Metal–Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances
Highlights Fe 3+ , Co 2+ , H 3 BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity. By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnet...
Uložené v:
| Vydané v: | Nano-micro letters Ročník 16; číslo 1; s. 42 - 17 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Nature Singapore
01.12.2024
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 2311-6706, 2150-5551, 2150-5551 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Highlights
Fe
3+
, Co
2+
, H
3
BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity.
By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained.
FeCo/Fe
3
O
4
/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances.
Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe
3
O
4
/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings. |
|---|---|
| AbstractList | Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings.Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings. Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal-organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of - 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe O /NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings. Highlights Fe 3+ , Co 2+ , H 3 BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity. By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained. FeCo/Fe 3 O 4 /NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances. Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe 3 O 4 /NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings. Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity.By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained.FeCo/Fe3O4/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances. Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings. Highlights Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity. By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained. FeCo/Fe3O4/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances. HighlightsFe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution polarity.By optimizing pyrolysis, two kinds of nitrogen-doped carbon aerogels loaded with virus-shaped and nanospherical magnetic particles are obtained.FeCo/Fe3O4/NC and FeCo/NC aerogels exhibit excellent electromagnetic wave absorbing and radar stealth performances.Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe3O4/NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings. Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity, tunable shape, and porous structure. Herein, stable metal–organic hydrogels are prepared by regulating the complexation effect, solution polarity and curing speed. Meanwhile, collagen peptide is used to facilitate the fabrication of a porous aerogel with excellent physical properties as well as the homogeneous dispersion of magnetic particles during calcination. Subsequently, two kinds of heterometallic magnetic coupling systems are obtained through the application of Kirkendall effect. FeCo/nitrogen-doped carbon (NC) aerogel demonstrates an ultra-strong microwave absorption of − 85 dB at an ultra-low loading of 5%. After reducing the time taken by atom shifting, a FeCo/Fe 3 O 4 /NC aerogel containing virus-shaped particles is obtained, which achieves an ultra-broad absorption of 7.44 GHz at an ultra-thin thickness of 1.59 mm due to the coupling effect offered by dual-soft-magnetic particles. Furthermore, both aerogels show excellent thermal insulation property, and their outstanding radar stealth performances in J-20 aircraft are confirmed by computer simulation technology. The formation mechanism of MOG is also discussed along with the thermal insulation and electromagnetic wave absorption mechanism of the aerogels, which will enable the development and application of novel and lightweight stealth coatings. |
| ArticleNumber | 42 |
| Author | Xiong, Zhiqiang Zeng, Xiaojun Zhang, Zhixia Che, Renchao Wang, Dan Chen, Dezhi Liu, Chongbo Hu, Ruizhe Nie, Xuliang Li, Xin |
| Author_xml | – sequence: 1 givenname: Xin surname: Li fullname: Li, Xin organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University – sequence: 2 givenname: Ruizhe surname: Hu fullname: Hu, Ruizhe organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University – sequence: 3 givenname: Zhiqiang surname: Xiong fullname: Xiong, Zhiqiang organization: School of Environmental and Chemical Engineering, Nanchang Hangkong University – sequence: 4 givenname: Dan surname: Wang fullname: Wang, Dan organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University – sequence: 5 givenname: Zhixia surname: Zhang fullname: Zhang, Zhixia organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University – sequence: 6 givenname: Chongbo surname: Liu fullname: Liu, Chongbo email: cbliu2002@163.com organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University – sequence: 7 givenname: Xiaojun surname: Zeng fullname: Zeng, Xiaojun organization: School of Materials Science and Engineering, Jingdezhen Ceramic University – sequence: 8 givenname: Dezhi surname: Chen fullname: Chen, Dezhi organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, School of Environmental and Chemical Engineering, Nanchang Hangkong University – sequence: 9 givenname: Renchao surname: Che fullname: Che, Renchao email: rcche@fudan.edu.cn organization: Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University – sequence: 10 givenname: Xuliang surname: Nie fullname: Nie, Xuliang email: xuliangnie123@163.com organization: College of Chemistry and Materials, Jiangxi Agricultural University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38047957$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9UstuFDEQHKEgEkJ-gAOyxIXLgB_jeZxQtFrCShsFQThbPeOeWUdee7FnIuDEP3Dj8_gSvLsJkBxycstdVarurqfZgfMOs-w5o68ZpdWbWNCa05xykVPGpcyrR9kRZ5LmUkp2kGrBWF5WtDzMTmI0LZW8qHgliyfZoahpUTWyOsp-neMI9vePnxdhAGc6coaWLBG0cQMZPZlNcfRr8x01OYfB4Wi6fOanjd32524wDjFsa-PIDELrHTnF4Ae0kfQ-kPnXDq1FN5KPoCGQTyOCHVcEnCaXKwxrsGTh4mRhNIn7AUNircF1GJ9lj3uwEU9u3uPs87v55ex9vrw4W8xOl3lXMj7mfU9F2TZ1iy2WRQVC9tA0WOgWAbVAaHQpGK_7vuUd5xXKWouu1pJqTQFRHGeLva72cKU2wawhfFMejNp9-DAoCGlui6ooE7PToiqBFYBpha1oZcdq2fYl9EXServX2kztGnWXBg9g74je7TizUoO_VoyWjWyYSAqvbhSC_zJhHNXaxO0OwaGfouJ1UxV1SUWdoC_vQa_8FFza1Q4lhUz3TqgX_1v66-U2AwlQ7wFd8DEG7FVnxt05kkNjkzW1TZzaJ06lxKld4tSWyu9Rb9UfJIk9KW62ycHwz_YDrD_A3uzj |
| CitedBy_id | crossref_primary_10_1007_s40820_024_01583_2 crossref_primary_10_1016_j_cej_2025_168786 crossref_primary_10_1016_j_ceramint_2024_10_129 crossref_primary_10_1016_j_apsusc_2024_161742 crossref_primary_10_1016_j_ceramint_2023_12_257 crossref_primary_10_1021_acs_langmuir_5c01293 crossref_primary_10_1016_j_carbon_2024_119093 crossref_primary_10_1016_j_carbon_2025_120231 crossref_primary_10_1016_j_cej_2024_152248 crossref_primary_10_1016_j_jallcom_2024_175981 crossref_primary_10_1016_j_carbon_2025_120598 crossref_primary_10_1016_j_ceramint_2024_07_069 crossref_primary_10_1016_j_cej_2024_150729 crossref_primary_10_1016_j_matchemphys_2024_129448 crossref_primary_10_1016_j_carbon_2024_119813 crossref_primary_10_1016_j_cej_2025_168716 crossref_primary_10_1016_j_cej_2024_157121 crossref_primary_10_1002_adfm_202510644 crossref_primary_10_1016_j_carbon_2025_120580 crossref_primary_10_1016_j_ceramint_2025_09_248 crossref_primary_10_1016_j_mtnano_2025_100653 crossref_primary_10_1002_adfm_202414838 crossref_primary_10_1007_s40820_025_01732_1 crossref_primary_10_1039_D5MH01066G crossref_primary_10_1016_j_conbuildmat_2024_139041 crossref_primary_10_1016_j_carbon_2025_120618 crossref_primary_10_1016_j_matlet_2024_136205 crossref_primary_10_1002_adfm_202423269 crossref_primary_10_1016_j_cej_2025_168409 crossref_primary_10_1016_j_jallcom_2025_181120 crossref_primary_10_1002_adfm_202516735 crossref_primary_10_1016_j_jallcom_2024_174956 crossref_primary_10_1002_adfm_202418304 crossref_primary_10_1016_j_ceramint_2024_10_470 crossref_primary_10_1016_j_mtnano_2024_100529 crossref_primary_10_1016_j_carbon_2025_120699 crossref_primary_10_1002_aelm_202500239 crossref_primary_10_1007_s42114_024_00895_6 crossref_primary_10_1002_smtd_202401665 crossref_primary_10_1016_j_jallcom_2025_178481 crossref_primary_10_1007_s40820_024_01409_1 crossref_primary_10_1016_j_carbon_2024_119314 crossref_primary_10_1016_j_carbon_2024_119798 crossref_primary_10_1016_j_ceramint_2024_12_321 crossref_primary_10_3390_gels11080582 crossref_primary_10_1016_j_compscitech_2025_111299 crossref_primary_10_1039_D5TC00207A crossref_primary_10_1016_j_jallcom_2024_174826 crossref_primary_10_1016_j_ceramint_2024_12_452 crossref_primary_10_1016_j_physleta_2025_130999 crossref_primary_10_1016_j_jallcom_2024_176960 crossref_primary_10_26599_JAC_2024_9220968 crossref_primary_10_1111_jace_20301 crossref_primary_10_1016_j_carbon_2025_120688 crossref_primary_10_1016_j_jallcom_2024_177770 crossref_primary_10_1016_j_compositesb_2025_112380 crossref_primary_10_1016_j_jcis_2025_02_009 crossref_primary_10_1016_j_carbon_2024_119965 crossref_primary_10_1039_D5QI00118H crossref_primary_10_1016_j_cclet_2025_111293 crossref_primary_10_1016_j_carbon_2024_119604 crossref_primary_10_1016_j_carbon_2024_119565 crossref_primary_10_1016_j_carbon_2025_120719 crossref_primary_10_1002_adfm_202502671 crossref_primary_10_1016_j_carbon_2024_119963 crossref_primary_10_1002_pc_70121 crossref_primary_10_1016_j_carbon_2024_119049 crossref_primary_10_1016_j_cej_2024_150893 crossref_primary_10_1016_j_pnsc_2024_03_008 crossref_primary_10_1039_D5MH00379B crossref_primary_10_1002_adfm_202425949 crossref_primary_10_1021_acsanm_5c03163 crossref_primary_10_1016_j_ceramint_2024_09_039 crossref_primary_10_1016_j_cej_2025_168465 crossref_primary_10_1007_s40820_024_01513_2 crossref_primary_10_1016_j_carbon_2024_119338 crossref_primary_10_1016_j_carbon_2024_119613 crossref_primary_10_1016_j_carbon_2025_120704 crossref_primary_10_1016_j_jmst_2025_03_028 crossref_primary_10_1007_s40820_024_01593_0 crossref_primary_10_1016_j_apmt_2025_102796 crossref_primary_10_1016_j_carbon_2024_119213 crossref_primary_10_1016_j_matlet_2024_136379 crossref_primary_10_1016_j_carbon_2024_119696 crossref_primary_10_1016_j_mtcomm_2025_112891 crossref_primary_10_1016_j_carbon_2024_119973 crossref_primary_10_1007_s12613_024_2956_y crossref_primary_10_1016_j_cej_2025_159489 crossref_primary_10_3390_ma18010113 crossref_primary_10_1016_j_jallcom_2024_175499 crossref_primary_10_1016_j_ceramint_2025_03_270 crossref_primary_10_1016_j_cej_2025_166331 crossref_primary_10_1016_j_carbon_2024_118930 crossref_primary_10_1007_s40820_024_01396_3 crossref_primary_10_1016_j_carbon_2024_119867 crossref_primary_10_1002_smtd_202401299 crossref_primary_10_1016_j_ceramint_2025_01_422 crossref_primary_10_1016_j_coco_2025_102366 crossref_primary_10_1016_j_carbon_2024_119628 crossref_primary_10_3390_sym17081286 crossref_primary_10_1016_j_compositesb_2025_112628 crossref_primary_10_1016_j_optmat_2025_117156 crossref_primary_10_1016_j_matdes_2025_114062 crossref_primary_10_1039_D4QI02776K crossref_primary_10_1016_j_carbon_2025_120650 crossref_primary_10_1016_j_cej_2025_160168 crossref_primary_10_1016_j_jallcom_2024_177346 crossref_primary_10_1016_j_apmt_2025_102588 crossref_primary_10_1016_j_cclet_2025_111065 crossref_primary_10_1021_acsanm_4c04624 crossref_primary_10_1016_j_carbon_2024_119478 crossref_primary_10_1016_j_ceramint_2025_05_238 crossref_primary_10_1002_smll_202501239 crossref_primary_10_1016_j_jmst_2024_06_012 crossref_primary_10_1016_j_seppur_2024_129098 crossref_primary_10_1016_j_cej_2024_158873 crossref_primary_10_1016_j_jmst_2024_12_006 crossref_primary_10_1007_s42114_024_01126_8 crossref_primary_10_1016_j_carbon_2025_120000 crossref_primary_10_1088_1402_4896_ad8840 crossref_primary_10_1016_j_carbon_2025_120244 crossref_primary_10_1039_D4NR03738C crossref_primary_10_1016_j_jallcom_2024_174340 |
