A multi-centre polyp detection and segmentation dataset for generalisability assessment
Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main...
Gespeichert in:
| Veröffentlicht in: | Scientific data Jg. 10; H. 1; S. 75 - 17 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
06.02.2023
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2052-4463, 2052-4463 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as
PolypGen
) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. |
|---|---|
| AbstractList | Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen ) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation.Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. Abstract Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure are linked to the risk of colon cancer. Several methods have been developed to automate polyp detection and segmentation. However, the main issue is that they are not tested rigorously on a large multicentre purpose-built dataset, one reason being the lack of a comprehensive public dataset. As a result, the developed methods may not generalise to different population datasets. To this extent, we have curated a dataset from six unique centres incorporating more than 300 patients. The dataset includes both single frame and sequence data with 3762 annotated polyp labels with precise delineation of polyp boundaries verified by six senior gastroenterologists. To our knowledge, this is the most comprehensive detection and pixel-level segmentation dataset (referred to as PolypGen) curated by a team of computational scientists and expert gastroenterologists. The paper provides insight into data construction and annotation strategies, quality assurance, and technical validation. |
| ArticleNumber | 75 |
| Author | Salem, Osama E. Rittscher, Jens Ghatwary, Noha Riegler, Michael A. Halvorsen, Pål Cannizzaro, Renato Jha, Debesh Realdon, Stefano Petlund, Andreas Ali, Sharib Daul, Christian East, James E. Anonsen, Kim V. Lamarque, Dominique de Lange, Thomas |
| Author_xml | – sequence: 1 givenname: Sharib surname: Ali fullname: Ali, Sharib email: s.s.ali@leeds.ac.uk organization: School of Computing, University of Leeds, Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford National Institute for Health Research Biomedical Research centre – sequence: 2 givenname: Debesh orcidid: 0000-0002-8078-6730 surname: Jha fullname: Jha, Debesh organization: SimulaMet, Department of Computer Science, UiT The Arctic University of Norway, Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University – sequence: 3 givenname: Noha surname: Ghatwary fullname: Ghatwary, Noha organization: Computer Engineering Department, Arab Academy for Science and Technology,Smart Village – sequence: 4 givenname: Stefano surname: Realdon fullname: Realdon, Stefano organization: Oncological Gastroenterology - Centro di Riferimento Oncologico di Aviano (CRO) – sequence: 5 givenname: Renato orcidid: 0000-0002-2020-222X surname: Cannizzaro fullname: Cannizzaro, Renato organization: Oncological Gastroenterology - Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical, Surgical and Health Sciences, University of Trieste – sequence: 6 givenname: Osama E. surname: Salem fullname: Salem, Osama E. organization: Faculty of Medicine, University of Alexandria – sequence: 7 givenname: Dominique surname: Lamarque fullname: Lamarque, Dominique organization: Université de Versailles St-Quentin en Yvelines, Hôpital Ambroise Paré, 9 Av. Charles de Gaulle – sequence: 8 givenname: Christian surname: Daul fullname: Daul, Christian organization: CRAN UMR 7039, Université de Lorraine and CNRS – sequence: 9 givenname: Michael A. orcidid: 0000-0002-3153-2064 surname: Riegler fullname: Riegler, Michael A. organization: SimulaMet, Department of Computer Science, UiT The Arctic University of Norway – sequence: 10 givenname: Kim V. orcidid: 0000-0003-1462-540X surname: Anonsen fullname: Anonsen, Kim V. organization: Oslo University Hospital Ullevål – sequence: 11 givenname: Andreas surname: Petlund fullname: Petlund, Andreas organization: Augere Medical – sequence: 12 givenname: Pål orcidid: 0000-0003-2073-7029 surname: Halvorsen fullname: Halvorsen, Pål organization: SimulaMet, Oslo Metropolitan University – sequence: 13 givenname: Jens orcidid: 0000-0002-8528-8298 surname: Rittscher fullname: Rittscher, Jens organization: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford National Institute for Health Research Biomedical Research centre – sequence: 14 givenname: Thomas orcidid: 0000-0003-3989-7487 surname: de Lange fullname: de Lange, Thomas organization: Augere Medical, Medical Department, Sahlgrenska University Hospital-Mölndal, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg – sequence: 15 givenname: James E. orcidid: 0000-0001-8035-3700 surname: East fullname: East, James E. organization: Oxford National Institute for Health Research Biomedical Research centre, Translational Gastroenterology Unit, Experimental Medicine Div., John Radcliffe Hospital, University of Oxford |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36746950$$D View this record in MEDLINE/PubMed https://hal.science/hal-04106285$$DView record in HAL https://gup.ub.gu.se/publication/323985$$DView record from Swedish Publication Index (Göteborgs universitet) |
| BookMark | eNp9kk9v1DAQxSNUREvpF-CAInGBQ8D_Y1-QVhXQSitxAXG0HHuSepWNFztptd8e72Yp3T30EDka_96b0fi9Ls6GMEBRvMXoE0ZUfk4Mc1VXiNAKYSVxtX1RXBDEScWYoGdP_s-Lq5RWCCFMGeI1elWcU1EzoTi6KH4vyvXUj76yMIwRyk3ot5vSwQh29GEozeDKBN0635p9wZnRJBjLNsSygwGi6X0yje_9uC1NSpDSDn5TvGxNn-DqcF4Wv759_Xl9Uy1_fL-9XiwrKzAZK05Ia_MniWmtQa51lCIrWwWtcowpJoQyFCmnAEvmFDcO1a2hrDVC1crSy-J29nXBrPQm-rWJWx2M1_tCiJ02cfS2By0sCCaRdQ3jrKa0UcpwU0sHxDa5Y_aqZq_0AJupOXLrpo3OpW7SCTQlVEme-S8zn-E1uP0GTX8kO74Z_J3uwr1WChHORTb4OBvcnchuFku9qyGGkSCS3-PMfjg0i-HPBGnUa58s9L0ZIExJk7pmRCi8n-v9CboKUxzyM-woyiSlmGTq3dPpH_v_y0YGyAzYGFKK0D4iGOldBvWcQZ0zqPcZ1Nsskici6-fk5A34_nkpPaw_9xk6iP_Hfkb1F8bd8mQ |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2025_109672 crossref_primary_10_1038_s41597_025_05251_x crossref_primary_10_3390_diagnostics15050591 crossref_primary_10_1109_OJCS_2025_3592204 crossref_primary_10_1109_JBHI_2024_3381891 crossref_primary_10_1016_j_isci_2025_113045 crossref_primary_10_1109_TIM_2025_3550626 crossref_primary_10_1109_JBHI_2021_3138024 crossref_primary_10_1109_JBHI_2024_3500026 crossref_primary_10_1016_j_compmedimag_2025_102591 crossref_primary_10_3390_biomedicines13071561 crossref_primary_10_1109_JBHI_2023_3270724 crossref_primary_10_1109_JBHI_2023_3334240 crossref_primary_10_1053_j_gastro_2025_07_030 crossref_primary_10_1109_ACCESS_2024_3402818 crossref_primary_10_1007_s13246_023_01368_8 crossref_primary_10_37349_edht_2025_101158 crossref_primary_10_1371_journal_pone_0302800 crossref_primary_10_1016_j_bspc_2024_106942 crossref_primary_10_1007_s42979_024_02932_z crossref_primary_10_1371_journal_pone_0325987 crossref_primary_10_1007_s00259_024_06731_9 crossref_primary_10_3390_jimaging11090293 crossref_primary_10_1016_j_neunet_2023_11_050 crossref_primary_10_1038_s41551_025_01500_x crossref_primary_10_3390_diagnostics15070901 crossref_primary_10_1109_ACCESS_2025_3552613 crossref_primary_10_1016_j_media_2025_103510 crossref_primary_10_1016_j_media_2024_103379 crossref_primary_10_1109_JBHI_2022_3160098 crossref_primary_10_1016_j_bspc_2025_107529 crossref_primary_10_1007_s00530_025_01793_7 crossref_primary_10_1007_s10278_023_00844_7 crossref_primary_10_1038_s41598_024_52063_x crossref_primary_10_3389_fonc_2024_1422942 crossref_primary_10_3390_cancers17050797 crossref_primary_10_1177_26317745241306562 crossref_primary_10_3390_app15179259 crossref_primary_10_1038_s41598_023_35910_1 crossref_primary_10_1515_bmt_2025_0179 crossref_primary_10_1109_TMI_2023_3299206 crossref_primary_10_1038_s41598_024_56264_2 crossref_primary_10_1007_s10462_025_11173_2 crossref_primary_10_1007_s11548_024_03213_z crossref_primary_10_3389_fonc_2024_1417862 crossref_primary_10_1038_s41597_024_03359_0 crossref_primary_10_1016_j_media_2024_103288 crossref_primary_10_3390_math13111711 crossref_primary_10_1007_s41870_025_02447_7 crossref_primary_10_1007_s11548_024_03244_6 crossref_primary_10_1093_jcag_gwae041 crossref_primary_10_1016_j_compbiomed_2025_110952 crossref_primary_10_1007_s42979_025_04177_w |
| Cites_doi | 10.2196/26151 10.1134/S1054661817030269 10.1038/ajg.2010.315 10.1046/j.1365-2168.2002.02120.x 10.1001/archsurg.1988.01400320112031 10.1109/TMI.2016.2547947 10.1002/ijc.20277 10.1109/ACCESS.2021.3063716 10.1016/j.cgh.2010.09.013 10.1016/S0140-6736(13)61649-9 10.1053/j.gastro.2017.04.006 10.1038/ajg.2014.326 10.3390/jimaging6070069 10.3322/caac.21492 10.7303/syn26376615 10.1038/s41598-020-59413-5 10.1055/s-0043-105488 10.1053/j.gastro.2019.01.260 10.30897/ijegeo.737993 10.1016/j.compmedimag.2015.02.007 10.1016/j.media.2021.102002 10.1109/TMI.2015.2487997 10.1038/s41597-020-00622-y 10.1016/j.patcog.2012.03.002 10.4103/sjg.SJG_377_19 10.1109/LGRS.2018.2802944 10.1038/s41597-021-00920-z 10.1007/s11548-013-0926-3 10.1109/CVPR.2016.90 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2015.7298965 10.1007/978-3-030-01234-2_49 10.1007/978-3-030-37734-2_37 10.1109/CVPR.2017.660 10.1109/ACCESS.2020.2995630 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM ADTPV AOWAS F1U DOA |
| DOI | 10.1038/s41597-023-01981-y |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Göteborgs universitet DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Computer Science |
| EISSN | 2052-4463 |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_6ce6480cdb454733b99a5a78de2cbf9e oai_gup_ub_gu_se_323985 PMC9902556 oai:HAL:hal-04106285v1 36746950 10_1038_s41597_023_01981_y |
| Genre | Dataset Journal Article |
| GrantInformation_xml | – fundername: Oxford National Institute for Health Research Biomedical Research Centre – fundername: ; |
| GroupedDBID | 0R~ 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSFO ACSMW ADBBV ADRAZ AFKRA AGHDO AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M1P M48 M7P M~E NAO OK1 PGMZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 1XC VOOES 5PM ADTPV AOWAS F1U |
| ID | FETCH-LOGICAL-c612t-522fc22f82afca0dfd330c8f9ef9d4494669a309d9e184d95ad07fa34fa6979c3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 71 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000941223100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2052-4463 |
| IngestDate | Tue Oct 14 15:17:12 EDT 2025 Tue Nov 04 16:41:58 EST 2025 Tue Nov 04 02:07:15 EST 2025 Wed Nov 05 07:45:39 EST 2025 Fri Sep 05 12:47:40 EDT 2025 Sat Nov 29 14:52:59 EST 2025 Mon Jul 21 05:58:43 EDT 2025 Tue Nov 18 22:25:31 EST 2025 Sat Nov 29 01:43:37 EST 2025 Fri Feb 21 02:39:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2023. The Author(s). licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c612t-522fc22f82afca0dfd330c8f9ef9d4494669a309d9e184d95ad07fa34fa6979c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| ORCID | 0000-0003-1462-540X 0000-0002-8528-8298 0000-0002-8078-6730 0000-0003-2073-7029 0000-0002-2020-222X 0000-0002-3153-2064 0000-0003-3989-7487 0000-0001-8035-3700 0000-0003-1313-3542 0000-0001-6843-7637 0000-0002-6149-7132 0000-0002-4019-479X |
| OpenAccessLink | https://www.proquest.com/docview/2773483312?pq-origsite=%requestingapplication% |
| PMID | 36746950 |
| PQID | 2773483312 |
| PQPubID | 2041912 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6ce6480cdb454733b99a5a78de2cbf9e swepub_primary_oai_gup_ub_gu_se_323985 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9902556 hal_primary_oai_HAL_hal_04106285v1 proquest_miscellaneous_2774269185 proquest_journals_2773483312 pubmed_primary_36746950 crossref_primary_10_1038_s41597_023_01981_y crossref_citationtrail_10_1038_s41597_023_01981_y springer_journals_10_1038_s41597_023_01981_y |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-06 |
| PublicationDateYYYYMMDD | 2023-02-06 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific data |
| PublicationTitleAbbrev | Sci Data |
| PublicationTitleAlternate | Sci Data |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Bernal, Sánchez, Vilarino (CR37) 2012; 45 Ozturk, Saritürk, Seker (CR29) 2020; 7 Kahi, Hewett, Norton, Eckert, Rex (CR7) 2011; 9 Nikolov (CR26) 2021; 23 CR19 CR17 CR39 Hetzel (CR6) 2010; 105 CR16 Leslie, Carey, Pratt, Steele (CR2) 2002; 89 Liu (CR11) 2020; 26 CR12 CR34 CR33 Ali (CR18) 2021 Koulaouzidis (CR43) 2017; 5 Saito (CR10) 2013; 17 Stiegmann (CR13) 1988; 123 Brenner, Kloor, Pox (CR5) 2014; 383 Tajbakhsh, Gurudu, Liang (CR42) 2015; 35 Bernal (CR40) 2015; 43 Sevastopolsky (CR27) 2017; 27 Borgli (CR35) 2020; 7 Kaminski (CR4) 2017; 153 Smedsrud (CR36) 2021; 8 CR25 Zhang, Liu, Wang (CR30) 2018; 15 CR24 CR23 CR22 CR44 Bray (CR1) 2018; 68 CR21 CR20 Zhao (CR8) 2019; 156 Jha (CR32) 2021; 9 CR41 Van Doorn (CR9) 2015; 110 Ali (CR28) 2020; 10 Mesejo (CR14) 2016; 35 Ali (CR15) 2021; 70 Silva, Histace, Romain, Dray, Granado (CR38) 2014; 9 Guo, Bernal, Matuszewski (CR31) 2020; 6 Loeve (CR3) 2004; 111 MF Kaminski (1981_CR4) 2017; 153 S Ali (1981_CR28) 2020; 10 1981_CR25 H Borgli (1981_CR35) 2020; 7 J Bernal (1981_CR40) 2015; 43 GV Stiegmann (1981_CR13) 1988; 123 S Ali (1981_CR18) 2021 S Zhao (1981_CR8) 2019; 156 S Nikolov (1981_CR26) 2021; 23 Y Guo (1981_CR31) 2020; 6 W Liu (1981_CR11) 2020; 26 JT Hetzel (1981_CR6) 2010; 105 1981_CR20 1981_CR41 1981_CR22 1981_CR44 1981_CR21 1981_CR24 1981_CR23 1981_CR17 1981_CR39 1981_CR16 D Jha (1981_CR32) 2021; 9 1981_CR19 A Sevastopolsky (1981_CR27) 2017; 27 P Mesejo (1981_CR14) 2016; 35 O Ozturk (1981_CR29) 2020; 7 F Bray (1981_CR1) 2018; 68 H Brenner (1981_CR5) 2014; 383 Z Zhang (1981_CR30) 2018; 15 CJ Kahi (1981_CR7) 2011; 9 S Ali (1981_CR15) 2021; 70 J Silva (1981_CR38) 2014; 9 F Loeve (1981_CR3) 2004; 111 N Tajbakhsh (1981_CR42) 2015; 35 A Leslie (1981_CR2) 2002; 89 SC Van Doorn (1981_CR9) 2015; 110 A Koulaouzidis (1981_CR43) 2017; 5 Y Saito (1981_CR10) 2013; 17 1981_CR33 J Bernal (1981_CR37) 2012; 45 1981_CR12 1981_CR34 PH Smedsrud (1981_CR36) 2021; 8 |
| References_xml | – ident: CR22 – volume: 23 start-page: e26151 year: 2021 ident: CR26 article-title: Clinically applicable segmentation of head and neck anatomy for radiotherapy: Deep learning algorithm development and validation study publication-title: J Med Internet Res doi: 10.2196/26151 – volume: 27 start-page: 618 year: 2017 end-page: 624 ident: CR27 article-title: Optic disc and cup segmentation methods for glaucoma detection with modification of U-Net convolutional neural network publication-title: Pattern Recognition and Image Analysis doi: 10.1134/S1054661817030269 – volume: 105 start-page: 2656 year: 2010 ident: CR6 article-title: Variation in the detection of serrated polyps in an average risk colorectal cancer screening cohort publication-title: The American journal of gastroenterology doi: 10.1038/ajg.2010.315 – ident: CR39 – volume: 89 start-page: 845 year: 2002 end-page: 860 ident: CR2 article-title: The colorectal adenoma–carcinoma sequence publication-title: British Journal of Surgery doi: 10.1046/j.1365-2168.2002.02120.x – ident: CR16 – volume: 123 start-page: 1026 year: 1988 end-page: 1026 ident: CR13 article-title: Atlas of Gastrointestinal Endoscopy publication-title: Archives of Surgery doi: 10.1001/archsurg.1988.01400320112031 – volume: 35 start-page: 2051 year: 2016 end-page: 2063 ident: CR14 article-title: Computer-aided classification of gastrointestinal lesions in regular colonoscopy publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2016.2547947 – volume: 17 start-page: 223 year: 2013 end-page: 31 ident: CR10 article-title: Multicenter trial to unify magnified nbi classification using web test system publication-title: Intestine – ident: CR12 – volume: 111 start-page: 633 year: 2004 end-page: 639 ident: CR3 article-title: National polyp study data: evidence for regression of adenomas publication-title: International journal of cancer doi: 10.1002/ijc.20277 – volume: 9 start-page: 40496 year: 2021 end-page: 40510 ident: CR32 article-title: Real-time polyp detection, localization and segmentation in colonoscopy using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063716 – ident: CR33 – volume: 9 start-page: 42 year: 2011 end-page: 46 ident: CR7 article-title: Prevalence and variable detection of proximal colon serrated polyps during screening colonoscopy publication-title: Clinical Gastroenterology and Hepatology doi: 10.1016/j.cgh.2010.09.013 – volume: 383 start-page: 1490 year: 2014 end-page: 502 ident: CR5 article-title: Colorectal cancer publication-title: Lancet doi: 10.1016/S0140-6736(13)61649-9 – ident: CR25 – ident: CR23 – ident: CR21 – volume: 153 start-page: 98 year: 2017 end-page: 105 ident: CR4 article-title: Increased rate of adenoma detection associates with reduced risk of colorectal cancer and death publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.04.006 – volume: 110 start-page: 180 year: 2015 end-page: 187 ident: CR9 article-title: Polyp morphology: an interobserver evaluation for the paris classification among international experts publication-title: American Journal of Gastroenterology doi: 10.1038/ajg.2014.326 – volume: 6 start-page: 69 year: 2020 ident: CR31 article-title: B. Polyp segmentation with fully convolutional deep neural networks–extended evaluation study publication-title: Journal of Imaging doi: 10.3390/jimaging6070069 – volume: 68 start-page: 394 year: 2018 end-page: 424 ident: CR1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin. doi: 10.3322/caac.21492 – ident: CR19 – ident: CR44 – year: 2021 ident: CR18 publication-title: Synapse doi: 10.7303/syn26376615 – ident: CR17 – volume: 10 year: 2020 ident: CR28 article-title: An objective comparison of detection and segmentation algorithms for artefacts in clinical endoscopy publication-title: Scientific Reports doi: 10.1038/s41598-020-59413-5 – volume: 5 start-page: E477 year: 2017 ident: CR43 article-title: Kid project: an internet-based digital video atlas of capsule endoscopy for research purposes publication-title: Endoscopy international open doi: 10.1055/s-0043-105488 – volume: 156 start-page: 1661 year: 2019 end-page: 1674 e11 ident: CR8 article-title: Magnitude, risk factors, and factors associated with adenoma miss rate of tandem colonoscopy: A systematic review and meta-analysis publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.01.260 – ident: CR34 – volume: 7 start-page: 272 year: 2020 end-page: 279 ident: CR29 article-title: Comparison of fully convolutional networks (FCN) and U-Net for road segmentation from high resolution imageries publication-title: International journal of environment and geoinformatics doi: 10.30897/ijegeo.737993 – volume: 43 start-page: 99 year: 2015 end-page: 111 ident: CR40 article-title: Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2015.02.007 – volume: 70 start-page: 102002 year: 2021 ident: CR15 article-title: Deep learning for detection and segmentation of artefact and disease instances in gastrointestinal endoscopy publication-title: Medical Image Analysis doi: 10.1016/j.media.2021.102002 – ident: CR41 – volume: 35 start-page: 630 year: 2015 end-page: 644 ident: CR42 article-title: Automated polyp detection in colonoscopy videos using shape and context information publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2015.2487997 – volume: 7 start-page: 1 year: 2020 end-page: 14 ident: CR35 article-title: Hyperkvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy publication-title: Scientific Data doi: 10.1038/s41597-020-00622-y – volume: 45 start-page: 3166 year: 2012 end-page: 3182 ident: CR37 article-title: Towards automatic polyp detection with a polyp appearance model publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.03.002 – volume: 26 start-page: 13 year: 2020 end-page: 19 ident: CR11 article-title: Study on detection rate of polyps and adenomas in artificial-intelligence-aided colonoscopy publication-title: Saudi J Gastroenterol. doi: 10.4103/sjg.SJG_377_19 – ident: CR24 – volume: 15 start-page: 749 year: 2018 end-page: 753 ident: CR30 article-title: Road extraction by deep residual u-net publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2802944 – volume: 8 start-page: 1 year: 2021 end-page: 10 ident: CR36 article-title: Kvasir-capsule, a video capsule endoscopy dataset publication-title: Scientific Data doi: 10.1038/s41597-021-00920-z – volume: 9 start-page: 283 year: 2014 end-page: 293 ident: CR38 article-title: Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer publication-title: International journal of computer assisted radiology and surgery doi: 10.1007/s11548-013-0926-3 – ident: CR20 – volume: 89 start-page: 845 year: 2002 ident: 1981_CR2 publication-title: British Journal of Surgery doi: 10.1046/j.1365-2168.2002.02120.x – ident: 1981_CR24 doi: 10.1109/CVPR.2016.90 – volume: 68 start-page: 394 year: 2018 ident: 1981_CR1 publication-title: CA Cancer J Clin. doi: 10.3322/caac.21492 – volume: 111 start-page: 633 year: 2004 ident: 1981_CR3 publication-title: International journal of cancer doi: 10.1002/ijc.20277 – ident: 1981_CR17 – ident: 1981_CR21 doi: 10.1007/978-3-319-24574-4_28 – volume: 9 start-page: 42 year: 2011 ident: 1981_CR7 publication-title: Clinical Gastroenterology and Hepatology doi: 10.1016/j.cgh.2010.09.013 – volume: 156 start-page: 1661 year: 2019 ident: 1981_CR8 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.01.260 – ident: 1981_CR19 – ident: 1981_CR44 – volume: 383 start-page: 1490 year: 2014 ident: 1981_CR5 publication-title: Lancet doi: 10.1016/S0140-6736(13)61649-9 – volume: 105 start-page: 2656 year: 2010 ident: 1981_CR6 publication-title: The American journal of gastroenterology doi: 10.1038/ajg.2010.315 – volume: 23 start-page: e26151 year: 2021 ident: 1981_CR26 publication-title: J Med Internet Res doi: 10.2196/26151 – volume: 17 start-page: 223 year: 2013 ident: 1981_CR10 publication-title: Intestine – ident: 1981_CR20 doi: 10.1109/CVPR.2015.7298965 – volume: 26 start-page: 13 year: 2020 ident: 1981_CR11 publication-title: Saudi J Gastroenterol. doi: 10.4103/sjg.SJG_377_19 – volume: 110 start-page: 180 year: 2015 ident: 1981_CR9 publication-title: American Journal of Gastroenterology doi: 10.1038/ajg.2014.326 – ident: 1981_CR25 – volume: 5 start-page: E477 year: 2017 ident: 1981_CR43 publication-title: Endoscopy international open doi: 10.1055/s-0043-105488 – volume: 15 start-page: 749 year: 2018 ident: 1981_CR30 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2018.2802944 – volume: 6 start-page: 69 year: 2020 ident: 1981_CR31 publication-title: Journal of Imaging doi: 10.3390/jimaging6070069 – volume: 123 start-page: 1026 year: 1988 ident: 1981_CR13 publication-title: Archives of Surgery doi: 10.1001/archsurg.1988.01400320112031 – ident: 1981_CR23 doi: 10.1007/978-3-030-01234-2_49 – volume: 7 start-page: 272 year: 2020 ident: 1981_CR29 publication-title: International journal of environment and geoinformatics doi: 10.30897/ijegeo.737993 – ident: 1981_CR39 – volume: 153 start-page: 98 year: 2017 ident: 1981_CR4 publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.04.006 – ident: 1981_CR12 – ident: 1981_CR16 – volume: 9 start-page: 40496 year: 2021 ident: 1981_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3063716 – volume: 45 start-page: 3166 year: 2012 ident: 1981_CR37 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.03.002 – ident: 1981_CR41 – volume: 27 start-page: 618 year: 2017 ident: 1981_CR27 publication-title: Pattern Recognition and Image Analysis doi: 10.1134/S1054661817030269 – volume: 10 year: 2020 ident: 1981_CR28 publication-title: Scientific Reports doi: 10.1038/s41598-020-59413-5 – ident: 1981_CR34 doi: 10.1007/978-3-030-37734-2_37 – volume: 35 start-page: 630 year: 2015 ident: 1981_CR42 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2015.2487997 – volume: 7 start-page: 1 year: 2020 ident: 1981_CR35 publication-title: Scientific Data doi: 10.1038/s41597-020-00622-y – volume: 43 start-page: 99 year: 2015 ident: 1981_CR40 publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2015.02.007 – volume: 8 start-page: 1 year: 2021 ident: 1981_CR36 publication-title: Scientific Data doi: 10.1038/s41597-021-00920-z – year: 2021 ident: 1981_CR18 doi: 10.7303/syn26376615 – ident: 1981_CR22 doi: 10.1109/CVPR.2017.660 – volume: 9 start-page: 283 year: 2014 ident: 1981_CR38 publication-title: International journal of computer assisted radiology and surgery doi: 10.1007/s11548-013-0926-3 – volume: 35 start-page: 2051 year: 2016 ident: 1981_CR14 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2016.2547947 – ident: 1981_CR33 doi: 10.1109/ACCESS.2020.2995630 – volume: 70 start-page: 102002 year: 2021 ident: 1981_CR15 publication-title: Medical Image Analysis doi: 10.1016/j.media.2021.102002 |
| SSID | ssj0001340570 |
| Score | 2.5985065 |
| Snippet | Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface structure... Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp's number, size and surface structure... Abstract Polyps in the colon are widely known cancer precursors identified by colonoscopy. Whilst most polyps are benign, the polyp’s number, size and surface... |
| SourceID | doaj swepub pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 75 |
| SubjectTerms | 639/705/117 692/699/1503/1504/1885/1393 Colon cancer Colonic Neoplasms Colonic Polyps Colonic Polyps - diagnosis Colonoscopy Colonoscopy - methods Colorectal cancer Computer applications Computer graphics and computer vision Computer Science Computer Sciences Data Descriptor Datasets Datavetenskap (datalogi) Datorgrafik och datorseende diagnosis Gastroenterologi och hepatologi Gastroenterology Gastroenterology and Hepatology Human health and pathology Humanities and Social Sciences Humans Hépatology and Gastroenterology Image Processing Life Sciences Medical Imaging methods multidisciplinary Polyps Quality assurance Science Science (multidisciplinary) Segmentation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQxYELoqyBggxCCARRPbbj5Tggqh6qigNLb5bXaaU2M2oylebfYzue0FCpXDjkYju28xa_5_i9zwC8jct-MJbT2hina2osq422qNa2YYJGC-1y3trPI358LE5O5LdrV32lmLABHngg3D6znlGBrDMJeooQI6VuNBfOY2uC9Gn1jV7Ptc1U_rtCkiOCSpYMImK_i5YqAY_iFD4kxazeTCxRBuyP9uU0hUPe9DVvhkyO56Z_YYxmu3TwANwvDiWcDx-yC-749iHYLSrbwfcFV_rDI_BrDnP4YJ1793C1PN-soPN9jsZqoW4d7PziomQjtTBFj3a-h9GvhYuhm4LI22-gHiE9H4MfB1-_fzmsy70KtY3-TB_3njjY-Aisg9XIBUcIsiISM0hHaUKcl5og6aSP-z8nG-0QD5rQoJnk0pInYKddtv4ZgA3nQcrGskYzaiQyOLKLxR4FlwIHXoHZlsbKFtDxdPfFucqH30SogS8q8kVlvqhNBT6O76wGyI1bW39OrBtbJrjsXBCFSBUhUv8Sogq8iYyf9HE4P1KpDNFZTjO9mlVgbysXqih6pzBP8ECEzHAFXo_VUUXTuYtu_XKd26SE4egZVeDpIEbjUIRxymSDKsAnAjaZy7SmPTvNMOBSZvy4CnzaiuKfad1Gr3eDuE5GWKxXKhYt1qrziiRMyOb5_yDsC3APZ5XDNWJ7YKe_XPuX4K696s-6y1dZZ38Dx-VG4w priority: 102 providerName: Directory of Open Access Journals |
| Title | A multi-centre polyp detection and segmentation dataset for generalisability assessment |
| URI | https://link.springer.com/article/10.1038/s41597-023-01981-y https://www.ncbi.nlm.nih.gov/pubmed/36746950 https://www.proquest.com/docview/2773483312 https://www.proquest.com/docview/2774269185 https://hal.science/hal-04106285 https://pubmed.ncbi.nlm.nih.gov/PMC9902556 https://gup.ub.gu.se/publication/323985 https://doaj.org/article/6ce6480cdb454733b99a5a78de2cbf9e |
| Volume | 10 |
| WOSCitedRecordID | wos000941223100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: 7X7 dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2052-4463 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001340570 issn: 2052-4463 databaseCode: PIMPY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xjQdegPEZGJVBCIEgmhsnsf2EOrRpSKOqEB_jyXJsp5s00tKkk_rfYztuqjCpLzwkD7bjj9yd72zf_Qzw2k77ZaFoGheFlnFaqDwupMKxVFnOUquhtY9b-3FGx2N2fs4nYcOtDm6V6znRT9R6ptwe-WFCHQ4LIcPk4_xP7G6Ncqer4QqNHdhzKAnEu-5NNnssxJkjOMTKYMIOa6uvHPxo4pyIOBvGq54-8rD9VstcOKfImxbnTcfJ7vT0H6RRr51O7v3vuO7D3WCXolHLSPtwy1QPYD9Ifo3eBnjqdw_h5wh5L8TYd8-g-exqNUfaNN6pq0Ky0qg2098hqKlCzgm1Ng2y5jGattUEYN9mhWSHDPoIvp8cf_t0GofrGWJlzaLGLmGTUtmHJbJUEutSE4IVK7kpuU5TB1zPJcFcc2OXkZpnUmNaSpKWMueUK_IYdqtZZZ4CyigtOc9Unsk8LTguEmXy3NbIKGdJSSMYrokkVMAud1doXAl_hk6YaAkrLGGFJ6xYRfC--2beIndsLX3kaN-VdKjbPmG2mIogxCK3vUoZVrpwMGiEFJzLTFKmTaIKO-4IXlnO6dVxOjoTLg2nQx-tej2M4GDNCCLMF7XYcEEEL7tsK-nu-EZWZrb0ZVzcsTWwInjS8mHXFMlpmvMMR0B7HNrrSz-nurzwaOKcexi6CD6seXnTrW3_603L770Wpsu5sEnTpaiNIA5aMnu2fbjP4U7ipTGJcX4Au81iaV7AbXXdXNaLAezQc-rfbAB7R8fjydeB3zUZeEG3aZPPXya__gKP8loQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXoDwDBQwCBIKoWTuJ7QNCy6PaqsuqhwK9Gcd2tpVKdtlki_ZP8RuxncdqqbS3Hjjk4jiO7XyeGccz3wA8t2I_zxSNwyzTMowzlYaZVFEoVZKy2Gpo7ePWvg3paMSOjvjBBvxpY2GcW2UrE72g1hPl_pHvYOp4WAjp4ffTX6HLGuVOV9sUGjUs9s3it92yle_2Ptnv-wLj3c-HHwdhk1UgVFabV3bnhXNlL4ZlrmSkc2239Irl3ORcx7HjW-eSRFxzY3c_midSRzSXJM5lyilXxLZ7CS5bMwIz7yp4sPynQ5z5EzWxORFhO6XVj47uFDunJc564WJF__k0AVarHTsnzPMW7nlHze609h9mU68Nd2_8b_N4E643djfq1wtlCzZMcQu2GslWolcN_fbr2_C9j7yXZeinw6Dp5HQxRdpU3mmtQLLQqDTjn03QVoGck21pKmTNfzSum2mIi6sFkh3z6R34eiEDvAubxaQw9wEllOacJypNZBpnPMqwMmlqW2SUM5zTAHotKIRquNldipBT4X0ECBM1kIQFkvBAEosA3nTPTGtmkrW1PzisdTUdq7gvmMzGohFSIrW9ilmkdOZo3gjJOJeJpEwbrDI77gCeWaSutDHoD4Uri-Kej8Y96wWw3QJPNPKwFEvUBfC0u20lmTuekoWZzH0dF1dtDcgA7tW4715FUhqnPIkCoCsrYqUvq3eKk2PPls65p9kL4G27dpbdWjdfL-v1tfKG8XwqbNF4LkojiKPOTB6sH-4TuDo4_DIUw73R_kO4hr0kwGGUbsNmNZubR3BFnVUn5eyxFyUIflz0mvsLRzyyDg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9MwGH41BkJcgPEZGGAQIBBETe0kjg8IFUa1aVXVA4zdjGM73aSRliYd6l_j12E7H1WY1NsOHHJxHMd23g-_8fM-BnhpzH6WShr6aaqEH6Yy9lMhA1_IKE5C46GVy1s7GtHxODk-ZpMt-NPkwlhYZWMTnaFWM2n_kfcwtTwshPRxL6thEZO94cf5L9-eIGV3WpvjNCoROdSr3yZ8Kz4c7Jlv_Qrj4Zevn_f9-oQBXxrPXpooDGfSXAkWmRSBypQJ72WSMZ0xFYaWe50JEjDFtImEFIuECmgmSJiJmFEmiWn3ClyllrTcwQYn6_87xC6FgjpPJyBJrzC-0lKfYgtgYknfX3V8oTsywHi4EwvIvLjavQjabHdu_2E5dZ5xeOt_ntPbcLNej6NBpUA7sKXzO7BTW7wCvalpud_ehe8D5NCXvpsajeazs9UcKV06MFuORK5Qoac_62SuHFnwbaFLZMICNK2aqQmNyxUSLSPqPfh2KQO8D9v5LNcPAUWUZoxFMo5EHKYsSLHUcWxaTChLcEY96DcCwmXN2W6PDjnjDjtAEl4JFTdCxZ1Q8ZUH79pn5hVjycban6zctTUt27grmC2mvDZePDa9CpNAqtTSvxGSMiYiQROlsUzNuD14YaS208b-YMRtWRD2XZbued-D3UYIeW0nC76WQA-et7eNhbPbViLXs6WrY_OtzcLSgweVDrSvIrHRPRYFHtCOdnT60r2Tn544FnXGHP2eB-8bPVp3a9N8va50rfOG6XLOTdF0yQvNiaXUjB5tHu4zuG5UjY8OxoeP4QZ2RgH7QbwL2-ViqZ_ANXlenhaLp86qIPhx2Sr3F8ijuss |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-centre+polyp+detection+and+segmentation+dataset+for+generalisability+assessment&rft.jtitle=Scientific+data&rft.au=Ali%2C+Sharib&rft.au=Jha%2C+Debesh&rft.au=Ghatwary%2C+Noha&rft.au=Realdon%2C+Stefano&rft.date=2023-02-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2052-4463&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-023-01981-y&rft.externalDocID=10_1038_s41597_023_01981_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon |