Metal–Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances

Highlights Fe 3+ , Co 2+ , H 3 BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity. By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnet...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nano-micro letters Ročník 16; číslo 1; s. 42 - 17
Hlavní autori: Li, Xin, Hu, Ruizhe, Xiong, Zhiqiang, Wang, Dan, Zhang, Zhixia, Liu, Chongbo, Zeng, Xiaojun, Chen, Dezhi, Che, Renchao, Nie, Xuliang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.12.2024
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:2311-6706, 2150-5551, 2150-5551
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Highlights Fe 3+ , Co 2+ , H 3 BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity. By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained. FeCo/Fe 3 O 4 /NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances. Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe 3 O 4 /NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
AbstractList Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe O /NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
Highlights Fe 3+ , Co 2+ , H 3 BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity. By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained. FeCo/Fe 3 O 4 /NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances. Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe 3 O 4 /NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity.By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained.FeCo/Fe3O4/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances. Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
Highlights Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity. By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained. FeCo/Fe3O4/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances.
HighlightsFe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity.By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained.FeCo/Fe3O4/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances.Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe 3 O 4 /NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.
ArticleNumber 42
Author Xiong, Zhiqiang
Zeng, Xiaojun
Zhang, Zhixia
Che, Renchao
Wang, Dan
Chen, Dezhi
Liu, Chongbo
Hu, Ruizhe
Nie, Xuliang
Li, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University
– sequence: 2
  givenname: Ruizhe
  surname: Hu
  fullname: Hu, Ruizhe
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University
– sequence: 3
  givenname: Zhiqiang
  surname: Xiong
  fullname: Xiong, Zhiqiang
  organization: School of Environmental and Chemical Engineering, Nanchang Hangkong University
– sequence: 4
  givenname: Dan
  surname: Wang
  fullname: Wang, Dan
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University
– sequence: 5
  givenname: Zhixia
  surname: Zhang
  fullname: Zhang, Zhixia
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University
– sequence: 6
  givenname: Chongbo
  surname: Liu
  fullname: Liu, Chongbo
  email: cbliu2002@163.com
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University
– sequence: 7
  givenname: Xiaojun
  surname: Zeng
  fullname: Zeng, Xiaojun
  organization: School of Materials Science and Engineering, Jingdezhen Ceramic University
– sequence: 8
  givenname: Dezhi
  surname: Chen
  fullname: Chen, Dezhi
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University
– sequence: 9
  givenname: Renchao
  surname: Che
  fullname: Che, Renchao
  email: rcche@fudan.edu.cn
  organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University
– sequence: 10
  givenname: Xuliang
  surname: Nie
  fullname: Nie, Xuliang
  email: xuliangnie123@163.com
  organization: College of Chemistry and Materials, Jiangxi Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38047957$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEgEkJ-gAOyxIXLgB_jeZxQtFrCShsFQThbPeOeWUdee7FnIuDEP3Dj8_gSvLsJkBxycstdVarurqfZgfMOs-w5o68ZpdWbWNCa05xykVPGpcyrR9kRZ5LmUkp2kGrBWF5WtDzMTmI0LZW8qHgliyfZoahpUTWyOsp-neMI9vePnxdhAGc6coaWLBG0cQMZPZlNcfRr8x01OYfB4Wi6fOanjd32524wDjFsa-PIDELrHTnF4Ae0kfQ-kPnXDq1FN5KPoCGQTyOCHVcEnCaXKwxrsGTh4mRhNIn7AUNircF1GJ9lj3uwEU9u3uPs87v55ex9vrw4W8xOl3lXMj7mfU9F2TZ1iy2WRQVC9tA0WOgWAbVAaHQpGK_7vuUd5xXKWouu1pJqTQFRHGeLva72cKU2wawhfFMejNp9-DAoCGlui6ooE7PToiqBFYBpha1oZcdq2fYl9EXServX2kztGnWXBg9g74je7TizUoO_VoyWjWyYSAqvbhSC_zJhHNXaxO0OwaGfouJ1UxV1SUWdoC_vQa_8FFza1Q4lhUz3TqgX_1v66-U2AwlQ7wFd8DEG7FVnxt05kkNjkzW1TZzaJ06lxKld4tSWyu9Rb9UfJIk9KW62ycHwz_YDrD_A3uzj
CitedBy_id crossref_primary_10_1007_s40820_024_01583_2
crossref_primary_10_1016_j_cej_2025_168786
crossref_primary_10_1016_j_ceramint_2024_10_129
crossref_primary_10_1016_j_apsusc_2024_161742
crossref_primary_10_1016_j_ceramint_2023_12_257
crossref_primary_10_1021_acs_langmuir_5c01293
crossref_primary_10_1016_j_carbon_2024_119093
crossref_primary_10_1016_j_carbon_2025_120231
crossref_primary_10_1016_j_cej_2024_152248
crossref_primary_10_1016_j_jallcom_2024_175981
crossref_primary_10_1016_j_carbon_2025_120598
crossref_primary_10_1016_j_ceramint_2024_07_069
crossref_primary_10_1016_j_cej_2024_150729
crossref_primary_10_1016_j_matchemphys_2024_129448
crossref_primary_10_1016_j_carbon_2024_119813
crossref_primary_10_1016_j_cej_2025_168716
crossref_primary_10_1016_j_cej_2024_157121
crossref_primary_10_1002_adfm_202510644
crossref_primary_10_1016_j_carbon_2025_120580
crossref_primary_10_1016_j_ceramint_2025_09_248
crossref_primary_10_1016_j_mtnano_2025_100653
crossref_primary_10_1002_adfm_202414838
crossref_primary_10_1007_s40820_025_01732_1
crossref_primary_10_1039_D5MH01066G
crossref_primary_10_1016_j_conbuildmat_2024_139041
crossref_primary_10_1016_j_carbon_2025_120618
crossref_primary_10_1016_j_matlet_2024_136205
crossref_primary_10_1002_adfm_202423269
crossref_primary_10_1016_j_cej_2025_168409
crossref_primary_10_1016_j_jallcom_2025_181120
crossref_primary_10_1002_adfm_202516735
crossref_primary_10_1016_j_jallcom_2024_174956
crossref_primary_10_1002_adfm_202418304
crossref_primary_10_1016_j_ceramint_2024_10_470
crossref_primary_10_1016_j_mtnano_2024_100529
crossref_primary_10_1016_j_carbon_2025_120699
crossref_primary_10_1002_aelm_202500239
crossref_primary_10_1007_s42114_024_00895_6
crossref_primary_10_1002_smtd_202401665
crossref_primary_10_1016_j_jallcom_2025_178481
crossref_primary_10_1007_s40820_024_01409_1
crossref_primary_10_1016_j_carbon_2024_119314
crossref_primary_10_1016_j_carbon_2024_119798
crossref_primary_10_1016_j_ceramint_2024_12_321
crossref_primary_10_3390_gels11080582
crossref_primary_10_1016_j_compscitech_2025_111299
crossref_primary_10_1039_D5TC00207A
crossref_primary_10_1016_j_jallcom_2024_174826
crossref_primary_10_1016_j_ceramint_2024_12_452
crossref_primary_10_1016_j_physleta_2025_130999
crossref_primary_10_1016_j_jallcom_2024_176960
crossref_primary_10_26599_JAC_2024_9220968
crossref_primary_10_1111_jace_20301
crossref_primary_10_1016_j_carbon_2025_120688
crossref_primary_10_1016_j_jallcom_2024_177770
crossref_primary_10_1016_j_compositesb_2025_112380
crossref_primary_10_1016_j_jcis_2025_02_009
crossref_primary_10_1016_j_carbon_2024_119965
crossref_primary_10_1039_D5QI00118H
crossref_primary_10_1016_j_cclet_2025_111293
crossref_primary_10_1016_j_carbon_2024_119604
crossref_primary_10_1016_j_carbon_2024_119565
crossref_primary_10_1016_j_carbon_2025_120719
crossref_primary_10_1002_adfm_202502671
crossref_primary_10_1016_j_carbon_2024_119963
crossref_primary_10_1002_pc_70121
crossref_primary_10_1016_j_carbon_2024_119049
crossref_primary_10_1016_j_cej_2024_150893
crossref_primary_10_1016_j_pnsc_2024_03_008
crossref_primary_10_1039_D5MH00379B
crossref_primary_10_1002_adfm_202425949
crossref_primary_10_1021_acsanm_5c03163
crossref_primary_10_1016_j_ceramint_2024_09_039
crossref_primary_10_1016_j_cej_2025_168465
crossref_primary_10_1007_s40820_024_01513_2
crossref_primary_10_1016_j_carbon_2024_119338
crossref_primary_10_1016_j_carbon_2024_119613
crossref_primary_10_1016_j_carbon_2025_120704
crossref_primary_10_1016_j_jmst_2025_03_028
crossref_primary_10_1007_s40820_024_01593_0
crossref_primary_10_1016_j_apmt_2025_102796
crossref_primary_10_1016_j_carbon_2024_119213
crossref_primary_10_1016_j_matlet_2024_136379
crossref_primary_10_1016_j_carbon_2024_119696
crossref_primary_10_1016_j_mtcomm_2025_112891
crossref_primary_10_1016_j_carbon_2024_119973
crossref_primary_10_1007_s12613_024_2956_y
crossref_primary_10_1016_j_cej_2025_159489
crossref_primary_10_3390_ma18010113
crossref_primary_10_1016_j_jallcom_2024_175499
crossref_primary_10_1016_j_ceramint_2025_03_270
crossref_primary_10_1016_j_cej_2025_166331
crossref_primary_10_1016_j_carbon_2024_118930
crossref_primary_10_1007_s40820_024_01396_3
crossref_primary_10_1016_j_carbon_2024_119867
crossref_primary_10_1002_smtd_202401299
crossref_primary_10_1016_j_ceramint_2025_01_422
crossref_primary_10_1016_j_coco_2025_102366
crossref_primary_10_1016_j_carbon_2024_119628
crossref_primary_10_3390_sym17081286
crossref_primary_10_1016_j_compositesb_2025_112628
crossref_primary_10_1016_j_optmat_2025_117156
crossref_primary_10_1016_j_matdes_2025_114062
crossref_primary_10_1039_D4QI02776K
crossref_primary_10_1016_j_carbon_2025_120650
crossref_primary_10_1016_j_cej_2025_160168
crossref_primary_10_1016_j_jallcom_2024_177346
crossref_primary_10_1016_j_apmt_2025_102588
crossref_primary_10_1016_j_cclet_2025_111065
crossref_primary_10_1021_acsanm_4c04624
crossref_primary_10_1016_j_carbon_2024_119478
crossref_primary_10_1016_j_ceramint_2025_05_238
crossref_primary_10_1002_smll_202501239
crossref_primary_10_1016_j_jmst_2024_06_012
crossref_primary_10_1016_j_seppur_2024_129098
crossref_primary_10_1016_j_cej_2024_158873
crossref_primary_10_1016_j_jmst_2024_12_006
crossref_primary_10_1007_s42114_024_01126_8
crossref_primary_10_1016_j_carbon_2025_120000
crossref_primary_10_1088_1402_4896_ad8840
crossref_primary_10_1016_j_carbon_2025_120244
crossref_primary_10_1039_D4NR03738C
crossref_primary_10_1016_j_jallcom_2024_174340
Cites_doi 10.1021/acssuschemeng.9b0006716
10.1021/acsami.2c06767
10.1007/s12274-022-5111-y
10.1002/adma.201706343
10.1016/j.cej.2022.136975
10.1016/j.polymer.2020.122981
10.1007/s10853-021-06394-z
10.1088/1361-6528/abb2c0
10.1007/s40820-021-00734-z
10.1016/j.cej.2022.137279
10.1103/PhysRevE.89.022511
10.1016/j.jcis.2021.12.162
10.1002/advs.201801898
10.1007/s12274-021-3955-1
10.1016/j.carbon.2023.01.057
10.1021/acsami.1c06446
10.1007/s12274-022-4628-4
10.1002/adfm.202204591
10.1007/s40820-023-01062-0
10.1002/adfm.202108194
10.1002/adma.202106195
10.1039/c6nr00223d
10.1016/j.ceramint.2020.05.139
10.1002/adfm.201807398
10.1016/j.cej.2022.134496
10.1002/smll.202207197
10.1002/adma.200602457
10.1007/s11051-017-4065-6
10.1007/s10570-014-0200-z
10.1016/j.cej.2022.138160
10.1021/nn304630h
10.1016/j.jcis.2020.04.099
10.1002/adom.201900689
10.1002/adma.202107538
10.1002/adfm.202107508
10.1039/d3ra03927g
10.1007/s40820-022-00906-5
10.1007/s40820-022-00869-7
10.1002/adfm.201908299
10.1016/j.cej.2022.135009
10.1002/adma.201400108
10.3389/fmats.2023.1133287
10.1002/adma.201501448
10.1016/j.carbon.2021.11.045
10.1016/j.apsusc.2021.150380
10.1016/j.mtphys.2023.101110
10.1016/j.carbon.2021.01.136
10.1039/d0ta10942h
10.1007/s12613-022-2570-9
10.1002/adfm.202102812
10.1016/j.carbon.2022.07.018
10.1002/adfm.202213258
10.1016/j.cej.2020.124743
10.1002/smll.202303597
10.1002/adma.200306460
10.1016/j.jcis.2021.08.186
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-023-01255-7
DatabaseName Springer Nature Open Access Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 17
ExternalDocumentID oai_doaj_org_article_463c8cd376a14ae795b3b5c185bf6af4
PMC10695913
38047957
10_1007_s40820_023_01255_7
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c612t-ff036b98bebe647a35fa99e4dbeaed3ea9d63128ffb2c227e58d3c8d50dd0aee3
IEDL.DBID C24
ISICitedReferencesCount 153
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001112869900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2311-6706
2150-5551
IngestDate Fri Oct 03 12:36:08 EDT 2025
Tue Nov 04 02:06:33 EST 2025
Sun Nov 09 14:39:49 EST 2025
Sat Oct 18 23:14:20 EDT 2025
Thu Apr 03 07:07:57 EDT 2025
Tue Nov 18 22:34:25 EST 2025
Sat Nov 29 02:07:29 EST 2025
Fri Feb 21 02:37:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metal–organic gels
Computer simulation technology
Radar stealth
Thermal insulation
Heterometallic magnetic coupling
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-ff036b98bebe647a35fa99e4dbeaed3ea9d63128ffb2c227e58d3c8d50dd0aee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-023-01255-7
PMID 38047957
PQID 2897535727
PQPubID 2044332
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_463c8cd376a14ae795b3b5c185bf6af4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10695913
proquest_miscellaneous_2897486038
proquest_journals_2897535727
pubmed_primary_38047957
crossref_citationtrail_10_1007_s40820_023_01255_7
crossref_primary_10_1007_s40820_023_01255_7
springer_journals_10_1007_s40820_023_01255_7
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Sun, Li, Huang, Cheng, Wang (CR6) 2022; 32
Dogari, Peymanfar, Ghafuri (CR50) 2023; 13
Wang, Zhou, Xie, Hao, Tang (CR20) 2022; 612
Shu, Cao, Zhang, Wang, Cao (CR35) 2020; 30
Pan, Rao, Batalu, Cai, Dong (CR11) 2022; 14
Yang, You, Xiong, Zhang, Wu (CR22) 2022; 14
Huang, Zhao, Wu, Zhou, Tan (CR52) 2022; 446
Liang, Gu, Wu, Zhang, Wang (CR26) 2022; 34
Xia, Gao, Gao (CR10) 2022; 32
Zhang, Cheng, Wang, Huang, Zheng (CR7) 2022; 32
Zhang, Wang, Cao, Yuan, Cao (CR5) 2019; 7
Liu, Gao, Zhang, Huang, You (CR31) 2021; 31
Zhou, Jia, Feng, Qu, Wang (CR37) 2020; 575
Chen, Zhang, Luo, Wu (CR8) 2022; 607
Kuriakose, Longuemart, Depriester, Delenclos, Sahraoui (CR44) 2014; 89
Zhi, Li, Qi, Li, Tian (CR23) 2022; 433
Guan, Yang, Zhu, Yang, Zhou (CR24) 2022; 188
Wu, Cheng, Jin, Yang, Xu (CR1) 2022; 34
Yang, Wang, Lu, Cheng, Wang (CR12) 2023; 205
Peymanfar, Ghorbanian-Gezaforodi (CR41) 2020; 31
He, Peng, Xiong, Nie, Wang (CR30) 2022; 198
Zhou, Thaiboonrod, Fang, Cao, Miao (CR40) 2022; 15
Che, Peng, Duan, Chen, Liang (CR2) 2004; 16
Shen, Liu, Yang, Xie, Zeng (CR33) 2021; 13
Zhao, Li, Ji, Bai, Wang (CR46) 2021; 176
Wen, Cao, Lu, Cao, Shi (CR3) 2014; 26
Wang, Yang, Miao, Feng (CR15) 2023; 35
Chaudhari, Han, Tan (CR19) 2015; 27
Wu, Zhao, Zhou, Tan, Peymanfar (CR54) 2022; 14
Li, Hou, Song, Liu, Cao (CR45) 2016; 8
Wang, Liu, Feng, Wang, Han (CR34) 2023; 19
Liu, Zhang, Zheng, Guo, Zhu (CR43) 2019; 6
Pan, Cai, Shi, Dong, Zhu (CR55) 2022; 435
Wang, Gu, Chen, Wu, Zhou (CR21) 2022; 15
Peymanfar, Yektaei, Javanshir, Selseleh-Zakerin (CR25) 2020; 209
Cao, Wang, Zhang, Shu, Cao (CR51) 2019; 29
Wang, Zhang, Deng, Li, Chen (CR53) 2023; 30
Rao, Wang, Yang, Zhang, Zhang (CR13) 2023
Peymanfar, Dogari, Selseleh-Zakerin, Hedayatzadeh, Daneshvar (CR49) 2023; 10
Li, Ma, Zhang, Xu, Chen (CR47) 2023; 19
Wang, Gao, Tang, Chen, Duan (CR39) 2012; 6
Kanamori, Aizawa, Nakanishi, Hanada (CR16) 2007; 19
Lv, Yang, Wang, Ji, Song (CR4) 2018; 30
Peymanfar, Javanshir, Naimi-Jamal, Tavassoli (CR9) 2021; 56
Sun, Yan, Li, Yue, Zhao (CR27) 2021; 564
Yeap, Lim, Ooi, Ahmad (CR14) 2017; 19
Yin, Wu, Tang, Liu, Zhang (CR48) 2022; 446
Zhao, Wang, Cui, Xu, Han (CR17) 2021; 13
Peymanfar, Ghorbanian-Gezaforodi, Selseleh-Zakerin, Ahmadi, Ghaffari (CR42) 2020; 46
Han, He, Hu, Liu, Liu (CR32) 2023; 16
Guo, An, Xiao, Zhai, Cui (CR28) 2019; 7
Liu, Du, Xu, Wang, Wang (CR56) 2021; 9
Qian, Zhou, Miao, Wu, Thaiboonrod (CR18) 2023; 15
Wu, Liu, Liang, Zang (CR38) 2020; 393
Wang, Liu, Zhao, Cui, Gai (CR36) 2022; 450
Gong, Wang, Tian, Zheng, Chen (CR29) 2014; 21
SP Yeap (1255_CR14) 2017; 19
X Zhou (1255_CR37) 2020; 575
Y Han (1255_CR32) 2023; 16
P Yin (1255_CR48) 2022; 446
X Gong (1255_CR29) 2014; 21
F Pan (1255_CR11) 2022; 14
L Yang (1255_CR12) 2023; 205
K Qian (1255_CR18) 2023; 15
F Wang (1255_CR36) 2022; 450
H Zhao (1255_CR17) 2021; 13
ZJ Li (1255_CR45) 2016; 8
JC Shu (1255_CR35) 2020; 30
H Dogari (1255_CR50) 2023; 13
X Sun (1255_CR6) 2022; 32
AK Chaudhari (1255_CR19) 2015; 27
J Wang (1255_CR20) 2022; 612
D Zhi (1255_CR23) 2022; 433
Z Yang (1255_CR22) 2022; 14
D Liu (1255_CR56) 2021; 9
H Lv (1255_CR4) 2018; 30
K Kanamori (1255_CR16) 2007; 19
X Guan (1255_CR24) 2022; 188
R Peymanfar (1255_CR42) 2020; 46
B Zhao (1255_CR46) 2021; 176
MS Cao (1255_CR51) 2019; 29
F Pan (1255_CR55) 2022; 435
X Liu (1255_CR43) 2019; 6
B Wen (1255_CR3) 2014; 26
H Wu (1255_CR38) 2020; 393
R Peymanfar (1255_CR25) 2020; 209
Q Huang (1255_CR52) 2022; 446
M Zhang (1255_CR5) 2019; 7
Z Shen (1255_CR33) 2021; 13
Y Xia (1255_CR10) 2022; 32
Z Sun (1255_CR27) 2021; 564
M Kuriakose (1255_CR44) 2014; 89
J Zhou (1255_CR40) 2022; 15
G Chen (1255_CR8) 2022; 607
R Peymanfar (1255_CR41) 2020; 31
Y Wu (1255_CR54) 2022; 14
P Liu (1255_CR31) 2021; 31
Y Wang (1255_CR53) 2023; 30
L Liang (1255_CR26) 2022; 34
H Zhang (1255_CR7) 2022; 32
L Guo (1255_CR28) 2019; 7
X He (1255_CR30) 2022; 198
B Li (1255_CR47) 2023; 19
F Wang (1255_CR21) 2022; 15
R Peymanfar (1255_CR9) 2021; 56
G Wang (1255_CR39) 2012; 6
Y Wang (1255_CR15) 2023; 35
RC Che (1255_CR2) 2004; 16
Z Wu (1255_CR1) 2022; 34
L Rao (1255_CR13) 2023
F Wang (1255_CR34) 2023; 19
R Peymanfar (1255_CR49) 2023; 10
References_xml – volume: 7
  start-page: 9237
  year: 2019
  end-page: 9248
  ident: CR28
  article-title: Inherent N-doped honeycomb-like carbon/Fe O composites with versatility for efficient microwave absorption and wastewater treatment
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b0006716
– volume: 14
  start-page: 32369
  year: 2022
  end-page: 32378
  ident: CR22
  article-title: Morphology-evolved succulent-like FeCo microarchitectures with magnetic configuration regulation for enhanced microwave absorption
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c06767
– volume: 16
  start-page: 1773
  year: 2023
  end-page: 1778
  ident: CR32
  article-title: Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5111-y
– volume: 30
  start-page: 1706343
  year: 2018
  ident: CR4
  article-title: A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706343
– volume: 446
  year: 2022
  ident: CR48
  article-title: Structure regulation in N-doping biconical carbon frame decorated with CoFe O and (Fe, Ni) for broadband microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136975
– volume: 209
  year: 2020
  ident: CR25
  article-title: Regulating the energy band-gap, UV-Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122981
– volume: 56
  start-page: 17457
  year: 2021
  end-page: 17477
  ident: CR9
  article-title: Morphology and medium influence on microwave characteristics of nanostructures: a review
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06394-z
– volume: 31
  year: 2020
  ident: CR41
  article-title: Preparation of graphite-like carbon nitride (g-C N )/NiCo S nanocomposite toward salient microwave characteristics and evaluation of medium influence on its microwave features
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abb2c0
– volume: 13
  start-page: 208
  year: 2021
  ident: CR17
  article-title: Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00734-z
– volume: 446
  year: 2022
  ident: CR52
  article-title: A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137279
– volume: 89
  year: 2014
  ident: CR44
  article-title: Maxwell–Wagner–Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.022511
– volume: 612
  start-page: 146
  year: 2022
  end-page: 155
  ident: CR20
  article-title: Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.162
– volume: 6
  start-page: 1801898
  year: 2019
  ident: CR43
  article-title: Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801898
– volume: 15
  start-page: 3720
  year: 2022
  end-page: 3728
  ident: CR21
  article-title: The point defect and electronic structure of K doped LaCo Fe O perovskite with enhanced microwave absorbing ability
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3955-1
– volume: 205
  start-page: 411
  year: 2023
  end-page: 421
  ident: CR12
  article-title: Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.01.057
– volume: 13
  start-page: 28689
  year: 2021
  end-page: 28702
  ident: CR33
  article-title: Fabrication of hollow cube dual-semiconductor Ln O /MnO/C nanocomposites with excellent microwave absorption performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06446
– volume: 15
  start-page: 8536
  year: 2022
  end-page: 8545
  ident: CR40
  article-title: In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4628-4
– volume: 32
  start-page: 2204591
  year: 2022
  ident: CR10
  article-title: A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204591
– volume: 15
  start-page: 88
  year: 2023
  ident: CR18
  article-title: Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01062-0
– volume: 32
  start-page: 2108194
  year: 2022
  ident: CR7
  article-title: Initiating VB-group laminated NbS electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108194
– volume: 34
  start-page: 2106195
  year: 2022
  ident: CR26
  article-title: Heterointerface engineering in electromagnetic absorbers: new insights and opportunities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106195
– volume: 8
  start-page: 10415
  year: 2016
  end-page: 10424
  ident: CR45
  article-title: Unusual continuous dual absorption peaks in Ca-doped BiFeO nanostructures for broadened microwave absorption
  publication-title: Nanoscale
  doi: 10.1039/c6nr00223d
– volume: 46
  start-page: 20896
  year: 2020
  end-page: 20904
  ident: CR42
  article-title: Tailoring La Sr MnO /La/Sr nanocomposite using a novel complementary method as well as dissecting its microwave, shielding, optical, and magnetic characteristics
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.05.139
– volume: 29
  start-page: 1807398
  year: 2019
  ident: CR51
  article-title: Electromagnetic response and energy conversion for functions and devices in low-dimensional materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807398
– volume: 433
  year: 2022
  ident: CR23
  article-title: Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134496
– volume: 19
  start-page: 2207197
  year: 2023
  ident: CR47
  article-title: NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption
  publication-title: Small
  doi: 10.1002/smll.202207197
– volume: 19
  start-page: 1589
  year: 2007
  end-page: 1593
  ident: CR16
  article-title: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602457
– volume: 19
  start-page: 1
  year: 2017
  end-page: 15
  ident: CR14
  article-title: Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-017-4065-6
– volume: 21
  start-page: 1667
  year: 2014
  end-page: 1678
  ident: CR29
  article-title: Controlled production of spruce cellulose gels using an environmentally “green” system
  publication-title: Cellulose
  doi: 10.1007/s10570-014-0200-z
– volume: 450
  year: 2022
  ident: CR36
  article-title: Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138160
– volume: 6
  start-page: 11009
  year: 2012
  end-page: 11017
  ident: CR39
  article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition
  publication-title: ACS Nano
  doi: 10.1021/nn304630h
– volume: 575
  start-page: 130
  year: 2020
  end-page: 139
  ident: CR37
  article-title: Synthesis of porous carbon embedded with NiCo/CoNiO hybrids composites for excellent electromagnetic wave absorption performance
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.099
– volume: 7
  start-page: 1900689
  year: 2019
  ident: CR5
  article-title: Electromagnetic functions of patterned 2D materials for micro–nano devices covering GHz, THz, and optical frequency
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900689
– volume: 34
  start-page: 2107538
  year: 2022
  ident: CR1
  article-title: Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107538
– volume: 32
  start-page: 2107508
  year: 2022
  ident: CR6
  article-title: Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107508
– volume: 13
  start-page: 22205
  year: 2023
  end-page: 22215
  ident: CR50
  article-title: Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure
  publication-title: RSC Adv.
  doi: 10.1039/d3ra03927g
– volume: 14
  start-page: 171
  year: 2022
  ident: CR54
  article-title: Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00906-5
– volume: 14
  start-page: 140
  year: 2022
  ident: CR11
  article-title: Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00869-7
– volume: 30
  start-page: 1908299
  year: 2020
  ident: CR35
  article-title: Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908299
– volume: 435
  year: 2022
  ident: CR55
  article-title: Phase engineering reinforced multiple loss network in apple tree–like liquid metal/Ni–Ni P/N–doped carbon fiber composites for high–performance microwave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135009
– volume: 26
  start-page: 3484
  year: 2014
  end-page: 3489
  ident: CR3
  article-title: Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400108
– volume: 10
  start-page: 1133287
  year: 2023
  ident: CR49
  article-title: Recent advances in microwave-absorbing materials fabricated using organic conductive polymers
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2023.1133287
– volume: 27
  start-page: 4438
  year: 2015
  end-page: 4446
  ident: CR19
  article-title: Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501448
– volume: 188
  start-page: 1
  year: 2022
  end-page: 11
  ident: CR24
  article-title: The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.11.045
– volume: 564
  year: 2021
  ident: CR27
  article-title: Dual heteroatoms co-doping strategy of graphene-based dielectric loss electromagnetic absorbent
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150380
– volume: 35
  year: 2023
  ident: CR15
  article-title: Carbon nanotube arrays@ cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2023.101110
– volume: 176
  start-page: 411
  year: 2021
  end-page: 420
  ident: CR46
  article-title: Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.01.136
– volume: 9
  start-page: 5086
  year: 2021
  end-page: 5096
  ident: CR56
  article-title: Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d0ta10942h
– volume: 30
  start-page: 536
  year: 2023
  end-page: 547
  ident: CR53
  article-title: Reduced graphene oxide aerogel decorated with Mo C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption
  publication-title: Int. J. Min. Met. Mater.
  doi: 10.1007/s12613-022-2570-9
– volume: 31
  start-page: 2102812
  year: 2021
  ident: CR31
  article-title: Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 198
  start-page: 195
  year: 2022
  end-page: 206
  ident: CR30
  article-title: A sustainable and low-cost route to prepare magnetic particle-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.07.018
– year: 2023
  ident: CR13
  article-title: Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213258
– volume: 393
  year: 2020
  ident: CR38
  article-title: Sandwich-like Fe O /Fe S composites for electromagnetic wave absorption
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124743
– volume: 19
  start-page: 2303597
  year: 2023
  ident: CR34
  article-title: “Win–Win” Strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics
  publication-title: Small
  doi: 10.1002/smll.202303597
– volume: 16
  start-page: 401
  year: 2004
  end-page: 405
  ident: CR2
  article-title: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306460
– volume: 607
  start-page: 24
  year: 2022
  end-page: 33
  ident: CR8
  article-title: Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.186
– volume: 32
  start-page: 2107508
  year: 2022
  ident: 1255_CR6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107508
– volume: 13
  start-page: 208
  year: 2021
  ident: 1255_CR17
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00734-z
– volume: 14
  start-page: 140
  year: 2022
  ident: 1255_CR11
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00869-7
– volume: 21
  start-page: 1667
  year: 2014
  ident: 1255_CR29
  publication-title: Cellulose
  doi: 10.1007/s10570-014-0200-z
– volume: 393
  year: 2020
  ident: 1255_CR38
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124743
– volume: 29
  start-page: 1807398
  year: 2019
  ident: 1255_CR51
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807398
– volume: 14
  start-page: 32369
  year: 2022
  ident: 1255_CR22
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c06767
– volume: 198
  start-page: 195
  year: 2022
  ident: 1255_CR30
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.07.018
– volume: 8
  start-page: 10415
  year: 2016
  ident: 1255_CR45
  publication-title: Nanoscale
  doi: 10.1039/c6nr00223d
– volume: 32
  start-page: 2204591
  year: 2022
  ident: 1255_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204591
– volume: 450
  year: 2022
  ident: 1255_CR36
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138160
– volume: 30
  start-page: 536
  year: 2023
  ident: 1255_CR53
  publication-title: Int. J. Min. Met. Mater.
  doi: 10.1007/s12613-022-2570-9
– volume: 7
  start-page: 9237
  year: 2019
  ident: 1255_CR28
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b0006716
– volume: 612
  start-page: 146
  year: 2022
  ident: 1255_CR20
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.12.162
– volume: 446
  year: 2022
  ident: 1255_CR48
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136975
– volume: 27
  start-page: 4438
  year: 2015
  ident: 1255_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501448
– volume: 15
  start-page: 8536
  year: 2022
  ident: 1255_CR40
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4628-4
– volume: 564
  year: 2021
  ident: 1255_CR27
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.150380
– volume: 19
  start-page: 2207197
  year: 2023
  ident: 1255_CR47
  publication-title: Small
  doi: 10.1002/smll.202207197
– volume: 176
  start-page: 411
  year: 2021
  ident: 1255_CR46
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.01.136
– volume: 19
  start-page: 1
  year: 2017
  ident: 1255_CR14
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-017-4065-6
– volume: 209
  year: 2020
  ident: 1255_CR25
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.122981
– volume: 15
  start-page: 88
  year: 2023
  ident: 1255_CR18
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01062-0
– volume: 435
  year: 2022
  ident: 1255_CR55
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135009
– volume: 433
  year: 2022
  ident: 1255_CR23
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134496
– volume: 89
  year: 2014
  ident: 1255_CR44
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.022511
– volume: 205
  start-page: 411
  year: 2023
  ident: 1255_CR12
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.01.057
– volume: 13
  start-page: 28689
  year: 2021
  ident: 1255_CR33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c06446
– volume: 31
  start-page: 2102812
  year: 2021
  ident: 1255_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102812
– volume: 46
  start-page: 20896
  year: 2020
  ident: 1255_CR42
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.05.139
– volume: 30
  start-page: 1706343
  year: 2018
  ident: 1255_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706343
– volume: 13
  start-page: 22205
  year: 2023
  ident: 1255_CR50
  publication-title: RSC Adv.
  doi: 10.1039/d3ra03927g
– volume: 35
  year: 2023
  ident: 1255_CR15
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2023.101110
– volume: 30
  start-page: 1908299
  year: 2020
  ident: 1255_CR35
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908299
– volume: 575
  start-page: 130
  year: 2020
  ident: 1255_CR37
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.099
– volume: 607
  start-page: 24
  year: 2022
  ident: 1255_CR8
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.08.186
– volume: 34
  start-page: 2106195
  year: 2022
  ident: 1255_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106195
– volume: 7
  start-page: 1900689
  year: 2019
  ident: 1255_CR5
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900689
– volume: 19
  start-page: 1589
  year: 2007
  ident: 1255_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602457
– volume: 446
  year: 2022
  ident: 1255_CR52
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137279
– volume: 10
  start-page: 1133287
  year: 2023
  ident: 1255_CR49
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2023.1133287
– volume: 14
  start-page: 171
  year: 2022
  ident: 1255_CR54
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00906-5
– volume: 19
  start-page: 2303597
  year: 2023
  ident: 1255_CR34
  publication-title: Small
  doi: 10.1002/smll.202303597
– volume: 6
  start-page: 1801898
  year: 2019
  ident: 1255_CR43
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801898
– volume: 188
  start-page: 1
  year: 2022
  ident: 1255_CR24
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.11.045
– volume: 6
  start-page: 11009
  year: 2012
  ident: 1255_CR39
  publication-title: ACS Nano
  doi: 10.1021/nn304630h
– volume: 9
  start-page: 5086
  year: 2021
  ident: 1255_CR56
  publication-title: J. Mater. Chem. A
  doi: 10.1039/d0ta10942h
– volume: 15
  start-page: 3720
  year: 2022
  ident: 1255_CR21
  publication-title: Nano Res.
  doi: 10.1007/s12274-021-3955-1
– volume: 16
  start-page: 401
  year: 2004
  ident: 1255_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306460
– volume: 16
  start-page: 1773
  year: 2023
  ident: 1255_CR32
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-5111-y
– volume: 31
  year: 2020
  ident: 1255_CR41
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/abb2c0
– volume: 32
  start-page: 2108194
  year: 2022
  ident: 1255_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108194
– year: 2023
  ident: 1255_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202213258
– volume: 34
  start-page: 2107538
  year: 2022
  ident: 1255_CR1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107538
– volume: 26
  start-page: 3484
  year: 2014
  ident: 1255_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400108
– volume: 56
  start-page: 17457
  year: 2021
  ident: 1255_CR9
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-021-06394-z
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.6479588
Snippet Highlights Fe 3+ , Co 2+ , H 3 BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect...
Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity,...
Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity,...
HighlightsFe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and...
Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution...
Highlights Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms Aerogels
Aircraft performance
Carbon
Chemical composition
Cobalt
Collagen
Complexation
Computer simulation
Computer simulation technology
Coupling
Electromagnetic radiation
Engineering
Heterometallic magnetic coupling
Homogeneity
Insulation
Iron oxides
Kirkendall effect
Magnetic properties
Metal–organic gels
Microwave absorption
Multifunctional materials
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Nitrogen
Peptides
Physical properties
Polarity
Pyrolysis
Radar
Radar stealth
Stealth technology
Thermal insulation
Thermal treatment materials
Viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQiAUsEG8CAzISO7BIYjuOl0M1A0jMaIRAml1kx3anUidBaYoQK_6BHZ_Hl3Btp2nKc8O2cVrX9yTnWr73HISeKO0KqXVKtGIpYc5QUpaFIlmmhDWaK6p1MJsQJyfl2Zk8nVh9-ZqwKA8cF-45K2hd1gaeA5UxZYXkmmpeA83ArygXlEBTISebKUBSLrwj0_Z80Nsqs4lKDfOaLnQrZMa9cJnY6mPynAGvD0QbE2nhj7CCU12WkUKkxdCBE_rwvGtzSoD-YGcOOToROywXzAB-l8H-Woj502lsILmj6-jakJ3ig7gqN9Al29xEVyeahbfQt2ML-fr3L19jF2eNX9olfhNL8XHf4tka0smLxWdr8LGaN75HkszatW_8nePJN-FFg2eq022DD2zXzoGjMSTQ-PBTOEtoevxWGdVhX3C87M-xagwGTAOPLPFrX0AfIIVPt40Pq9vo_dHhu9krMhg8kBoSq544B_ypZakBSQUTinKnpLTMaKusoVZJU1AgUOd0Xue5sLw0gAbDU2NSZS29g_aatrH3ENZ1nlkpnaIsZY4DZFJuITZSc5cVRZmgbBOQqh7Uz70Jx7IadZtDECsIYhWCWIkEPR3v-RC1P_46-oWP8zjS63aHDwDN1YDm6l9oTtD-BiXV8DJZVbAnhk0lB0Qm6PF4GV4DPh6qse06jvF-YhT-6d0IqnEmtPQ-AhzuLnfgtjPV3SvN4jxIjWdpIbnMaIKebZC5ndef1-L-_1iLB-hKDhlkrB3aR3t9t7YP0eX6Y79YdY_C8_4DNfdSYQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsIAFb-hAQUZiBxZxbCfxCpVRC0i0qnhI3UV-TkcakjaTQYgV_8COz-NLuHYykxke3bCdPMaJT-49ie89B6EnSvtMap0QrXhCuLeMFEWmCKUqd1YLxbSOZhP54WFxfCyP-g9u876schkTY6C2tQnfyJ_DiwEwawHp9sXpGQmuUWF1tbfQuIguBZUEGkv33i_xlObBl2lYJQzmynxNq4YHZRc2yJmJIF-WDyqZIuXwd3267eh0Hhayol8dpSTLk6zvw4ndeMG7OSGQBOH9HJg6yTdyXbQE-BuP_bMc87c12Zjq9q__7026ga71JBfvdqi8iS646ha6uiZ9eBv9OHBA-39--941gxr8ys3w266iH7c1Hi-AlX6afnUWH6hJFVotybhehP7hCV47E55WeKwaXVd41zX1BFI9Bh6O977EJYmqxe-UVQ0Odcuz9gSrymJ4NCAdzfCbUIcfkYmPhv6J-R30cX_vw_g16X0iiAF-1hLvIQ1rWWgAZMZzxYRXUjputVPOMqekzRjkYe91atI0d6KwzBRWJNYmyjl2F21VdeW2EdYmpU5KrxhPuBemMIlwMLlSC0-zrBghupzR0vQi6sHLY1au5J8jCkpAQRlRUOYj9HR1zGknIXLu3i8DUFZ7Bvnv-EPdTMo-mpQ8g_EbC8lBUa5cLoVmWhjgXvDoKc9HaGeJj7KPSfNyAMcIPV5thmgS5kNVrl50-wRbMgZXeq9D5WokrAh2BAKOLjbwujHUzS3V9CQqltMkk0JSNkLPltAexvXve3H__Mt4gK6kQDG74qIdtNU2C_cQXTaf2-m8eRRDwS-BWWAd
  priority: 102
  providerName: ProQuest
Title Metal–Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
URI https://link.springer.com/article/10.1007/s40820-023-01255-7
https://www.ncbi.nlm.nih.gov/pubmed/38047957
https://www.proquest.com/docview/2897535727
https://www.proquest.com/docview/2897486038
https://pubmed.ncbi.nlm.nih.gov/PMC10695913
https://doaj.org/article/463c8cd376a14ae795b3b5c185bf6af4
Volume 16
WOSCitedRecordID wos001112869900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: C24
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbYXQ5w4P-nsFRG4gZBSRzH9nFbdWEFraIFpMIlsmOnW6kkqE0R4oB4B248Hk_C2EmTFhYkuPjQTCp3MpkZd2a-D6FHUuWxUMr3lIx8L8o18TiPpRcEkhmtqCRKObIJNpnw6VQkzVDYatPtvilJOk_dDrtZamTfgxgDx19IhD22hw5owIVt5Bt2mOMhs2xMXW3QUipHWwg1kcVzIR2IGbWgZazDxqRhBDG9CbJ1Es1s-cqx1AWBFzM_bqZvzt_WToRzRADnZa-_N2H-Uol1Ae746v-p5hq60iS0-Ki2wOvogiluoMtbMIc30fexgRT_x9dv9eBnhp-ZBX5Zd-_jqsTDNWSg7-efjcZjOSvsWKU3LNd2VniGt74Jzws8lEtVFvjILMsZhHUMOTcefXLlh6LCp1LLJbY9yovqDMtCY3gNIPQs8IntuXdWiJNuVmJ1C705Hr0ePvcaTggvg1ys8vIcQq4SXIHxxRGThOZSCBNpZaTRxEihYwIxN89VmIUhM5RrknFNfa19aQy5jfaLsjB3EVZZGBghckkiP8ppxjOfGlCnUDQP4pj3ULB5jmnWAKZb3o5F2kI9O72noPfU6T1lPfS4vedDDRfyV-mBNY9W0kJ9uw_K5SxtPEcaxbD_TEMgkEEkDRNUEUUzyLPgNZN51EOHG-NKG_-zSuEYDedQCobcQw_by-A57POQhSnXtYylICPwS-_UttjuhHBLPUDhbr5jpTtb3b1SzM8cOnngx4KKgPTQk42xdvv6sy7u_Zv4fXQphPSybiw6RPvVcm0eoIvZx2q-WvbRHpvyPjoYjCbJad-5h777twXWF4Onfdvh-8quX0awJvQdyCYn4-TtTyTTXm0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtQwGLbKFAk4sC8DBYwEJ7BIYjvLAaEytHTUzmiEitSegrdMRxqSksmwnXgHbjwED8WT8DvLZIaltx64Jk5kx9-_OPb_fQg9FDLxIykdIgVzCEs0JWHoC-K6IjBackGlLMUmguEwPDiIRmvoR1MLY49VNj6xdNQ6U_Yf-VNYGEBmzSHcPj9-T6xqlN1dbSQ0Kljsms8fYck2e9Z_CfP7yPO2t_Z7O6RWFSAKonlBkgSctoxCCd33WSAoT0QUGaalEUZTIyLtU_DaSSI95XmB4aGmKtTc0doRxlB47xm0zizYO2h91B-MDhsEe4FVgmr3Ja2cM1tix2GWS4a2BGrcEqYFLS8n9xgMsA7wVQIf2K2zUiHPdYkfOH5d-VPW_1m1aIdA2CUQZzgnwUp0LUUI_pY5_3kA9Ldd4DK4bl_636blMrpYp_F4s7K7K2jNpFfRhSVyx2vo-8DAwubn129VuavCr8wU71U1C7jIcG8Oefe7yRej8UCMU1tMSnrZ3FZIj_HSm_AkxT2RyyzFmybPxpDMYFhp4K1P5aZLWuDXQosc25PZ0-IIi1RjMH4IuFPct5UGpe3hUVshMruO3pzKx7mBOmmWmlsIS-W5JooSQZnDEq5C5XADYIokT1zfD7vIbRAUq5om3qqVTOMFwXWJuhhQF5eoi4Muerx45rgiSTmx9QsLzEVLS3BeXsjycVz7y5j50H-lIfwJlwkTRFxSyRVkl-BcRMK6aKPBY1x73VncgrGLHixug7-08yFSk82rNlZ4jcJIb1ZWsOgJDa3gAoenwxX7WOnq6p10clRysruOH_HIpV30pDGltl___ha3Tx7GfXRuZ3-wF-_1h7t30HkPEurqKNUG6hT53NxFZ9WHYjLL79WOCKO3p21kvwBRncNb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgIMQe-DlYYYCReANrSWwn8eMoK0xsVYVA2ltkx3ZXqSRTmiLEE_8Db_x5_CWcnTRpYSAhXhsnul6--M66u-9D6JlUNhZKBURJFhBmNSVpGksShjIxWnFJlfJiE8l4nJ6eisnaFL_vdl-VJJuZBsfSVNT759rud4NvTiY5IBBv4CgMSTFJLqMrriLlMD7s-cejxCkz9XVCJ6_M1thqmON2oT2hGXcEZknPk8kjBvG9DbhNQp24UpZXrAtDEidB3E7iXGzWRrTzogAXZbK_N2T-UpX1wW508__ddAvdaBNdfNAg8za6ZIo7aHuN_vAu-n5iIPX_8fVbMxCa49dmjo-brn5cl3i4hMz04-yL0fhETgs3bkmG5dLNEE_x2pPwrMBDWamywAemKqcQ7jHk4vjwsy9LFDV-J7WssOtdntdnWBYaw-cBIWmOj1wvvkcnnvQzFIsd9GF0-H74hrRaESSHHK0m1kIoViJVAMqYJZJyK4UwTCsjjaZGCh1TiMXWqiiPosTwVNM81TzQOpDG0HtoqygLs4uwyqPQCGElZQGzPE_zgBtwp1DchnGcDlC4eqdZ3hKpOz2PedZRQHu_Z-D3zPs9SwboeXfPeUMj8tfVLx1UupWOAtz_UFbTrN1RMhaD_bmGACFDJk0iuKKK55B_wecnLRugvRXQsnZfWmRwvIbzKQdQD9DT7jLsKO59yMKUy2aNkyaj8E_vN7jsLKGpkyTgcHe6gdgNUzevFLMzz1oeBrHgIqQD9GIF3N6uP_viwb8tf4KuTV6NsuOj8duH6HoEGWjTe7SHtupqaR6hq_mneraoHvt94ie6PWEI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Gel+Leading+to+Customized+Magnetic-Coupling+Engineering+in+Carbon+Aerogels+for+Excellent+Radar+Stealth+and+Thermal+Insulation+Performances&rft.jtitle=Nano-micro+letters&rft.au=Li%2C+Xin&rft.au=Hu%2C+Ruizhe&rft.au=Xiong%2C+Zhiqiang&rft.au=Wang%2C+Dan&rft.date=2024-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=16&rft.issue=1&rft.spage=42&rft_id=info:doi/10.1007%2Fs40820-023-01255-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon