navadgi-Patil, Burgers (CR87) 2011; 39
Heffernan (CR104) 2007; 282
Lossaint (CR138) 2013; 51
Ahlskog, Larsen, Achanta, Sørensen (CR146) 2016; 17
Daniel (CR83) 2008; 183
Myers, Zhao, Xu, Ham, Cortez (CR78) 2007; 67
Karnani, Dutta (CR101) 2011; 25
Byun, Pacek, Yee, Walter, Cimprich (CR40) 2005; 19
Sørensen (CR92) 2003; 3
Mordes, Glick, Zhao, Cortez (CR17) 2008; 22
Tuduri, Tourrière, Pasero (CR162) 2010; 18
Mailand (CR91) 2000; 288
Navadgi-Patil, Burgers (CR21) 2009; 36
Somyajit, Basavaraju, Scully, Nagaraju (CR147) 2013; 33
Liu (CR80) 2011; 43
Petermann, Caldecott (CR112) 2006; 5
Maciejowski, de Lange (CR10) 2017; 18
Ammazzalorso, Pirzio, Bignami, Franchitto, Pichierri (CR153) 2010; 29
Fragkos, Ganier, Coulombe, Méchali (CR95) 2015; 16
Cotta-Ramusino (CR127) 2005; 17
Karlsson-Rosenthal, Millar (CR89) 2006; 16
Michael, Ott, Fanning, Newport (CR44) 2000; 289
Casper, Nghiem, Arlt, Glover (CR66) 2002; 111
Maya-Mendoza, Petermann, Gillespie, Caldecott, Jackson (CR113) 2007; 26
Sutton, Smith, Godoy, Walker (CR13) 2000; 34
de Klein (CR3) 2000; 10
Basile, Leuzzi, Pichierri, Franchitto (CR57) 2014; 42
Boutros, Dozier, Ducommun (CR90) 2006; 18
Itakura, Sawada, Matsuura (CR166) 2005; 16
Mourón (CR69) 2013; 20
Guo (CR109) 2015; 57
Trenz, Errico, Costanzo (CR119) 2008; 27
Cimprich, Shin, Keith, Schreiber (CR5) 1996; 93
Bianchi (CR70) 2013; 52
Lopes (CR121) 2001; 412
Yeeles, Deegan, Janska, Early, Diffley (CR161) 2015; 519
Schwab, Blackford, Niedzwiedz (CR50) 2010; 29
Kumar (CR11) 2014; 158
Bakkenist, Kastan (CR82) 2003; 421
Koundrioukoff (CR67) 2013; 9
M Huang (BFnrm201767_CR155) 1998; 94
JA Seiler (BFnrm201767_CR140) 2007; 27
M Venere (BFnrm201767_CR77) 2007; 67
MD Sutton (BFnrm201767_CR13) 2000; 34
JV Forment (BFnrm201767_CR133) 2011; 6
N Sanvisens (BFnrm201767_CR156) 2013; 36
M O'Driscoll (BFnrm201767_CR4) 2003; 33
R Zellweger (BFnrm201767_CR41) 2015; 208
C Conti (BFnrm201767_CR141) 2007; 6
VM Navadgi-Patil (BFnrm201767_CR87) 2011; 39
R Bétous (BFnrm201767_CR48) 2012; 26
E Petermann (BFnrm201767_CR114) 2010; 107
C Santocanale (BFnrm201767_CR99) 1998; 395
S Kumar (BFnrm201767_CR18) 2013; 27
E Petermann (BFnrm201767_CR111) 2006; 26
S Delacroix (BFnrm201767_CR28) 2007; 21
RA Chanoux (BFnrm201767_CR123) 2009; 284
A Maya-Mendoza (BFnrm201767_CR113) 2007; 26
JA Cobb (BFnrm201767_CR124) 2003; 22
JTP Yeeles (BFnrm201767_CR161) 2015; 519
LA Lindsey-Boltz (BFnrm201767_CR39) 2015; 14
L Zou (BFnrm201767_CR15) 2003; 300
S Liu (BFnrm201767_CR80) 2011; 43
H Zhang (BFnrm201767_CR79) 2016; 14
TD Deegan (BFnrm201767_CR103) 2016; 35
A Pepe (BFnrm201767_CR132) 2014; 7
CS Wu (BFnrm201767_CR75) 2014; 28
TE Bass (BFnrm201767_CR23) 2016; 18
EA Nam (BFnrm201767_CR81) 2011; 286
MK Zeman (BFnrm201767_CR1) 2014; 16
R Boutros (BFnrm201767_CR90) 2006; 18
R Buisson (BFnrm201767_CR145) 2017; 65
S Thangavel (BFnrm201767_CR47) 2015; 208
N Mailand (BFnrm201767_CR91) 2000; 288
S Mourón (BFnrm201767_CR69) 2013; 20
A de Klein (BFnrm201767_CR3) 2000; 10
KJ Neelsen (BFnrm201767_CR45) 2015; 16
J Xie (BFnrm201767_CR54) 2012; 8
VP Bermudez (BFnrm201767_CR30) 2003; 100
DA Mordes (BFnrm201767_CR168) 2008; 7
S Tuduri (BFnrm201767_CR162) 2010; 18
T Murakami (BFnrm201767_CR33) 2010; 285
M Yekezare (BFnrm201767_CR102) 2013; 126
C Cotta-Ramusino (BFnrm201767_CR38) 2011; 332
LM Karnitz (BFnrm201767_CR160) 2015; 21
VM Vassin (BFnrm201767_CR144) 2009; 122
Y Wu (BFnrm201767_CR58) 2015; 11
H Duda (BFnrm201767_CR130) 2016; 39
V D'Angiolella (BFnrm201767_CR157) 2012; 149
FB Couch (BFnrm201767_CR46) 2014; 13
BM Sirbu (BFnrm201767_CR8) 2013; 5
J Lopez-Mosqueda (BFnrm201767_CR108) 2010; 467
HL Ball (BFnrm201767_CR165) 2007; 27
M Sawicka (BFnrm201767_CR167) 2016; 291
A Kumagai (BFnrm201767_CR88) 2000; 6
AM Casper (BFnrm201767_CR66) 2002; 111
JS Myers (BFnrm201767_CR78) 2007; 67
HY Yoo (BFnrm201767_CR76) 2007; 282
M Murga (BFnrm201767_CR159) 2009; 41
HDM Wyatt (BFnrm201767_CR129) 2013; 52
X Zhao (BFnrm201767_CR154) 1998; 2
A Maréchal (BFnrm201767_CR74) 2014; 53
A Errico (BFnrm201767_CR137) 2012; 47
L Zou (BFnrm201767_CR31) 2003; 100
AM Thomson (BFnrm201767_CR117) 2010; 188
H Técher (BFnrm201767_CR116) 2016; 14
AK Murphy (BFnrm201767_CR143) 2014; 206
C Karlsson-Rosenthal (BFnrm201767_CR89) 2006; 16
CA MacDougall (BFnrm201767_CR16) 2007; 21
HL Ball (BFnrm201767_CR164) 2005; 280
J Lee (BFnrm201767_CR37) 2013; 24
D Durocher (BFnrm201767_CR7) 2001; 13
S Koundrioukoff (BFnrm201767_CR67) 2013; 9
J Bianchi (BFnrm201767_CR70) 2013; 52
J Lee (BFnrm201767_CR29) 2007; 282
L Crabbé (BFnrm201767_CR34) 2010; 17
EJ Brown (BFnrm201767_CR2) 2000; 14
XQ Ge (BFnrm201767_CR110) 2010; 191
E Itakura (BFnrm201767_CR166) 2005; 16
M Pellegrini (BFnrm201767_CR84) 2006; 443
TR Singh (BFnrm201767_CR52) 2013; 73
AJ Lopez-Contreras (BFnrm201767_CR158) 2015; 29
SG Jarrett (BFnrm201767_CR85) 2014; 54
DA Mordes (BFnrm201767_CR19) 2008; 105
Y Katsuno (BFnrm201767_CR98) 2009; 106
JA Tercero (BFnrm201767_CR122) 2001; 412
T Göhler (BFnrm201767_CR151) 2011; 192
KA Cimprich (BFnrm201767_CR5) 1996; 93
Y-C Lee (BFnrm201767_CR25) 2016; 26
WA Cliby (BFnrm201767_CR65) 1998; 17
GV Meirelles (BFnrm201767_CR86) 2014; 5
H Royo (BFnrm201767_CR9) 2013; 27
DA Mordes (BFnrm201767_CR17) 2008; 22
Y-H Chen (BFnrm201767_CR120) 2015; 58
SJ Collis (BFnrm201767_CR51) 2008; 32
R Domínguez-Kelly (BFnrm201767_CR131) 2011; 194
C Cotta-Ramusino (BFnrm201767_CR127) 2005; 17
N Karnani (BFnrm201767_CR101) 2011; 25
TS Byun (BFnrm201767_CR40) 2005; 19
H Liu (BFnrm201767_CR107) 2010; 467
H Dungrawala (BFnrm201767_CR126) 2015; 59
HL Ball (BFnrm201767_CR163) 2005; 16
AM Kolinjivadi (BFnrm201767_CR149) 2017; 591
CJ Bakkenist (BFnrm201767_CR82) 2003; 421
RL Ragland (BFnrm201767_CR128) 2013; 27
LI Toledo (BFnrm201767_CR142) 2013; 155
R Buisson (BFnrm201767_CR136) 2015; 59
K Marheineke (BFnrm201767_CR97) 2004; 279
VM Navadgi-Patil (BFnrm201767_CR21) 2009; 36
P Zegerman (BFnrm201767_CR105) 2010; 467
JE Sale (BFnrm201767_CR150) 2013; 5
Z-W Zhou (BFnrm201767_CR26) 2013; 9
A Jazayeri (BFnrm201767_CR59) 2006; 8
E Petermann (BFnrm201767_CR148) 2010; 37
CY Peng (BFnrm201767_CR93) 1997; 277
FB Couch (BFnrm201767_CR115) 2013; 27
J Maciejowski (BFnrm201767_CR10) 2017; 18
M Fragkos (BFnrm201767_CR95) 2015; 16
G Lossaint (BFnrm201767_CR138) 2013; 51
I Murfuni (BFnrm201767_CR134) 2013; 9
SL Davies (BFnrm201767_CR152) 2004; 24
LJ García-Rodríguez (BFnrm201767_CR35) 2015; 43
A Blastyák (BFnrm201767_CR49) 2010; 30
A Kumar (BFnrm201767_CR11) 2014; 158
Z Gong (BFnrm201767_CR53) 2010; 37
Y Hashimoto (BFnrm201767_CR42) 2010; 17
A Aze (BFnrm201767_CR62) 2016; 18
D Cortez (BFnrm201767_CR14) 2001; 294
H Zhao (BFnrm201767_CR106) 2002; 99
V Garcia (BFnrm201767_CR27) 2005; 4
JM Sogo (BFnrm201767_CR43) 2002; 297
WM Michael (BFnrm201767_CR44) 2000; 289
AM Duursma (BFnrm201767_CR36) 2013; 50
S Yan (BFnrm201767_CR73) 2009; 184
K Somyajit (BFnrm201767_CR147) 2013; 33
CS Sørensen (BFnrm201767_CR92) 2003; 3
VM Navadgi-Patil (BFnrm201767_CR20) 2008; 283
K Hanada (BFnrm201767_CR135) 2007; 14
G De Piccoli (BFnrm201767_CR125) 2012; 45
F Ammazzalorso (BFnrm201767_CR153) 2010; 29
BFnrm201767_CR68
NJ Bentley (BFnrm201767_CR6) 1996; 15
FMB de Oliveira (BFnrm201767_CR64) 2015; 57
Y Sanchez (BFnrm201767_CR94) 1997; 277
C Guo (BFnrm201767_CR109) 2015; 57
LA Lindsey-Boltz (BFnrm201767_CR61) 2017; 93
G Basile (BFnrm201767_CR57) 2014; 42
AN Blackford (BFnrm201767_CR55) 2012; 21
E Petermann (BFnrm201767_CR112) 2006; 5
V Ellison (BFnrm201767_CR32) 2003; 1
A Kumagai (BFnrm201767_CR22) 2006; 124
TP Heffernan (BFnrm201767_CR104) 2007; 282
S Kumar (BFnrm201767_CR139) 2009; 29
S García-Gómez (BFnrm201767_CR71) 2013; 52
RA Schwab (BFnrm201767_CR50) 2010; 29
JA Daniel (BFnrm201767_CR83) 2008; 183
KA Cimprich (BFnrm201767_CR12) 2008; 9
Y Gong (BFnrm201767_CR60) 2017; 31
S Ruiz (BFnrm201767_CR63) 2016; 62
L Wan (BFnrm201767_CR72) 2013; 14
BS Patro (BFnrm201767_CR56) 2011; 124
V Costanzo (BFnrm201767_CR100) 2003; 11
D Cortez (BFnrm201767_CR118) 2004; 101
D Shechter (BFnrm201767_CR96) 2004; 6
M Lopes (BFnrm201767_CR121) 2001; 412
JK Ahlskog (BFnrm201767_CR146) 2016; 17
K Trenz (BFnrm201767_CR119) 2008; 27
P Haahr (BFnrm201767_CR24) 2016; 18
29115300 - Nat Rev Mol Cell Biol. 2017 Dec;18(12):783
References_xml – volume: 18
  start-page: 91
  year: 2010
  end-page: 102
  ident: CR162
  article-title: Defining replication origin efficiency using DNA fiber assays
  publication-title: Chromosome Res.
  doi: 10.1007/s10577-009-9098-y
– volume: 332
  start-page: 1313
  year: 2011
  end-page: 1317
  ident: CR38
  article-title: A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling
  publication-title: Science
  doi: 10.1126/science.1203430
– volume: 13
  start-page: 225
  year: 2001
  end-page: 231
  ident: CR7
  article-title: DNA-PK, ATM and ATR as sensors of DNA damage: Variations on a theme?
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(00)00201-5
– volume: 8
  start-page: 37
  year: 2006
  end-page: 45
  ident: CR59
  article-title: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1337
– volume: 443
  start-page: 222
  year: 2006
  end-page: 225
  ident: CR84
  article-title: Autophosphorylation at serine 1987 is dispensable for murine Atm activation
  publication-title: Nature
  doi: 10.1038/nature05112
– volume: 26
  start-page: 151
  year: 2012
  end-page: 162
  ident: CR48
  article-title: SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication
  publication-title: Genes Dev.
  doi: 10.1101/gad.178459.111
– ident: CR68
– volume: 30
  start-page: 684
  year: 2010
  end-page: 693
  ident: CR49
  article-title: Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00863-09
– volume: 54
  start-page: 999
  year: 2014
  end-page: 1011
  ident: CR85
  article-title: PKA-mediated phosphorylation of ATR promotes recruitment of XPA to UV-induced DNA damage
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.05.030
– volume: 16
  start-page: 2
  year: 2014
  end-page: 9
  ident: CR1
  article-title: Causes and consequences of replication stress
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2897
– volume: 282
  start-page: 9458
  year: 2007
  end-page: 9468
  ident: CR104
  article-title: Cdc7–Dbf4 and the human S checkpoint response to UVC
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M611292200
– volume: 17
  start-page: 1391
  year: 2010
  end-page: 1397
  ident: CR34
  article-title: Analysis of replication profiles reveals key role of RFC–Ctf18 in yeast replication stress response
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1932
– volume: 2
  start-page: 329
  year: 1998
  end-page: 340
  ident: CR154
  article-title: A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80277-4
– volume: 208
  start-page: 563
  year: 2015
  end-page: 579
  ident: CR41
  article-title: Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201406099
– volume: 1
  start-page: E33
  year: 2003
  ident: CR32
  article-title: Biochemical characterization of DNA damage checkpoint complexes: Clamp loader and clamp complexes with specificity for 5′ recessed DNA
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0000033
– volume: 50
  start-page: 116
  year: 2013
  end-page: 22
  ident: CR36
  article-title: A role for the MRN complex in ATR activation via TOPBP1 recruitment
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.03.006
– volume: 18
  start-page: 684
  year: 2016
  end-page: 691
  ident: CR62
  article-title: Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3344
– volume: 282
  start-page: 17501
  year: 2007
  end-page: 17506
  ident: CR76
  article-title: Ataxia-telangiectasia mutated (ATM)-dependent activation of ATR occurs through phosphorylation of TopBP1 by ATM
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M701770200
– volume: 3
  start-page: 247
  year: 2003
  end-page: 258
  ident: CR92
  article-title: Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00048-5
– volume: 24
  start-page: 1279
  year: 2004
  end-page: 1291
  ident: CR152
  article-title: Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.3.1279-1291.2004
– volume: 289
  start-page: 2133
  year: 2000
  end-page: 2137
  ident: CR44
  article-title: Activation of the DNA replication checkpoint through RNA synthesis by primase
  publication-title: Science
  doi: 10.1126/science.289.5487.2133
– volume: 32
  start-page: 313
  year: 2008
  end-page: 324
  ident: CR51
  article-title: FANCM and FAAP24 function in ATR-mediated checkpoint signaling independently of the Fanconi anemia core complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.10.014
– volume: 31
  start-page: 46
  year: 2017
  end-page: 58
  ident: CR60
  article-title: PHF11 promotes DSB resection, ATR signaling, and HR
  publication-title: Genes Dev.
  doi: 10.1101/gad.291807.116
– volume: 19
  start-page: 1040
  year: 2005
  end-page: 1052
  ident: CR40
  article-title: Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint
  publication-title: Genes Dev.
  doi: 10.1101/gad.1301205
– volume: 284
  start-page: 5994
  year: 2009
  end-page: 6003
  ident: CR123
  article-title: ATR and H2AX cooperate in maintaining genome stability under replication stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806739200
– volume: 20
  start-page: 1383
  year: 2013
  end-page: 1389
  ident: CR69
  article-title: Repriming of DNA synthesis at stalled replication forks by human PrimPol
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2719
– volume: 13
  start-page: 1049
  year: 2014
  end-page: 1050
  ident: CR46
  article-title: Fork reversal, too much of a good thing
  publication-title: Cell Cycle
  doi: 10.4161/cc.28212
– volume: 37
  start-page: 492
  year: 2010
  end-page: 502
  ident: CR148
  article-title: Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.01.021
– volume: 28
  start-page: 1472
  year: 2014
  end-page: 1484
  ident: CR75
  article-title: SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway
  publication-title: Genes Dev.
  doi: 10.1101/gad.238535.114
– volume: 126
  start-page: 1297
  year: 2013
  end-page: 1306
  ident: CR102
  article-title: Controlling DNA replication origins in response to DNA damage — inhibit globally, activate locally
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.096701
– volume: 14
  start-page: 1096
  year: 2007
  end-page: 1104
  ident: CR135
  article-title: The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1313
– volume: 16
  start-page: 207
  year: 2015
  end-page: 220
  ident: CR45
  article-title: Replication fork reversal in eukaryotes: From dead end to dynamic response
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3935
– volume: 7
  start-page: 2809
  year: 2008
  end-page: 2812
  ident: CR168
  article-title: Activation of ATR and related PIKKs
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.18.6689
– volume: 5
  start-page: a012708
  year: 2013
  ident: CR150
  article-title: Translesion DNA synthesis and mutagenesis in eukaryotes
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012708
– volume: 11
  start-page: e1005675
  year: 2015
  ident: CR58
  article-title: EEPD1 rescues stressed replication forks and maintains genome stability by promoting end resection and homologous recombination repair
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005675
– volume: 27
  start-page: 1484
  year: 2013
  end-page: 1494
  ident: CR9
  article-title: ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing
  publication-title: Genes Dev.
  doi: 10.1101/gad.219477.113
– volume: 286
  start-page: 28707
  year: 2011
  end-page: 28714
  ident: CR81
  article-title: Thr-1989 phosphorylation is a marker of active ataxia telangiectasia-mutated and Rad3-related (ATR) kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.248914
– volume: 18
  start-page: 175
  year: 2017
  end-page: 186
  ident: CR10
  article-title: Telomeres in cancer: Tumour suppression and genome instability
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.171
– volume: 27
  start-page: 313
  year: 2013
  end-page: 321
  ident: CR18
  article-title: Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery
  publication-title: Genes Dev.
  doi: 10.1101/gad.204750.112
– volume: 9
  start-page: e1003702
  year: 2013
  ident: CR26
  article-title: An essential function for the ATR-activation-domain (AAD) of TopBP1 in mouse development and cellular senescence
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003702
– volume: 412
  start-page: 557
  year: 2001
  end-page: 561
  ident: CR121
  article-title: The DNA replication checkpoint response stabilizes stalled replication forks
  publication-title: Nature
  doi: 10.1038/35087613
– volume: 7
  start-page: 1048
  year: 2014
  end-page: 1055
  ident: CR132
  article-title: MUS81-EME2 promotes replication fork restart
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.007
– volume: 52
  start-page: 541
  year: 2013
  end-page: 553
  ident: CR71
  article-title: PrimPol, an archaic primase/polymerase operating in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.09.025
– volume: 58
  start-page: 323
  year: 2015
  end-page: 338
  ident: CR120
  article-title: ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.031
– volume: 65
  start-page: 336
  year: 2017
  end-page: 346
  ident: CR145
  article-title: Coupling of homologous recombination and the checkpoint by ATR
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.12.007
– volume: 16
  start-page: 360
  year: 2015
  end-page: 374
  ident: CR95
  article-title: DNA replication origin activation in space and time
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4002
– volume: 21
  start-page: 898
  year: 2007
  end-page: 903
  ident: CR16
  article-title: The structural determinants of checkpoint activation
  publication-title: Genes Dev.
  doi: 10.1101/gad.1522607
– volume: 93
  start-page: 2850
  year: 1996
  end-page: 2855
  ident: CR5
  article-title: cDNA cloning and gene mapping of a candidate human cell cycle checkpoint protein
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.7.2850
– volume: 34
  start-page: 479
  year: 2000
  end-page: 497
  ident: CR13
  article-title: The SOS response: Recent insights into umuDC-dependent mutagenesis and DNA damage tolerance
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.34.1.479
– volume: 22
  start-page: 4325
  year: 2003
  end-page: 4336
  ident: CR124
  article-title: DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg391
– volume: 206
  start-page: 493
  year: 2014
  end-page: 507
  ident: CR143
  article-title: Phosphorylated RPA recruits PALB2 to stalled DNA replication forks to facilitate fork recovery
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404111
– volume: 53
  start-page: 235
  year: 2014
  end-page: 246
  ident: CR74
  article-title: PRP19 transforms into a sensor of RPA–ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.11.002
– volume: 29
  start-page: 806
  year: 2010
  end-page: 818
  ident: CR50
  article-title: ATR activation and replication fork restart are defective in FANCM-deficient cells
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.385
– volume: 15
  start-page: 6641
  year: 1996
  end-page: 6651
  ident: CR6
  article-title: The checkpoint gene
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01054.x
– volume: 294
  start-page: 1713
  year: 2001
  end-page: 1716
  ident: CR14
  article-title: ATR and ATRIP: Partners in checkpoint signaling
  publication-title: Science
  doi: 10.1126/science.1065521
– volume: 100
  start-page: 1633
  year: 2003
  end-page: 1638
  ident: CR30
  article-title: Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0437927100
– volume: 421
  start-page: 499
  year: 2003
  end-page: 506
  ident: CR82
  article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation
  publication-title: Nature
  doi: 10.1038/nature01368
– volume: 282
  start-page: 28036
  year: 2007
  end-page: 28044
  ident: CR29
  article-title: The Rad9–Hus1–Rad1 checkpoint clamp regulates interaction of TopBP1 with ATR
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704635200
– volume: 591
  start-page: 1083
  year: 2017
  end-page: 1100
  ident: CR149
  article-title: Moonlighting at replication forks — a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12556
– volume: 17
  start-page: 1305
  year: 2010
  end-page: 1311
  ident: CR42
  article-title: Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1927
– volume: 14
  start-page: 1435
  year: 2016
  end-page: 1447
  ident: CR79
  article-title: ATRIP deacetylation by SIRT2 drives ATR checkpoint activation by promoting binding to RPA–ssDNA
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.018
– volume: 17
  start-page: 159
  year: 1998
  end-page: 169
  ident: CR65
  article-title: Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoints
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.1.159
– volume: 6
  start-page: 2760
  year: 2007
  end-page: 2767
  ident: CR141
  article-title: The mammalian DNA replication elongation checkpoint: Implication of Chk1 and relationship with origin firing as determined by single DNA molecule and single cell analyses
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.22.4932
– volume: 14
  start-page: 1114
  year: 2016
  end-page: 1127
  ident: CR116
  article-title: Signaling from Mus81–Eme2-dependent DNA damage elicited by Chk1 deficiency modulates replication fork speed and origin usage
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.093
– volume: 59
  start-page: 1011
  year: 2015
  end-page: 1024
  ident: CR136
  article-title: Distinct but concerted roles of ATR, DNA-PK, and Chk1 in countering replication stress during S phase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.029
– volume: 9
  start-page: e1003910
  year: 2013
  ident: CR134
  article-title: Survival of the replication checkpoint deficient cells requires MUS81–RAD52 function
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003910
– volume: 67
  start-page: 6685
  year: 2007
  end-page: 6690
  ident: CR78
  article-title: Cyclin-dependent kinase 2 dependent phosphorylation of ATRIP regulates the G2-M checkpoint response to DNA damage
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0495
– volume: 122
  start-page: 4070
  year: 2009
  end-page: 4080
  ident: CR144
  article-title: Human RPA phosphorylation by ATR stimulates DNA synthesis and prevents ssDNA accumulation during DNA-replication stress
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.053702
– volume: 24
  start-page: 1343
  year: 2013
  end-page: 1353
  ident: CR37
  article-title: The Mre11–Rad50–Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-01-0025
– volume: 57
  start-page: 1
  year: 2015
  end-page: 14
  ident: CR109
  article-title: Interaction of Chk1 with Treslin negatively regulates the initiation of chromosomal DNA replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.12.003
– volume: 26
  start-page: 3319
  year: 2006
  end-page: 3326
  ident: CR111
  article-title: Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.8.3319-3326.2006
– volume: 36
  start-page: 51
  year: 2013
  end-page: 58
  ident: CR156
  article-title: Function and regulation of yeast ribonucleotide reductase: Cell cycle, genotoxic stress, and iron bioavailability
  publication-title: Biomed J.
  doi: 10.4103/2319-4170.110398
– volume: 519
  start-page: 431
  year: 2015
  end-page: 435
  ident: CR161
  article-title: Regulated eukaryotic DNA replication origin firing with purified proteins
  publication-title: Nature
  doi: 10.1038/nature14285
– volume: 467
  start-page: 343
  year: 2010
  end-page: 346
  ident: CR107
  article-title: Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint
  publication-title: Nature
  doi: 10.1038/nature09350
– volume: 5
  start-page: a012724
  year: 2013
  ident: CR8
  article-title: DNA damage response: Three levels of DNA repair regulation
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012724
– volume: 4
  start-page: 1227
  year: 2005
  end-page: 1239
  ident: CR27
  article-title: Identification and functional analysis of TopBP1 and its homologs
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2005.04.001
– volume: 183
  start-page: 777
  year: 2008
  end-page: 783
  ident: CR83
  article-title: Multiple autophosphorylation sites are dispensable for murine ATM activation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200805154
– volume: 18
  start-page: 1196
  year: 2016
  end-page: 1207
  ident: CR24
  article-title: Activation of the ATR kinase by the RPA-binding protein ETAA1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3422
– volume: 208
  start-page: 545
  year: 2015
  end-page: 562
  ident: CR47
  article-title: DNA2 drives processing and restart of reversed replication forks in human cells
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201406100
– volume: 149
  start-page: 1023
  year: 2012
  end-page: 1034
  ident: CR157
  article-title: Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.043
– volume: 277
  start-page: 1497
  year: 1997
  end-page: 1501
  ident: CR94
  article-title: Conservation of the Chk1 checkpoint pathway in mammals: Linkage of DNA damage to Cdk regulation through Cdc25
  publication-title: Science
  doi: 10.1126/science.277.5331.1497
– volume: 52
  start-page: 234
  year: 2013
  end-page: 247
  ident: CR129
  article-title: Coordinated actions of SLX1–SLX4 and MUS81–EME1 for Holliday junction resolution in human cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.035
– volume: 5
  start-page: 141
  year: 2014
  end-page: 160
  ident: CR86
  article-title: 'Stop Ne(c)king around': How interactomics contributes to functionally characterize Nek family kinases
  publication-title: World J. Biol. Chem.
– volume: 36
  start-page: 743
  year: 2009
  end-page: 753
  ident: CR21
  article-title: The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.10.014
– volume: 279
  start-page: 28071
  year: 2004
  end-page: 28081
  ident: CR97
  article-title: Control of replication origin density and firing time in egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401574200
– volume: 52
  start-page: 566
  year: 2013
  end-page: 573
  ident: CR70
  article-title: PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.10.035
– volume: 111
  start-page: 779
  year: 2002
  end-page: 789
  ident: CR66
  article-title: ATR regulates fragile site stability
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01113-3
– volume: 191
  start-page: 1285
  year: 2010
  end-page: 1297
  ident: CR110
  article-title: Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007074
– volume: 297
  start-page: 599
  year: 2002
  end-page: 602
  ident: CR43
  article-title: Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
  publication-title: Science
  doi: 10.1126/science.1074023
– volume: 467
  start-page: 474
  year: 2010
  end-page: 478
  ident: CR105
  article-title: Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation
  publication-title: Nature
  doi: 10.1038/nature09373
– volume: 6
  start-page: 648
  year: 2004
  end-page: 655
  ident: CR96
  article-title: ATR and ATM regulate the timing of DNA replication origin firing
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1145
– volume: 5
  start-page: 2203
  year: 2006
  end-page: 2209
  ident: CR112
  article-title: Evidence that the ATR/Chk1 pathway maintains normal replication fork progression during unperturbed S phase
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.19.3256
– volume: 73
  start-page: 4300
  year: 2013
  end-page: 4310
  ident: CR52
  article-title: ATR-dependent phosphorylation of FANCM at serine 1045 is essential for FANCM functions
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3976
– volume: 16
  start-page: 2372
  year: 2005
  end-page: 2381
  ident: CR163
  article-title: ATRIP binding to replication protein A-single-stranded DNA promotes ATR–ATRIP localization but is dispensable for Chk1 phosphorylation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-11-1006
– volume: 93
  start-page: 238
  year: 2017
  end-page: 244
  ident: CR61
  article-title: Bringing it all together: Coupling excision repair to the DNA damage checkpoint
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.12667
– volume: 105
  start-page: 18730
  year: 2008
  end-page: 18734
  ident: CR19
  article-title: Dpb11 activates the Mec1–Ddc2 complex
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0806621105
– volume: 101
  start-page: 10078
  year: 2004
  end-page: 10083
  ident: CR118
  article-title: Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0403410101
– volume: 106
  start-page: 3184
  year: 2009
  end-page: 3189
  ident: CR98
  article-title: Cyclin A–Cdk1 regulates the origin firing program in mammalian cells
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0809350106
– volume: 27
  start-page: 876
  year: 2008
  end-page: 885
  ident: CR119
  article-title: Plx1 is required for chromosomal DNA replication under stressful conditions
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.29
– volume: 26
  start-page: 2719
  year: 2007
  end-page: 2731
  ident: CR113
  article-title: Chk1 regulates the density of active replication origins during the vertebrate S phase
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601714
– volume: 291
  start-page: 13436
  year: 2016
  end-page: 13447
  ident: CR167
  article-title: The dimeric architecture of checkpoint kinases Mec1 and Tel1 reveal a common structural organization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.708263
– volume: 33
  start-page: 497
  year: 2003
  end-page: 501
  ident: CR4
  article-title: A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome
  publication-title: Nat. Genet.
  doi: 10.1038/ng1129
– volume: 42
  start-page: 12628
  year: 2014
  end-page: 12639
  ident: CR57
  article-title: Checkpoint-dependent and independent roles of the Werner syndrome protein in preserving genome integrity in response to mild replication stress
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1022
– volume: 27
  start-page: 2259
  year: 2013
  end-page: 2273
  ident: CR128
  article-title: RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.223180.113
– volume: 22
  start-page: 1478
  year: 2008
  end-page: 1489
  ident: CR17
  article-title: TopBP1 activates ATR through ATRIP and a PIKK regulatory domain
  publication-title: Genes Dev.
  doi: 10.1101/gad.1666208
– volume: 43
  start-page: 8830
  year: 2015
  end-page: 8838
  ident: CR35
  article-title: A conserved Polε binding module in Ctf18–RFC is required for S-phase checkpoint activation downstream of Mec1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv799
– volume: 18
  start-page: 185
  year: 2006
  end-page: 191
  ident: CR90
  article-title: The when and wheres of CDC25 phosphatases
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2006.02.003
– volume: 67
  start-page: 6100
  year: 2007
  end-page: 6105
  ident: CR77
  article-title: Phosphorylation of ATR-interacting protein on Ser239 mediates an interaction with breast-ovarian cancer susceptibility 1 and checkpoint function
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0369
– volume: 41
  start-page: 891
  year: 2009
  end-page: 898
  ident: CR159
  article-title: A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging
  publication-title: Nat. Genet.
  doi: 10.1038/ng.420
– volume: 27
  start-page: 3367
  year: 2007
  end-page: 3377
  ident: CR165
  article-title: Function of a conserved checkpoint recruitment domain in ATRIP proteins
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02238-06
– volume: 9
  start-page: 616
  year: 2008
  end-page: 627
  ident: CR12
  article-title: ATR: An essential regulator of genome integrity
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2450
– volume: 14
  start-page: 99
  year: 2015
  end-page: 108
  ident: CR39
  article-title: RHINO forms a stoichiometric complex with the 9-1-1 checkpoint clamp and mediates ATR–Chk1 signaling
  publication-title: Cell Cycle
  doi: 10.4161/15384101.2014.967076
– volume: 107
  start-page: 16090
  year: 2010
  end-page: 16095
  ident: CR114
  article-title: Chk1 promotes replication fork progression by controlling replication initiation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1005031107
– volume: 62
  start-page: 307
  year: 2016
  end-page: 313
  ident: CR63
  article-title: A Genome-wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.03.006
– volume: 43
  start-page: 192
  year: 2011
  end-page: 202
  ident: CR80
  article-title: ATR autophosphorylation as a molecular switch for checkpoint activation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.019
– volume: 27
  start-page: 1610
  year: 2013
  end-page: 1623
  ident: CR115
  article-title: ATR phosphorylates SMARCAL1 to prevent replication fork collapse
  publication-title: Genes Dev.
  doi: 10.1101/gad.214080.113
– volume: 300
  start-page: 1542
  year: 2003
  end-page: 1548
  ident: CR15
  article-title: Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
  publication-title: Science
– volume: 18
  start-page: 1185
  year: 2016
  end-page: 1195
  ident: CR23
  article-title: ETAA1 acts at stalled replication forks to maintain genome integrity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3415
– volume: 37
  start-page: 438
  year: 2010
  end-page: 446
  ident: CR53
  article-title: BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.01.002
– volume: 395
  start-page: 615
  year: 1998
  end-page: 618
  ident: CR99
  article-title: Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
  publication-title: Nature
  doi: 10.1038/27001
– volume: 21
  start-page: 2005
  year: 2012
  end-page: 2016
  ident: CR55
  article-title: The DNA translocase activity of FANCM protects stalled replication forks
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds013
– volume: 25
  start-page: 621
  year: 2011
  end-page: 633
  ident: CR101
  article-title: The effect of the intra-S-phase checkpoint on origins of replication in human cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.2029711
– volume: 155
  start-page: 1088
  year: 2013
  end-page: 1103
  ident: CR142
  article-title: ATR prohibits replication catastrophe by preventing global exhaustion of RPA
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.043
– volume: 16
  start-page: 285
  year: 2006
  end-page: 292
  ident: CR89
  article-title: Cdc25: Mechanisms of checkpoint inhibition and recovery
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2006.04.002
– volume: 14
  start-page: 1104
  year: 2013
  end-page: 1112
  ident: CR72
  article-title: hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.159
– volume: 33
  start-page: 1830
  year: 2013
  end-page: 1844
  ident: CR147
  article-title: ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01521-12
– volume: 6
  start-page: e23517
  year: 2011
  ident: CR133
  article-title: Structure-specific DNA endonuclease Mus81/Eme1 generates DNA damage caused by Chk1 inactivation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0023517
– volume: 192
  start-page: 219
  year: 2011
  end-page: 227
  ident: CR151
  article-title: ATR-mediated phosphorylation of DNA polymerase η is needed for efficient recovery from UV damage
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008076
– volume: 21
  start-page: 4780
  year: 2015
  end-page: 4785
  ident: CR160
  article-title: Molecular pathways: Targeting ATR in cancer therapy
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0479
– volume: 283
  start-page: 35853
  year: 2008
  end-page: 35859
  ident: CR20
  article-title: Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807435200
– volume: 9
  start-page: e1003643
  year: 2013
  ident: CR67
  article-title: Stepwise activation of the ATR signaling pathway upon increasing replication stress impacts fragile site integrity
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003643
– volume: 280
  start-page: 31390
  year: 2005
  end-page: 31396
  ident: CR164
  article-title: ATRIP oligomerization is required for ATR-dependent checkpoint signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504961200
– volume: 11
  start-page: 203
  year: 2003
  end-page: 213
  ident: CR100
  article-title: An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00799-2
– volume: 35
  start-page: 961
  year: 2016
  end-page: 973
  ident: CR103
  article-title: Phosphopeptide binding by Sld3 links Dbf4-dependent kinase to MCM replicative helicase activation
  publication-title: EMBO J.
  doi: 10.15252/embj.201593552
– volume: 184
  start-page: 793
  year: 2009
  end-page: 804
  ident: CR73
  article-title: TopBP1 and DNA polymerase-α directly recruit the 9-1-1 complex to stalled DNA replication forks
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200810185
– volume: 94
  start-page: 595
  year: 1998
  end-page: 605
  ident: CR155
  article-title: The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81601-3
– volume: 14
  start-page: 397
  year: 2000
  end-page: 402
  ident: CR2
  article-title: ATR disruption leads to chromosomal fragmentation and early embryonic lethality
  publication-title: Genes Dev.
– volume: 26
  start-page: 3257
  year: 2016
  end-page: 3268
  ident: CR25
  article-title: RPA-binding protein ETAA1 is an ATR activator involved in DNA replication stress response
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.10.030
– volume: 51
  start-page: 678
  year: 2013
  end-page: 690
  ident: CR138
  article-title: FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.07.023
– volume: 27
  start-page: 5806
  year: 2007
  end-page: 5818
  ident: CR140
  article-title: The intra-S-phase checkpoint affects both DNA replication initiation and elongation: single-cell and -DNA fiber analyses
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02278-06
– volume: 29
  start-page: 3156
  year: 2010
  end-page: 3169
  ident: CR153
  article-title: ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.205
– volume: 412
  start-page: 553
  year: 2001
  end-page: 557
  ident: CR122
  article-title: Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
  publication-title: Nature
  doi: 10.1038/35087607
– volume: 57
  start-page: 1124
  year: 2015
  end-page: 1132
  ident: CR64
  article-title: Phosphoproteomics reveals distinct modes of Mec1/ATR signaling during DNA replication
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.043
– volume: 17
  start-page: 671
  year: 2016
  end-page: 681
  ident: CR146
  article-title: ATM/ATR-mediated phosphorylation of PALB2 promotes RAD51 function
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201541455
– volume: 99
  start-page: 14795
  year: 2002
  end-page: 14800
  ident: CR106
  article-title: Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.182557299
– volume: 29
  start-page: 602
  year: 2009
  end-page: 611
  ident: CR139
  article-title: Checkpoint-dependent regulation of origin firing and replication fork movement in response to DNA damage in fission yeast
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01319-08
– volume: 124
  start-page: 3967
  year: 2011
  end-page: 3979
  ident: CR56
  article-title: WRN helicase regulates the ATR–CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I–DNA covalent complexes
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.081372
– volume: 10
  start-page: 479
  year: 2000
  end-page: 482
  ident: CR3
  article-title: Targeted disruption of the cell-cycle checkpoint gene leads to early embryonic lethality in mice
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00447-4
– volume: 285
  start-page: 34608
  year: 2010
  end-page: 34615
  ident: CR33
  article-title: Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase ε is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.166710
– volume: 39
  start-page: 600
  year: 2011
  end-page: 605
  ident: CR87
  article-title: Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0390600
– volume: 288
  start-page: 1425
  year: 2000
  end-page: 1429
  ident: CR91
  article-title: Rapid destruction of human Cdc25A in response to DNA damage
  publication-title: Science
  doi: 10.1126/science.288.5470.1425
– volume: 16
  start-page: 5551
  year: 2005
  end-page: 5562
  ident: CR166
  article-title: Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-05-0427
– volume: 277
  start-page: 1501
  year: 1997
  end-page: 1505
  ident: CR93
  article-title: Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216
  publication-title: Science
  doi: 10.1126/science.277.5331.1501
– volume: 188
  start-page: 209
  year: 2010
  end-page: 221
  ident: CR117
  article-title: Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels
  publication-title: Cell Biol. J.
  doi: 10.1083/jcb.200911037
– volume: 194
  start-page: 567
  year: 2011
  end-page: 579
  ident: CR131
  article-title: Wee1 controls genomic stability during replication by regulating the Mus81–Eme1 endonuclease
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201101047
– volume: 47
  start-page: 222
  year: 2012
  end-page: 235
  ident: CR137
  article-title: Mechanisms of replication fork protection: A safeguard for genome stability
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2012.655374
– volume: 6
  start-page: 839
  year: 2000
  end-page: 849
  ident: CR88
  article-title: Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in egg extracts
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(05)00092-4
– volume: 45
  start-page: 696
  year: 2012
  end-page: 704
  ident: CR125
  article-title: Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.01.007
– volume: 17
  start-page: 153
  year: 2005
  end-page: 159
  ident: CR127
  article-title: Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.11.032
– volume: 124
  start-page: 943
  year: 2006
  end-page: 955
  ident: CR22
  article-title: TopBP1 activates the ATR–ATRIP complex
  publication-title: Cell
  doi: 10.1016/j.cell.2005.12.041
– volume: 8
  start-page: e1002786
  year: 2012
  ident: CR54
  article-title: FANCJ/BACH1 acetylation at lysine 1249 regulates the DNA damage response
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002786
– volume: 21
  start-page: 1472
  year: 2007
  end-page: 1477
  ident: CR28
  article-title: The Rad9–Hus1–Rad1 (9-1-1) clamp activates checkpoint signaling via TopBP1
  publication-title: Genes Dev.
  doi: 10.1101/gad.1547007
– volume: 158
  start-page: 633
  year: 2014
  end-page: 646
  ident: CR11
  article-title: ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.046
– volume: 100
  start-page: 13827
  year: 2003
  end-page: 13832
  ident: CR31
  article-title: Replication protein A-mediated recruitment and activation of Rad17 complexes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2336100100
– volume: 39
  start-page: 740
  year: 2016
  end-page: 755
  ident: CR130
  article-title: A Mechanism for controlled breakage of under-replicated chromosomes during mitosis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.11.017
– volume: 29
  start-page: 690
  year: 2015
  end-page: 695
  ident: CR158
  article-title: Increased gene dosage reduces fragile site breakage and prolongs survival of ATR mutant mice
  publication-title: Genes Dev.
  doi: 10.1101/gad.256958.114
– volume: 59
  start-page: 998
  year: 2015
  end-page: 1010
  ident: CR126
  article-title: The replication checkpoint prevents two types of fork collapse without regulating replisome stability
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.030
– volume: 467
  start-page: 479
  year: 2010
  end-page: 483
  ident: CR108
  article-title: Damage-induced phosphorylation of Sld3 is important to block late origin firing
  publication-title: Nature
  doi: 10.1038/nature09377
– volume: 36
  start-page: 743
  year: 2009
  ident: BFnrm201767_CR21
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.10.014
– volume: 35
  start-page: 961
  year: 2016
  ident: BFnrm201767_CR103
  publication-title: EMBO J.
  doi: 10.15252/embj.201593552
– volume: 17
  start-page: 671
  year: 2016
  ident: BFnrm201767_CR146
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201541455
– volume: 59
  start-page: 1011
  year: 2015
  ident: BFnrm201767_CR136
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.029
– volume: 126
  start-page: 1297
  year: 2013
  ident: BFnrm201767_CR102
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.096701
– volume: 8
  start-page: e1002786
  year: 2012
  ident: BFnrm201767_CR54
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002786
– volume: 14
  start-page: 1104
  year: 2013
  ident: BFnrm201767_CR72
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.159
– volume: 6
  start-page: e23517
  year: 2011
  ident: BFnrm201767_CR133
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0023517
– volume: 208
  start-page: 545
  year: 2015
  ident: BFnrm201767_CR47
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201406100
– volume: 18
  start-page: 1185
  year: 2016
  ident: BFnrm201767_CR23
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3415
– volume: 17
  start-page: 153
  year: 2005
  ident: BFnrm201767_CR127
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.11.032
– volume: 188
  start-page: 209
  year: 2010
  ident: BFnrm201767_CR117
  publication-title: Cell Biol. J.
  doi: 10.1083/jcb.200911037
– volume: 467
  start-page: 479
  year: 2010
  ident: BFnrm201767_CR108
  publication-title: Nature
  doi: 10.1038/nature09377
– volume: 279
  start-page: 28071
  year: 2004
  ident: BFnrm201767_CR97
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M401574200
– volume: 34
  start-page: 479
  year: 2000
  ident: BFnrm201767_CR13
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.34.1.479
– volume: 26
  start-page: 3257
  year: 2016
  ident: BFnrm201767_CR25
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.10.030
– volume: 519
  start-page: 431
  year: 2015
  ident: BFnrm201767_CR161
  publication-title: Nature
  doi: 10.1038/nature14285
– volume: 17
  start-page: 1391
  year: 2010
  ident: BFnrm201767_CR34
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1932
– volume: 39
  start-page: 600
  year: 2011
  ident: BFnrm201767_CR87
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0390600
– volume: 27
  start-page: 876
  year: 2008
  ident: BFnrm201767_CR119
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.29
– volume: 37
  start-page: 492
  year: 2010
  ident: BFnrm201767_CR148
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.01.021
– volume: 105
  start-page: 18730
  year: 2008
  ident: BFnrm201767_CR19
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0806621105
– volume: 50
  start-page: 116
  year: 2013
  ident: BFnrm201767_CR36
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.03.006
– volume: 16
  start-page: 360
  year: 2015
  ident: BFnrm201767_CR95
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4002
– volume: 16
  start-page: 285
  year: 2006
  ident: BFnrm201767_CR89
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2006.04.002
– volume: 29
  start-page: 3156
  year: 2010
  ident: BFnrm201767_CR153
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.205
– volume: 18
  start-page: 1196
  year: 2016
  ident: BFnrm201767_CR24
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3422
– volume: 5
  start-page: a012708
  year: 2013
  ident: BFnrm201767_CR150
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012708
– volume: 9
  start-page: e1003702
  year: 2013
  ident: BFnrm201767_CR26
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003702
– volume: 285
  start-page: 34608
  year: 2010
  ident: BFnrm201767_CR33
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.166710
– volume: 43
  start-page: 8830
  year: 2015
  ident: BFnrm201767_CR35
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv799
– volume: 9
  start-page: 616
  year: 2008
  ident: BFnrm201767_CR12
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2450
– volume: 16
  start-page: 2
  year: 2014
  ident: BFnrm201767_CR1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2897
– volume: 4
  start-page: 1227
  year: 2005
  ident: BFnrm201767_CR27
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2005.04.001
– volume: 26
  start-page: 151
  year: 2012
  ident: BFnrm201767_CR48
  publication-title: Genes Dev.
  doi: 10.1101/gad.178459.111
– volume: 45
  start-page: 696
  year: 2012
  ident: BFnrm201767_CR125
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.01.007
– volume: 31
  start-page: 46
  year: 2017
  ident: BFnrm201767_CR60
  publication-title: Genes Dev.
  doi: 10.1101/gad.291807.116
– volume: 9
  start-page: e1003643
  year: 2013
  ident: BFnrm201767_CR67
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003643
– volume: 93
  start-page: 2850
  year: 1996
  ident: BFnrm201767_CR5
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.93.7.2850
– volume: 11
  start-page: e1005675
  year: 2015
  ident: BFnrm201767_CR58
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005675
– volume: 291
  start-page: 13436
  year: 2016
  ident: BFnrm201767_CR167
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.708263
– volume: 19
  start-page: 1040
  year: 2005
  ident: BFnrm201767_CR40
  publication-title: Genes Dev.
  doi: 10.1101/gad.1301205
– volume: 294
  start-page: 1713
  year: 2001
  ident: BFnrm201767_CR14
  publication-title: Science
  doi: 10.1126/science.1065521
– volume: 18
  start-page: 91
  year: 2010
  ident: BFnrm201767_CR162
  publication-title: Chromosome Res.
  doi: 10.1007/s10577-009-9098-y
– volume: 5
  start-page: 2203
  year: 2006
  ident: BFnrm201767_CR112
  publication-title: Cell Cycle
  doi: 10.4161/cc.5.19.3256
– volume: 106
  start-page: 3184
  year: 2009
  ident: BFnrm201767_CR98
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0809350106
– volume: 26
  start-page: 2719
  year: 2007
  ident: BFnrm201767_CR113
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601714
– volume: 93
  start-page: 238
  year: 2017
  ident: BFnrm201767_CR61
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.12667
– volume: 27
  start-page: 313
  year: 2013
  ident: BFnrm201767_CR18
  publication-title: Genes Dev.
  doi: 10.1101/gad.204750.112
– volume: 467
  start-page: 474
  year: 2010
  ident: BFnrm201767_CR105
  publication-title: Nature
  doi: 10.1038/nature09373
– volume: 27
  start-page: 5806
  year: 2007
  ident: BFnrm201767_CR140
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02278-06
– volume: 18
  start-page: 185
  year: 2006
  ident: BFnrm201767_CR90
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2006.02.003
– volume: 16
  start-page: 5551
  year: 2005
  ident: BFnrm201767_CR166
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e05-05-0427
– volume: 124
  start-page: 943
  year: 2006
  ident: BFnrm201767_CR22
  publication-title: Cell
  doi: 10.1016/j.cell.2005.12.041
– volume: 43
  start-page: 192
  year: 2011
  ident: BFnrm201767_CR80
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.06.019
– volume: 52
  start-page: 566
  year: 2013
  ident: BFnrm201767_CR70
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.10.035
– volume: 6
  start-page: 648
  year: 2004
  ident: BFnrm201767_CR96
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1145
– volume: 17
  start-page: 159
  year: 1998
  ident: BFnrm201767_CR65
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.1.159
– volume: 37
  start-page: 438
  year: 2010
  ident: BFnrm201767_CR53
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.01.002
– volume: 5
  start-page: a012724
  year: 2013
  ident: BFnrm201767_CR8
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a012724
– volume: 158
  start-page: 633
  year: 2014
  ident: BFnrm201767_CR11
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.046
– volume: 14
  start-page: 397
  year: 2000
  ident: BFnrm201767_CR2
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.4.397
– volume: 16
  start-page: 207
  year: 2015
  ident: BFnrm201767_CR45
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3935
– volume: 288
  start-page: 1425
  year: 2000
  ident: BFnrm201767_CR91
  publication-title: Science
  doi: 10.1126/science.288.5470.1425
– volume: 277
  start-page: 1501
  year: 1997
  ident: BFnrm201767_CR93
  publication-title: Science
  doi: 10.1126/science.277.5331.1501
– volume: 107
  start-page: 16090
  year: 2010
  ident: BFnrm201767_CR114
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1005031107
– volume: 421
  start-page: 499
  year: 2003
  ident: BFnrm201767_CR82
  publication-title: Nature
  doi: 10.1038/nature01368
– volume: 591
  start-page: 1083
  year: 2017
  ident: BFnrm201767_CR149
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12556
– volume: 17
  start-page: 1305
  year: 2010
  ident: BFnrm201767_CR42
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1927
– volume: 54
  start-page: 999
  year: 2014
  ident: BFnrm201767_CR85
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.05.030
– volume: 2
  start-page: 329
  year: 1998
  ident: BFnrm201767_CR154
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80277-4
– volume: 42
  start-page: 12628
  year: 2014
  ident: BFnrm201767_CR57
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1022
– volume: 284
  start-page: 5994
  year: 2009
  ident: BFnrm201767_CR123
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M806739200
– volume: 6
  start-page: 2760
  year: 2007
  ident: BFnrm201767_CR141
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.22.4932
– ident: BFnrm201767_CR68
  doi: 10.1083/jcb.200909105
– volume: 26
  start-page: 3319
  year: 2006
  ident: BFnrm201767_CR111
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.8.3319-3326.2006
– volume: 14
  start-page: 1435
  year: 2016
  ident: BFnrm201767_CR79
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.018
– volume: 57
  start-page: 1124
  year: 2015
  ident: BFnrm201767_CR64
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.043
– volume: 30
  start-page: 684
  year: 2010
  ident: BFnrm201767_CR49
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00863-09
– volume: 8
  start-page: 37
  year: 2006
  ident: BFnrm201767_CR59
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1337
– volume: 52
  start-page: 234
  year: 2013
  ident: BFnrm201767_CR129
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.035
– volume: 47
  start-page: 222
  year: 2012
  ident: BFnrm201767_CR137
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.3109/10409238.2012.655374
– volume: 412
  start-page: 557
  year: 2001
  ident: BFnrm201767_CR121
  publication-title: Nature
  doi: 10.1038/35087613
– volume: 280
  start-page: 31390
  year: 2005
  ident: BFnrm201767_CR164
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M504961200
– volume: 41
  start-page: 891
  year: 2009
  ident: BFnrm201767_CR159
  publication-title: Nat. Genet.
  doi: 10.1038/ng.420
– volume: 7
  start-page: 1048
  year: 2014
  ident: BFnrm201767_CR132
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.04.007
– volume: 21
  start-page: 2005
  year: 2012
  ident: BFnrm201767_CR55
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/dds013
– volume: 39
  start-page: 740
  year: 2016
  ident: BFnrm201767_CR130
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.11.017
– volume: 300
  start-page: 1542
  year: 2003
  ident: BFnrm201767_CR15
  publication-title: Science
  doi: 10.1126/science.1083430
– volume: 22
  start-page: 1478
  year: 2008
  ident: BFnrm201767_CR17
  publication-title: Genes Dev.
  doi: 10.1101/gad.1666208
– volume: 332
  start-page: 1313
  year: 2011
  ident: BFnrm201767_CR38
  publication-title: Science
  doi: 10.1126/science.1203430
– volume: 73
  start-page: 4300
  year: 2013
  ident: BFnrm201767_CR52
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3976
– volume: 191
  start-page: 1285
  year: 2010
  ident: BFnrm201767_CR110
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201007074
– volume: 192
  start-page: 219
  year: 2011
  ident: BFnrm201767_CR151
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008076
– volume: 10
  start-page: 479
  year: 2000
  ident: BFnrm201767_CR3
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00447-4
– volume: 100
  start-page: 13827
  year: 2003
  ident: BFnrm201767_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2336100100
– volume: 32
  start-page: 313
  year: 2008
  ident: BFnrm201767_CR51
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.10.014
– volume: 14
  start-page: 1114
  year: 2016
  ident: BFnrm201767_CR116
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.12.093
– volume: 29
  start-page: 690
  year: 2015
  ident: BFnrm201767_CR158
  publication-title: Genes Dev.
  doi: 10.1101/gad.256958.114
– volume: 27
  start-page: 2259
  year: 2013
  ident: BFnrm201767_CR128
  publication-title: Genes Dev.
  doi: 10.1101/gad.223180.113
– volume: 51
  start-page: 678
  year: 2013
  ident: BFnrm201767_CR138
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.07.023
– volume: 184
  start-page: 793
  year: 2009
  ident: BFnrm201767_CR73
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200810185
– volume: 94
  start-page: 595
  year: 1998
  ident: BFnrm201767_CR155
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81601-3
– volume: 206
  start-page: 493
  year: 2014
  ident: BFnrm201767_CR143
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404111
– volume: 149
  start-page: 1023
  year: 2012
  ident: BFnrm201767_CR157
  publication-title: Cell
  doi: 10.1016/j.cell.2012.03.043
– volume: 28
  start-page: 1472
  year: 2014
  ident: BFnrm201767_CR75
  publication-title: Genes Dev.
  doi: 10.1101/gad.238535.114
– volume: 14
  start-page: 99
  year: 2015
  ident: BFnrm201767_CR39
  publication-title: Cell Cycle
  doi: 10.4161/15384101.2014.967076
– volume: 208
  start-page: 563
  year: 2015
  ident: BFnrm201767_CR41
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201406099
– volume: 58
  start-page: 323
  year: 2015
  ident: BFnrm201767_CR120
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.031
– volume: 13
  start-page: 225
  year: 2001
  ident: BFnrm201767_CR7
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/S0955-0674(00)00201-5
– volume: 57
  start-page: 1
  year: 2015
  ident: BFnrm201767_CR109
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.12.003
– volume: 27
  start-page: 1484
  year: 2013
  ident: BFnrm201767_CR9
  publication-title: Genes Dev.
  doi: 10.1101/gad.219477.113
– volume: 443
  start-page: 222
  year: 2006
  ident: BFnrm201767_CR84
  publication-title: Nature
  doi: 10.1038/nature05112
– volume: 395
  start-page: 615
  year: 1998
  ident: BFnrm201767_CR99
  publication-title: Nature
  doi: 10.1038/27001
– volume: 59
  start-page: 998
  year: 2015
  ident: BFnrm201767_CR126
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.030
– volume: 183
  start-page: 777
  year: 2008
  ident: BFnrm201767_CR83
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200805154
– volume: 22
  start-page: 4325
  year: 2003
  ident: BFnrm201767_CR124
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg391
– volume: 194
  start-page: 567
  year: 2011
  ident: BFnrm201767_CR131
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201101047
– volume: 24
  start-page: 1343
  year: 2013
  ident: BFnrm201767_CR37
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-01-0025
– volume: 100
  start-page: 1633
  year: 2003
  ident: BFnrm201767_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0437927100
– volume: 14
  start-page: 1096
  year: 2007
  ident: BFnrm201767_CR135
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1313
– volume: 18
  start-page: 684
  year: 2016
  ident: BFnrm201767_CR62
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3344
– volume: 101
  start-page: 10078
  year: 2004
  ident: BFnrm201767_CR118
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0403410101
– volume: 111
  start-page: 779
  year: 2002
  ident: BFnrm201767_CR66
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01113-3
– volume: 282
  start-page: 9458
  year: 2007
  ident: BFnrm201767_CR104
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M611292200
– volume: 289
  start-page: 2133
  year: 2000
  ident: BFnrm201767_CR44
  publication-title: Science
  doi: 10.1126/science.289.5487.2133
– volume: 11
  start-page: 203
  year: 2003
  ident: BFnrm201767_CR100
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00799-2
– volume: 24
  start-page: 1279
  year: 2004
  ident: BFnrm201767_CR152
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.3.1279-1291.2004
– volume: 286
  start-page: 28707
  year: 2011
  ident: BFnrm201767_CR81
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.248914
– volume: 412
  start-page: 553
  year: 2001
  ident: BFnrm201767_CR122
  publication-title: Nature
  doi: 10.1038/35087607
– volume: 122
  start-page: 4070
  year: 2009
  ident: BFnrm201767_CR144
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.053702
– volume: 65
  start-page: 336
  year: 2017
  ident: BFnrm201767_CR145
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.12.007
– volume: 124
  start-page: 3967
  year: 2011
  ident: BFnrm201767_CR56
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.081372
– volume: 33
  start-page: 497
  year: 2003
  ident: BFnrm201767_CR4
  publication-title: Nat. Genet.
  doi: 10.1038/ng1129
– volume: 20
  start-page: 1383
  year: 2013
  ident: BFnrm201767_CR69
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2719
– volume: 67
  start-page: 6100
  year: 2007
  ident: BFnrm201767_CR77
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0369
– volume: 7
  start-page: 2809
  year: 2008
  ident: BFnrm201767_CR168
  publication-title: Cell Cycle
  doi: 10.4161/cc.7.18.6689
– volume: 15
  start-page: 6641
  year: 1996
  ident: BFnrm201767_CR6
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01054.x
– volume: 25
  start-page: 621
  year: 2011
  ident: BFnrm201767_CR101
  publication-title: Genes Dev.
  doi: 10.1101/gad.2029711
– volume: 3
  start-page: 247
  year: 2003
  ident: BFnrm201767_CR92
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00048-5
– volume: 277
  start-page: 1497
  year: 1997
  ident: BFnrm201767_CR94
  publication-title: Science
  doi: 10.1126/science.277.5331.1497
– volume: 6
  start-page: 839
  year: 2000
  ident: BFnrm201767_CR88
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(05)00092-4
– volume: 27
  start-page: 3367
  year: 2007
  ident: BFnrm201767_CR165
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.02238-06
– volume: 27
  start-page: 1610
  year: 2013
  ident: BFnrm201767_CR115
  publication-title: Genes Dev.
  doi: 10.1101/gad.214080.113
– volume: 21
  start-page: 898
  year: 2007
  ident: BFnrm201767_CR16
  publication-title: Genes Dev.
  doi: 10.1101/gad.1522607
– volume: 1
  start-page: E33
  year: 2003
  ident: BFnrm201767_CR32
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0000033
– volume: 99
  start-page: 14795
  year: 2002
  ident: BFnrm201767_CR106
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.182557299
– volume: 36
  start-page: 51
  year: 2013
  ident: BFnrm201767_CR156
  publication-title: Biomed J.
  doi: 10.4103/2319-4170.110398
– volume: 13
  start-page: 1049
  year: 2014
  ident: BFnrm201767_CR46
  publication-title: Cell Cycle
  doi: 10.4161/cc.28212
– volume: 155
  start-page: 1088
  year: 2013
  ident: BFnrm201767_CR142
  publication-title: Cell
  doi: 10.1016/j.cell.2013.10.043
– volume: 9
  start-page: e1003910
  year: 2013
  ident: BFnrm201767_CR134
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1003910
– volume: 5
  start-page: 141
  year: 2014
  ident: BFnrm201767_CR86
  publication-title: World J. Biol. Chem.
  doi: 10.4331/wjbc.v5.i2.141
– volume: 62
  start-page: 307
  year: 2016
  ident: BFnrm201767_CR63
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.03.006
– volume: 67
  start-page: 6685
  year: 2007
  ident: BFnrm201767_CR78
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-0495
– volume: 18
  start-page: 175
  year: 2017
  ident: BFnrm201767_CR10
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2016.171
– volume: 52
  start-page: 541
  year: 2013
  ident: BFnrm201767_CR71
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.09.025
– volume: 282
  start-page: 17501
  year: 2007
  ident: BFnrm201767_CR76
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M701770200
– volume: 53
  start-page: 235
  year: 2014
  ident: BFnrm201767_CR74
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.11.002
– volume: 16
  start-page: 2372
  year: 2005
  ident: BFnrm201767_CR163
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-11-1006
– volume: 21
  start-page: 4780
  year: 2015
  ident: BFnrm201767_CR160
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0479
– volume: 29
  start-page: 806
  year: 2010
  ident: BFnrm201767_CR50
  publication-title: EMBO J.
  doi: 10.1038/emboj.2009.385
– volume: 467
  start-page: 343
  year: 2010
  ident: BFnrm201767_CR107
  publication-title: Nature
  doi: 10.1038/nature09350
– volume: 21
  start-page: 1472
  year: 2007
  ident: BFnrm201767_CR28
  publication-title: Genes Dev.
  doi: 10.1101/gad.1547007
– volume: 282
  start-page: 28036
  year: 2007
  ident: BFnrm201767_CR29
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704635200
– volume: 29
  start-page: 602
  year: 2009
  ident: BFnrm201767_CR139
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01319-08
– volume: 33
  start-page: 1830
  year: 2013
  ident: BFnrm201767_CR147
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01521-12
– volume: 297
  start-page: 599
  year: 2002
  ident: BFnrm201767_CR43
  publication-title: Science
  doi: 10.1126/science.1074023
– volume: 283
  start-page: 35853
  year: 2008
  ident: BFnrm201767_CR20
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M807435200
– reference: 29115300 - Nat Rev Mol Cell Biol. 2017 Dec;18(12):783
SSID ssj0016175
Score 2.6866832
SecondaryResourceType review_article
Snippet Key Points Ataxia telangiectasia and Rad3-related (ATR) is an essential kinase that is active in S phase, senses stressed replication forks and orchestrates a...
One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 622
SubjectTerms 631/337/151
631/337/151/2356
631/337/641/2187
Animals
Ataxia
Ataxia telangiectasia
Ataxia Telangiectasia Mutated Proteins - metabolism
Biochemistry
Cancer Research
Cell Biology
Cell cycle
Cellular signal transduction
Control stability
Deoxyribonucleic acid
Developmental Biology
DNA
DNA Replication
Eukaryota - metabolism
Gene amplification
Genetic aspects
Genetic research
Genome
Genome, Human
Genomes
Health aspects
Humans
Kinases
Life Sciences
Phosphotransferases
Replication
Replication forks
Replication origins
Reproduction (copying)
review-article
Signal Transduction
Signaling
Stem Cells
Title The essential kinase ATR: ensuring faithful duplication of a challenging genome
URI https://link.springer.com/article/10.1038/nrm.2017.67
https://www.ncbi.nlm.nih.gov/pubmed/28811666
https://www.proquest.com/docview/1947048863
https://www.proquest.com/docview/1929896656
https://pubmed.ncbi.nlm.nih.gov/PMC5796526
Volume 18
WOSCitedRecordID wos000411377400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: M7P
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: PCBAR
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: 7X7
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: 7RV
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: BENPR
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1471-0080
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0016175
  issn: 1471-0072
  databaseCode: 8C1
  dateStart: 20001001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfH8ERmUQCAkpW5qkscMLKtMmkFCpykB9sxx_sIqSjKZB4r_nznGytSBeePFDfFGc3Nl3l7v7HSHPldEJhsdCndo4TGU6DPmI6zAxBvYe-ANKOxDXD2wy4fN5PvU_3GqfVtmdie6g1pXCf-SH4GwzlLYseXP-I8SuURhd9S00dsgeoiTELnVv2kcRQDuPXHURA5c5YrGvz4sSfliusAx9yA5cg_kLjbR9Ll9STNtJk1uRU6eQTm7-76vcIje8KUrHrezcJldMeYdca5tT_rpLPoIEUUQWL-EQWNJvixIUHh2fzl5TbI-Bi6JWLtZntllS3fRxcFpZKqnyTVqQCnFgv5t75PPJ8enRu9C3XwgV6Ph1mGtwnBEALJcRT2NjpZJWMZnxQoNdoVKbYxQ4kwYz-VnBi8ImBTA6yQu4YpP7ZLesSvOQULBhCpOlUuaRTjOT5DJVjLECfD-dguEckFcdC4Ty2OTYImMpXIw84QL4JZBfImMBSFhHfN5Ccvyd7BnyUiDIRYlZNF9lU9fi_aeZGKPZh623ooC89ES2ggcq6YsSYNmIi7VBub9BCbtQbU53vBb-FKjFBaMD8rSfxjsxs600VYM0iIGfgVkdkAethPVvFXM-xLBuQNiG7PUEiA2-OVMuzhxGOJYYj2K480UnpZeW9efHevTv5T8m15GwTWLcJ7vrVWOekKvq53pRrwZkh82-4DhnbuQw8qPhgOy9PZ5MZwO3KX8DsWs7DQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-NAYIXvj8CAwxiQkIKS5M0dpAQqgbTqpWCRpH2ZhzbYRUlGU0D2j_F38hdvrYWxNseeI3PiePchy939zuAp9qagMJjrglT3w1V2HNFXxg3sBZlD_0BbSoQ1xEfj8XBQfxhDX61tTCUVtnqxEpRm1zTP_ItdLY5cVsUvD767lLXKIquti00arbYs8c_0WUrXg3f4Pfd9P2dt5PtXbfpKuBqNF0LNzboDxKuVaw8Efo2VVqlmqtIJAbNpQ7TmIKbkbKUoM4TkSRpkOD6gzjBK2mA9z0H5wnJjiRKbHcpJeQq9KtqJo4uusf9ph7QC8RWNqey9x5_UTW0P7GAq3bglCFcTdJcidRWBnDn6v-2ddfgSnPUZoNaNq7Dms1uwMW6-ebxTXiPEsIIOT1DJTdjX6cZGnQ2mOy_ZNT-gzaBpWq6OEzLGTNlF-dnecoU000TGqIinNtv9hZ8OpO3uQ3rWZ7Zu8DwjJbYKFQq9kwY2SBWoeacJ-jbmhAdAweet59c6gZ7nVqAzGSVAxAIifwhiT9kxB2UoJb4qIYc-TvZE-IdSSAeGWUJfVFlUcjhx305oGMttRbzHHjWEKU5PlCrpugCl024X0uUG0uUqGX08nDLW7LRcoU8YSwHHnfDNJMy9zKbl0RDGP8Rug0O3Kk5unsrX4geha0d4Eu83hEQ9vnySDY9rDDQqYS67-PMzVYqTi3rz8269-_lP4JLu5N3Izkajvfuw2WaVCdsbsD6Yl7aB3BB_1hMi_nDSuAZfD5rMfkNPcCWMA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFBAX3gVDgQVRISG5ceyN10ZCKNBGRK1CFIrU27Jer2lEsUucgPrX-HXM-NU6IG49cM3OJvuYx05m5huA59rEHoXH7Jgnrs0V79lBP4htzxiUPfQHdFyAuO6L8Tg4PAwna_CrroWhtMpaJxaKOs40_UfeRWdbELf5Xjep0iImO8M3J99t6iBFkda6nUbJInvm9Ce6b_nr0Q7e9ZbrDncP3r23qw4DtkYztrDDGH1DwrgKlRNw1yRKq0QL5QdRjKZT8ySkQKevDCWriyiIosSLcC9eGOEniYffewnWBT4yeAfW3-6OJ9MmhoFvg35R2yTQYXeEW1UHOl7QTedUBN8T20V7-zN7uGoVzpnF1ZTNlbhtYQ6HN_7ng7wJ16tHOBuUUnML1kx6G66UbTlP78AHlB1GmOopqr9j9nWWoqlng4PpK0aNQehAWKJmiyPcGYuXTQYAyxKmmK7a0xAVIeB-M3fh04XsZgM6aZaa-8Dw9RYZnysVOjH3jRcqroUQEXq9MUeXwYKX9fVLXaGyU3OQY1lkB3iBRF6RxCvSFxbKVk18UoKR_J3sGfGRJHiPlO73i1rmuRx9nMoBPXip6ZhjwYuKKMnwB7WqyjFw2YQI1qLcbFGi_tHt4ZrPZKX_cnnGZBY8bYZpJuX0pSZbEg2h__voUFhwr-TuZlduEPQooG2BaPF9Q0Co6O2RdHZUoKNTcXXfxZlbtYScW9afh_Xg38t_AldROuT-aLz3EK7RnDKTcxM6i_nSPILL-sdils8fV9LP4PNFy8lvQFegjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+essential+kinase+ATR%3A+ensuring+faithful+duplication+of+a+challenging+genome&rft.jtitle=Nature+reviews.+Molecular+cell+biology&rft.au=Saldivar%2C+Joshua+C&rft.au=Cortez%2C+David&rft.au=Cimprich%2C+Karlene+A&rft.date=2017-10-01&rft.eissn=1471-0080&rft.volume=18&rft.issue=10&rft.spage=622&rft_id=info:doi/10.1038%2Fnrm.2017.67&rft_id=info%3Apmid%2F28811666&rft.externalDocID=28811666
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0072&client=summon