Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination

Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Neverthele...

Full description

Saved in:
Bibliographic Details
Published in:BMC medical research methodology Vol. 17; no. 1; pp. 160 - 11
Main Authors: Lusivika-Nzinga, Clovis, Selinger-Leneman, Hana, Grabar, Sophie, Costagliola, Dominique, Carrat, Fabrice
Format: Journal Article
Language:English
Published: London BioMed Central 04.12.2017
BioMed Central Ltd
BMC
Subjects:
ISSN:1471-2288, 1471-2288
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. Methods We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Results Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Conclusion Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
AbstractList The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. Methods We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Results Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Conclusion Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present.BACKGROUNDThe Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present.We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder.METHODSWe specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder.Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model.RESULTSOverall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model.Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.CONCLUSIONCox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
Abstract Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present. Methods We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder. Results Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model. Conclusion Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
BACKGROUND:The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to estimate the joint causal effect of two time-dependent nonrandomized treatments on survival among HIV-positive subjects. Nevertheless, Cox-MSM performance in the case of multiple treatments has not been fully explored under different degree of time-dependent confounding for treatments or in case of interaction between treatments. We aimed to evaluate and compare the performance of the marginal structural Cox model (Cox-MSM) to the standard Cox model in estimating the treatment effect in the case of multiple treatments under different scenarios of time-dependent confounding and when an interaction between treatment effects is present.METHODS:We specified a Cox-MSM with two treatments including an interaction term for situations where an adverse event might be caused by two treatments taken simultaneously but not by each treatment taken alone. We simulated longitudinal data with two treatments and a time-dependent confounder affected by one or the two treatments. To fit the Cox-MSM, we used the inverse probability weighting method. We illustrated the method to evaluate the specific effect of protease inhibitors combined (or not) to other antiretroviral medications on the anal cancer risk in HIV-infected individuals, with CD4 cell count as time-dependent confounder.RESULTS:Overall, Cox-MSM performed better than the standard Cox model. Furthermore, we showed that estimates were unbiased when an interaction term was included in the model.CONCLUSION:Cox-MSM may be used for accurately estimating causal individual and joined treatment effects from a combination therapy in presence of time-dependent confounding provided that an interaction term is estimated.
ArticleNumber 160
Audience Academic
Author Selinger-Leneman, Hana
Grabar, Sophie
Carrat, Fabrice
Lusivika-Nzinga, Clovis
Costagliola, Dominique
Author_xml – sequence: 1
  givenname: Clovis
  surname: Lusivika-Nzinga
  fullname: Lusivika-Nzinga, Clovis
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136)
– sequence: 2
  givenname: Hana
  surname: Selinger-Leneman
  fullname: Selinger-Leneman, Hana
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136)
– sequence: 3
  givenname: Sophie
  surname: Grabar
  fullname: Grabar, Sophie
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), Unité de Biostatistique et d’épidémiologie Groupe hospitalier Cochin Broca Hôtel-Dieu, Assistance Publique Hôpitaux de Paris (AP-HP), and Université Paris Descartes, Sorbonne Paris Cité
– sequence: 4
  givenname: Dominique
  surname: Costagliola
  fullname: Costagliola, Dominique
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136)
– sequence: 5
  givenname: Fabrice
  orcidid: 0000-0002-8672-7918
  surname: Carrat
  fullname: Carrat, Fabrice
  email: fabrice.carrat@iplesp.upmc.fr
  organization: Sorbonne Universités, INSERM, UPMC Université Paris 06, Institut Pierre Louis d’épidémiologie et de Santé Publique (IPLESP UMRS 1136), Unité de Santé Publique, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29202691$$D View this record in MEDLINE/PubMed
https://inserm.hal.science/inserm-02310904$$DView record in HAL
BookMark eNp9kk9v1DAQxSNURP_AB-CCInHhQIodO3FyQVpVQCutBAc4W449znqV2MVOVnDjozO7KVW3QpUPcezfezNjvfPsxAcPWfaakktKm_pDomUjeEGoKAhnvKDPsjPKBS3KsmlOHuxPs_OUtgTBhtUvstOyLUlZt_Qs-_MNog1xVF5DHmw-bSAfVeydV0OepjjraY641eFXPgYDQ450Dmlyo5qc73Pnjds5MyOjvMm3wXkwOVgLekoHxwhqGsHjX-924FGBbmOHFSYX_MvsuVVDgld334vsx-dP36-ui_XXLzdXq3Wha1pORdtoZgVTqqkqxhsBpOKMiFpYIUhtmalb0KBpVxsC0CJBDGlJ1yjDVYvARXaz-JqgtvI2Yv_xtwzKycNBiL1UcXJ6ACkULXlHqk4rwVshWsoAbGkrSmvDBEevj4vX7dyNYDQOh290ZHp8491G9mEnK0ErdEGD94vB5pHserWWzieIoyQlozgB3-3xd3f1Yvg54-PL0SUNw6A8hDlJ2gpGaNu0BNG3C9ornMR5G7ABvcflquI1qzEn-wEu_0PhMjA6jSGzDs-PBG8eTnzf878gIUAXQMeQUgR7j1Ai92GVS1glZlDuwyr3GvFIo910CAV244YnleWiTFjF9xDlNswRI5ueEP0Fr8f9sw
CitedBy_id crossref_primary_10_1109_ACCESS_2018_2866049
crossref_primary_10_1088_1755_1315_332_3_032005
crossref_primary_10_1016_j_cgh_2022_06_011
crossref_primary_10_1016_j_xkme_2024_100896
crossref_primary_10_1002_ijc_32730
crossref_primary_10_1080_24709360_2023_2171537
crossref_primary_10_1136_gutjnl_2019_318932
crossref_primary_10_1016_j_ssci_2024_106562
crossref_primary_10_1186_s41512_021_00092_9
crossref_primary_10_1016_j_drugalcdep_2020_108137
crossref_primary_10_1007_s10742_020_00228_2
crossref_primary_10_1007_s12094_024_03459_8
crossref_primary_10_1097_QAI_0000000000003436
Cites_doi 10.1097/00001648-200009000-00011
10.1002/sim.5317
10.1002/bimj.201300159
10.1016/j.jclinepi.2013.03.020
10.1097/QAI.0000000000000523
10.1097/EDE.0b013e3181ba333c
10.1198/016214501753168154
10.1023/A:1005285815569
10.1002/sim.5753
10.1200/JCO.2012.44.5486
10.1002/sim.5686
10.1007/s10928-005-9002-0
10.1177/0962280213505804
10.1093/aje/kwk116
10.1080/03610918.2016.1248574
10.1097/01.ede.0000128401.55545.c6
10.1002/sim.5994
10.1007/s10985-013-9255-7
10.1097/QAD.0b013e32835935b3
10.1097/01.ede.0000135174.63482.43
10.1080/01621459.2013.872650
10.1201/9781420011579.ch23
10.1097/EDE.0b013e31824d1ccb
10.1002/sim.7266
10.1093/aje/kwg206
10.1016/0270-0255(86)90088-6
10.1111/j.1541-0420.2005.00377.x
10.2202/1557-4679.1208
10.1093/ije/dyu002
10.1007/s10985-009-9135-3
10.1093/aje/kwn164
10.1002/sim.5705
10.1093/aje/kwh131
10.1016/S1470-2045(09)70282-7
10.1002/sim.5472
10.1080/01621459.1994.10476818
10.1177/0962280216668554
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1186/s12874-017-0434-1
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2288
EndPage 11
ExternalDocumentID oai_doaj_org_article_7a124b05bca74977913eef2f5116d374
PMC5715511
oai:HAL:inserm-02310904v1
A546364344
29202691
10_1186_s12874_017_0434_1
Genre Journal Article
GrantInformation_xml – fundername: Agence Nationale de Recherches sur le Sida et les Hepatites Virales
  funderid: http://dx.doi.org/10.13039/501100003323
– fundername: ;
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ITC
KQ8
M1P
M48
MK0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c612t-98c3f73aa8553487e05430767f7706f3d69ecec1b6d0ee94870d090b8ad4a96f3
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417509000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2288
IngestDate Fri Oct 03 12:48:24 EDT 2025
Tue Nov 04 02:00:17 EST 2025
Tue Oct 14 20:01:58 EDT 2025
Sun Nov 09 10:22:07 EST 2025
Tue Nov 11 10:02:33 EST 2025
Tue Nov 04 18:03:30 EST 2025
Thu Jan 02 22:39:11 EST 2025
Tue Nov 18 21:38:59 EST 2025
Sat Nov 29 06:38:55 EST 2025
Sat Sep 06 07:35:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Causal inference
Time-dependent confounding
Longitudinal data
Marginal structural models
Multitherapy
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c612t-98c3f73aa8553487e05430767f7706f3d69ecec1b6d0ee94870d090b8ad4a96f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5715511
ORCID 0000-0002-8672-7918
0000-0003-4457-4228
OpenAccessLink https://link.springer.com/10.1186/s12874-017-0434-1
PMID 29202691
PQID 1973019890
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7a124b05bca74977913eef2f5116d374
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5715511
hal_primary_oai_HAL_inserm_02310904v1
proquest_miscellaneous_1973019890
gale_infotracmisc_A546364344
gale_infotracacademiconefile_A546364344
pubmed_primary_29202691
crossref_primary_10_1186_s12874_017_0434_1
crossref_citationtrail_10_1186_s12874_017_0434_1
springer_journals_10_1186_s12874_017_0434_1
PublicationCentury 2000
PublicationDate 2017-12-04
PublicationDateYYYYMMDD 2017-12-04
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC medical research methodology
PublicationTitleAbbrev BMC Med Res Methodol
PublicationTitleAlternate BMC Med Res Methodol
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References SR Cole (434_CR11) 2003; 158
SR Cole (434_CR27) 2008; 168
H Lopez-Gatell (434_CR10) 2007; 165
M Guiguet (434_CR24) 2009; 10
G Vourli (434_CR15) 2015; 57
M Pang (434_CR39) 2016; 25
434_CR14
434_CR38
C Chao (434_CR40) 2012; 26
JM Robins (434_CR2) 1986; 7
Y Xiao (434_CR18) 2014; 109
LM Bodnar (434_CR12) 2004; 159
MA Hernan (434_CR1) 2004; 15
IB Tager (434_CR8) 2004; 15
H Bang (434_CR31) 2005; 61
JM Robins (434_CR5) 2000; 11
MA Hernan (434_CR6) 2001; 96
M van Der Laan (434_CR33) 2010; 6
D Westreich (434_CR16) 2012; 31
Y Xiao (434_CR17) 2010; 6
CJ Howe (434_CR9) 2012; 23
JG Young (434_CR19) 2010; 16
TJ VanderWeele (434_CR28) 2009; 20
JM Robins (434_CR32) 1994; 89
ME Karim (434_CR30) 2017; 36
434_CR21
M van Der Laan (434_CR34) 2010; 6
WG Havercroft (434_CR13) 2012; 31
JG Young (434_CR20) 2014; 33
JM Robins (434_CR3) 1999; 121
434_CR4
C Csajka (434_CR29) 2006; 33
RM Daniel (434_CR35) 2013; 32
DF McCaffrey (434_CR36) 2013; 32
C Piketty (434_CR26) 2012; 30
M Bruyand (434_CR23) 2015; 68
RA Ali (434_CR22) 2014; 20
M Mary-Krause (434_CR25) 2014; 43
AR Ellis (434_CR7) 2013; 66
PC Austin (434_CR37) 2013; 32
References_xml – volume: 11
  start-page: 550
  issue: 5
  year: 2000
  ident: 434_CR5
  publication-title: Epidemiology
  doi: 10.1097/00001648-200009000-00011
– volume: 31
  start-page: 2098
  issue: 19
  year: 2012
  ident: 434_CR16
  publication-title: Stat Med
  doi: 10.1002/sim.5317
– volume: 57
  start-page: 254
  issue: 2
  year: 2015
  ident: 434_CR15
  publication-title: Biom J
  doi: 10.1002/bimj.201300159
– volume: 66
  start-page: S51
  issue: 8 Suppl
  year: 2013
  ident: 434_CR7
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2013.03.020
– volume: 68
  start-page: 568
  issue: 5
  year: 2015
  ident: 434_CR23
  publication-title: J Acquir Immune Defic Syndr
  doi: 10.1097/QAI.0000000000000523
– ident: 434_CR21
– volume: 20
  start-page: 863
  issue: 6
  year: 2009
  ident: 434_CR28
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181ba333c
– volume: 96
  start-page: 440
  year: 2001
  ident: 434_CR6
  publication-title: J Am Stat Asso
  doi: 10.1198/016214501753168154
– volume: 121
  start-page: 151
  issue: 1
  year: 1999
  ident: 434_CR3
  publication-title: Synthese
  doi: 10.1023/A:1005285815569
– volume: 32
  start-page: 3388
  issue: 19
  year: 2013
  ident: 434_CR36
  publication-title: Stat Med
  doi: 10.1002/sim.5753
– volume: 30
  start-page: 4360
  issue: 35
  year: 2012
  ident: 434_CR26
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2012.44.5486
– volume: 32
  start-page: 1584
  issue: 9
  year: 2013
  ident: 434_CR35
  publication-title: Stat Med
  doi: 10.1002/sim.5686
– volume: 33
  start-page: 227
  issue: 3
  year: 2006
  ident: 434_CR29
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-005-9002-0
– volume: 6
  start-page: 3
  issue: 2
  year: 2010
  ident: 434_CR34
  publication-title: Int J Biostat
– volume: 25
  start-page: 1925
  issue: 5
  year: 2016
  ident: 434_CR39
  publication-title: Stat Methods Med Res
  doi: 10.1177/0962280213505804
– volume: 165
  start-page: 1134
  issue: 10
  year: 2007
  ident: 434_CR10
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwk116
– ident: 434_CR14
  doi: 10.1080/03610918.2016.1248574
– volume: 15
  start-page: 479
  issue: 4
  year: 2004
  ident: 434_CR8
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000128401.55545.c6
– volume: 33
  start-page: 1001
  issue: 6
  year: 2014
  ident: 434_CR20
  publication-title: Stat Med
  doi: 10.1002/sim.5994
– volume: 20
  start-page: 106
  issue: 1
  year: 2014
  ident: 434_CR22
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-013-9255-7
– volume: 26
  start-page: 2223
  issue: 17
  year: 2012
  ident: 434_CR40
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e32835935b3
– volume: 15
  start-page: 615
  year: 2004
  ident: 434_CR1
  publication-title: Epidemiology
  doi: 10.1097/01.ede.0000135174.63482.43
– volume: 109
  start-page: 455
  issue: 506
  year: 2014
  ident: 434_CR18
  publication-title: J Am Stat Asso
  doi: 10.1080/01621459.2013.872650
– ident: 434_CR4
  doi: 10.1201/9781420011579.ch23
– volume: 23
  start-page: 574
  issue: 4
  year: 2012
  ident: 434_CR9
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31824d1ccb
– volume: 36
  start-page: 2032
  issue: 13
  year: 2017
  ident: 434_CR30
  publication-title: Stat Med
  doi: 10.1002/sim.7266
– volume: 6
  start-page: 2
  issue: 2
  year: 2010
  ident: 434_CR33
  publication-title: Int J Biostat
– volume: 158
  start-page: 687
  issue: 7
  year: 2003
  ident: 434_CR11
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwg206
– volume: 7
  start-page: 1393
  year: 1986
  ident: 434_CR2
  publication-title: Mathematical Modelling
  doi: 10.1016/0270-0255(86)90088-6
– volume: 61
  start-page: 962
  issue: 4
  year: 2005
  ident: 434_CR31
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2005.00377.x
– volume: 6
  issue: 2
  year: 2010
  ident: 434_CR17
  publication-title: Int J Biostat
  doi: 10.2202/1557-4679.1208
– volume: 43
  start-page: 1425
  issue: 5
  year: 2014
  ident: 434_CR25
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyu002
– volume: 16
  start-page: 71
  issue: 1
  year: 2010
  ident: 434_CR19
  publication-title: Lifetime Data Anal
  doi: 10.1007/s10985-009-9135-3
– volume: 168
  start-page: 656
  issue: 6
  year: 2008
  ident: 434_CR27
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwn164
– volume: 32
  start-page: 2837
  issue: 16
  year: 2013
  ident: 434_CR37
  publication-title: Stat Med
  doi: 10.1002/sim.5705
– volume: 159
  start-page: 926
  issue: 10
  year: 2004
  ident: 434_CR12
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwh131
– volume: 10
  start-page: 1152
  issue: 12
  year: 2009
  ident: 434_CR24
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(09)70282-7
– volume: 31
  start-page: 4190
  issue: 30
  year: 2012
  ident: 434_CR13
  publication-title: Stat Med
  doi: 10.1002/sim.5472
– volume: 89
  start-page: 846
  issue: 427
  year: 1994
  ident: 434_CR32
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1994.10476818
– ident: 434_CR38
  doi: 10.1177/0962280216668554
SSID ssj0017836
Score 2.2655137
Snippet Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and...
The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and applied to...
BACKGROUND:The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival analysis and...
Abstract Background The Marginal Structural Cox Model (Cox-MSM), an alternative approach to handle time-dependent confounder, was introduced for survival...
SourceID doaj
pubmedcentral
hal
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160
SubjectTerms Algorithms
Analysis
Anus Neoplasms - chemically induced
Anus Neoplasms - epidemiology
Causal inference
CD4 Lymphocyte Count
Data analysis
Female
Health Sciences
Highly active antiretroviral therapy
HIV Infections - drug therapy
HIV Infections - epidemiology
HIV Infections - immunology
HIV Protease Inhibitors - adverse effects
HIV Protease Inhibitors - therapeutic use
Humans
Life Sciences
Longitudinal data
Male
Marginal structural models
Medicine
Medicine & Public Health
Multitherapy
Pharmaceutical sciences
Proportional Hazards Models
Protease inhibitors
Proteases
Research Article
Santé publique et épidémiologie
Statistical Theory and Methods
statistics and modelling
Statistics for Life Sciences
Theory of Medicine/Bioethics
Time-dependent confounding
Treatment Outcome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagQogL4s2WgowEQgJFdeLEj-OCqHooVQ8g9WY5frSL2AR1S9UjP50ZxwmECrhwTcaO4xmPv5HH3xDyovWctRHWd5SlL2oum0JHFYuqCbKtbClFTJo-kIeH6vhYH_1S6gtzwgZ64GHidqWFHahlTeusrAGs6JKHEKsIQEF4LhMTKKCeMZjK5wd4NyGfYZZK7G5KpHUv0COzmtdFOduFEln_5JKvn2JG5FW4eTVr8rej07Qj7d0htzOUpMvhF-6Sa6G7R25-yIfl98n3o5-XAmgfKUA9urZnqQ4WHXhjkXODuv6SpoI4FKQpsm4giu1O6Gq6rEVt5-nnHrr1NGeApB7HLPUNPUGvCS2gtzUE20nfD8invfcf3-0XueBC4QDonBdaOR4lt1Y1DYdIJgCeAx8gZJSSici90MEFV7bCsxA0SDDPNGuV9bXVIPCQbHV9Fx4TClGiaLlzXMF8M28hqlNtrStrRVV5rxeEjQowLrORY1GMLyZFJUqYQWcGdGZQZ6ZckNdTk68DFcffhN-iVidBZNFOD8C2TLYt8y_bWpBXaBMG1zoMztl8ZQF-EVmzzBJrCQCkq0FyZyYJa9TNXr8Eq5oNZn95ANLgZtYGKfhgGusLGPXz0e4MdoEJcF3ov21MqdEVa6XZgjwa7HDqDguOVUJDazmz0Nn35m-61WmiEm8kQmZo-Wa0ZZN92ObPc7v9P-b2CblV4XrEzKB6h2yB1Yen5Ia7OF9tzp6l1fwD0LhLjg
  priority: 102
  providerName: Directory of Open Access Journals
Title Performance of the marginal structural cox model for estimating individual and joined effects of treatments given in combination
URI https://link.springer.com/article/10.1186/s12874-017-0434-1
https://www.ncbi.nlm.nih.gov/pubmed/29202691
https://www.proquest.com/docview/1973019890
https://inserm.hal.science/inserm-02310904
https://pubmed.ncbi.nlm.nih.gov/PMC5715511
https://doaj.org/article/7a124b05bca74977913eef2f5116d374
Volume 17
WOSCitedRecordID wos000417509000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RBZ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1471-2288
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017836
  issn: 1471-2288
  databaseCode: RSV
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF7RFiFeuI9AiRYJhASy6nOPxxS1KlIbReVQeFqt90iDiI3iUvHIT2dmYxuZAhK8REo8u16PZ2ZnMrPfEPKstFlcetBvzxMb5RkvIumFj9LC8TLVCWc-vOljPp2K-VzO2nPcTVft3qUkg6UOai3YXpMgNHuEVjXOszyCkGcHdjuB2nj69kOfOsBjCW368rfDBhtQwOnvrfHWGRZDXvY0LxdM_pI1DZvR4c3_eoxb5Ebre9LJRlhukyuuukOunbTZ9bvk--znKQJaewq-IV3pdWicRTdAswjSQU39jYYOOhSoKcJ0oNtbLeiyP91FdWXppxqmtbQtGQkzdmXtDV2gmYURMNsKovMgIPfI-8ODd6-PorZDQ2TAMzqPpDCZ55nWoigyCH0cOIBgNBj3nMfMZ5ZJZ5xJSmZj5yRQxDaWcSm0zbUEgvtku6or95BQCCtZmRmTCeBKbDWEgaLMZao1S1Nr5YjE3WtTpoUvxy4an1UIYwRTG84q4KxCzqpkRF72Q75ssDv-RryPstATIux2-KFeL1SrxYprcIfKuCiN5jl4zjLJnPOpB6-V2YznI_ICJUmhcYDFGd2ecYBHRJgtNcHmA-AD5kC5O6AEpTaDy89BFgeLOZocAzXYpZVCzD5gY34Bq37aSavCKbBirnL110YlEm23FDIekQcb6e2nww5lKZMwmg_kenC_4ZVqeRawxwuOPjaMfNVJt2qNXvNn3j76J-rH5HqK6oE1Q_ku2Qbxdk_IVXNxvmzWY7LF5zx8ijHZ2T-Yzk7H4Y8U-DZ7czL7OA7m4Ac9DlXZ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIODC-7FQwEggJFBEEjt2fFwQVRHbVQUF9WY5fmwXsQnalIojP50ZbxIUCkhw3Yy9zmRm_I08_oaQx5VjaRXAv4PMXMKZLBIVypDkhZdVbjIpQvzSMzmfl4eHar-7x9321e79kWSM1NGtS_GizZCaPcGomnLGE0h5znHYsLCO7937j8PRAV5L6I4vfztstAFFnv4hGp89wmLI00jzdMHkL6emcTPaufJfr3GVXO6wJ51ujOUaOePr6-TCXne6foN83_95i4A2gQI2pCuzjo2z6IZoFkk6qG2-0dhBh4I0RZoOhL31gi6H213U1I5-amBaR7uSkThjX9be0gWGWRgBs60gO48GcpN82Hl98Go36To0JBaQ0XGiSsuCZMaURcEg9fEAACFoCBmkTEVgTihvvc0q4VLvFUikLlVpVRrHjQKBW2Srbmp_h1BIK0XFrGUlaCV1BtLAsuIqN0bkuXNqQtL-s2nb0ZdjF43POqYxpdAbzWrQrEbN6mxCng1Dvmy4O_4m_BJtYRBE2u34Q7Ne6M6LtTQAh6q0qKyRHJCzypj3IQ-AWoVjkk_IU7QkjcEBFmdNd8cBXhFptvQUmw8ABuQguT2SBKe2o8dPwBZHi9mdzkAa4tJKI2cfqJGfwKof9daqcQqsmKt987XVmcLYrUqVTsjtjfUO02GHslwoGC1Hdj36v_GTenkUuccLiRgbRj7vrVt3Qa_9s27v_pP0Q3Jx92Bvpmdv5m_vkUs5ugrWD_FtsgWm7u-T8_bkeNmuH0TH_wEFnFKt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagoIoX7mOhgJFASKCozmXHj8tRFbGsVuJQ3yzHx3YRm1SbpeKRn86Mc6BQQEK8JjOOMxlPvpHH3xDyuLQpKz2sby9iG2WpyCPpCx8luRNlomPBffjSMzGfF0dHctH1OW36avd-S7I904AsTdV2_8T6dokXfL-JkaY9wgjLsjSLIP25kGHPIEzX338athHwiEK3lflbtdHPKHD2D5H5_DEWRp5FnWeLJ3_ZQQ0_poMr__1KV8nlDpPSaetE18g5V10nu--6Xfcb5Pvi5-kCWnsKmJGu9SY01KItAS2Sd1BTf6Ohsw4FaYr0HQiHqyVdDae-qK4s_VzDsJZ2pSRhxL7cvaFLDL-gAaOtIWsPjnOTfDx4_eHlYdR1bogMIKZtJAuTepFqXeR5CimRA2AIwYQLLwTjPrVcOuNMXHLLnJMgwSyTrCy0zbQEgVtkp6ord4dQSDd5mRqTFmAVZjWkh0WZyURrniTWyglh_SdUpqM1x-4aX1RIbwquWssqsKxCy6p4Qp4NKictp8ffhF-gXwyCSMcdLtSbpepWtxIaYFLJ8tJokQGilnHqnE88oFluU5FNyFP0KoVBAyZndHf2AV4R6bfUFJsSADbMQHJvJAmL3YxuPwG_HE3mcDoDaYhXa4VcfmDG7BRm_aj3XIVDYCVd5eqvjYolxnRZSDYht1tPHobDzmUJl6AtRj4-et74TrU6DpzkuUDsDZrPe09XXTBs_mzbu_8k_ZDsLl4dqNmb-dt75FKCKwXLirI9sgOe7u6Ti-Z0u2o2D0IM-AEZ71uR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+the+marginal+structural+cox+model+for+estimating+individual+and+joined+effects+of+treatments+given+in+combination&rft.jtitle=BMC+medical+research+methodology&rft.au=Lusivika-Nzinga%2C+Clovis&rft.au=Selinger-Leneman%2C+Hana&rft.au=Grabar%2C+Sophie&rft.au=Costagliola%2C+Dominique&rft.date=2017-12-04&rft.pub=BioMed+Central&rft.eissn=1471-2288&rft.volume=17&rft_id=info:doi/10.1186%2Fs12874-017-0434-1&rft_id=info%3Apmid%2F29202691&rft.externalDocID=PMC5715511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2288&client=summon