| Cites_doi | 10.1021/acssuschemeng.9b0006716 10.1021/acsami.2c06767 10.1007/s12274-022-5111-y 10.1002/adma.201706343 10.1016/j.cej.2022.136975 10.1016/j.polymer.2020.122981 10.1007/s10853-021-06394-z 10.1088/1361-6528/abb2c0 10.1007/s40820-021-00734-z 10.1016/j.cej.2022.137279 10.1103/PhysRevE.89.022511 10.1016/j.jcis.2021.12.162 10.1002/advs.201801898 10.1007/s12274-021-3955-1 10.1016/j.carbon.2023.01.057 10.1021/acsami.1c06446 10.1007/s12274-022-4628-4 10.1002/adfm.202204591 10.1007/s40820-023-01062-0 10.1002/adfm.202108194 10.1002/adma.202106195 10.1039/c6nr00223d 10.1016/j.ceramint.2020.05.139 10.1002/adfm.201807398 10.1016/j.cej.2022.134496 10.1002/smll.202207197 10.1002/adma.200602457 10.1007/s11051-017-4065-6 10.1007/s10570-014-0200-z 10.1016/j.cej.2022.138160 10.1021/nn304630h 10.1016/j.jcis.2020.04.099 10.1002/adom.201900689 10.1002/adma.202107538 10.1002/adfm.202107508 10.1039/d3ra03927g 10.1007/s40820-022-00906-5 10.1007/s40820-022-00869-7 10.1002/adfm.201908299 10.1016/j.cej.2022.135009 10.1002/adma.201400108 10.3389/fmats.2023.1133287 10.1002/adma.201501448 10.1016/j.carbon.2021.11.045 10.1016/j.apsusc.2021.150380 10.1016/j.mtphys.2023.101110 10.1016/j.carbon.2021.01.136 10.1039/d0ta10942h 10.1007/s12613-022-2570-9 10.1002/adfm.202102812 10.1016/j.carbon.2022.07.018 10.1002/adfm.202213258 10.1016/j.cej.2020.124743 10.1002/smll.202303597 10.1002/adma.200306460 10.1016/j.jcis.2021.08.186 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1007/s40820-023-01255-7 |
| DatabaseName | Springer Nature Open Access Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2150-5551 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_463c8cd376a14ae795b3b5c185bf6af4 PMC10695913 38047957 10_1007_s40820_023_01255_7 |
| Genre | Journal Article |
| GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c612t-ff036b98bebe647a35fa99e4dbeaed3ea9d63128ffb2c227e58d3c8d50dd0aee3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 153 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001112869900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2311-6706 2150-5551 |
| IngestDate | Fri Oct 03 12:36:08 EDT 2025 Tue Nov 04 02:06:33 EST 2025 Sun Nov 09 14:39:49 EST 2025 Sat Oct 18 23:14:20 EDT 2025 Thu Apr 03 07:07:57 EDT 2025 Tue Nov 18 22:34:25 EST 2025 Sat Nov 29 02:07:29 EST 2025 Fri Feb 21 02:37:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Metal–organic gels Computer simulation technology Radar stealth Thermal insulation Heterometallic magnetic coupling |
| Language | English |
| License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c612t-ff036b98bebe647a35fa99e4dbeaed3ea9d63128ffb2c227e58d3c8d50dd0aee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s40820-023-01255-7 |
| PMID | 38047957 |
| PQID | 2897535727 |
| PQPubID | 2044332 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_463c8cd376a14ae795b3b5c185bf6af4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10695913 proquest_miscellaneous_2897486038 proquest_journals_2897535727 pubmed_primary_38047957 crossref_citationtrail_10_1007_s40820_023_01255_7 crossref_primary_10_1007_s40820_023_01255_7 springer_journals_10_1007_s40820_023_01255_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
| PublicationTitle | Nano-micro letters |
| PublicationTitleAbbrev | Nano-Micro Lett |
| PublicationTitleAlternate | Nanomicro Lett |
| PublicationYear | 2024 |
| Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
| References | Sun, Li, Huang, Cheng, Wang (CR6) 2022; 32 Dogari, Peymanfar, Ghafuri (CR50) 2023; 13 Wang, Zhou, Xie, Hao, Tang (CR20) 2022; 612 Shu, Cao, Zhang, Wang, Cao (CR35) 2020; 30 Pan, Rao, Batalu, Cai, Dong (CR11) 2022; 14 Yang, You, Xiong, Zhang, Wu (CR22) 2022; 14 Huang, Zhao, Wu, Zhou, Tan (CR52) 2022; 446 Liang, Gu, Wu, Zhang, Wang (CR26) 2022; 34 Xia, Gao, Gao (CR10) 2022; 32 Zhang, Cheng, Wang, Huang, Zheng (CR7) 2022; 32 Zhang, Wang, Cao, Yuan, Cao (CR5) 2019; 7 Liu, Gao, Zhang, Huang, You (CR31) 2021; 31 Zhou, Jia, Feng, Qu, Wang (CR37) 2020; 575 Chen, Zhang, Luo, Wu (CR8) 2022; 607 Kuriakose, Longuemart, Depriester, Delenclos, Sahraoui (CR44) 2014; 89 Zhi, Li, Qi, Li, Tian (CR23) 2022; 433 Guan, Yang, Zhu, Yang, Zhou (CR24) 2022; 188 Wu, Cheng, Jin, Yang, Xu (CR1) 2022; 34 Yang, Wang, Lu, Cheng, Wang (CR12) 2023; 205 Peymanfar, Ghorbanian-Gezaforodi (CR41) 2020; 31 He, Peng, Xiong, Nie, Wang (CR30) 2022; 198 Zhou, Thaiboonrod, Fang, Cao, Miao (CR40) 2022; 15 Che, Peng, Duan, Chen, Liang (CR2) 2004; 16 Shen, Liu, Yang, Xie, Zeng (CR33) 2021; 13 Zhao, Li, Ji, Bai, Wang (CR46) 2021; 176 Wen, Cao, Lu, Cao, Shi (CR3) 2014; 26 Wang, Yang, Miao, Feng (CR15) 2023; 35 Chaudhari, Han, Tan (CR19) 2015; 27 Wu, Zhao, Zhou, Tan, Peymanfar (CR54) 2022; 14 Li, Hou, Song, Liu, Cao (CR45) 2016; 8 Wang, Liu, Feng, Wang, Han (CR34) 2023; 19 Liu, Zhang, Zheng, Guo, Zhu (CR43) 2019; 6 Pan, Cai, Shi, Dong, Zhu (CR55) 2022; 435 Wang, Gu, Chen, Wu, Zhou (CR21) 2022; 15 Peymanfar, Yektaei, Javanshir, Selseleh-Zakerin (CR25) 2020; 209 Cao, Wang, Zhang, Shu, Cao (CR51) 2019; 29 Wang, Zhang, Deng, Li, Chen (CR53) 2023; 30 Rao, Wang, Yang, Zhang, Zhang (CR13) 2023 Peymanfar, Dogari, Selseleh-Zakerin, Hedayatzadeh, Daneshvar (CR49) 2023; 10 Li, Ma, Zhang, Xu, Chen (CR47) 2023; 19 Wang, Gao, Tang, Chen, Duan (CR39) 2012; 6 Kanamori, Aizawa, Nakanishi, Hanada (CR16) 2007; 19 Lv, Yang, Wang, Ji, Song (CR4) 2018; 30 Peymanfar, Javanshir, Naimi-Jamal, Tavassoli (CR9) 2021; 56 Sun, Yan, Li, Yue, Zhao (CR27) 2021; 564 Yeap, Lim, Ooi, Ahmad (CR14) 2017; 19 Yin, Wu, Tang, Liu, Zhang (CR48) 2022; 446 Zhao, Wang, Cui, Xu, Han (CR17) 2021; 13 Peymanfar, Ghorbanian-Gezaforodi, Selseleh-Zakerin, Ahmadi, Ghaffari (CR42) 2020; 46 Han, He, Hu, Liu, Liu (CR32) 2023; 16 Guo, An, Xiao, Zhai, Cui (CR28) 2019; 7 Liu, Du, Xu, Wang, Wang (CR56) 2021; 9 Qian, Zhou, Miao, Wu, Thaiboonrod (CR18) 2023; 15 Wu, Liu, Liang, Zang (CR38) 2020; 393 Wang, Liu, Zhao, Cui, Gai (CR36) 2022; 450 Gong, Wang, Tian, Zheng, Chen (CR29) 2014; 21 SP Yeap (1255_CR14) 2017; 19 X Zhou (1255_CR37) 2020; 575 Y Han (1255_CR32) 2023; 16 P Yin (1255_CR48) 2022; 446 X Gong (1255_CR29) 2014; 21 F Pan (1255_CR11) 2022; 14 L Yang (1255_CR12) 2023; 205 K Qian (1255_CR18) 2023; 15 F Wang (1255_CR36) 2022; 450 H Zhao (1255_CR17) 2021; 13 ZJ Li (1255_CR45) 2016; 8 JC Shu (1255_CR35) 2020; 30 H Dogari (1255_CR50) 2023; 13 X Sun (1255_CR6) 2022; 32 AK Chaudhari (1255_CR19) 2015; 27 J Wang (1255_CR20) 2022; 612 D Zhi (1255_CR23) 2022; 433 Z Yang (1255_CR22) 2022; 14 D Liu (1255_CR56) 2021; 9 H Lv (1255_CR4) 2018; 30 K Kanamori (1255_CR16) 2007; 19 X Guan (1255_CR24) 2022; 188 R Peymanfar (1255_CR42) 2020; 46 B Zhao (1255_CR46) 2021; 176 MS Cao (1255_CR51) 2019; 29 F Pan (1255_CR55) 2022; 435 X Liu (1255_CR43) 2019; 6 B Wen (1255_CR3) 2014; 26 H Wu (1255_CR38) 2020; 393 R Peymanfar (1255_CR25) 2020; 209 Q Huang (1255_CR52) 2022; 446 M Zhang (1255_CR5) 2019; 7 Z Shen (1255_CR33) 2021; 13 Y Xia (1255_CR10) 2022; 32 Z Sun (1255_CR27) 2021; 564 M Kuriakose (1255_CR44) 2014; 89 J Zhou (1255_CR40) 2022; 15 G Chen (1255_CR8) 2022; 607 R Peymanfar (1255_CR41) 2020; 31 Y Wu (1255_CR54) 2022; 14 P Liu (1255_CR31) 2021; 31 Y Wang (1255_CR53) 2023; 30 L Liang (1255_CR26) 2022; 34 H Zhang (1255_CR7) 2022; 32 L Guo (1255_CR28) 2019; 7 X He (1255_CR30) 2022; 198 B Li (1255_CR47) 2023; 19 F Wang (1255_CR21) 2022; 15 R Peymanfar (1255_CR9) 2021; 56 G Wang (1255_CR39) 2012; 6 Y Wang (1255_CR15) 2023; 35 RC Che (1255_CR2) 2004; 16 Z Wu (1255_CR1) 2022; 34 L Rao (1255_CR13) 2023 F Wang (1255_CR34) 2023; 19 R Peymanfar (1255_CR49) 2023; 10 |
| References_xml | – volume: 7 start-page: 9237 year: 2019 end-page: 9248 ident: CR28 article-title: Inherent N-doped honeycomb-like carbon/Fe O composites with versatility for efficient microwave absorption and wastewater treatment publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b0006716 – volume: 14 start-page: 32369 year: 2022 end-page: 32378 ident: CR22 article-title: Morphology-evolved succulent-like FeCo microarchitectures with magnetic configuration regulation for enhanced microwave absorption publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06767 – volume: 16 start-page: 1773 year: 2023 end-page: 1778 ident: CR32 article-title: Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band publication-title: Nano Res. doi: 10.1007/s12274-022-5111-y – volume: 30 start-page: 1706343 year: 2018 ident: CR4 article-title: A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device publication-title: Adv. Mater. doi: 10.1002/adma.201706343 – volume: 446 year: 2022 ident: CR48 article-title: Structure regulation in N-doping biconical carbon frame decorated with CoFe O and (Fe, Ni) for broadband microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136975 – volume: 209 year: 2020 ident: CR25 article-title: Regulating the energy band-gap, UV-Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent publication-title: Polymer doi: 10.1016/j.polymer.2020.122981 – volume: 56 start-page: 17457 year: 2021 end-page: 17477 ident: CR9 article-title: Morphology and medium influence on microwave characteristics of nanostructures: a review publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06394-z – volume: 31 year: 2020 ident: CR41 article-title: Preparation of graphite-like carbon nitride (g-C N )/NiCo S nanocomposite toward salient microwave characteristics and evaluation of medium influence on its microwave features publication-title: Nanotechnology doi: 10.1088/1361-6528/abb2c0 – volume: 13 start-page: 208 year: 2021 ident: CR17 article-title: Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00734-z – volume: 446 year: 2022 ident: CR52 article-title: A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137279 – volume: 89 year: 2014 ident: CR44 article-title: Maxwell–Wagner–Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.022511 – volume: 612 start-page: 146 year: 2022 end-page: 155 ident: CR20 article-title: Enhanced interfacial polarization of biomass-derived porous carbon with a low radar cross-section publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.162 – volume: 6 start-page: 1801898 year: 2019 ident: CR43 article-title: Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films publication-title: Adv. Sci. doi: 10.1002/advs.201801898 – volume: 15 start-page: 3720 year: 2022 end-page: 3728 ident: CR21 article-title: The point defect and electronic structure of K doped LaCo Fe O perovskite with enhanced microwave absorbing ability publication-title: Nano Res. doi: 10.1007/s12274-021-3955-1 – volume: 205 start-page: 411 year: 2023 end-page: 421 ident: CR12 article-title: Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2023.01.057 – volume: 13 start-page: 28689 year: 2021 end-page: 28702 ident: CR33 article-title: Fabrication of hollow cube dual-semiconductor Ln O /MnO/C nanocomposites with excellent microwave absorption performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06446 – volume: 15 start-page: 8536 year: 2022 end-page: 8545 ident: CR40 article-title: In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability publication-title: Nano Res. doi: 10.1007/s12274-022-4628-4 – volume: 32 start-page: 2204591 year: 2022 ident: CR10 article-title: A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204591 – volume: 15 start-page: 88 year: 2023 ident: CR18 article-title: Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01062-0 – volume: 32 start-page: 2108194 year: 2022 ident: CR7 article-title: Initiating VB-group laminated NbS electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108194 – volume: 34 start-page: 2106195 year: 2022 ident: CR26 article-title: Heterointerface engineering in electromagnetic absorbers: new insights and opportunities publication-title: Adv. Mater. doi: 10.1002/adma.202106195 – volume: 8 start-page: 10415 year: 2016 end-page: 10424 ident: CR45 article-title: Unusual continuous dual absorption peaks in Ca-doped BiFeO nanostructures for broadened microwave absorption publication-title: Nanoscale doi: 10.1039/c6nr00223d – volume: 46 start-page: 20896 year: 2020 end-page: 20904 ident: CR42 article-title: Tailoring La Sr MnO /La/Sr nanocomposite using a novel complementary method as well as dissecting its microwave, shielding, optical, and magnetic characteristics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.139 – volume: 29 start-page: 1807398 year: 2019 ident: CR51 article-title: Electromagnetic response and energy conversion for functions and devices in low-dimensional materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807398 – volume: 433 year: 2022 ident: CR23 article-title: Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134496 – volume: 19 start-page: 2207197 year: 2023 ident: CR47 article-title: NiO/Ni heterojunction on N-doped hollow carbon sphere with balanced dielectric loss for efficient microwave absorption publication-title: Small doi: 10.1002/smll.202207197 – volume: 19 start-page: 1589 year: 2007 end-page: 1593 ident: CR16 article-title: New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties publication-title: Adv. Mater. doi: 10.1002/adma.200602457 – volume: 19 start-page: 1 year: 2017 end-page: 15 ident: CR14 article-title: Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications publication-title: J. Nanopart. Res. doi: 10.1007/s11051-017-4065-6 – volume: 21 start-page: 1667 year: 2014 end-page: 1678 ident: CR29 article-title: Controlled production of spruce cellulose gels using an environmentally “green” system publication-title: Cellulose doi: 10.1007/s10570-014-0200-z – volume: 450 year: 2022 ident: CR36 article-title: Controllable seeding of nitrogen-doped carbon nanotubes on three-dimensional Co/C foam for enhanced dielectric loss and microwave absorption characteristics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138160 – volume: 6 start-page: 11009 year: 2012 end-page: 11017 ident: CR39 article-title: Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition publication-title: ACS Nano doi: 10.1021/nn304630h – volume: 575 start-page: 130 year: 2020 end-page: 139 ident: CR37 article-title: Synthesis of porous carbon embedded with NiCo/CoNiO hybrids composites for excellent electromagnetic wave absorption performance publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.099 – volume: 7 start-page: 1900689 year: 2019 ident: CR5 article-title: Electromagnetic functions of patterned 2D materials for micro–nano devices covering GHz, THz, and optical frequency publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900689 – volume: 34 start-page: 2107538 year: 2022 ident: CR1 article-title: Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption publication-title: Adv. Mater. doi: 10.1002/adma.202107538 – volume: 32 start-page: 2107508 year: 2022 ident: CR6 article-title: Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107508 – volume: 13 start-page: 22205 year: 2023 end-page: 22215 ident: CR50 article-title: Microwave absorbing characteristics of porphyrin derivates: a loop of conjugated structure publication-title: RSC Adv. doi: 10.1039/d3ra03927g – volume: 14 start-page: 171 year: 2022 ident: CR54 article-title: Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00906-5 – volume: 14 start-page: 140 year: 2022 ident: CR11 article-title: Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00869-7 – volume: 30 start-page: 1908299 year: 2020 ident: CR35 article-title: Molecular patching engineering to drive energy conversion as efficient and environment-friendly cell toward wireless power transmission publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908299 – volume: 435 year: 2022 ident: CR55 article-title: Phase engineering reinforced multiple loss network in apple tree–like liquid metal/Ni–Ni P/N–doped carbon fiber composites for high–performance microwave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135009 – volume: 26 start-page: 3484 year: 2014 end-page: 3489 ident: CR3 article-title: Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures publication-title: Adv. Mater. doi: 10.1002/adma.201400108 – volume: 10 start-page: 1133287 year: 2023 ident: CR49 article-title: Recent advances in microwave-absorbing materials fabricated using organic conductive polymers publication-title: Front. Mater. doi: 10.3389/fmats.2023.1133287 – volume: 27 start-page: 4438 year: 2015 end-page: 4446 ident: CR19 article-title: Multifunctional supramolecular hybrid materials constructed from hierarchical self-ordering of in situ generated metal-organic framework (MOF) nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201501448 – volume: 188 start-page: 1 year: 2022 end-page: 11 ident: CR24 article-title: The controllable porous structure and s-doping of hollow carbon sphere synergistically act on the microwave attenuation publication-title: Carbon doi: 10.1016/j.carbon.2021.11.045 – volume: 564 year: 2021 ident: CR27 article-title: Dual heteroatoms co-doping strategy of graphene-based dielectric loss electromagnetic absorbent publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150380 – volume: 35 year: 2023 ident: CR15 article-title: Carbon nanotube arrays@ cobalt hybrids derived from metal-organic framework ZIF-67 for enhanced electromagnetic wave absorption publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2023.101110 – volume: 176 start-page: 411 year: 2021 end-page: 420 ident: CR46 article-title: Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption publication-title: Carbon doi: 10.1016/j.carbon.2021.01.136 – volume: 9 start-page: 5086 year: 2021 end-page: 5096 ident: CR56 article-title: Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption publication-title: J. Mater. Chem. A doi: 10.1039/d0ta10942h – volume: 30 start-page: 536 year: 2023 end-page: 547 ident: CR53 article-title: Reduced graphene oxide aerogel decorated with Mo C nanoparticles toward multifunctional properties of hydrophobicity, thermal insulation and microwave absorption publication-title: Int. J. Min. Met. Mater. doi: 10.1007/s12613-022-2570-9 – volume: 31 start-page: 2102812 year: 2021 ident: CR31 article-title: Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 198 start-page: 195 year: 2022 end-page: 206 ident: CR30 article-title: A sustainable and low-cost route to prepare magnetic particle-embedded ultra-thin carbon nanosheets with broadband microwave absorption from biowastes publication-title: Carbon doi: 10.1016/j.carbon.2022.07.018 – year: 2023 ident: CR13 article-title: Confined diffusion strategy for customizing magnetic coupling spaces to enhance low-frequency electromagnetic wave absorption publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213258 – volume: 393 year: 2020 ident: CR38 article-title: Sandwich-like Fe O /Fe S composites for electromagnetic wave absorption publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124743 – volume: 19 start-page: 2303597 year: 2023 ident: CR34 article-title: “Win–Win” Strategy to modify Co/C foam with carbon microspheres for enhanced dielectric loss and microwave absorption characteristics publication-title: Small doi: 10.1002/smll.202303597 – volume: 16 start-page: 401 year: 2004 end-page: 405 ident: CR2 article-title: Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes publication-title: Adv. Mater. doi: 10.1002/adma.200306460 – volume: 607 start-page: 24 year: 2022 end-page: 33 ident: CR8 article-title: Optimal control of the compositions, interfaces, and defects of hollow sulfide for electromagnetic wave absorption publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.186 – volume: 32 start-page: 2107508 year: 2022 ident: 1255_CR6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107508 – volume: 13 start-page: 208 year: 2021 ident: 1255_CR17 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00734-z – volume: 14 start-page: 140 year: 2022 ident: 1255_CR11 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00869-7 – volume: 21 start-page: 1667 year: 2014 ident: 1255_CR29 publication-title: Cellulose doi: 10.1007/s10570-014-0200-z – volume: 393 year: 2020 ident: 1255_CR38 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124743 – volume: 29 start-page: 1807398 year: 2019 ident: 1255_CR51 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807398 – volume: 14 start-page: 32369 year: 2022 ident: 1255_CR22 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06767 – volume: 198 start-page: 195 year: 2022 ident: 1255_CR30 publication-title: Carbon doi: 10.1016/j.carbon.2022.07.018 – volume: 8 start-page: 10415 year: 2016 ident: 1255_CR45 publication-title: Nanoscale doi: 10.1039/c6nr00223d – volume: 32 start-page: 2204591 year: 2022 ident: 1255_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204591 – volume: 450 year: 2022 ident: 1255_CR36 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138160 – volume: 30 start-page: 536 year: 2023 ident: 1255_CR53 publication-title: Int. J. Min. Met. Mater. doi: 10.1007/s12613-022-2570-9 – volume: 7 start-page: 9237 year: 2019 ident: 1255_CR28 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b0006716 – volume: 612 start-page: 146 year: 2022 ident: 1255_CR20 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.12.162 – volume: 446 year: 2022 ident: 1255_CR48 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136975 – volume: 27 start-page: 4438 year: 2015 ident: 1255_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201501448 – volume: 15 start-page: 8536 year: 2022 ident: 1255_CR40 publication-title: Nano Res. doi: 10.1007/s12274-022-4628-4 – volume: 564 year: 2021 ident: 1255_CR27 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.150380 – volume: 19 start-page: 2207197 year: 2023 ident: 1255_CR47 publication-title: Small doi: 10.1002/smll.202207197 – volume: 176 start-page: 411 year: 2021 ident: 1255_CR46 publication-title: Carbon doi: 10.1016/j.carbon.2021.01.136 – volume: 19 start-page: 1 year: 2017 ident: 1255_CR14 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-017-4065-6 – volume: 209 year: 2020 ident: 1255_CR25 publication-title: Polymer doi: 10.1016/j.polymer.2020.122981 – volume: 15 start-page: 88 year: 2023 ident: 1255_CR18 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01062-0 – volume: 435 year: 2022 ident: 1255_CR55 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135009 – volume: 433 year: 2022 ident: 1255_CR23 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134496 – volume: 89 year: 2014 ident: 1255_CR44 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.022511 – volume: 205 start-page: 411 year: 2023 ident: 1255_CR12 publication-title: Carbon doi: 10.1016/j.carbon.2023.01.057 – volume: 13 start-page: 28689 year: 2021 ident: 1255_CR33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c06446 – volume: 31 start-page: 2102812 year: 2021 ident: 1255_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102812 – volume: 46 start-page: 20896 year: 2020 ident: 1255_CR42 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.139 – volume: 30 start-page: 1706343 year: 2018 ident: 1255_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201706343 – volume: 13 start-page: 22205 year: 2023 ident: 1255_CR50 publication-title: RSC Adv. doi: 10.1039/d3ra03927g – volume: 35 year: 2023 ident: 1255_CR15 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2023.101110 – volume: 30 start-page: 1908299 year: 2020 ident: 1255_CR35 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908299 – volume: 575 start-page: 130 year: 2020 ident: 1255_CR37 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.099 – volume: 607 start-page: 24 year: 2022 ident: 1255_CR8 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.186 – volume: 34 start-page: 2106195 year: 2022 ident: 1255_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.202106195 – volume: 7 start-page: 1900689 year: 2019 ident: 1255_CR5 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900689 – volume: 19 start-page: 1589 year: 2007 ident: 1255_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.200602457 – volume: 446 year: 2022 ident: 1255_CR52 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137279 – volume: 10 start-page: 1133287 year: 2023 ident: 1255_CR49 publication-title: Front. Mater. doi: 10.3389/fmats.2023.1133287 – volume: 14 start-page: 171 year: 2022 ident: 1255_CR54 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00906-5 – volume: 19 start-page: 2303597 year: 2023 ident: 1255_CR34 publication-title: Small doi: 10.1002/smll.202303597 – volume: 6 start-page: 1801898 year: 2019 ident: 1255_CR43 publication-title: Adv. Sci. doi: 10.1002/advs.201801898 – volume: 188 start-page: 1 year: 2022 ident: 1255_CR24 publication-title: Carbon doi: 10.1016/j.carbon.2021.11.045 – volume: 6 start-page: 11009 year: 2012 ident: 1255_CR39 publication-title: ACS Nano doi: 10.1021/nn304630h – volume: 9 start-page: 5086 year: 2021 ident: 1255_CR56 publication-title: J. Mater. Chem. A doi: 10.1039/d0ta10942h – volume: 15 start-page: 3720 year: 2022 ident: 1255_CR21 publication-title: Nano Res. doi: 10.1007/s12274-021-3955-1 – volume: 16 start-page: 401 year: 2004 ident: 1255_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.200306460 – volume: 16 start-page: 1773 year: 2023 ident: 1255_CR32 publication-title: Nano Res. doi: 10.1007/s12274-022-5111-y – volume: 31 year: 2020 ident: 1255_CR41 publication-title: Nanotechnology doi: 10.1088/1361-6528/abb2c0 – volume: 32 start-page: 2108194 year: 2022 ident: 1255_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108194 – year: 2023 ident: 1255_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202213258 – volume: 34 start-page: 2107538 year: 2022 ident: 1255_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.202107538 – volume: 26 start-page: 3484 year: 2014 ident: 1255_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.201400108 – volume: 56 start-page: 17457 year: 2021 ident: 1255_CR9 publication-title: J. Mater. Sci. doi: 10.1007/s10853-021-06394-z |
| SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
| Score | 2.6479588 |
| Snippet | Highlights
Fe
3+
, Co
2+
, H
3
BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect... Metal–organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity,... Metal-organic gel (MOG) derived composites are promising multi-functional materials due to their alterable composition, identifiable chemical homogeneity,... HighlightsFe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and... Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and solution... Highlights Fe3+, Co2+, H3BTC, and collagen peptide are used to achieve a one-step assembly of stable FeCo-MOG/CP by manipulating the complexation effect and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 42 |
| SubjectTerms | Aerogels Aircraft performance Carbon Chemical composition Cobalt Collagen Complexation Computer simulation Computer simulation technology Coupling Electromagnetic radiation Engineering Heterometallic magnetic coupling Homogeneity Insulation Iron oxides Kirkendall effect Magnetic properties Metal–organic gels Microwave absorption Multifunctional materials Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Nitrogen Peptides Physical properties Polarity Pyrolysis Radar Radar stealth Stealth technology Thermal insulation Thermal treatment materials Viruses |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQiAUsEG8CAzISO7BIYjuOl0M1A0jMaIRAml1kx3anUidBaYoQK_6BHZ_Hl3Btp2nKc8O2cVrX9yTnWr73HISeKO0KqXVKtGIpYc5QUpaFIlmmhDWaK6p1MJsQJyfl2Zk8nVh9-ZqwKA8cF-45K2hd1gaeA5UxZYXkmmpeA83ArygXlEBTISebKUBSLrwj0_Z80Nsqs4lKDfOaLnQrZMa9cJnY6mPynAGvD0QbE2nhj7CCU12WkUKkxdCBE_rwvGtzSoD-YGcOOToROywXzAB-l8H-Woj502lsILmj6-jakJ3ig7gqN9Al29xEVyeahbfQt2ML-fr3L19jF2eNX9olfhNL8XHf4tka0smLxWdr8LGaN75HkszatW_8nePJN-FFg2eq022DD2zXzoGjMSTQ-PBTOEtoevxWGdVhX3C87M-xagwGTAOPLPFrX0AfIIVPt40Pq9vo_dHhu9krMhg8kBoSq544B_ypZakBSQUTinKnpLTMaKusoVZJU1AgUOd0Xue5sLw0gAbDU2NSZS29g_aatrH3ENZ1nlkpnaIsZY4DZFJuITZSc5cVRZmgbBOQqh7Uz70Jx7IadZtDECsIYhWCWIkEPR3v-RC1P_46-oWP8zjS63aHDwDN1YDm6l9oTtD-BiXV8DJZVbAnhk0lB0Qm6PF4GV4DPh6qse06jvF-YhT-6d0IqnEmtPQ-AhzuLnfgtjPV3SvN4jxIjWdpIbnMaIKebZC5ndef1-L-_1iLB-hKDhlkrB3aR3t9t7YP0eX6Y79YdY_C8_4DNfdSYQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgsIAFb-hAQUZiBxZxbCfxCpVRC0i0qnhI3UV-TkcakjaTQYgV_8COz-NLuHYykxke3bCdPMaJT-49ie89B6EnSvtMap0QrXhCuLeMFEWmCKUqd1YLxbSOZhP54WFxfCyP-g9u876schkTY6C2tQnfyJ_DiwEwawHp9sXpGQmuUWF1tbfQuIguBZUEGkv33i_xlObBl2lYJQzmynxNq4YHZRc2yJmJIF-WDyqZIuXwd3267eh0Hhayol8dpSTLk6zvw4ndeMG7OSGQBOH9HJg6yTdyXbQE-BuP_bMc87c12Zjq9q__7026ga71JBfvdqi8iS646ha6uiZ9eBv9OHBA-39--941gxr8ys3w266iH7c1Hi-AlX6afnUWH6hJFVotybhehP7hCV47E55WeKwaXVd41zX1BFI9Bh6O977EJYmqxe-UVQ0Odcuz9gSrymJ4NCAdzfCbUIcfkYmPhv6J-R30cX_vw_g16X0iiAF-1hLvIQ1rWWgAZMZzxYRXUjputVPOMqekzRjkYe91atI0d6KwzBRWJNYmyjl2F21VdeW2EdYmpU5KrxhPuBemMIlwMLlSC0-zrBghupzR0vQi6sHLY1au5J8jCkpAQRlRUOYj9HR1zGknIXLu3i8DUFZ7Bvnv-EPdTMo-mpQ8g_EbC8lBUa5cLoVmWhjgXvDoKc9HaGeJj7KPSfNyAMcIPV5thmgS5kNVrl50-wRbMgZXeq9D5WokrAh2BAKOLjbwujHUzS3V9CQqltMkk0JSNkLPltAexvXve3H__Mt4gK6kQDG74qIdtNU2C_cQXTaf2-m8eRRDwS-BWWAd priority: 102 providerName: ProQuest |
| Title | Metal–Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances |
| URI | https://link.springer.com/article/10.1007/s40820-023-01255-7 https://www.ncbi.nlm.nih.gov/pubmed/38047957 https://www.proquest.com/docview/2897535727 https://www.proquest.com/docview/2897486038 https://pubmed.ncbi.nlm.nih.gov/PMC10695913 https://doaj.org/article/463c8cd376a14ae795b3b5c185bf6af4 |
| Volume | 16 |
| WOSCitedRecordID | wos001112869900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: C24 dateStart: 20091201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbYXQ5w4P-nsFRG4gZBSRzH9nFbdWEFraIFpMIlsmOnW6kkqE0R4oB4B248Hk_C2EmTFhYkuPjQTCp3MpkZd2a-D6FHUuWxUMr3lIx8L8o18TiPpRcEkhmtqCRKObIJNpnw6VQkzVDYatPtvilJOk_dDrtZamTfgxgDx19IhD22hw5owIVt5Bt2mOMhs2xMXW3QUipHWwg1kcVzIR2IGbWgZazDxqRhBDG9CbJ1Es1s-cqx1AWBFzM_bqZvzt_WToRzRADnZa-_N2H-Uol1Ae746v-p5hq60iS0-Ki2wOvogiluoMtbMIc30fexgRT_x9dv9eBnhp-ZBX5Zd-_jqsTDNWSg7-efjcZjOSvsWKU3LNd2VniGt74Jzws8lEtVFvjILMsZhHUMOTcefXLlh6LCp1LLJbY9yovqDMtCY3gNIPQs8IntuXdWiJNuVmJ1C705Hr0ePvcaTggvg1ys8vIcQq4SXIHxxRGThOZSCBNpZaTRxEihYwIxN89VmIUhM5RrknFNfa19aQy5jfaLsjB3EVZZGBghckkiP8ppxjOfGlCnUDQP4pj3ULB5jmnWAKZb3o5F2kI9O72noPfU6T1lPfS4vedDDRfyV-mBNY9W0kJ9uw_K5SxtPEcaxbD_TEMgkEEkDRNUEUUzyLPgNZN51EOHG-NKG_-zSuEYDedQCobcQw_by-A57POQhSnXtYylICPwS-_UttjuhHBLPUDhbr5jpTtb3b1SzM8cOnngx4KKgPTQk42xdvv6sy7u_Zv4fXQphPSybiw6RPvVcm0eoIvZx2q-WvbRHpvyPjoYjCbJad-5h777twXWF4Onfdvh-8quX0awJvQdyCYn4-TtTyTTXm0 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtQwGLbKFAk4sC8DBYwEJ7BIYjvLAaEytHTUzmiEitSegrdMRxqSksmwnXgHbjwED8WT8DvLZIaltx64Jk5kx9-_OPb_fQg9FDLxIykdIgVzCEs0JWHoC-K6IjBackGlLMUmguEwPDiIRmvoR1MLY49VNj6xdNQ6U_Yf-VNYGEBmzSHcPj9-T6xqlN1dbSQ0Kljsms8fYck2e9Z_CfP7yPO2t_Z7O6RWFSAKonlBkgSctoxCCd33WSAoT0QUGaalEUZTIyLtU_DaSSI95XmB4aGmKtTc0doRxlB47xm0zizYO2h91B-MDhsEe4FVgmr3Ja2cM1tix2GWS4a2BGrcEqYFLS8n9xgMsA7wVQIf2K2zUiHPdYkfOH5d-VPW_1m1aIdA2CUQZzgnwUp0LUUI_pY5_3kA9Ldd4DK4bl_636blMrpYp_F4s7K7K2jNpFfRhSVyx2vo-8DAwubn129VuavCr8wU71U1C7jIcG8Oefe7yRej8UCMU1tMSnrZ3FZIj_HSm_AkxT2RyyzFmybPxpDMYFhp4K1P5aZLWuDXQosc25PZ0-IIi1RjMH4IuFPct5UGpe3hUVshMruO3pzKx7mBOmmWmlsIS-W5JooSQZnDEq5C5XADYIokT1zfD7vIbRAUq5om3qqVTOMFwXWJuhhQF5eoi4Muerx45rgiSTmx9QsLzEVLS3BeXsjycVz7y5j50H-lIfwJlwkTRFxSyRVkl-BcRMK6aKPBY1x73VncgrGLHixug7-08yFSk82rNlZ4jcJIb1ZWsOgJDa3gAoenwxX7WOnq6p10clRysruOH_HIpV30pDGltl___ha3Tx7GfXRuZ3-wF-_1h7t30HkPEurqKNUG6hT53NxFZ9WHYjLL79WOCKO3p21kvwBRncNb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgIMQe-DlYYYCReANrSWwn8eMoK0xsVYVA2ltkx3ZXqSRTmiLEE_8Db_x5_CWcnTRpYSAhXhsnul6--M66u-9D6JlUNhZKBURJFhBmNSVpGksShjIxWnFJlfJiE8l4nJ6eisnaFL_vdl-VJJuZBsfSVNT759rud4NvTiY5IBBv4CgMSTFJLqMrriLlMD7s-cejxCkz9XVCJ6_M1thqmON2oT2hGXcEZknPk8kjBvG9DbhNQp24UpZXrAtDEidB3E7iXGzWRrTzogAXZbK_N2T-UpX1wW508__ddAvdaBNdfNAg8za6ZIo7aHuN_vAu-n5iIPX_8fVbMxCa49dmjo-brn5cl3i4hMz04-yL0fhETgs3bkmG5dLNEE_x2pPwrMBDWamywAemKqcQ7jHk4vjwsy9LFDV-J7WssOtdntdnWBYaw-cBIWmOj1wvvkcnnvQzFIsd9GF0-H74hrRaESSHHK0m1kIoViJVAMqYJZJyK4UwTCsjjaZGCh1TiMXWqiiPosTwVNM81TzQOpDG0HtoqygLs4uwyqPQCGElZQGzPE_zgBtwp1DchnGcDlC4eqdZ3hKpOz2PedZRQHu_Z-D3zPs9SwboeXfPeUMj8tfVLx1UupWOAtz_UFbTrN1RMhaD_bmGACFDJk0iuKKK55B_wecnLRugvRXQsnZfWmRwvIbzKQdQD9DT7jLsKO59yMKUy2aNkyaj8E_vN7jsLKGpkyTgcHe6gdgNUzevFLMzz1oeBrHgIqQD9GIF3N6uP_viwb8tf4KuTV6NsuOj8duH6HoEGWjTe7SHtupqaR6hq_mneraoHvt94ie6PWEI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-Organic+Gel+Leading+to+Customized+Magnetic-Coupling+Engineering+in+Carbon+Aerogels+for+Excellent+Radar+Stealth+and+Thermal+Insulation+Performances&rft.jtitle=Nano-micro+letters&rft.au=Li%2C+Xin&rft.au=Hu%2C+Ruizhe&rft.au=Xiong%2C+Zhiqiang&rft.au=Wang%2C+Dan&rft.date=2024-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=16&rft.issue=1&rft.spage=42&rft_id=info:doi/10.1007%2Fs40820-023-01255-7&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |