Glycosphingolipid metabolic reprogramming drives neural differentiation
Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to...
Uloženo v:
| Vydáno v: | The EMBO journal Ročník 37; číslo 7 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
03.04.2018
Springer Nature B.V EMBO Press John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.
Synopsis
Schematic representation of glycosphingolipid reprogramming circuit in neural differentiation.
Globo‐series glycosphingolipids inhibit the production of ganglio‐series glycosphingolipids.
AUTS2 expression is repressed by globo‐series glycosphingolipids.
AUTS2 activates the promoter of the first and rate limiting enzyme involved in ganglio‐series glycosphingolipids production i.e., GM3 synthase by inducing histone acetylation.
The globo‐AUTS2 axis regulates the expression of neuronal genes during neural differentiation.
The decrease of globo‐series glycosphingolipids is required for AUTS2 induction and for stem cell differentiation to neural cells.
Graphical Abstract
The switch from globo‐ to ganglio‐series glycophospholipids during neurodevelopment involves a self‐contained regulatory circuit controlling expression of both neuronal and ganglioside‐producing genes. |
|---|---|
| AbstractList | Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. Synopsis Schematic representation of glycosphingolipid reprogramming circuit in neural differentiation. Globo‐series glycosphingolipids inhibit the production of ganglio‐series glycosphingolipids. AUTS2 expression is repressed by globo‐series glycosphingolipids. AUTS2 activates the promoter of the first and rate limiting enzyme involved in ganglio‐series glycosphingolipids production i.e., GM3 synthase by inducing histone acetylation. The globo‐AUTS2 axis regulates the expression of neuronal genes during neural differentiation. The decrease of globo‐series glycosphingolipids is required for AUTS2 induction and for stem cell differentiation to neural cells. Graphical Abstract The switch from globo‐ to ganglio‐series glycophospholipids during neurodevelopment involves a self‐contained regulatory circuit controlling expression of both neuronal and ganglioside‐producing genes. Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. Synopsis Schematic representation of glycosphingolipid reprogramming circuit in neural differentiation. Globo‐series glycosphingolipids inhibit the production of ganglio‐series glycosphingolipids. AUTS2 expression is repressed by globo‐series glycosphingolipids. AUTS2 activates the promoter of the first and rate limiting enzyme involved in ganglio‐series glycosphingolipids production i.e., GM3 synthase by inducing histone acetylation. The globo‐AUTS2 axis regulates the expression of neuronal genes during neural differentiation. The decrease of globo‐series glycosphingolipids is required for AUTS2 induction and for stem cell differentiation to neural cells. The switch from globo‐ to ganglio‐series glycophospholipids during neurodevelopment involves a self‐contained regulatory circuit controlling expression of both neuronal and ganglioside‐producing genes. Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo‐ to ganglio‐series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self‐contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo‐series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate‐limiting ganglioside‐producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo–AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology. |
| Author | Russo, Domenico Fioriniello, Salvatore De Gregorio, Roberto Guarracino, Mario R Maglione, Vittorio Luini, Alberto Setou, Mitsutoshi Della Ragione, Floriana Capasso, Serena D'Esposito, Maurizio Hori, Kei Sticco, Lucia Rizzo, Riccardo Johannes, Ludger Bellenchi, Gian Carlo Granata, Ilaria D'Angelo, Giovanni Hoshino, Mikio Sugiyama, Eiji Scalabrì, Francesco |
| AuthorAffiliation | 2 Institute of Genetics and Biophysics National Research Council Naples Italy 6 Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy 8 Chemical Biology of Membranes and Therapeutic Delivery Unit Institut Curie INSERM U 1143, CNRS, UMR 3666 PSL Research University Paris Cedex 05 France 4 International Mass Imaging Center Department of Cellular and Molecular Anatomy Hamamatsu University School of Medicine Higashi‐ku Hamamatsu Japan 7 High Performance Computing and Networking Institute National Research Council Naples Italy 1 Institute of Protein Biochemistry National Research Council Naples Italy 5 Department of Biochemistry and Cellular Biology National Institute of Neuroscience National Center of Neurology and Psychiatry (NCNP) Tokyo Japan 3 IRCCS INM Neuromed Pozzilli Italy |
| AuthorAffiliation_xml | – name: 1 Institute of Protein Biochemistry National Research Council Naples Italy – name: 8 Chemical Biology of Membranes and Therapeutic Delivery Unit Institut Curie INSERM U 1143, CNRS, UMR 3666 PSL Research University Paris Cedex 05 France – name: 2 Institute of Genetics and Biophysics National Research Council Naples Italy – name: 7 High Performance Computing and Networking Institute National Research Council Naples Italy – name: 3 IRCCS INM Neuromed Pozzilli Italy – name: 5 Department of Biochemistry and Cellular Biology National Institute of Neuroscience National Center of Neurology and Psychiatry (NCNP) Tokyo Japan – name: 6 Istituto di Ricovero e Cura a Carattere Scientifico‐SDN Naples Italy – name: 4 International Mass Imaging Center Department of Cellular and Molecular Anatomy Hamamatsu University School of Medicine Higashi‐ku Hamamatsu Japan |
| Author_xml | – sequence: 1 givenname: Domenico surname: Russo fullname: Russo, Domenico organization: Institute of Protein Biochemistry, National Research Council – sequence: 2 givenname: Floriana surname: Della Ragione fullname: Della Ragione, Floriana organization: Institute of Genetics and Biophysics, National Research Council, IRCCS INM, Neuromed – sequence: 3 givenname: Riccardo surname: Rizzo fullname: Rizzo, Riccardo organization: Institute of Protein Biochemistry, National Research Council – sequence: 4 givenname: Eiji surname: Sugiyama fullname: Sugiyama, Eiji organization: International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine – sequence: 5 givenname: Francesco surname: Scalabrì fullname: Scalabrì, Francesco organization: Institute of Genetics and Biophysics, National Research Council, IRCCS INM, Neuromed – sequence: 6 givenname: Kei surname: Hori fullname: Hori, Kei organization: Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) – sequence: 7 givenname: Serena surname: Capasso fullname: Capasso, Serena organization: Institute of Protein Biochemistry, National Research Council, Istituto di Ricovero e Cura a Carattere Scientifico‐SDN – sequence: 8 givenname: Lucia surname: Sticco fullname: Sticco, Lucia organization: Institute of Protein Biochemistry, National Research Council – sequence: 9 givenname: Salvatore surname: Fioriniello fullname: Fioriniello, Salvatore organization: Institute of Genetics and Biophysics, National Research Council – sequence: 10 givenname: Roberto surname: De Gregorio fullname: De Gregorio, Roberto organization: Institute of Genetics and Biophysics, National Research Council – sequence: 11 givenname: Ilaria surname: Granata fullname: Granata, Ilaria organization: High Performance Computing and Networking Institute, National Research Council – sequence: 12 givenname: Mario R surname: Guarracino fullname: Guarracino, Mario R organization: High Performance Computing and Networking Institute, National Research Council – sequence: 13 givenname: Vittorio surname: Maglione fullname: Maglione, Vittorio organization: IRCCS INM, Neuromed – sequence: 14 givenname: Ludger surname: Johannes fullname: Johannes, Ludger organization: Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, INSERM U 1143, CNRS, UMR 3666, PSL Research University – sequence: 15 givenname: Gian Carlo surname: Bellenchi fullname: Bellenchi, Gian Carlo organization: Institute of Genetics and Biophysics, National Research Council – sequence: 16 givenname: Mikio surname: Hoshino fullname: Hoshino, Mikio organization: Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP) – sequence: 17 givenname: Mitsutoshi surname: Setou fullname: Setou, Mitsutoshi organization: International Mass Imaging Center, Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine – sequence: 18 givenname: Maurizio surname: D'Esposito fullname: D'Esposito, Maurizio organization: Institute of Genetics and Biophysics, National Research Council, IRCCS INM, Neuromed – sequence: 19 givenname: Alberto surname: Luini fullname: Luini, Alberto organization: Institute of Protein Biochemistry, National Research Council, Istituto di Ricovero e Cura a Carattere Scientifico‐SDN – sequence: 20 givenname: Giovanni orcidid: 0000-0002-0734-4127 surname: D'Angelo fullname: D'Angelo, Giovanni email: g.dangelo@ibp.cnr.it organization: Institute of Protein Biochemistry, National Research Council, Istituto di Ricovero e Cura a Carattere Scientifico‐SDN |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29282205$$D View this record in MEDLINE/PubMed https://hal.science/hal-03968030$$DView record in HAL |
| BookMark | eNqFkc9v0zAUxy00xLrBmRuKxIUduvlnHHOYNKatAxVxgbNlO07rKrGDnRT1v8dbRhmVgJMtv-_nfd_z9wQc-eAtAK8RPEcMM3xhO705xxBxwUtOn4EZoiWcY8jZEZhBXKI5RZU4BicpbSCErOLoBTjGAlcYQzYDi0W7MyH1a-dXoXW9q4vODkrnuymi7WNYRdV1uVrU0W1tKrwdo2qL2jWNjdYPTg0u-JfgeaPaZF89nqfg2-3N1-u7-fLL4uP11XJuSkTovCFal7rmNWdKGMUoRUpoITQUygql8nhG0FJwJgThlBpR1VqjUhtFIDKWnILLqW8_6s7WJg-Qp5F9dJ2KOxmUk39WvFvLVdhKVlWoJCQ3OJsarA-wu6ulvH-DRJQVJHCLsvbdo1kM30ebBtm5ZGzbKm_DmCQSFeKEEiiy9O2BdBPG6PNXSAwxFFhARrPqzdPp9_6_8siCi0lgYkgp2mYvQVA-JC7vE5f7xDPBDgjjhodI8vqu_Qf3fuJ-uNbu_mcjbz5_-PQUhhOcMudXNv7e9m9-PwGQYtFo |
| CitedBy_id | crossref_primary_10_1007_s12015_022_10459_0 crossref_primary_10_3389_fnmol_2022_858582 crossref_primary_10_3390_cells11010011 crossref_primary_10_15252_embj_2021107766 crossref_primary_10_1111_bpa_70033 crossref_primary_10_1038_s41598_020_79666_4 crossref_primary_10_1093_hmg_ddad146 crossref_primary_10_1016_j_jlr_2024_100609 crossref_primary_10_1007_s00438_024_02144_3 crossref_primary_10_1038_s44319_024_00243_1 crossref_primary_10_1016_j_tcb_2024_12_002 crossref_primary_10_1042_BST20240315 crossref_primary_10_3390_epigenomes6040042 crossref_primary_10_15252_embj_2020107238 crossref_primary_10_1146_annurev_biochem_013118_111518 crossref_primary_10_1126_science_abh1623 crossref_primary_10_1016_j_clinms_2019_03_001 crossref_primary_10_1016_j_scr_2018_10_023 crossref_primary_10_3389_fcell_2022_842448 crossref_primary_10_1038_s44318_024_00343_7 crossref_primary_10_3389_fmolb_2020_00224 crossref_primary_10_1016_j_ymgme_2024_108434 crossref_primary_10_1186_s13024_020_00408_1 crossref_primary_10_1016_j_ymgme_2018_06_014 crossref_primary_10_15252_embj_201899221 crossref_primary_10_3389_fgene_2021_559998 crossref_primary_10_1002_jmd2_12353 crossref_primary_10_3390_ijms23179574 crossref_primary_10_3389_fpsyt_2021_580433 crossref_primary_10_1016_j_envres_2025_122398 crossref_primary_10_3389_fmolb_2022_813637 crossref_primary_10_1002_1873_3468_13541 crossref_primary_10_1016_j_scitotenv_2021_151967 crossref_primary_10_1016_j_jlr_2021_100128 crossref_primary_10_1038_s41598_024_69912_4 crossref_primary_10_1080_10408398_2020_1736510 crossref_primary_10_1038_s41580_022_00556_w crossref_primary_10_3390_biomedicines13040843 crossref_primary_10_1007_s00018_025_05759_w crossref_primary_10_1016_j_bbalip_2021_159021 crossref_primary_10_3390_ijms241411355 crossref_primary_10_1002_advs_202509733 crossref_primary_10_1007_s44211_022_00139_x crossref_primary_10_1016_j_nbd_2025_106851 crossref_primary_10_1038_s41467_023_36128_5 crossref_primary_10_1111_cmi_13167 crossref_primary_10_1242_jcs_219204 crossref_primary_10_1002_1873_3468_13114 crossref_primary_10_3390_ijms21228594 crossref_primary_10_1016_j_jlr_2025_100813 |
| Cites_doi | 10.1073/pnas.96.16.9142 10.1038/nature06097 10.1016/j.gep.2009.11.005 10.1038/nmeth.1624 10.1073/pnas.0407785102 10.1002/stem.750 10.1186/gb-2006-7-10-r100 10.1016/j.molcel.2012.01.002 10.1007/978-1-4939-1154-7_14 10.1128/MCB.17.7.4105 10.1038/nature02188 10.1038/nn.2644 10.1101/gad.184416.111 10.1038/tp.2014.78 10.1007/s00429-014-0965-8 10.1523/JNEUROSCI.1220-14.2014 10.1038/ng1460 10.1136/jmedgenet-2015-103601 10.1038/srep14988 10.1016/j.celrep.2014.11.045 10.1101/gad.1035902 10.1002/ajmg.a.37773 10.1007/s11065-010-9148-4 10.1007/s00439-006-0284-0 10.1007/s00018-015-2125-6 10.1038/nature08282 10.1101/SQB.1961.026.01.048 10.1126/science.1350379 10.1086/429130 10.1016/j.biocel.2008.07.026 10.1016/j.ajhg.2012.12.011 10.1038/nature14429 10.1242/jcs.104.2.573 10.1073/pnas.0500893102 10.1093/hmg/ddt226 10.1007/s00018-014-1686-0 10.1111/febs.12559 10.1126/science.183.4125.656 10.1038/ng.2765 10.1016/j.ydbio.2008.12.003 10.1038/ejhg.2012.202 10.1016/j.bbagen.2007.08.015 10.3389/fnins.2016.00457 10.1016/S0169-328X(01)00267-4 10.1083/jcb.142.4.887 10.1021/cr2002917 10.1073/pnas.1007290108 10.1242/jcs.115.4.817 10.1038/ng1136 10.1016/S0021-9258(17)37202-2 10.1093/hmg/ddt434 10.1038/nature13921 10.1023/A:1021652506370 10.1038/nature12423 10.1016/j.bbagrm.2008.07.006 10.1038/ncb1076 10.1101/gr.1239303 10.1089/scd.2007.0130 10.1084/jem.163.6.1391 10.1371/journal.pgen.1003221 10.1016/j.cell.2005.01.001 10.1038/ng.154 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018 2017 The Authors 2017 The Authors. 2018 EMBO Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2018 – notice: 2017 The Authors – notice: 2017 The Authors. – notice: 2018 EMBO – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC 5PM |
| DOI | 10.15252/embj.201797674 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Domenico Russo et al |
| EISSN | 1460-2075 |
| EndPage | n/a |
| ExternalDocumentID | PMC5881633 oai:HAL:hal-03968030v1 29282205 10_15252_embj_201797674 EMBJ201797674 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Ministero della Salute (Ministry of Health, Italy) grantid: GR‐2011‐02352256 funderid: 10.13039/501100003196 – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) grantid: PON_00862; PON02_00619 funderid: 10.13039/501100003407 – fundername: Human Frontier Science Program grantid: RGP0029‐2014 funderid: 10.13039/100004412 – fundername: Epigenomics Flagship Project EPIGEN MIUR‐CNR – fundername: European Research Council grantid: 340485 funderid: 10.13039/501100000781 – fundername: AIRETT Foundation – fundername: RSF grantid: 14‐41‐00039 funderid: 10.13039/100000935 – fundername: National Research Institute University HSE – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) grantid: MFAG 10585 funderid: 10.13039/501100005010 – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) funderid: PON_00862; PON02_00619 – fundername: RSF funderid: 14‐41‐00039 – fundername: European Research Council funderid: 340485 – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) funderid: MFAG 10585 – fundername: Human Frontier Science Program funderid: RGP0029‐2014 – fundername: Ministero della Salute (Ministry of Health, Italy) funderid: GR‐2011‐02352256 – fundername: European Research Council grantid: 340485 – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) grantid: PON_00862; PON02_00619 – fundername: RSF grantid: 14‐41‐00039 – fundername: Ministero della Salute (Ministry of Health, Italy) grantid: GR‐2011‐02352256 – fundername: Human Frontier Science Program grantid: RGP0029‐2014 – fundername: Associazione Italiana per la Ricerca sul Cancro (AIRC) grantid: MFAG 10585 |
| GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANLZ AAONW AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABZEH ACAHQ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYR AFBPY AFFNX AFGKR AFRAH AFWVQ AFZJQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN F5P G-S GROUPED_DOAJ GX1 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O8X O9- OK1 P2P P2W Q2X R.K RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM ESTFP AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 1XC 5PM |
| ID | FETCH-LOGICAL-c6134-f3bb6bd7d75a9ca5441a9b99b09ae9aa871c946975993744c98dbb16bca301ce3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Sep 30 16:42:34 EDT 2025 Tue Oct 14 20:45:40 EDT 2025 Sun Sep 28 02:55:07 EDT 2025 Mon Oct 06 17:25:22 EDT 2025 Mon Jul 21 06:05:31 EDT 2025 Sat Nov 29 03:25:00 EST 2025 Tue Nov 18 22:24:16 EST 2025 Thu Sep 25 07:36:26 EDT 2025 Sat Nov 29 01:24:55 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | bistability AUTS2 neural differentiation epigenetics glycosphingolipids |
| Language | English |
| License | 2017 The Authors. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6134-f3bb6bd7d75a9ca5441a9b99b09ae9aa871c946975993744c98dbb16bca301ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 See also: https://doi.org/10.15252/embj.201899221 (April 2018) |
| ORCID | 0000-0002-0734-4127 0000-0002-2168-0004 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.15252/embj.201797674 |
| PMID | 29282205 |
| PQID | 2020929054 |
| PQPubID | 35985 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5881633 hal_primary_oai_HAL_hal_03968030v1 proquest_miscellaneous_1981734309 proquest_journals_2020929054 pubmed_primary_29282205 crossref_primary_10_15252_embj_201797674 crossref_citationtrail_10_15252_embj_201797674 wiley_primary_10_15252_embj_201797674_EMBJ201797674 springer_journals_10_15252_embj_201797674 |
| PublicationCentury | 2000 |
| PublicationDate | 03 April 2018 |
| PublicationDateYYYYMMDD | 2018-04-03 |
| PublicationDate_xml | – month: 04 year: 2018 text: 03 April 2018 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: New York – name: Hoboken |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group UK Springer Nature B.V EMBO Press John Wiley and Sons Inc |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: EMBO Press – name: John Wiley and Sons Inc |
| References | 2002; 16 2010; 10 2009; 41 2010; 13 2010; 107 2013; 22 2013; 21 2003; 13 2002; 115 2004; 6 2016; 73 2014; 23 2013a; 280 2011; 111 2013; 9 1974; 183 2010; 20 2014; 4 1994; 269 2005; 102 2004; 36 1997; 17 2005; 76 1999; 96 2012; 26 2014; 9 2009; 327 2011; 29 2001; 96 2007; 449 2015; 5 2014; 516 2015; 523 2013; 45 2007; 121 2008; 17 2006; 7 2016; 10 2016; 53 2013; 92 2008; 1779 1993; 104 2011; 8 2003; 34 2002; 27 2013b; 501 2008; 1780 2003; 426 2005; 120 1992; 256 1986; 163 2009; 461 2014; 221 2016; 170 2008; 40 2012; 45 2014; 71 1961; 26 2014; 34 1998; 142 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Saunders WS (e_1_2_8_50_1) 1993; 104 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 29572242 - EMBO J. 2018 Apr 3;37(7):e99221. doi: 10.15252/embj.201899221. |
| References_xml | – volume: 501 start-page: 116 year: 2013b end-page: 120 article-title: Vesicular and non‐vesicular transport feed distinct glycosylation pathways in the Golgi publication-title: Nature – volume: 6 start-page: 73 year: 2004 end-page: 77 article-title: Histone H3 lysine 4 methylation patterns in higher eukaryotic genes publication-title: Nat Cell Biol – volume: 449 start-page: 62 year: 2007 end-page: 67 article-title: Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide publication-title: Nature – volume: 73 start-page: 1399 year: 2016 end-page: 1411 article-title: Epigenetic regulation of early neural fate commitment publication-title: Cell Mol Life Sci – volume: 13 start-page: 2498 year: 2003 end-page: 2504 article-title: Cytoscape: a software environment for integrated models of biomolecular interaction networks publication-title: Genome Res – volume: 1779 start-page: 432 year: 2008 end-page: 437 article-title: Transcriptional regulation of neuronal differentiation: the epigenetic layer of complexity publication-title: Biochem Biophys Acta – volume: 5 start-page: 14988 year: 2015 article-title: Glycolipid dynamics in generation and differentiation of induced pluripotent stem cells publication-title: Sci Rep – volume: 17 start-page: 4105 year: 1997 end-page: 4113 article-title: RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor publication-title: Mol Cell Biol – volume: 26 start-page: 389 year: 1961 end-page: 401 article-title: Teleonomic mechanisms in cellular metabolism, growth, and differentiation publication-title: Cold Spring Harb Symp Quant Biol – volume: 183 start-page: 656 year: 1974 end-page: 657 article-title: Cholera toxin: interaction of subunits with ganglioside GM1 publication-title: Science – volume: 121 start-page: 501 year: 2007 end-page: 509 article-title: Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation publication-title: Hum Genet – volume: 23 start-page: 418 year: 2014 end-page: 433 article-title: A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation publication-title: Hum Mol Genet – volume: 8 start-page: 571 year: 2011 end-page: 573 article-title: Sharper low‐power STED nanoscopy by time gating publication-title: Nat Methods – volume: 26 start-page: 6 year: 2012 end-page: 10 article-title: The enemy within: intronic miR‐26b represses its host gene, ctdsp2, to regulate neurogenesis publication-title: Genes Dev – volume: 221 start-page: 1223 year: 2014 end-page: 1243 article-title: Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system publication-title: Brain Struct Funct – volume: 10 start-page: 457 year: 2016 article-title: Impaired levels of gangliosides in the corpus callosum of huntington disease animal models publication-title: Front Neurosci – volume: 115 start-page: 817 year: 2002 end-page: 826 article-title: Differential expression of receptors for Shiga and Cholera toxin is regulated by the cell cycle publication-title: J Cell Sci – volume: 34 start-page: 27 year: 2003 end-page: 29 article-title: Mutations of the X‐linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism publication-title: Nat Genet – volume: 17 start-page: 573 year: 2008 end-page: 584 article-title: High‐throughput screening‐compatible single‐step protocol to differentiate embryonic stem cells in neurons publication-title: Stem Cells Dev – volume: 10 start-page: 9 year: 2010 end-page: 15 article-title: Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology publication-title: Gene Expr Patterns – volume: 21 start-page: 528 year: 2013 end-page: 534 article-title: Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency publication-title: Eur J Hum Genet – volume: 16 start-page: 2893 year: 2002 end-page: 2905 article-title: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein publication-title: Genes Dev – volume: 104 start-page: 573 issue: Pt. 2 year: 1993 end-page: 582 article-title: Molecular cloning of a human homologue of heterochromatin protein HP1 using anti‐centromere autoantibodies with anti‐chromo specificity publication-title: J Cell Sci – volume: 9 start-page: 2166 year: 2014 end-page: 2179 article-title: Cytoskeletal regulation by AUTS2 in neuronal migration and neuritogenesis publication-title: Cell Rep – volume: 163 start-page: 1391 year: 1986 end-page: 1404 article-title: Pathogenesis of shigella diarrhea. XI. Isolation of a shigella toxin‐binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide publication-title: J Exp Med – volume: 36 start-page: 1225 year: 2004 end-page: 1229 article-title: Infantile‐onset symptomatic epilepsy syndrome caused by a homozygous loss‐of‐function mutation of GM3 synthase publication-title: Nat Genet – volume: 71 start-page: 4221 year: 2014 end-page: 4241 article-title: Metabolic circuits in neural stem cells publication-title: Cell Mol Life Sci – volume: 9 start-page: e1003221 year: 2013 article-title: Function and regulation of AUTS2, a gene implicated in autism and human evolution publication-title: PLoS Genet – volume: 45 start-page: 344 year: 2012 end-page: 356 article-title: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes publication-title: Mol Cell – volume: 27 start-page: 1507 year: 2002 end-page: 1512 article-title: Differential effects of three inhibitors of glycosphingolipid biosynthesis on neuronal differentiation of embryonal carcinoma stem cells publication-title: Neurochem Res – volume: 40 start-page: 897 year: 2008 end-page: 903 article-title: Combinatorial patterns of histone acetylations and methylations in the human genome publication-title: Nat Genet – volume: 4 start-page: e431 year: 2014 article-title: Genome‐wide distribution of Auts2 binding localizes with active neurodevelopmental genes publication-title: Transl Psychiatry – volume: 1780 start-page: 325 year: 2008 end-page: 346 article-title: Structure and function of glycosphingolipids and sphingolipids: recollections and future trends publication-title: Biochem Biophys Acta – volume: 45 start-page: 1300 year: 2013 end-page: 1308 article-title: Mutations in genes encoding the cadherin receptor‐ligand pair DCHS1 and FAT4 disrupt cerebral cortical development publication-title: Nat Genet – volume: 142 start-page: 887 year: 1998 end-page: 898 article-title: The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain publication-title: J Cell Biol – volume: 426 start-page: 803 year: 2003 end-page: 809 article-title: Molecular machinery for non‐vesicular trafficking of ceramide publication-title: Nature – volume: 92 start-page: 210 year: 2013 end-page: 220 article-title: Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus publication-title: Am J Hum Genet – volume: 256 start-page: 843 year: 1992 end-page: 846 article-title: Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment publication-title: Science – volume: 120 start-page: 169 year: 2005 end-page: 181 article-title: Genomic maps and comparative analysis of histone modifications in human and mouse publication-title: Cell – volume: 20 start-page: 327 year: 2010 end-page: 348 article-title: The basics of brain development publication-title: Neuropsychol Rev – volume: 102 start-page: 2725 year: 2005 end-page: 2730 article-title: Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon‐glial interactions publication-title: Proc Natl Acad Sci USA – volume: 34 start-page: 11884 year: 2014 end-page: 11896 article-title: TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination publication-title: J Neurosci – volume: 29 start-page: 1995 year: 2011 end-page: 2004 article-title: Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages publication-title: Stem Cells – volume: 516 start-page: 349 year: 2014 end-page: 354 article-title: An AUTS2‐Polycomb complex activates gene expression in the CNS publication-title: Nature – volume: 111 start-page: 6387 year: 2011 end-page: 6422 article-title: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics publication-title: Chem Rev – volume: 9 start-page: 307 year: 2014 end-page: 320 article-title: Glycosphingolipids in the regulation of the nervous system publication-title: Adv Neurobiol – volume: 76 start-page: 572 year: 2005 end-page: 580 article-title: Genetic heterogeneity in Rubinstein‐Taybi syndrome: mutations in both the CBP and EP300 genes cause disease publication-title: Am J Hum Genet – volume: 280 start-page: 6338 year: 2013a end-page: 6353 article-title: Glycosphingolipids: synthesis and functions publication-title: FEBS J – volume: 523 start-page: 88 year: 2015 end-page: 91 article-title: Cell‐intrinsic adaptation of lipid composition to local crowding drives social behaviour publication-title: Nature – volume: 22 start-page: 3749 year: 2013 end-page: 3760 article-title: The functional genetic link of NLGN4X knockdown and neurodevelopment in neural stem cells publication-title: Hum Mol Genet – volume: 170 start-page: 2200 year: 2016 end-page: 2205 article-title: GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: masquerading as rett syndrome‐like phenotype publication-title: Am J Med Genet A – volume: 53 start-page: 523 year: 2016 end-page: 532 article-title: A detailed clinical analysis of 13 patients with AUTS2 syndrome further delineates the phenotypic spectrum and underscores the behavioural phenotype publication-title: J Med Genet – volume: 96 start-page: 59 year: 2001 end-page: 67 article-title: Developmental and functional evidence of a role for Zfhep in neural cell development publication-title: Brain Res Mol Brain Res – volume: 7 start-page: R100 year: 2006 article-title: Cell Profiler: image analysis software for identifying and quantifying cell phenotypes publication-title: Genome Biol – volume: 269 start-page: 8362 year: 1994 end-page: 8365 article-title: N‐butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis publication-title: J Biol Chem – volume: 102 start-page: 12459 year: 2005 end-page: 12464 article-title: Cell‐specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth publication-title: Proc Natl Acad Sci USA – volume: 327 start-page: 132 year: 2009 end-page: 142 article-title: Transcription factor Lmo4 defines the shape of functional areas in developing cortices and regulates sensorimotor control publication-title: Dev Biol – volume: 41 start-page: 117 year: 2009 end-page: 126 article-title: Lessons from two human chromatin diseases, ICF syndrome and Rett syndrome publication-title: Int J Biochem Cell Biol – volume: 13 start-page: 1365 year: 2010 end-page: 1372 article-title: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c‐Jun publication-title: Nat Neurosci – volume: 107 start-page: 22564 year: 2010 end-page: 22569 article-title: Switching of the core structures of glycosphingolipids from globo‐ and lacto‐ to ganglio‐series upon human embryonic stem cell differentiation publication-title: Proc Natl Acad Sci USA – volume: 461 start-page: 520 year: 2009 end-page: 523 article-title: Population context determines cell‐to‐cell variability in endocytosis and virus infection publication-title: Nature – volume: 96 start-page: 9142 year: 1999 end-page: 9147 article-title: A vital role for glycosphingolipid synthesis during development and differentiation publication-title: Proc Natl Acad Sci USA – ident: e_1_2_8_61_1 doi: 10.1073/pnas.96.16.9142 – ident: e_1_2_8_9_1 doi: 10.1038/nature06097 – ident: e_1_2_8_2_1 doi: 10.1016/j.gep.2009.11.005 – ident: e_1_2_8_59_1 doi: 10.1038/nmeth.1624 – ident: e_1_2_8_62_1 doi: 10.1073/pnas.0407785102 – ident: e_1_2_8_36_1 doi: 10.1002/stem.750 – ident: e_1_2_8_8_1 doi: 10.1186/gb-2006-7-10-r100 – ident: e_1_2_8_17_1 doi: 10.1016/j.molcel.2012.01.002 – ident: e_1_2_8_16_1 doi: 10.1007/978-1-4939-1154-7_14 – ident: e_1_2_8_49_1 doi: 10.1128/MCB.17.7.4105 – ident: e_1_2_8_22_1 doi: 10.1038/nature02188 – ident: e_1_2_8_24_1 doi: 10.1038/nn.2644 – ident: e_1_2_8_21_1 doi: 10.1101/gad.184416.111 – ident: e_1_2_8_44_1 doi: 10.1038/tp.2014.78 – ident: e_1_2_8_27_1 doi: 10.1007/s00429-014-0965-8 – ident: e_1_2_8_45_1 doi: 10.1523/JNEUROSCI.1220-14.2014 – ident: e_1_2_8_56_1 doi: 10.1038/ng1460 – ident: e_1_2_8_5_1 doi: 10.1136/jmedgenet-2015-103601 – ident: e_1_2_8_42_1 doi: 10.1038/srep14988 – ident: e_1_2_8_25_1 doi: 10.1016/j.celrep.2014.11.045 – ident: e_1_2_8_33_1 doi: 10.1101/gad.1035902 – ident: e_1_2_8_34_1 doi: 10.1002/ajmg.a.37773 – ident: e_1_2_8_58_1 doi: 10.1007/s11065-010-9148-4 – ident: e_1_2_8_31_1 doi: 10.1007/s00439-006-0284-0 – ident: e_1_2_8_47_1 doi: 10.1007/s00018-015-2125-6 – ident: e_1_2_8_57_1 doi: 10.1038/nature08282 – ident: e_1_2_8_41_1 doi: 10.1101/SQB.1961.026.01.048 – ident: e_1_2_8_52_1 doi: 10.1126/science.1350379 – ident: e_1_2_8_48_1 doi: 10.1086/429130 – ident: e_1_2_8_39_1 doi: 10.1016/j.biocel.2008.07.026 – ident: e_1_2_8_4_1 doi: 10.1016/j.ajhg.2012.12.011 – ident: e_1_2_8_15_1 doi: 10.1038/nature14429 – volume: 104 start-page: 573 issue: 2 year: 1993 ident: e_1_2_8_50_1 article-title: Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti‐centromere autoantibodies with anti‐chromo specificity publication-title: J Cell Sci doi: 10.1242/jcs.104.2.573 – ident: e_1_2_8_30_1 doi: 10.1073/pnas.0500893102 – ident: e_1_2_8_55_1 doi: 10.1093/hmg/ddt226 – ident: e_1_2_8_32_1 doi: 10.1007/s00018-014-1686-0 – ident: e_1_2_8_10_1 doi: 10.1111/febs.12559 – ident: e_1_2_8_23_1 doi: 10.1126/science.183.4125.656 – ident: e_1_2_8_7_1 doi: 10.1038/ng.2765 – ident: e_1_2_8_26_1 doi: 10.1016/j.ydbio.2008.12.003 – ident: e_1_2_8_14_1 doi: 10.1038/ejhg.2012.202 – ident: e_1_2_8_19_1 doi: 10.1016/j.bbagen.2007.08.015 – ident: e_1_2_8_12_1 doi: 10.3389/fnins.2016.00457 – ident: e_1_2_8_63_1 doi: 10.1016/S0169-328X(01)00267-4 – ident: e_1_2_8_51_1 doi: 10.1083/jcb.142.4.887 – ident: e_1_2_8_40_1 doi: 10.1021/cr2002917 – ident: e_1_2_8_35_1 doi: 10.1073/pnas.1007290108 – ident: e_1_2_8_38_1 doi: 10.1242/jcs.115.4.817 – ident: e_1_2_8_29_1 doi: 10.1038/ng1136 – ident: e_1_2_8_46_1 doi: 10.1016/S0021-9258(17)37202-2 – ident: e_1_2_8_6_1 doi: 10.1093/hmg/ddt434 – ident: e_1_2_8_18_1 doi: 10.1038/nature13921 – ident: e_1_2_8_37_1 doi: 10.1023/A:1021652506370 – ident: e_1_2_8_11_1 doi: 10.1038/nature12423 – ident: e_1_2_8_20_1 doi: 10.1016/j.bbagrm.2008.07.006 – ident: e_1_2_8_53_1 doi: 10.1038/ncb1076 – ident: e_1_2_8_54_1 doi: 10.1101/gr.1239303 – ident: e_1_2_8_13_1 doi: 10.1089/scd.2007.0130 – ident: e_1_2_8_28_1 doi: 10.1084/jem.163.6.1391 – ident: e_1_2_8_43_1 doi: 10.1371/journal.pgen.1003221 – ident: e_1_2_8_3_1 doi: 10.1016/j.cell.2005.01.001 – ident: e_1_2_8_60_1 doi: 10.1038/ng.154 – reference: 29572242 - EMBO J. 2018 Apr 3;37(7):e99221. doi: 10.15252/embj.201899221. |
| SSID | ssj0005871 |
| Score | 2.5164442 |
| Snippet | Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural... |
| SourceID | pubmedcentral hal proquest pubmed crossref wiley springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | Acetylation AUTS2 bistability Cell differentiation Cell Differentiation - drug effects Cell Differentiation - genetics Cell Differentiation - physiology Cellular Reprogramming - drug effects Cellular Reprogramming - physiology Circuits Constraining Cytoskeletal Proteins Differentiation (biology) EMBO21 EMBO27 Enzymes epigenetics Epigenomics Gangliosides Gangliosides - metabolism Gene Expression Gene Silencing Glycosphingolipids Glycosphingolipids - metabolism Glycosphingolipids - pharmacology HeLa Cells Histones - metabolism Humans Lactosylceramide a-2,3-sialyltransferase Life Sciences Metabolism Molecular modelling neural differentiation Neural stem cells Neurodevelopmental Disorders Neurogenesis - drug effects Neurogenesis - genetics Neurogenesis - physiology Neurons - metabolism Promoter Regions, Genetic - drug effects Proteins - genetics Proteins - metabolism Sialyltransferases - genetics Sialyltransferases - metabolism Stem cells Transcription Factors |
| Title | Glycosphingolipid metabolic reprogramming drives neural differentiation |
| URI | https://link.springer.com/article/10.15252/embj.201797674 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201797674 https://www.ncbi.nlm.nih.gov/pubmed/29282205 https://www.proquest.com/docview/2020929054 https://www.proquest.com/docview/1981734309 https://hal.science/hal-03968030 https://pubmed.ncbi.nlm.nih.gov/PMC5881633 |
| Volume | 37 |
| WOSCitedRecordID | wos000429008200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RAoILjwIlUFYBcYBDirPOwz6W0m1BywohKvYW-ZFVU-1mV5ttpf57ZpxHFVUVEuKWxI_E42_ssTP-BuA9zxku0ZQO1IzNgkhaFuiICAGkCW0ci4Qn7qDwOJ1MxHQqfzTehHQWpuaH6DbcSDPceE0KrnTVRuwh1tB8oc_JNyuVREiDo3AYOdX8_XVy7eQh3JLL7bJEoZANuQ_V8KlfvjcvbZ2RV-RNk_Om52T3-7Rv3LrZafT4P7TrCTxqTFP_oMbSU7iTlztwvw5WebUDDw7b2HDP4Ph4fmWW1Yq2r5bzYlVYf5FvEE_zwvjEk-mcvhaY6ts1Edv6xJuJlbfxWDY1Ip7D6ejo1-FJ0IRkCAzO-1Ew41on2qY2jZU0igKYKaml1IxIvpVCcRuJK-40JrsniowUVusw0UbhSGJy_gK2y2WZvwRfp4gSphMZzdCq0ELnNh4aregsrcVaPdhvOyQzDV85hc2YZ7RuIVllJKmsk5QHH7oCq5qq4_as77CHu1xEsX1yMM7oGeMyETjyXYYe7LUAyBrFrrCKIUOLEg1dD952ySh9-s-iynx5UWWhFGHKI86wDbs1XrpXDSX57bLYg7SHpN639FPK4szRfsdCoPHMPfjYYu76s25tJ3dQ-5s8sqPvn791d6_-qdRreIjXwnk18T3Y3qwv8jdwz1xuimo9gK10KgZw98vP0el44JT0D8TpOlk |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RLahceBQoKQUC4kAPAWedh31sS7cLpHtArdRbZDtZNdVudrW7rdR_3xnn0UZVhYQ4xo4n8eSzPeOMvwH4wnOGLprSnhqzsRfIjHk6IEIAafwsDEXEI3tQOIlHI3F2Ju-ehan4IdoNNxoZdr6mAU4b0k3KHqINzaf6goKzYkmMNGuwHiCYwh6s__gzOE1uAz2EdbvsTkvgC1kT_JCQ710RnbVp7ZwiI--bnfejJ9tfqF0D165Qg-f_o28v4Fltn7p7FaBewqO83IQnVcbK603YOGgSxL2Co6PJtZkt57SHNZsU8yJzp_kKQTUpjEtkmTbya4q1brYgdluXyDNReJOUZVXB4jWcDg5PDoZenZfBM7j4B96Yax3pLM7iUEmjKIuZklpKzYjpWynUt5HodschGT9BYKTItPYjbRROJybnb6BXzsr8Lbg6RqgwHclgjKaFFjrPwr7Rig7UZijVgW_NF0lNTVpOuTMmKTkvpKuUNJW2mnLga9tgXvF1PHzrZ_zE7V3Esz3cS1IqY1xGAqe_K9-BnQYBaT26lyiiz9CsRGvXgU9tNWqffraoMp9dLlNfCj_mAWfYh60KMO2j-pKCd1noQNyBUuddujVlcW65v0Mh0ILmDuw2oLt9rQf7yS3W_qaP9PB4_1d7tf1PrT7CxvDkOEmTn6Pf7-Aplgsb5sR3oLdaXObv4bG5WhXLxYd6lN4AESs9HQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RFgoXHuUVKBAQh3IITdZOYh9L222BZYUQlXqL_IoatJtd7W4r9d8zk1eJqgoJcUycTOzJN_bYHn8D8J65EKdoSgcqD_OASxsGmhMhgDSRjWORsKQ6KDxKx2Nxeir_PAtT80N0C25kGVV_TQbu5jZvU_YQbaib6l8UnJVKYqRZgw0eywSNc-Pgx_BkdBXoIappV7XSwiMhG4IfErLbF9Ebm9bOKDLyutt5PXqy20LtO7jVCDV88D_a9hDuN_6pv1cD6hHccuUW3KkzVl5uwd39NkHcYzg6mlya2XJOa1izSTEvrD91KwTVpDA-kWVWkV9TLPXtgthtfSLPROFtUpZVDYsncDI8_Ll_HDR5GQKDgz8PcqZ1om1q01hJoyiLmZJaSh0S07dSqG8jcdqdxuT8cG6ksFpHiTYKuxPj2FNYL2elew6-ThEqoU4kz9G10EI7Gw-MVnSg1qJUDz62fyQzDWk55c6YZDR5IV1lpKms05QHO90L85qv4-ZH3-Ev7p4inu3jvVFG90ImE4Hd30XkwXaLgKyx7iWKGIToVqK368Hbrhi1T5stqnSz82UWSRGljLMQ2_CsBkz3qYGk4N0w9iDtQalXl35JWZxV3N-xEOhBMw8-tKC7qtaN7WQV1v6mj-zw26cv3dWLf3rrDWx-Pxhmo8_jry_hHt4WVZQT24b11eLcvYLb5mJVLBevGyP9DUOPPJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycosphingolipid+metabolic+reprogramming+drives+neural+differentiation&rft.jtitle=The+EMBO+journal&rft.au=Russo%2C+Domenico&rft.au=Della+Ragione%2C+Floriana&rft.au=Rizzo%2C+Riccardo&rft.au=Sugiyama%2C+Eiji&rft.date=2018-04-03&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=37&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.15252%2Fembj.201797674&rft.externalDBID=10.15252%252Fembj.201797674&rft.externalDocID=EMBJ201797674 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |