结合特征偏好的半监督聚类学习

TP391.4; 半监督聚类是机器学习的重要研究内容之一,它通过利用样本层面的少量标记数据信息或者利用特征层面的特征偏好信息来指导半监督聚类。但现有的半监督聚类算法仅考虑了单一层面的半监督先验信息,罕有同时考虑两个不同层面的此类信息进行半监督聚类。为了弥补这一遗漏,联合利用特征层面给定的特征偏好,即特征之间的相对重要性关系,并结合样本层面的少量标记数据等半监督信息,在传统的半监督聚类算法基础上发展出一个扩展型半监督聚类算法。初步实验验证了该算法的有效性。...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:计算机科学与探索 číslo 1; s. 105 - 111
Hlavní autoři: 方玲, 陈松灿
Médium: Journal Article
Jazyk:čínština
Vydáno: 南京航空航天大学 计算机科学与技术学院,南京,210016 2015
Témata:
ISSN:1673-9418
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.