Glycosphingolipid metabolic reprogramming drives neural differentiation

Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The EMBO journal Ročník 37; číslo 7
Hlavní autoři: Russo, Domenico, Della Ragione, Floriana, Rizzo, Riccardo, Sugiyama, Eiji, Scalabrì, Francesco, Hori, Kei, Capasso, Serena, Sticco, Lucia, Fioriniello, Salvatore, De Gregorio, Roberto, Granata, Ilaria, Guarracino, Mario R, Maglione, Vittorio, Johannes, Ludger, Bellenchi, Gian Carlo, Hoshino, Mikio, Setou, Mitsutoshi, D'Esposito, Maurizio, Luini, Alberto, D'Angelo, Giovanni
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 03.04.2018
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Témata:
ISSN:0261-4189, 1460-2075, 1460-2075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. Synopsis Schematic representation of glycosphingolipid reprogramming circuit in neural differentiation. Globo‐series glycosphingolipids inhibit the production of ganglio‐series glycosphingolipids. AUTS2 expression is repressed by globo‐series glycosphingolipids. AUTS2 activates the promoter of the first and rate limiting enzyme involved in ganglio‐series glycosphingolipids production i.e., GM3 synthase by inducing histone acetylation. The globo‐AUTS2 axis regulates the expression of neuronal genes during neural differentiation. The decrease of globo‐series glycosphingolipids is required for AUTS2 induction and for stem cell differentiation to neural cells. Graphical Abstract The switch from globo‐ to ganglio‐series glycophospholipids during neurodevelopment involves a self‐contained regulatory circuit controlling expression of both neuronal and ganglioside‐producing genes.
AbstractList Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. Synopsis Schematic representation of glycosphingolipid reprogramming circuit in neural differentiation. Globo‐series glycosphingolipids inhibit the production of ganglio‐series glycosphingolipids. AUTS2 expression is repressed by globo‐series glycosphingolipids. AUTS2 activates the promoter of the first and rate limiting enzyme involved in ganglio‐series glycosphingolipids production i.e., GM3 synthase by inducing histone acetylation. The globo‐AUTS2 axis regulates the expression of neuronal genes during neural differentiation. The decrease of globo‐series glycosphingolipids is required for AUTS2 induction and for stem cell differentiation to neural cells. Graphical Abstract The switch from globo‐ to ganglio‐series glycophospholipids during neurodevelopment involves a self‐contained regulatory circuit controlling expression of both neuronal and ganglioside‐producing genes.
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. Synopsis Schematic representation of glycosphingolipid reprogramming circuit in neural differentiation. Globo‐series glycosphingolipids inhibit the production of ganglio‐series glycosphingolipids. AUTS2 expression is repressed by globo‐series glycosphingolipids. AUTS2 activates the promoter of the first and rate limiting enzyme involved in ganglio‐series glycosphingolipids production i.e., GM3 synthase by inducing histone acetylation. The globo‐AUTS2 axis regulates the expression of neuronal genes during neural differentiation. The decrease of globo‐series glycosphingolipids is required for AUTS2 induction and for stem cell differentiation to neural cells. The switch from globo‐ to ganglio‐series glycophospholipids during neurodevelopment involves a self‐contained regulatory circuit controlling expression of both neuronal and ganglioside‐producing genes.
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.
Author Russo, Domenico
Fioriniello, Salvatore
De Gregorio, Roberto
Guarracino, Mario R
Maglione, Vittorio
Luini, Alberto
Setou, Mitsutoshi
Della Ragione, Floriana
Capasso, Serena
D'Esposito, Maurizio
Hori, Kei
Sticco, Lucia
Rizzo, Riccardo
Johannes, Ludger
Bellenchi, Gian Carlo
Granata, Ilaria
D'Angelo, Giovanni
Hoshino, Mikio
Sugiyama, Eiji
Scalabrì, Francesco
AuthorAffiliation 2 Institute of Genetics and Biophysics National Research Council Naples Italy
6 Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
8 Chemical Biology of Membranes and Therapeutic Delivery Unit Institut Curie INSERM U 1143, CNRS, UMR 3666 PSL Research University Paris Cedex 05 France
4 International Mass Imaging Center Department of Cellular and Molecular Anatomy Hamamatsu University School of Medicine Higashi‐ku Hamamatsu Japan
7 High Performance Computing and Networking Institute National Research Council Naples Italy
1 Institute of Protein Biochemistry National Research Council Naples Italy
5 Department of Biochemistry and Cellular Biology National Institute of Neuroscience National Center of Neurology and Psychiatry (NCNP) Tokyo Japan
3 IRCCS INM Neuromed Pozzilli Italy
AuthorAffiliation_xml – name: 1 Institute of Protein Biochemistry National Research Council Naples Italy
– name: 8 Chemical Biology of Membranes and Therapeutic Delivery Unit Institut Curie INSERM U 1143, CNRS, UMR 3666 PSL Research University Paris Cedex 05 France
– name: 2 Institute of Genetics and Biophysics National Research Council Naples Italy
– name: 7 High Performance Computing and Networking Institute National Research Council Naples Italy
– name: 3 IRCCS INM Neuromed Pozzilli Italy
– name: 5 Department of Biochemistry and Cellular Biology National Institute of Neuroscience National Center of Neurology and Psychiatry (NCNP) Tokyo Japan
– name: 6 Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy
– name: 4 International Mass Imaging Center Department of Cellular and Molecular Anatomy Hamamatsu University School of Medicine Higashi‐ku Hamamatsu Japan
Author_xml – sequence: 1
  givenname: Domenico
  surname: Russo
  fullname: Russo, Domenico
  organization: Institute of Protein Biochemistry, National Research Council
– sequence: 2
  givenname: Floriana
  surname: Della Ragione
  fullname: Della Ragione, Floriana
  organization: Institute of Genetics and Biophysics, National Research Council, IRCCS INM, Neuromed
– sequence: 3
  givenname: Riccardo
  surname: Rizzo
  fullname: Rizzo, Riccardo
  organization: Institute of Protein Biochemistry, National Research Council
– sequence: 4
  givenname: Eiji
  surname: Sugiyama
  fullname: Sugiyama, Eiji
  organization: International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine
– sequence: 5
  givenname: Francesco
  surname: Scalabrì
  fullname: Scalabrì, Francesco
  organization: Institute of Genetics and Biophysics, National Research Council, IRCCS INM, Neuromed
– sequence: 6
  givenname: Kei
  surname: Hori
  fullname: Hori, Kei
  organization: Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP)
– sequence: 7
  givenname: Serena
  surname: Capasso
  fullname: Capasso, Serena
  organization: Institute of Protein Biochemistry, National Research Council, Istituto di Ricovero e Cura a Carattere Scientifico‐SDN
– sequence: 8
  givenname: Lucia
  surname: Sticco
  fullname: Sticco, Lucia
  organization: Institute of Protein Biochemistry, National Research Council
– sequence: 9
  givenname: Salvatore
  surname: Fioriniello
  fullname: Fioriniello, Salvatore
  organization: Institute of Genetics and Biophysics, National Research Council
– sequence: 10
  givenname: Roberto
  surname: De Gregorio
  fullname: De Gregorio, Roberto
  organization: Institute of Genetics and Biophysics, National Research Council
– sequence: 11
  givenname: Ilaria
  surname: Granata
  fullname: Granata, Ilaria
  organization: High Performance Computing and Networking Institute, National Research Council
– sequence: 12
  givenname: Mario R
  surname: Guarracino
  fullname: Guarracino, Mario R
  organization: High Performance Computing and Networking Institute, National Research Council
– sequence: 13
  givenname: Vittorio
  surname: Maglione
  fullname: Maglione, Vittorio
  organization: IRCCS INM, Neuromed
– sequence: 14
  givenname: Ludger
  surname: Johannes
  fullname: Johannes, Ludger
  organization: Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, INSERM U 1143, CNRS, UMR 3666, PSL Research University
– sequence: 15
  givenname: Gian Carlo
  surname: Bellenchi
  fullname: Bellenchi, Gian Carlo
  organization: Institute of Genetics and Biophysics, National Research Council
– sequence: 16
  givenname: Mikio
  surname: Hoshino
  fullname: Hoshino, Mikio
  organization: Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP)
– sequence: 17
  givenname: Mitsutoshi
  surname: Setou
  fullname: Setou, Mitsutoshi
  organization: International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine
– sequence: 18
  givenname: Maurizio
  surname: D'Esposito
  fullname: D'Esposito, Maurizio
  organization: Institute of Genetics and Biophysics, National Research Council, IRCCS INM, Neuromed
– sequence: 19
  givenname: Alberto
  surname: Luini
  fullname: Luini, Alberto
  organization: Institute of Protein Biochemistry, National Research Council, Istituto di Ricovero e Cura a Carattere Scientifico‐SDN
– sequence: 20
  givenname: Giovanni
  orcidid: 0000-0002-0734-4127
  surname: D'Angelo
  fullname: D'Angelo, Giovanni
  email: g.dangelo@ibp.cnr.it
  organization: Institute of Protein Biochemistry, National Research Council, Istituto di Ricovero e Cura a Carattere Scientifico‐SDN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29282205$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03968030$$DView record in HAL
BookMark eNqFkc9v0zAUxy00xLrBmRuKxIUduvlnHHOYNKatAxVxgbNlO07rKrGDnRT1v8dbRhmVgJMtv-_nfd_z9wQc-eAtAK8RPEcMM3xhO705xxBxwUtOn4EZoiWcY8jZEZhBXKI5RZU4BicpbSCErOLoBTjGAlcYQzYDi0W7MyH1a-dXoXW9q4vODkrnuymi7WNYRdV1uVrU0W1tKrwdo2qL2jWNjdYPTg0u-JfgeaPaZF89nqfg2-3N1-u7-fLL4uP11XJuSkTovCFal7rmNWdKGMUoRUpoITQUygql8nhG0FJwJgThlBpR1VqjUhtFIDKWnILLqW8_6s7WJg-Qp5F9dJ2KOxmUk39WvFvLVdhKVlWoJCQ3OJsarA-wu6ulvH-DRJQVJHCLsvbdo1kM30ebBtm5ZGzbKm_DmCQSFeKEEiiy9O2BdBPG6PNXSAwxFFhARrPqzdPp9_6_8siCi0lgYkgp2mYvQVA-JC7vE5f7xDPBDgjjhodI8vqu_Qf3fuJ-uNbu_mcjbz5_-PQUhhOcMudXNv7e9m9-PwGQYtFo
CitedBy_id crossref_primary_10_1007_s12015_022_10459_0
crossref_primary_10_3389_fnmol_2022_858582
crossref_primary_10_3390_cells11010011
crossref_primary_10_15252_embj_2021107766
crossref_primary_10_1111_bpa_70033
crossref_primary_10_1038_s41598_020_79666_4
crossref_primary_10_1093_hmg_ddad146
crossref_primary_10_1016_j_jlr_2024_100609
crossref_primary_10_1007_s00438_024_02144_3
crossref_primary_10_1038_s44319_024_00243_1
crossref_primary_10_1016_j_tcb_2024_12_002
crossref_primary_10_1042_BST20240315
crossref_primary_10_3390_epigenomes6040042
crossref_primary_10_15252_embj_2020107238
crossref_primary_10_1146_annurev_biochem_013118_111518
crossref_primary_10_1126_science_abh1623
crossref_primary_10_1016_j_clinms_2019_03_001
crossref_primary_10_1016_j_scr_2018_10_023
crossref_primary_10_3389_fcell_2022_842448
crossref_primary_10_1038_s44318_024_00343_7
crossref_primary_10_3389_fmolb_2020_00224
crossref_primary_10_1016_j_ymgme_2024_108434
crossref_primary_10_1186_s13024_020_00408_1
crossref_primary_10_1016_j_ymgme_2018_06_014
crossref_primary_10_15252_embj_201899221
crossref_primary_10_3389_fgene_2021_559998
crossref_primary_10_1002_jmd2_12353
crossref_primary_10_3390_ijms23179574
crossref_primary_10_3389_fpsyt_2021_580433
crossref_primary_10_1016_j_envres_2025_122398
crossref_primary_10_3389_fmolb_2022_813637
crossref_primary_10_1002_1873_3468_13541
crossref_primary_10_1016_j_scitotenv_2021_151967
crossref_primary_10_1016_j_jlr_2021_100128
crossref_primary_10_1038_s41598_024_69912_4
crossref_primary_10_1080_10408398_2020_1736510
crossref_primary_10_1038_s41580_022_00556_w
crossref_primary_10_3390_biomedicines13040843
crossref_primary_10_1007_s00018_025_05759_w
crossref_primary_10_1016_j_bbalip_2021_159021
crossref_primary_10_3390_ijms241411355
crossref_primary_10_1002_advs_202509733
crossref_primary_10_1007_s44211_022_00139_x
crossref_primary_10_1016_j_nbd_2025_106851
crossref_primary_10_1038_s41467_023_36128_5
crossref_primary_10_1111_cmi_13167
crossref_primary_10_1242_jcs_219204
crossref_primary_10_1002_1873_3468_13114
crossref_primary_10_3390_ijms21228594
crossref_primary_10_1016_j_jlr_2025_100813
Cites_doi 10.1073/pnas.96.16.9142
10.1038/nature06097
10.1016/j.gep.2009.11.005
10.1038/nmeth.1624
10.1073/pnas.0407785102
10.1002/stem.750
10.1186/gb-2006-7-10-r100
10.1016/j.molcel.2012.01.002
10.1007/978-1-4939-1154-7_14
10.1128/MCB.17.7.4105
10.1038/nature02188
10.1038/nn.2644
10.1101/gad.184416.111
10.1038/tp.2014.78
10.1007/s00429-014-0965-8
10.1523/JNEUROSCI.1220-14.2014
10.1038/ng1460
10.1136/jmedgenet-2015-103601
10.1038/srep14988
10.1016/j.celrep.2014.11.045
10.1101/gad.1035902
10.1002/ajmg.a.37773
10.1007/s11065-010-9148-4
10.1007/s00439-006-0284-0
10.1007/s00018-015-2125-6
10.1038/nature08282
10.1101/SQB.1961.026.01.048
10.1126/science.1350379
10.1086/429130
10.1016/j.biocel.2008.07.026
10.1016/j.ajhg.2012.12.011
10.1038/nature14429
10.1242/jcs.104.2.573
10.1073/pnas.0500893102
10.1093/hmg/ddt226
10.1007/s00018-014-1686-0
10.1111/febs.12559
10.1126/science.183.4125.656
10.1038/ng.2765
10.1016/j.ydbio.2008.12.003
10.1038/ejhg.2012.202
10.1016/j.bbagen.2007.08.015
10.3389/fnins.2016.00457
10.1016/S0169-328X(01)00267-4
10.1083/jcb.142.4.887
10.1021/cr2002917
10.1073/pnas.1007290108
10.1242/jcs.115.4.817
10.1038/ng1136
10.1016/S0021-9258(17)37202-2
10.1093/hmg/ddt434
10.1038/nature13921
10.1023/A:1021652506370
10.1038/nature12423
10.1016/j.bbagrm.2008.07.006
10.1038/ncb1076
10.1101/gr.1239303
10.1089/scd.2007.0130
10.1084/jem.163.6.1391
10.1371/journal.pgen.1003221
10.1016/j.cell.2005.01.001
10.1038/ng.154
ContentType Journal Article
Copyright The Author(s) 2018
2017 The Authors
2017 The Authors.
2018 EMBO
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2018
– notice: 2017 The Authors
– notice: 2017 The Authors.
– notice: 2018 EMBO
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
5PM
DOI 10.15252/embj.201797674
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Domenico Russo et al
EISSN 1460-2075
EndPage n/a
ExternalDocumentID PMC5881633
oai:HAL:hal-03968030v1
29282205
10_15252_embj_201797674
EMBJ201797674
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministero della Salute (Ministry of Health, Italy)
  grantid: GR‐2011‐02352256
  funderid: 10.13039/501100003196
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)
  grantid: PON_00862; PON02_00619
  funderid: 10.13039/501100003407
– fundername: Human Frontier Science Program
  grantid: RGP0029‐2014
  funderid: 10.13039/100004412
– fundername: Epigenomics Flagship Project EPIGEN MIUR‐CNR
– fundername: European Research Council
  grantid: 340485
  funderid: 10.13039/501100000781
– fundername: AIRETT Foundation
– fundername: RSF
  grantid: 14‐41‐00039
  funderid: 10.13039/100000935
– fundername: National Research Institute University HSE
– fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC)
  grantid: MFAG 10585
  funderid: 10.13039/501100005010
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)
  funderid: PON_00862; PON02_00619
– fundername: RSF
  funderid: 14‐41‐00039
– fundername: European Research Council
  funderid: 340485
– fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC)
  funderid: MFAG 10585
– fundername: Human Frontier Science Program
  funderid: RGP0029‐2014
– fundername: Ministero della Salute (Ministry of Health, Italy)
  funderid: GR‐2011‐02352256
– fundername: European Research Council
  grantid: 340485
– fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)
  grantid: PON_00862; PON02_00619
– fundername: RSF
  grantid: 14‐41‐00039
– fundername: Ministero della Salute (Ministry of Health, Italy)
  grantid: GR‐2011‐02352256
– fundername: Human Frontier Science Program
  grantid: RGP0029‐2014
– fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC)
  grantid: MFAG 10585
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABZEH
ACAHQ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AFBPY
AFFNX
AFGKR
AFRAH
AFWVQ
AFZJQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
G-S
GROUPED_DOAJ
GX1
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O8X
O9-
OK1
P2P
P2W
Q2X
R.K
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
ESTFP
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
1XC
5PM
ID FETCH-LOGICAL-c6134-f3bb6bd7d75a9ca5441a9b99b09ae9aa871c946975993744c98dbb16bca301ce3
IEDL.DBID WIN
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
1460-2075
IngestDate Tue Sep 30 16:42:34 EDT 2025
Tue Oct 14 20:45:40 EDT 2025
Sun Sep 28 02:55:07 EDT 2025
Mon Oct 06 17:25:22 EDT 2025
Mon Jul 21 06:05:31 EDT 2025
Sat Nov 29 03:25:00 EST 2025
Tue Nov 18 22:24:16 EST 2025
Thu Sep 25 07:36:26 EDT 2025
Sat Nov 29 01:24:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords bistability
AUTS2
neural differentiation
epigenetics
glycosphingolipids
Language English
License 2017 The Authors.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6134-f3bb6bd7d75a9ca5441a9b99b09ae9aa871c946975993744c98dbb16bca301ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
See also: https://doi.org/10.15252/embj.201899221 (April 2018)
ORCID 0000-0002-0734-4127
0000-0002-2168-0004
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.201797674
PMID 29282205
PQID 2020929054
PQPubID 35985
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881633
hal_primary_oai_HAL_hal_03968030v1
proquest_miscellaneous_1981734309
proquest_journals_2020929054
pubmed_primary_29282205
crossref_primary_10_15252_embj_201797674
crossref_citationtrail_10_15252_embj_201797674
wiley_primary_10_15252_embj_201797674_EMBJ201797674
springer_journals_10_15252_embj_201797674
PublicationCentury 2000
PublicationDate 03 April 2018
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: 03 April 2018
  day: 03
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: New York
– name: Hoboken
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2018
Publisher Nature Publishing Group UK
Springer Nature B.V
EMBO Press
John Wiley and Sons Inc
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: EMBO Press
– name: John Wiley and Sons Inc
References 2002; 16
2010; 10
2009; 41
2010; 13
2010; 107
2013; 22
2013; 21
2003; 13
2002; 115
2004; 6
2016; 73
2014; 23
2013a; 280
2011; 111
2013; 9
1974; 183
2010; 20
2014; 4
1994; 269
2005; 102
2004; 36
1997; 17
2005; 76
1999; 96
2012; 26
2014; 9
2009; 327
2011; 29
2001; 96
2007; 449
2015; 5
2014; 516
2015; 523
2013; 45
2007; 121
2008; 17
2006; 7
2016; 10
2016; 53
2013; 92
2008; 1779
1993; 104
2011; 8
2003; 34
2002; 27
2013b; 501
2008; 1780
2003; 426
2005; 120
1992; 256
1986; 163
2009; 461
2014; 221
2016; 170
2008; 40
2012; 45
2014; 71
1961; 26
2014; 34
1998; 142
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Saunders WS (e_1_2_8_50_1) 1993; 104
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
29572242 - EMBO J. 2018 Apr 3;37(7):e99221. doi: 10.15252/embj.201899221.
References_xml – volume: 501
  start-page: 116
  year: 2013b
  end-page: 120
  article-title: Vesicular and non‐vesicular transport feed distinct glycosylation pathways in the Golgi
  publication-title: Nature
– volume: 6
  start-page: 73
  year: 2004
  end-page: 77
  article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes
  publication-title: Nat Cell Biol
– volume: 449
  start-page: 62
  year: 2007
  end-page: 67
  article-title: Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide
  publication-title: Nature
– volume: 73
  start-page: 1399
  year: 2016
  end-page: 1411
  article-title: Epigenetic regulation of early neural fate commitment
  publication-title: Cell Mol Life Sci
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res
– volume: 1779
  start-page: 432
  year: 2008
  end-page: 437
  article-title: Transcriptional regulation of neuronal differentiation: the epigenetic layer of complexity
  publication-title: Biochem Biophys Acta
– volume: 5
  start-page: 14988
  year: 2015
  article-title: Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells
  publication-title: Sci Rep
– volume: 17
  start-page: 4105
  year: 1997
  end-page: 4113
  article-title: RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor
  publication-title: Mol Cell Biol
– volume: 26
  start-page: 389
  year: 1961
  end-page: 401
  article-title: Teleonomic mechanisms in cellular metabolism, growth, and differentiation
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 183
  start-page: 656
  year: 1974
  end-page: 657
  article-title: Cholera toxin: interaction of subunits with ganglioside GM1
  publication-title: Science
– volume: 121
  start-page: 501
  year: 2007
  end-page: 509
  article-title: Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation
  publication-title: Hum Genet
– volume: 23
  start-page: 418
  year: 2014
  end-page: 433
  article-title: A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation
  publication-title: Hum Mol Genet
– volume: 8
  start-page: 571
  year: 2011
  end-page: 573
  article-title: Sharper low‐power STED nanoscopy by time gating
  publication-title: Nat Methods
– volume: 26
  start-page: 6
  year: 2012
  end-page: 10
  article-title: The enemy within: intronic miR‐26b represses its host gene, ctdsp2, to regulate neurogenesis
  publication-title: Genes Dev
– volume: 221
  start-page: 1223
  year: 2014
  end-page: 1243
  article-title: Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system
  publication-title: Brain Struct Funct
– volume: 10
  start-page: 457
  year: 2016
  article-title: Impaired levels of gangliosides in the corpus callosum of huntington disease animal models
  publication-title: Front Neurosci
– volume: 115
  start-page: 817
  year: 2002
  end-page: 826
  article-title: Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle
  publication-title: J Cell Sci
– volume: 34
  start-page: 27
  year: 2003
  end-page: 29
  article-title: Mutations of the X‐linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism
  publication-title: Nat Genet
– volume: 17
  start-page: 573
  year: 2008
  end-page: 584
  article-title: High‐throughput screening‐compatible single‐step protocol to differentiate embryonic stem cells in neurons
  publication-title: Stem Cells Dev
– volume: 10
  start-page: 9
  year: 2010
  end-page: 15
  article-title: Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology
  publication-title: Gene Expr Patterns
– volume: 21
  start-page: 528
  year: 2013
  end-page: 534
  article-title: Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency
  publication-title: Eur J Hum Genet
– volume: 16
  start-page: 2893
  year: 2002
  end-page: 2905
  article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein
  publication-title: Genes Dev
– volume: 104
  start-page: 573
  issue: Pt. 2
  year: 1993
  end-page: 582
  article-title: Molecular cloning of a human homologue of heterochromatin protein HP1 using anti‐centromere autoantibodies with anti‐chromo specificity
  publication-title: J Cell Sci
– volume: 9
  start-page: 2166
  year: 2014
  end-page: 2179
  article-title: Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis
  publication-title: Cell Rep
– volume: 163
  start-page: 1391
  year: 1986
  end-page: 1404
  article-title: Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin‐binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide
  publication-title: J Exp Med
– volume: 36
  start-page: 1225
  year: 2004
  end-page: 1229
  article-title: Infantile‐onset symptomatic epilepsy syndrome caused by a homozygous loss‐of‐function mutation of GM3 synthase
  publication-title: Nat Genet
– volume: 71
  start-page: 4221
  year: 2014
  end-page: 4241
  article-title: Metabolic circuits in neural stem cells
  publication-title: Cell Mol Life Sci
– volume: 9
  start-page: e1003221
  year: 2013
  article-title: Function and regulation of AUTS2, a gene implicated in autism and human evolution
  publication-title: PLoS Genet
– volume: 45
  start-page: 344
  year: 2012
  end-page: 356
  article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes
  publication-title: Mol Cell
– volume: 27
  start-page: 1507
  year: 2002
  end-page: 1512
  article-title: Differential effects of three inhibitors of glycosphingolipid biosynthesis on neuronal differentiation of embryonal carcinoma stem cells
  publication-title: Neurochem Res
– volume: 40
  start-page: 897
  year: 2008
  end-page: 903
  article-title: Combinatorial patterns of histone acetylations and methylations in the human genome
  publication-title: Nat Genet
– volume: 4
  start-page: e431
  year: 2014
  article-title: Genome‐wide distribution of Auts2 binding localizes with active neurodevelopmental genes
  publication-title: Transl Psychiatry
– volume: 1780
  start-page: 325
  year: 2008
  end-page: 346
  article-title: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends
  publication-title: Biochem Biophys Acta
– volume: 45
  start-page: 1300
  year: 2013
  end-page: 1308
  article-title: Mutations in genes encoding the cadherin receptor‐ligand pair DCHS1 and FAT4 disrupt cerebral cortical development
  publication-title: Nat Genet
– volume: 142
  start-page: 887
  year: 1998
  end-page: 898
  article-title: The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain
  publication-title: J Cell Biol
– volume: 426
  start-page: 803
  year: 2003
  end-page: 809
  article-title: Molecular machinery for non‐vesicular trafficking of ceramide
  publication-title: Nature
– volume: 92
  start-page: 210
  year: 2013
  end-page: 220
  article-title: Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus
  publication-title: Am J Hum Genet
– volume: 256
  start-page: 843
  year: 1992
  end-page: 846
  article-title: Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment
  publication-title: Science
– volume: 120
  start-page: 169
  year: 2005
  end-page: 181
  article-title: Genomic maps and comparative analysis of histone modifications in human and mouse
  publication-title: Cell
– volume: 20
  start-page: 327
  year: 2010
  end-page: 348
  article-title: The basics of brain development
  publication-title: Neuropsychol Rev
– volume: 102
  start-page: 2725
  year: 2005
  end-page: 2730
  article-title: Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon‐glial interactions
  publication-title: Proc Natl Acad Sci USA
– volume: 34
  start-page: 11884
  year: 2014
  end-page: 11896
  article-title: TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination
  publication-title: J Neurosci
– volume: 29
  start-page: 1995
  year: 2011
  end-page: 2004
  article-title: Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages
  publication-title: Stem Cells
– volume: 516
  start-page: 349
  year: 2014
  end-page: 354
  article-title: An AUTS2‐Polycomb complex activates gene expression in the CNS
  publication-title: Nature
– volume: 111
  start-page: 6387
  year: 2011
  end-page: 6422
  article-title: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics
  publication-title: Chem Rev
– volume: 9
  start-page: 307
  year: 2014
  end-page: 320
  article-title: Glycosphingolipids in the regulation of the nervous system
  publication-title: Adv Neurobiol
– volume: 76
  start-page: 572
  year: 2005
  end-page: 580
  article-title: Genetic heterogeneity in Rubinstein‐Taybi syndrome: mutations in both the CBP and EP300 genes cause disease
  publication-title: Am J Hum Genet
– volume: 280
  start-page: 6338
  year: 2013a
  end-page: 6353
  article-title: Glycosphingolipids: synthesis and functions
  publication-title: FEBS J
– volume: 523
  start-page: 88
  year: 2015
  end-page: 91
  article-title: Cell‐intrinsic adaptation of lipid composition to local crowding drives social behaviour
  publication-title: Nature
– volume: 22
  start-page: 3749
  year: 2013
  end-page: 3760
  article-title: The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells
  publication-title: Hum Mol Genet
– volume: 170
  start-page: 2200
  year: 2016
  end-page: 2205
  article-title: GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: masquerading as rett syndrome‐like phenotype
  publication-title: Am J Med Genet A
– volume: 53
  start-page: 523
  year: 2016
  end-page: 532
  article-title: A detailed clinical analysis of 13 patients with AUTS2 syndrome further delineates the phenotypic spectrum and underscores the behavioural phenotype
  publication-title: J Med Genet
– volume: 96
  start-page: 59
  year: 2001
  end-page: 67
  article-title: Developmental and functional evidence of a role for Zfhep in neural cell development
  publication-title: Brain Res Mol Brain Res
– volume: 7
  start-page: R100
  year: 2006
  article-title: Cell Profiler: image analysis software for identifying and quantifying cell phenotypes
  publication-title: Genome Biol
– volume: 269
  start-page: 8362
  year: 1994
  end-page: 8365
  article-title: N‐butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis
  publication-title: J Biol Chem
– volume: 102
  start-page: 12459
  year: 2005
  end-page: 12464
  article-title: Cell‐specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth
  publication-title: Proc Natl Acad Sci USA
– volume: 327
  start-page: 132
  year: 2009
  end-page: 142
  article-title: Transcription factor Lmo4 defines the shape of functional areas in developing cortices and regulates sensorimotor control
  publication-title: Dev Biol
– volume: 41
  start-page: 117
  year: 2009
  end-page: 126
  article-title: Lessons from two human chromatin diseases, ICF syndrome and Rett syndrome
  publication-title: Int J Biochem Cell Biol
– volume: 13
  start-page: 1365
  year: 2010
  end-page: 1372
  article-title: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c‐Jun
  publication-title: Nat Neurosci
– volume: 107
  start-page: 22564
  year: 2010
  end-page: 22569
  article-title: Switching of the core structures of glycosphingolipids from globo‐ and lacto‐ to ganglio‐series upon human embryonic stem cell differentiation
  publication-title: Proc Natl Acad Sci USA
– volume: 461
  start-page: 520
  year: 2009
  end-page: 523
  article-title: Population context determines cell‐to‐cell variability in endocytosis and virus infection
  publication-title: Nature
– volume: 96
  start-page: 9142
  year: 1999
  end-page: 9147
  article-title: A vital role for glycosphingolipid synthesis during development and differentiation
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_8_61_1
  doi: 10.1073/pnas.96.16.9142
– ident: e_1_2_8_9_1
  doi: 10.1038/nature06097
– ident: e_1_2_8_2_1
  doi: 10.1016/j.gep.2009.11.005
– ident: e_1_2_8_59_1
  doi: 10.1038/nmeth.1624
– ident: e_1_2_8_62_1
  doi: 10.1073/pnas.0407785102
– ident: e_1_2_8_36_1
  doi: 10.1002/stem.750
– ident: e_1_2_8_8_1
  doi: 10.1186/gb-2006-7-10-r100
– ident: e_1_2_8_17_1
  doi: 10.1016/j.molcel.2012.01.002
– ident: e_1_2_8_16_1
  doi: 10.1007/978-1-4939-1154-7_14
– ident: e_1_2_8_49_1
  doi: 10.1128/MCB.17.7.4105
– ident: e_1_2_8_22_1
  doi: 10.1038/nature02188
– ident: e_1_2_8_24_1
  doi: 10.1038/nn.2644
– ident: e_1_2_8_21_1
  doi: 10.1101/gad.184416.111
– ident: e_1_2_8_44_1
  doi: 10.1038/tp.2014.78
– ident: e_1_2_8_27_1
  doi: 10.1007/s00429-014-0965-8
– ident: e_1_2_8_45_1
  doi: 10.1523/JNEUROSCI.1220-14.2014
– ident: e_1_2_8_56_1
  doi: 10.1038/ng1460
– ident: e_1_2_8_5_1
  doi: 10.1136/jmedgenet-2015-103601
– ident: e_1_2_8_42_1
  doi: 10.1038/srep14988
– ident: e_1_2_8_25_1
  doi: 10.1016/j.celrep.2014.11.045
– ident: e_1_2_8_33_1
  doi: 10.1101/gad.1035902
– ident: e_1_2_8_34_1
  doi: 10.1002/ajmg.a.37773
– ident: e_1_2_8_58_1
  doi: 10.1007/s11065-010-9148-4
– ident: e_1_2_8_31_1
  doi: 10.1007/s00439-006-0284-0
– ident: e_1_2_8_47_1
  doi: 10.1007/s00018-015-2125-6
– ident: e_1_2_8_57_1
  doi: 10.1038/nature08282
– ident: e_1_2_8_41_1
  doi: 10.1101/SQB.1961.026.01.048
– ident: e_1_2_8_52_1
  doi: 10.1126/science.1350379
– ident: e_1_2_8_48_1
  doi: 10.1086/429130
– ident: e_1_2_8_39_1
  doi: 10.1016/j.biocel.2008.07.026
– ident: e_1_2_8_4_1
  doi: 10.1016/j.ajhg.2012.12.011
– ident: e_1_2_8_15_1
  doi: 10.1038/nature14429
– volume: 104
  start-page: 573
  issue: 2
  year: 1993
  ident: e_1_2_8_50_1
  article-title: Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti‐centromere autoantibodies with anti‐chromo specificity
  publication-title: J Cell Sci
  doi: 10.1242/jcs.104.2.573
– ident: e_1_2_8_30_1
  doi: 10.1073/pnas.0500893102
– ident: e_1_2_8_55_1
  doi: 10.1093/hmg/ddt226
– ident: e_1_2_8_32_1
  doi: 10.1007/s00018-014-1686-0
– ident: e_1_2_8_10_1
  doi: 10.1111/febs.12559
– ident: e_1_2_8_23_1
  doi: 10.1126/science.183.4125.656
– ident: e_1_2_8_7_1
  doi: 10.1038/ng.2765
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ydbio.2008.12.003
– ident: e_1_2_8_14_1
  doi: 10.1038/ejhg.2012.202
– ident: e_1_2_8_19_1
  doi: 10.1016/j.bbagen.2007.08.015
– ident: e_1_2_8_12_1
  doi: 10.3389/fnins.2016.00457
– ident: e_1_2_8_63_1
  doi: 10.1016/S0169-328X(01)00267-4
– ident: e_1_2_8_51_1
  doi: 10.1083/jcb.142.4.887
– ident: e_1_2_8_40_1
  doi: 10.1021/cr2002917
– ident: e_1_2_8_35_1
  doi: 10.1073/pnas.1007290108
– ident: e_1_2_8_38_1
  doi: 10.1242/jcs.115.4.817
– ident: e_1_2_8_29_1
  doi: 10.1038/ng1136
– ident: e_1_2_8_46_1
  doi: 10.1016/S0021-9258(17)37202-2
– ident: e_1_2_8_6_1
  doi: 10.1093/hmg/ddt434
– ident: e_1_2_8_18_1
  doi: 10.1038/nature13921
– ident: e_1_2_8_37_1
  doi: 10.1023/A:1021652506370
– ident: e_1_2_8_11_1
  doi: 10.1038/nature12423
– ident: e_1_2_8_20_1
  doi: 10.1016/j.bbagrm.2008.07.006
– ident: e_1_2_8_53_1
  doi: 10.1038/ncb1076
– ident: e_1_2_8_54_1
  doi: 10.1101/gr.1239303
– ident: e_1_2_8_13_1
  doi: 10.1089/scd.2007.0130
– ident: e_1_2_8_28_1
  doi: 10.1084/jem.163.6.1391
– ident: e_1_2_8_43_1
  doi: 10.1371/journal.pgen.1003221
– ident: e_1_2_8_3_1
  doi: 10.1016/j.cell.2005.01.001
– ident: e_1_2_8_60_1
  doi: 10.1038/ng.154
– reference: 29572242 - EMBO J. 2018 Apr 3;37(7):e99221. doi: 10.15252/embj.201899221.
SSID ssj0005871
Score 2.5164442
Snippet Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Acetylation
AUTS2
bistability
Cell differentiation
Cell Differentiation - drug effects
Cell Differentiation - genetics
Cell Differentiation - physiology
Cellular Reprogramming - drug effects
Cellular Reprogramming - physiology
Circuits
Constraining
Cytoskeletal Proteins
Differentiation (biology)
EMBO21
EMBO27
Enzymes
epigenetics
Epigenomics
Gangliosides
Gangliosides - metabolism
Gene Expression
Gene Silencing
Glycosphingolipids
Glycosphingolipids - metabolism
Glycosphingolipids - pharmacology
HeLa Cells
Histones - metabolism
Humans
Lactosylceramide a-2,3-sialyltransferase
Life Sciences
Metabolism
Molecular modelling
neural differentiation
Neural stem cells
Neurodevelopmental Disorders
Neurogenesis - drug effects
Neurogenesis - genetics
Neurogenesis - physiology
Neurons - metabolism
Promoter Regions, Genetic - drug effects
Proteins - genetics
Proteins - metabolism
Sialyltransferases - genetics
Sialyltransferases - metabolism
Stem cells
Transcription Factors
Title Glycosphingolipid metabolic reprogramming drives neural differentiation
URI https://link.springer.com/article/10.15252/embj.201797674
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201797674
https://www.ncbi.nlm.nih.gov/pubmed/29282205
https://www.proquest.com/docview/2020929054
https://www.proquest.com/docview/1981734309
https://hal.science/hal-03968030
https://pubmed.ncbi.nlm.nih.gov/PMC5881633
Volume 37
WOSCitedRecordID wos000429008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RAoILjwIlUFYBcYBDirPOwz6W0m1BywohKvYW-ZFVU-1mV5ttpf57ZpxHFVUVEuKWxI_E42_ssTP-BuA9zxku0ZQO1IzNgkhaFuiICAGkCW0ci4Qn7qDwOJ1MxHQqfzTehHQWpuaH6DbcSDPceE0KrnTVRuwh1tB8oc_JNyuVREiDo3AYOdX8_XVy7eQh3JLL7bJEoZANuQ_V8KlfvjcvbZ2RV-RNk_Om52T3-7Rv3LrZafT4P7TrCTxqTFP_oMbSU7iTlztwvw5WebUDDw7b2HDP4Ph4fmWW1Yq2r5bzYlVYf5FvEE_zwvjEk-mcvhaY6ts1Edv6xJuJlbfxWDY1Ip7D6ejo1-FJ0IRkCAzO-1Ew41on2qY2jZU0igKYKaml1IxIvpVCcRuJK-40JrsniowUVusw0UbhSGJy_gK2y2WZvwRfp4gSphMZzdCq0ELnNh4aregsrcVaPdhvOyQzDV85hc2YZ7RuIVllJKmsk5QHH7oCq5qq4_as77CHu1xEsX1yMM7oGeMyETjyXYYe7LUAyBrFrrCKIUOLEg1dD952ySh9-s-iynx5UWWhFGHKI86wDbs1XrpXDSX57bLYg7SHpN639FPK4szRfsdCoPHMPfjYYu76s25tJ3dQ-5s8sqPvn791d6_-qdRreIjXwnk18T3Y3qwv8jdwz1xuimo9gK10KgZw98vP0el44JT0D8TpOlk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RLahceBQoKQUC4kAPAWedh31sS7cLpHtArdRbZDtZNdVudrW7rdR_3xnn0UZVhYQ4xo4n8eSzPeOMvwH4wnOGLprSnhqzsRfIjHk6IEIAafwsDEXEI3tQOIlHI3F2Ju-ehan4IdoNNxoZdr6mAU4b0k3KHqINzaf6goKzYkmMNGuwHiCYwh6s__gzOE1uAz2EdbvsTkvgC1kT_JCQ710RnbVp7ZwiI--bnfejJ9tfqF0D165Qg-f_o28v4Fltn7p7FaBewqO83IQnVcbK603YOGgSxL2Co6PJtZkt57SHNZsU8yJzp_kKQTUpjEtkmTbya4q1brYgdluXyDNReJOUZVXB4jWcDg5PDoZenZfBM7j4B96Yax3pLM7iUEmjKIuZklpKzYjpWynUt5HodschGT9BYKTItPYjbRROJybnb6BXzsr8Lbg6RqgwHclgjKaFFjrPwr7Rig7UZijVgW_NF0lNTVpOuTMmKTkvpKuUNJW2mnLga9tgXvF1PHzrZ_zE7V3Esz3cS1IqY1xGAqe_K9-BnQYBaT26lyiiz9CsRGvXgU9tNWqffraoMp9dLlNfCj_mAWfYh60KMO2j-pKCd1noQNyBUuddujVlcW65v0Mh0ILmDuw2oLt9rQf7yS3W_qaP9PB4_1d7tf1PrT7CxvDkOEmTn6Pf7-Aplgsb5sR3oLdaXObv4bG5WhXLxYd6lN4AESs9HQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RFgoXHuUVKBAQh3IITdZOYh9L222BZYUQlXqL_IoatJtd7W4r9d8zk1eJqgoJcUycTOzJN_bYHn8D8J65EKdoSgcqD_OASxsGmhMhgDSRjWORsKQ6KDxKx2Nxeir_PAtT80N0C25kGVV_TQbu5jZvU_YQbaib6l8UnJVKYqRZgw0eywSNc-Pgx_BkdBXoIappV7XSwiMhG4IfErLbF9Ebm9bOKDLyutt5PXqy20LtO7jVCDV88D_a9hDuN_6pv1cD6hHccuUW3KkzVl5uwd39NkHcYzg6mlya2XJOa1izSTEvrD91KwTVpDA-kWVWkV9TLPXtgthtfSLPROFtUpZVDYsncDI8_Ll_HDR5GQKDgz8PcqZ1om1q01hJoyiLmZJaSh0S07dSqG8jcdqdxuT8cG6ksFpHiTYKuxPj2FNYL2elew6-ThEqoU4kz9G10EI7Gw-MVnSg1qJUDz62fyQzDWk55c6YZDR5IV1lpKms05QHO90L85qv4-ZH3-Ev7p4inu3jvVFG90ImE4Hd30XkwXaLgKyx7iWKGIToVqK368Hbrhi1T5stqnSz82UWSRGljLMQ2_CsBkz3qYGk4N0w9iDtQalXl35JWZxV3N-xEOhBMw8-tKC7qtaN7WQV1v6mj-zw26cv3dWLf3rrDWx-Pxhmo8_jry_hHt4WVZQT24b11eLcvYLb5mJVLBevGyP9DUOPPJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycosphingolipid+metabolic+reprogramming+drives+neural+differentiation&rft.jtitle=The+EMBO+journal&rft.au=Russo%2C+Domenico&rft.au=Della+Ragione%2C+Floriana&rft.au=Rizzo%2C+Riccardo&rft.au=Sugiyama%2C+Eiji&rft.date=2018-04-03&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.201797674&rft.externalDBID=10.15252%252Fembj.201797674&rft.externalDocID=EMBJ201797674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon