Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage

Highlights Zero capacity fading after over 3000 cycles at 1 C. Only 6.4% capacity is lost when rate is increased by 50 times. Diffusion mechanism of formation and fracture of hydrogen bonds is proposed. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage system...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nano-micro letters Ročník 13; číslo 1; s. 139 - 16
Hlavní autoři: Zhang, Xikun, Xia, Maoting, Yu, Haoxiang, Zhang, Junwei, Yang, Zhengwei, Zhang, Liyuan, Shu, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Nature Singapore 01.12.2021
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2311-6706, 2150-5551, 2150-5551
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Highlights Zero capacity fading after over 3000 cycles at 1 C. Only 6.4% capacity is lost when rate is increased by 50 times. Diffusion mechanism of formation and fracture of hydrogen bonds is proposed. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH 4 + in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH 4 + insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH 4 + diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH 4 + storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH 4 + storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
AbstractList Abstract Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4 + in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4 + insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4 + diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4 + storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4 + storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
Highlights Zero capacity fading after over 3000 cycles at 1 C. Only 6.4% capacity is lost when rate is increased by 50 times. Diffusion mechanism of formation and fracture of hydrogen bonds is proposed. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH 4 + in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH 4 + insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH 4 + diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH 4 + storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH 4 + storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
Zero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and fracture of hydrogen bonds is proposed. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
HighlightsZero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and fracture of hydrogen bonds is proposed.Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH 4 + in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH 4 + insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH 4 + diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH 4 + storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH 4 + storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.
ArticleNumber 139
Author Yang, Zhengwei
Zhang, Liyuan
Xia, Maoting
Zhang, Junwei
Zhang, Xikun
Shu, Jie
Yu, Haoxiang
Author_xml – sequence: 1
  givenname: Xikun
  surname: Zhang
  fullname: Zhang, Xikun
  organization: School of Materials Science and Chemical Engineering, Ningbo University
– sequence: 2
  givenname: Maoting
  surname: Xia
  fullname: Xia, Maoting
  organization: School of Materials Science and Chemical Engineering, Ningbo University
– sequence: 3
  givenname: Haoxiang
  surname: Yu
  fullname: Yu, Haoxiang
  organization: School of Materials Science and Chemical Engineering, Ningbo University
– sequence: 4
  givenname: Junwei
  surname: Zhang
  fullname: Zhang, Junwei
  organization: School of Materials Science and Chemical Engineering, Ningbo University
– sequence: 5
  givenname: Zhengwei
  surname: Yang
  fullname: Yang, Zhengwei
  organization: School of Materials Science and Chemical Engineering, Ningbo University
– sequence: 6
  givenname: Liyuan
  surname: Zhang
  fullname: Zhang, Liyuan
  organization: School of Materials Science and Chemical Engineering, Ningbo University
– sequence: 7
  givenname: Jie
  surname: Shu
  fullname: Shu, Jie
  email: shujie@nbu.edu.cn
  organization: School of Materials Science and Chemical Engineering, Ningbo University
BookMark eNp9Uk1v1DAUtFARLaV_gFMkLkjIxfbzR3xBWirKVqrgUHq2bMdZUmXjYntR--9xmoqqPezJlj0zb-Zp3qKDKU4BofeUnFJC1OfMScsIJoxiQqSi-O4VOmJUECyEoAf1DpRiqYg8RCc5D44IxhVTgr9Bh8AptKDZEVqt77sUN2Fqvsapw6uKzCV0zfVYksVXxboxNHbqmnObS7P6swtxl5sfa_6puSox2U14h173dszh5PE8Rtfn336drfHlz-8XZ6tL7CWlBXvrFfRAPZNM9x5c13upnXU1RegdaIA2UOUt64S0LMggGUDPaUtIH4DCMbpYdLtob8xtGrY23ZtoB_PwENPG2FQGPwbjXKdbwVVPpORW8VY46HrugDMNXvGq9WXRut25beh8mGra8Zno859p-G028a9pqWZSsSrw8VEgxbqTXMx2yD6Mo53mBRkmOAOhuZ59f3gBvYm7NNVVGSapFqolCvaiBGjFhRSzb7agfIo5p9D_t0yJmWthllqYWgvzUAtzV0ntC5Ifii1DnKMN434qLNRc50ybkJ5c7WH9A56pyrM
CitedBy_id crossref_primary_10_1002_anie_202413354
crossref_primary_10_1016_j_ccr_2021_214297
crossref_primary_10_1002_adma_202304209
crossref_primary_10_1039_D5SC00171D
crossref_primary_10_1016_j_jtice_2023_104845
crossref_primary_10_1002_eem2_70102
crossref_primary_10_1016_j_jpowsour_2023_232994
crossref_primary_10_1039_D2QI00265E
crossref_primary_10_1016_j_cej_2023_148098
crossref_primary_10_1016_j_ensm_2025_104539
crossref_primary_10_1002_ange_202423908
crossref_primary_10_1016_j_nanoen_2025_110764
crossref_primary_10_1007_s12598_024_03227_1
crossref_primary_10_1016_j_gee_2024_06_004
crossref_primary_10_1016_j_jcis_2024_03_047
crossref_primary_10_1016_j_matt_2023_06_041
crossref_primary_10_1002_smll_202204888
crossref_primary_10_1002_smll_202408467
crossref_primary_10_1007_s12598_024_02818_2
crossref_primary_10_1016_j_electacta_2021_139525
crossref_primary_10_1016_j_gee_2023_02_001
crossref_primary_10_1002_anie_202301629
crossref_primary_10_1002_adma_202508001
crossref_primary_10_1002_ange_202414479
crossref_primary_10_1016_j_compositesb_2022_110241
crossref_primary_10_1016_j_desal_2024_118504
crossref_primary_10_1016_j_cej_2024_157804
crossref_primary_10_1016_j_cej_2025_163027
crossref_primary_10_1016_j_seppur_2023_125204
crossref_primary_10_1007_s11581_021_04188_6
crossref_primary_10_1016_j_jmst_2022_09_012
crossref_primary_10_1016_j_mattod_2023_12_010
crossref_primary_10_1002_ange_202212941
crossref_primary_10_1016_j_cej_2023_143197
crossref_primary_10_1016_j_surfin_2025_106456
crossref_primary_10_1002_anie_202303480
crossref_primary_10_1021_acssuschemeng_5c06135
crossref_primary_10_1073_pnas_2414112122
crossref_primary_10_1002_anie_202207711
crossref_primary_10_1016_j_scriptamat_2022_114975
crossref_primary_10_1002_cssc_202300207
crossref_primary_10_1002_sstr_202400163
crossref_primary_10_1016_j_electacta_2025_146455
crossref_primary_10_1016_j_est_2024_115209
crossref_primary_10_1016_j_jechem_2024_06_030
crossref_primary_10_1002_aenm_202400702
crossref_primary_10_1039_D5MH00582E
crossref_primary_10_1002_ange_202413354
crossref_primary_10_1016_j_watres_2024_121789
crossref_primary_10_1002_batt_202300546
crossref_primary_10_1002_ange_202303480
crossref_primary_10_1007_s40843_023_2448_0
crossref_primary_10_1016_j_dwt_2024_100533
crossref_primary_10_1002_aenm_202500589
crossref_primary_10_1016_j_jcis_2024_04_210
crossref_primary_10_1016_j_nanoen_2021_106400
crossref_primary_10_1016_j_jiec_2023_05_043
crossref_primary_10_1002_sus2_265
crossref_primary_10_1002_adfm_202407313
crossref_primary_10_1016_j_cej_2024_156480
crossref_primary_10_1016_j_cej_2025_164306
crossref_primary_10_1002_ange_202301629
crossref_primary_10_1002_aenm_202404254
crossref_primary_10_1016_j_jcis_2025_137342
crossref_primary_10_1016_j_cej_2024_158266
crossref_primary_10_1016_j_jcis_2022_11_115
crossref_primary_10_1002_adma_202305575
crossref_primary_10_1016_j_mtener_2022_101189
crossref_primary_10_1002_advs_202511815
crossref_primary_10_1039_D2QI01171A
crossref_primary_10_1016_j_cej_2023_143163
crossref_primary_10_1002_adfm_202400598
crossref_primary_10_1016_j_cej_2024_151119
crossref_primary_10_1016_j_electacta_2022_141097
crossref_primary_10_1002_adma_202415676
crossref_primary_10_1002_aenm_202202908
crossref_primary_10_1016_j_jmst_2023_06_010
crossref_primary_10_1016_S1003_6326_23_66346_0
crossref_primary_10_1002_ange_202207711
crossref_primary_10_1002_inf2_12549
crossref_primary_10_1002_adfm_202112179
crossref_primary_10_1002_aenm_202502595
crossref_primary_10_1002_aenm_202401006
crossref_primary_10_1016_j_joule_2023_10_010
crossref_primary_10_1002_smll_202501370
crossref_primary_10_1007_s40820_021_00700_9
crossref_primary_10_1002_adma_202308210
crossref_primary_10_1016_j_est_2022_105402
crossref_primary_10_1002_adma_202308628
crossref_primary_10_1039_D3EE02030D
crossref_primary_10_1002_ange_202115046
crossref_primary_10_1016_j_cej_2025_165854
crossref_primary_10_1016_j_jechem_2025_09_008
crossref_primary_10_1088_1361_6528_ad690b
crossref_primary_10_1016_j_electacta_2023_143227
crossref_primary_10_1016_j_ccr_2022_214478
crossref_primary_10_1016_j_jmst_2021_08_035
crossref_primary_10_1002_adma_202419446
crossref_primary_10_1021_acs_est_5c01683
crossref_primary_10_1016_j_jcis_2024_07_158
crossref_primary_10_1002_sstr_202300201
crossref_primary_10_1002_ange_202511864
crossref_primary_10_1002_anie_202212941
crossref_primary_10_1007_s12274_023_6059_2
crossref_primary_10_1002_anie_202115046
crossref_primary_10_1002_anie_202414479
crossref_primary_10_1002_adma_202201877
crossref_primary_10_1016_j_enchem_2022_100090
crossref_primary_10_1002_adfm_202420884
crossref_primary_10_1002_smll_202310835
crossref_primary_10_1016_j_ccr_2022_214867
crossref_primary_10_1016_j_cej_2024_158074
crossref_primary_10_1002_chem_202301536
crossref_primary_10_1007_s12274_022_5021_z
crossref_primary_10_1002_smll_202107115
crossref_primary_10_1002_anie_202511864
crossref_primary_10_1016_j_jcis_2024_04_131
crossref_primary_10_1016_j_apsusc_2022_154654
crossref_primary_10_1039_D5RE00216H
crossref_primary_10_1002_anie_202423908
crossref_primary_10_1007_s11581_023_04920_4
Cites_doi 10.1002/anie.201803664
10.1039/C9TA00254E
10.1002/celc.201901223
10.1002/adfm.201600747
10.1039/C9TA12376H
10.1016/j.jelechem.2018.04.011
10.1016/j.nanoen.2019.04.059
10.1038/s41560-019-0388-0
10.1016/j.cej.2020.124923
10.1002/adfm.202008743
10.1002/aenm.201903351
10.1038/ncomms11982
10.1039/D0TA06979E
10.1021/acsaem.0c01791
10.1002/celc.202000886
10.1021/acsami.9b20129
10.1021/acsami.0c08084
10.1016/j.nanoen.2015.02.006
10.1038/NMAT2612
10.1016/j.chempr.2019.03.009
10.1038/NMAT3601
10.1021/acsami.6b04014
10.1039/c8ta02291g
10.1016/j.cej.2020.127767
10.1002/smll.201906946
10.1021/acs.jpcc.7b07920
10.1557/PROC-369-69
10.1021/acsami.5b12620
10.1002/anie.201912203
10.1016/j.nanoen.2019.01.048
10.1016/j.ensm.2020.03.011
10.1021/acsami.6b01352
10.1002/smll.202002856
10.1002/adfm.202001263
10.1016/j.ensm.2018.09.02
10.1002/cssc.201301036
10.1016/j.ssnmr.2008.12.011
10.1016/j.cej.2019.123653
10.1002/cssc.201901622
10.1039/C6EE00093B
10.1039/C7CC02516E
10.1038/ncomms12122
10.1021/acs.chemmater.6b00026
10.1021/acs.nanolett.5b02642
10.1016/j.cej.2020.127759
10.1016/j.ensm.2020.04.028
10.1002/adma.201604007
10.1016/j.nanoen.2020.104621
10.1016/j.isci.2018.04.008
10.1021/acsenergylett.0c00109
10.1021/acsaem.8b00789
10.1039/d0dt00471e
10.1143/jpsjs.79sa.163
10.1021/ic101103g
10.1002/cnma.201500021
10.1002/cssc.201900582
10.1002/anie.201707473
10.1016/j.ssi.2019.115025
10.1016/j.chempr.2019.05.020
10.1002/adma.201907802
10.1039/C8NH00484F
10.1126/science.1241488
10.1016/j.jpowsour.2014.10.196
10.1039/c3ee44164d
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-021-00671-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList


Publicly Available Content Database
CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 16
ExternalDocumentID oai_doaj_org_article_bbd98547f0664a7485b3df4b34293c74
PMC8192672
10_1007_s40820_021_00671_x
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c611t-cac73f31c2629fc3bdfc69bab820efb39338e17ca2d56a2e6e6233f41800fe313
IEDL.DBID C24
ISICitedReferencesCount 90
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2311-6706
2150-5551
IngestDate Fri Oct 03 12:37:05 EDT 2025
Tue Nov 04 01:54:15 EST 2025
Thu Oct 02 06:21:09 EDT 2025
Sat Oct 18 22:47:56 EDT 2025
Sat Oct 18 23:16:33 EDT 2025
Sat Nov 29 02:07:25 EST 2025
Tue Nov 18 21:43:05 EST 2025
Fri Feb 21 02:46:46 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Copper hexacyanoferrate
Ultra-long cycling performance
Hydrogen bonds
Excellent rate performance
Aqueous ammonium ion batteries
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-cac73f31c2629fc3bdfc69bab820efb39338e17ca2d56a2e6e6233f41800fe313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-021-00671-x
PMID 34138392
PQID 2539745654
PQPubID 2044332
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_bbd98547f0664a7485b3df4b34293c74
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192672
proquest_miscellaneous_2542359491
proquest_journals_2619578073
proquest_journals_2539745654
crossref_primary_10_1007_s40820_021_00671_x
crossref_citationtrail_10_1007_s40820_021_00671_x
springer_journals_10_1007_s40820_021_00671_x
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationYear 2021
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Li, Zhang, Xiang, Zhang (CR39) 2017; 121
Yan, Huang, Guo, Dong, Wang (CR14) 2020; 5
Wu, Wu, Wei, Hu, Qian (CR33) 2016; 8
Jiang, Lu, Zhao, Liu, Zhang (CR36) 2019; 4
Liao, Wang, Ye, Sun, Wen (CR11) 2020; 59
Li, Zhang, Ma, Ma, Wang (CR19) 2019; 12
Lunk, Hartl, Hartl, Fait, Shenderovich (CR62) 2010; 49
Xia, Zhang, Yu, Yang, Chen (CR15) 2021
Xie, Zhao, Mao, Huang (CR25) 2020; 49
Wang, Mi, Nie, Dong, Tang (CR51) 2018; 818
Yu, Wei, Zhang, Zeng, Wang (CR26) 2021; 31
Mao, Chen, Qin, Shi, Liu (CR56) 2019; 58
Li, McKinnon, Dahn (CR1) 1994; 141
Zhang, Liu, Zhang, Chi, Zhang (CR10) 2020; 392
Lumley, Nam, Choi (CR47) 2020; 12
Wu, Sun, Guo, Qian, Liu (CR54) 2015; 1
Brezesinski, Wang, Tolbert, Dunn (CR59) 2010; 9
Wu, Xu, Jiang, Wei, Hong (CR38) 2018; 1
Wang, Liu, Sun, Tang, Pan (CR44) 2019; 12
Liu, Wang, Liu, Deng, Dou (CR13) 2020; 16
Xu, Harris, Thomas (CR61) 2019; 35
Chao, Fan (CR20) 2019; 5
Xia, Zhang, Liu, Yu, Chen (CR9) 2020; 394
Xie, Zuo, Wang, Wang, Huo (CR37) 2019; 61
Lukatskaya, Mashtalir, Ren, Dall’Agnese, Rozier (CR23) 2013; 60
Zhang, An, Yin, Jiang, Dong (CR22) 2019; 7
Wu, Sun, Shen, Qian, Cao (CR53) 2014; 7
Wang, Xie, Tang, Wang, Yan (CR17) 2018; 57
Kim, Kim, Arumugam, Woo, Jo (CR34) 2016; 8
Augustyn, Simon, Dunn (CR58) 2014; 7
Liu, He, Cheng, Li, Lu (CR49) 2020; 16
Zhu, Li, Jin, Jiao (CR46) 2020; 8
Selvasekarapandian, Hema, Kawamura, Kamishima, Baskaran (CR63) 2010; 79
Adil, Sarkar, Roy, Panda, Nagendra (CR12) 2020; 12
Han, Mariani, Zhang, Zarrabeitia, Gao (CR43) 2020; 30
Jiang, Yu, Wang, Li, Sun (CR31) 2016; 26
Chao, Zhu, Yang, Xia, Liu (CR57) 2016; 7
Du, Tao, Li, Yang, Gao (CR45) 2019; 10
Zhang, Xia, Liu, Peng, Yu (CR16) 2021
Kuchena, Wang (CR21) 2020; 3
Cai, Yang, Qu, Wang (CR52) 2017; 53
Sa, Kinnibrugh, Wang, Gautam, Chapman (CR60) 2016; 28
Hao, Li, Zhang, Yang, Zeng (CR8) 2020; 30
Chen, Shao, Zhou, Liu, Jiang (CR35) 2016; 7
Wu, Qi, Hong, Li, Hernande (CR24) 2017; 56
Zuo, Wang, Wu, Qiu, Zhang (CR42) 2019; 340
Chen, Lan, Humphreys, Tao (CR6) 2020; 28
Liu, Cheng, Yu, Zhu, Peng (CR5) 2019; 18
Su, McDonagh, Qiao, Wang (CR2) 2017; 29
Dong, Shin, Jiang, Wu, Li (CR27) 2019; 5
Wang, Wang, Liang, Yan, Jiang (CR40) 2019; 6
Li, Yan, Liang, Wang, Wang (CR32) 2019; 4
Liu, Turcheniuk, Fu, Yang, Liu (CR7) 2020; 71
Wang, Ha, Chen, Xu, Pan (CR29) 2018; 6
Ramanujapuram, Gordon, Magasinski, Ward, Nitta (CR4) 2016; 9
Chen, Peng, Liu, Le, Zhu (CR18) 2015; 15
Ali, Lee, Susanto, Choi, Cho (CR64) 2016; 8
Kasiri, Glenneberg, Kun, Zampardi, Mantia (CR48) 2020; 7
Wang, Wang, Tang, Xu, Liang (CR41) 2020; 8
Liang, Wang, Huang, Mo, Li (CR28) 2020; 32
Wang, Han, Wang, Bahlawane, Pan (CR30) 2018; 3
Augustyn, Come, Lowe, Kim, Taberna (CR55) 2013; 12
Yu, Li, Lu, Xu, Wang (CR3) 2015; 275
Wu, Luo, Sun, Qian, Cao (CR50) 2015; 13
M Adil (671_CR12) 2020; 12
BQ Wang (671_CR30) 2018; 3
DW Su (671_CR2) 2017; 29
XK Zhang (671_CR16) 2021
YZ Jiang (671_CR31) 2016; 26
L Yan (671_CR14) 2020; 5
XY Wu (671_CR50) 2015; 13
V Augustyn (671_CR55) 2013; 12
DP Cai (671_CR52) 2017; 53
SG Chen (671_CR6) 2020; 28
DL Chao (671_CR57) 2016; 7
SL Liu (671_CR13) 2020; 16
Z Chen (671_CR18) 2015; 15
M Liao (671_CR11) 2020; 59
WF Li (671_CR39) 2017; 121
BQ Wang (671_CR44) 2019; 12
YD Zhang (671_CR22) 2019; 7
BX Xie (671_CR37) 2019; 61
MR Lukatskaya (671_CR23) 2013; 60
XY Wu (671_CR33) 2016; 8
JN Hao (671_CR8) 2020; 30
KJ Zhu (671_CR46) 2020; 8
A Ramanujapuram (671_CR4) 2016; 9
MT Xia (671_CR15) 2021
M Xie (671_CR25) 2020; 49
MC Xu (671_CR61) 2019; 35
SY Dong (671_CR27) 2019; 5
G Kasiri (671_CR48) 2020; 7
Y Liu (671_CR49) 2020; 16
YJ Mao (671_CR56) 2019; 58
GY Du (671_CR45) 2019; 10
CY Li (671_CR19) 2019; 12
W Li (671_CR1) 1994; 141
MT Liu (671_CR7) 2020; 71
T Brezesinski (671_CR59) 2010; 9
CY Li (671_CR32) 2019; 4
DX Zuo (671_CR42) 2019; 340
YQ Zhang (671_CR10) 2020; 392
G Ali (671_CR64) 2016; 8
V Augustyn (671_CR58) 2014; 7
SL Yu (671_CR3) 2015; 275
TT Liu (671_CR5) 2019; 18
D-M Kim (671_CR34) 2016; 8
L Chen (671_CR35) 2016; 7
DL Chao (671_CR20) 2019; 5
XY Wu (671_CR24) 2017; 56
XF Wang (671_CR17) 2018; 57
XY Wu (671_CR54) 2015; 1
DX Yu (671_CR26) 2021; 31
J Han (671_CR43) 2020; 30
XY Wu (671_CR38) 2018; 1
X Wang (671_CR41) 2020; 8
SF Kuchena (671_CR21) 2020; 3
GJ Liang (671_CR28) 2020; 32
X-Y Wu (671_CR53) 2014; 7
LW Jiang (671_CR36) 2019; 4
J Wang (671_CR51) 2018; 818
MT Xia (671_CR9) 2020; 394
BQ Wang (671_CR29) 2018; 6
S Selvasekarapandian (671_CR63) 2010; 79
H-J Lunk (671_CR62) 2010; 49
BQ Wang (671_CR40) 2019; 6
MA Lumley (671_CR47) 2020; 12
N Sa (671_CR60) 2016; 28
References_xml – volume: 57
  start-page: 11569
  year: 2018
  ident: CR17
  article-title: Redox chemistry of molybdenum trioxide for ultrafast hydrogen ion storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803664
– volume: 7
  start-page: 11314
  year: 2019
  ident: CR22
  article-title: A novel aqueous ammonium dual-ion battery based on organic polymers
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00254E
– volume: 6
  start-page: 4848
  year: 2019
  ident: CR40
  article-title: An all-Prussian-blue-based aqueous sodium-ion battery
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901223
– volume: 26
  start-page: 5315
  year: 2016
  ident: CR31
  article-title: Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600747
– volume: 8
  start-page: 3222
  year: 2020
  ident: CR41
  article-title: Manganese hexacyanoferrate reinforced by PEDOT coating toward high-rate and long-life sodium-ion battery cathode
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12376H
– volume: 818
  start-page: 10
  year: 2018
  ident: CR51
  article-title: Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.04.011
– volume: 61
  start-page: 201
  year: 2019
  ident: CR37
  article-title: Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.059
– volume: 4
  start-page: 495
  year: 2019
  ident: CR36
  article-title: Building aqueous K-ion batteries for energy storage
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0388-0
– volume: 394
  start-page: 124923
  year: 2020
  ident: CR9
  article-title: Commercially available Prussian blue get energetic in aqueous K-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124923
– volume: 31
  start-page: 2008743
  year: 2021
  ident: CR26
  article-title: Boosting Zn and NH storage in aqueous media via in-situ electrochemical induced VS /VO heterostructures
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008743
– volume: 10
  start-page: 1903351
  year: 2019
  ident: CR45
  article-title: Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903351
– volume: 7
  start-page: 11982
  year: 2016
  ident: CR35
  article-title: Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11982
– volume: 8
  start-page: 21103
  year: 2020
  ident: CR46
  article-title: Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06979E
– volume: 3
  start-page: 11690
  year: 2020
  ident: CR21
  article-title: Superior polyaniline cathode material with enhanced capacity for ammonium ion storage
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01791
– volume: 7
  start-page: 3301
  year: 2020
  ident: CR48
  article-title: Microstructural changes of Prussian blue derivatives during cycling in zinc containing electrolytes
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000886
– volume: 12
  start-page: 11489
  year: 2020
  ident: CR12
  article-title: Practical aqueous calcium-ion battery full-cells for future stationary storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20129
– volume: 12
  start-page: 36014
  year: 2020
  ident: CR47
  article-title: Elucidating structure-composition-property relationships of Ni-based Prussian blue analogues for electrochemical seawater desalination
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08084
– volume: 13
  start-page: 117
  year: 2015
  ident: CR50
  article-title: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.006
– volume: 9
  start-page: 146
  year: 2010
  ident: CR59
  article-title: Ordered mesoporous α-MoO with iso-oriented nanocrystalline walls for thin-film pseudocapacitors
  publication-title: Nat. Mater.
  doi: 10.1038/NMAT2612
– volume: 5
  start-page: 1
  year: 2019
  ident: CR27
  article-title: Ultra-fast NH storage: Strong H bonding between NH and bi-layered V O
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.03.009
– volume: 12
  start-page: 518
  year: 2013
  ident: CR55
  article-title: High-rate electrochemical energy storage through Li intercalation pseudocapacitance
  publication-title: Nat. Mater.
  doi: 10.1038/NMAT3601
– volume: 8
  start-page: 15422
  year: 2016
  ident: CR64
  article-title: Polythiophene-wrapped olivine NaFePO as a cathode for Na-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04014
– volume: 6
  start-page: 8947
  year: 2018
  ident: CR29
  article-title: Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta02291g
– year: 2021
  ident: CR16
  article-title: Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127767
– volume: 16
  start-page: 1906964
  year: 2020
  ident: CR49
  article-title: A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery
  publication-title: Small
  doi: 10.1002/smll.201906946
– volume: 121
  start-page: 27805
  year: 2017
  ident: CR39
  article-title: Electrochemical properties and redox mechanism of Na Ni Co [Fe(CN) ] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b07920
– volume: 141
  start-page: 2310
  year: 1994
  ident: CR1
  article-title: Lithium intercalation from aqueous solutions
  publication-title: J. Electrochem. Soc.
  doi: 10.1557/PROC-369-69
– volume: 8
  start-page: 5393
  year: 2016
  ident: CR33
  article-title: Highly crystallized Na CoFe(CN) with suppressed lattice defects as superior cathode material for sodium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12620
– volume: 59
  start-page: 2273
  year: 2020
  ident: CR11
  article-title: A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912203
– volume: 58
  start-page: 192
  year: 2019
  ident: CR56
  article-title: Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced Prussian blue for high performance Na-ion battery cathode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.048
– volume: 28
  start-page: 205
  year: 2020
  ident: CR6
  article-title: Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO battery
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.03.011
– volume: 8
  start-page: 8554
  year: 2016
  ident: CR34
  article-title: Co-intercalation of Mg and Na in Na Fe (CN)6 as a high-voltage cathode for magnesium batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01352
– volume: 16
  start-page: 2002856
  year: 2020
  ident: CR13
  article-title: Nanomanufacturing of RGO-CNT hybrid film for flexible aqueous Al-ion batteries
  publication-title: Small
  doi: 10.1002/smll.202002856
– volume: 30
  start-page: 2001263
  year: 2020
  ident: CR8
  article-title: Designing dendrite-free zinc anodes for advanced aqueous zinc batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001263
– volume: 18
  start-page: 68
  year: 2019
  ident: CR5
  article-title: An overview and future perspectives of aqueous rechargeable polyvalent ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.02
– volume: 7
  start-page: 407
  year: 2014
  ident: CR53
  article-title: Energetic aqueous rechargeable sodium-ion battery based on Na CuFe(CN) -NaTi (PO ) intercalation chemistry
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201301036
– volume: 35
  start-page: 93
  year: 2019
  ident: CR61
  article-title: In situ solid-state H NMR studies of hydration of the solid acid catalyst ZSM-5 in its ammonium form
  publication-title: Solid State Nucl. Mag.
  doi: 10.1016/j.ssnmr.2008.12.011
– volume: 392
  start-page: 123652
  year: 2020
  ident: CR10
  article-title: Low-cost MgFe Mn O cathode materials for high-performance aqueous rechargeable magnesium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123653
– volume: 12
  start-page: 3732
  year: 2019
  ident: CR19
  article-title: A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201901622
– volume: 9
  start-page: 1841
  year: 2016
  ident: CR4
  article-title: Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00093B
– volume: 53
  start-page: 6780
  year: 2017
  ident: CR52
  article-title: Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02516E
– volume: 7
  start-page: 12122
  year: 2016
  ident: CR57
  article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12122
– volume: 28
  start-page: 2962
  year: 2016
  ident: CR60
  article-title: Structural evolution of reversible Mg insertion into a bilayer structure of V O ·nH O xerogel material
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00026
– volume: 15
  start-page: 6802
  year: 2015
  ident: CR18
  article-title: Hierarchical nanostructured WO with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02642
– year: 2021
  ident: CR15
  article-title: Hydrogen bond chemistry in Fe [Fe(CN) ] host for aqueous NH batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127759
– volume: 30
  start-page: 196
  year: 2020
  ident: CR43
  article-title: Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.028
– volume: 29
  start-page: 1604007
  year: 2017
  ident: CR2
  article-title: High-capacity aqueous potassium-ion batteries for large-scale energy storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604007
– volume: 71
  start-page: 104627
  year: 2020
  ident: CR7
  article-title: Scalable, safe, high-rate supercapacitor separators based on the Al O nanowire polyvinyl butyral nonwoven membranes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104621
– volume: 3
  start-page: 110
  year: 2018
  ident: CR30
  article-title: Prussian blue analogs for rechargeable batteries
  publication-title: iScience
  doi: 10.1016/j.isci.2018.04.008
– volume: 5
  start-page: 685
  year: 2020
  ident: CR14
  article-title: Solid-state proton battery operated at ultralow temperature
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00109
– volume: 1
  start-page: 3077
  year: 2018
  ident: CR38
  article-title: NH topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00789
– volume: 49
  start-page: 3488
  year: 2020
  ident: CR25
  article-title: K0.38(H2O)0.82MoS2 as a universal host for rechargeable aqueous cation (K+, Na+, Li+, NH4+, Mg2+, Al3+) batteries
  publication-title: Dalton Trans.
  doi: 10.1039/d0dt00471e
– volume: 79
  start-page: 163
  year: 2010
  ident: CR63
  article-title: Characterization of PVA-NH NO polymer electrolyte and its application in rechargeable proton battery
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/jpsjs.79sa.163
– volume: 49
  start-page: 9400
  year: 2010
  ident: CR62
  article-title: “Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveries
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101103g
– volume: 1
  start-page: 188
  year: 2015
  ident: CR54
  article-title: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium ion batteries
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201500021
– volume: 12
  start-page: 2415
  year: 2019
  ident: CR44
  article-title: Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogs
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201900582
– volume: 56
  start-page: 13026
  year: 2017
  ident: CR24
  article-title: Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707473
– volume: 340
  start-page: 115025
  year: 2019
  ident: CR42
  article-title: Comprehensive study of Na MnFe(CN) ·yH O cathodes with cube morphology: Structure, valence state and electrochemical properties
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2019.115025
– volume: 5
  start-page: 1357
  year: 2019
  ident: CR20
  article-title: Intercalation pseudocapacitive behavior powers aqueous batteries
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.05.020
– volume: 32
  start-page: 1907802
  year: 2020
  ident: CR28
  article-title: Initiating hexagonal MoO for superb-stable and fast NH storage based on hydrogen bond chemistry
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907802
– volume: 4
  start-page: 991
  year: 2019
  ident: CR32
  article-title: Achieving high-performance Prussian blue analogue cathode with ultra-stable redox reaction for ammonium ion storage
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C8NH00484F
– volume: 60
  start-page: 5718
  year: 2013
  ident: CR23
  article-title: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 275
  start-page: 45
  year: 2015
  ident: CR3
  article-title: A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.196
– volume: 7
  start-page: 1597
  year: 2014
  ident: CR58
  article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
– volume: 9
  start-page: 146
  year: 2010
  ident: 671_CR59
  publication-title: Nat. Mater.
  doi: 10.1038/NMAT2612
– volume: 6
  start-page: 8947
  year: 2018
  ident: 671_CR29
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta02291g
– volume: 7
  start-page: 3301
  year: 2020
  ident: 671_CR48
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000886
– volume: 31
  start-page: 2008743
  year: 2021
  ident: 671_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008743
– volume: 4
  start-page: 991
  year: 2019
  ident: 671_CR32
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C8NH00484F
– volume: 7
  start-page: 1597
  year: 2014
  ident: 671_CR58
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
– year: 2021
  ident: 671_CR16
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127767
– volume: 5
  start-page: 1357
  year: 2019
  ident: 671_CR20
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.05.020
– volume: 7
  start-page: 407
  year: 2014
  ident: 671_CR53
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201301036
– volume: 141
  start-page: 2310
  year: 1994
  ident: 671_CR1
  publication-title: J. Electrochem. Soc.
  doi: 10.1557/PROC-369-69
– volume: 13
  start-page: 117
  year: 2015
  ident: 671_CR50
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.006
– volume: 12
  start-page: 2415
  year: 2019
  ident: 671_CR44
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201900582
– volume: 12
  start-page: 518
  year: 2013
  ident: 671_CR55
  publication-title: Nat. Mater.
  doi: 10.1038/NMAT3601
– volume: 49
  start-page: 3488
  year: 2020
  ident: 671_CR25
  publication-title: Dalton Trans.
  doi: 10.1039/d0dt00471e
– volume: 121
  start-page: 27805
  year: 2017
  ident: 671_CR39
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b07920
– volume: 340
  start-page: 115025
  year: 2019
  ident: 671_CR42
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2019.115025
– volume: 16
  start-page: 2002856
  year: 2020
  ident: 671_CR13
  publication-title: Small
  doi: 10.1002/smll.202002856
– volume: 4
  start-page: 495
  year: 2019
  ident: 671_CR36
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0388-0
– volume: 16
  start-page: 1906964
  year: 2020
  ident: 671_CR49
  publication-title: Small
  doi: 10.1002/smll.201906946
– volume: 30
  start-page: 2001263
  year: 2020
  ident: 671_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001263
– volume: 392
  start-page: 123652
  year: 2020
  ident: 671_CR10
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123653
– volume: 8
  start-page: 15422
  year: 2016
  ident: 671_CR64
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04014
– volume: 7
  start-page: 12122
  year: 2016
  ident: 671_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12122
– volume: 71
  start-page: 104627
  year: 2020
  ident: 671_CR7
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104621
– volume: 58
  start-page: 192
  year: 2019
  ident: 671_CR56
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.048
– volume: 57
  start-page: 11569
  year: 2018
  ident: 671_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803664
– volume: 61
  start-page: 201
  year: 2019
  ident: 671_CR37
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.059
– volume: 275
  start-page: 45
  year: 2015
  ident: 671_CR3
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.10.196
– volume: 9
  start-page: 1841
  year: 2016
  ident: 671_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE00093B
– volume: 394
  start-page: 124923
  year: 2020
  ident: 671_CR9
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124923
– volume: 60
  start-page: 5718
  year: 2013
  ident: 671_CR23
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 28
  start-page: 2962
  year: 2016
  ident: 671_CR60
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00026
– volume: 6
  start-page: 4848
  year: 2019
  ident: 671_CR40
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201901223
– volume: 8
  start-page: 21103
  year: 2020
  ident: 671_CR46
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06979E
– volume: 59
  start-page: 2273
  year: 2020
  ident: 671_CR11
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912203
– volume: 12
  start-page: 36014
  year: 2020
  ident: 671_CR47
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c08084
– volume: 818
  start-page: 10
  year: 2018
  ident: 671_CR51
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.04.011
– volume: 35
  start-page: 93
  year: 2019
  ident: 671_CR61
  publication-title: Solid State Nucl. Mag.
  doi: 10.1016/j.ssnmr.2008.12.011
– volume: 53
  start-page: 6780
  year: 2017
  ident: 671_CR52
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02516E
– volume: 49
  start-page: 9400
  year: 2010
  ident: 671_CR62
  publication-title: Inorg. Chem.
  doi: 10.1021/ic101103g
– volume: 3
  start-page: 11690
  year: 2020
  ident: 671_CR21
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c01791
– volume: 7
  start-page: 11982
  year: 2016
  ident: 671_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11982
– volume: 26
  start-page: 5315
  year: 2016
  ident: 671_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600747
– volume: 18
  start-page: 68
  year: 2019
  ident: 671_CR5
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.09.02
– volume: 8
  start-page: 3222
  year: 2020
  ident: 671_CR41
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12376H
– volume: 8
  start-page: 8554
  year: 2016
  ident: 671_CR34
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b01352
– volume: 79
  start-page: 163
  year: 2010
  ident: 671_CR63
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/jpsjs.79sa.163
– volume: 7
  start-page: 11314
  year: 2019
  ident: 671_CR22
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00254E
– volume: 3
  start-page: 110
  year: 2018
  ident: 671_CR30
  publication-title: iScience
  doi: 10.1016/j.isci.2018.04.008
– volume: 1
  start-page: 188
  year: 2015
  ident: 671_CR54
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201500021
– volume: 30
  start-page: 196
  year: 2020
  ident: 671_CR43
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.028
– volume: 12
  start-page: 3732
  year: 2019
  ident: 671_CR19
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201901622
– volume: 12
  start-page: 11489
  year: 2020
  ident: 671_CR12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20129
– volume: 10
  start-page: 1903351
  year: 2019
  ident: 671_CR45
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903351
– volume: 56
  start-page: 13026
  year: 2017
  ident: 671_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201707473
– volume: 32
  start-page: 1907802
  year: 2020
  ident: 671_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907802
– volume: 28
  start-page: 205
  year: 2020
  ident: 671_CR6
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.03.011
– volume: 15
  start-page: 6802
  year: 2015
  ident: 671_CR18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02642
– volume: 8
  start-page: 5393
  year: 2016
  ident: 671_CR33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12620
– year: 2021
  ident: 671_CR15
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127759
– volume: 1
  start-page: 3077
  year: 2018
  ident: 671_CR38
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00789
– volume: 29
  start-page: 1604007
  year: 2017
  ident: 671_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604007
– volume: 5
  start-page: 685
  year: 2020
  ident: 671_CR14
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00109
– volume: 5
  start-page: 1
  year: 2019
  ident: 671_CR27
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.03.009
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.5209146
Snippet Highlights Zero capacity fading after over 3000 cycles at 1 C. Only 6.4% capacity is lost when rate is increased by 50 times. Diffusion mechanism of formation...
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH 4 + in aqueous solution is...
HighlightsZero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and...
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always...
Zero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and fracture...
Abstract Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4 + in aqueous solution...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 139
SubjectTerms Aqueous ammonium ion batteries
Aqueous batteries
Aqueous solutions
Bonded joints
Charge transfer
Copper hexacyanoferrate
Density functional theory
Diffusion rate
Energy storage
Engineering
Excellent rate performance
Fading
Hydrogen bonds
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Pigments
Polyanilines
Redox reactions
Renewable energy
Storage batteries
Storage systems
Ultra-long cycling performance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQxQIWiKcIFGQkdsVi_IrjZYsYzQKNkKCou8hPUWmUqWamqPw99zqZRyoVNmzjjJM599j3WHbOJeS9SsIGyIwspJiYio1nTjvPkjDNxMQQ6mK7-OOLmc-biwv79aDUF54J6-2Be-A-eh9to5XJkBuVM6rRXsasvISJVAZTnEAnxh4spoBJwmBFpv3-IJZVVgcuNQo9XeTeyEyjcZnZ-2NqoSCvD4m2F9IGt7BKpTrOWW0m9fAFTvkOD6s2TxiedsDZn7ObUZYrxQBGCvb2-ctbm7Alt00fk0eDKKWnPRhPyL3UPSUPD6wKn5Gz2e-4WgLbKBYiZhBV5Eek5wvom4Fk9YtEXRfp1K039BTeYHm9pvOZoif0G6zrYdp6Ts6nn79_mrGh_gKD6PENCy4YmSUPohY2B-ljDrX1zsOfTdlLC8vbxE1wIuraiVQn0FIyKw4iNCfJ5Qty1C279JJQawFSkesctFQuOtfERriJ9An61NpVhG_xasNgTo41Mhbtzla5YNwCxm3BuL2pyMnuN1e9Ncdf7z7DMOzuRFvtcgHI1g5ka_9Ftoocb4PYDmN93QoNmg6F8R3NsETVSHxZkXe7ZhjEuDPjOowGdAGqVltleUXMiBuj9x23dJc_ix04WtrVRlTkw5ZF-4ffjcer_4HHa_JAIOvL8Z5jcrRZXac35H74tblcr96WIfkH9aktNA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Materials Science Database
  dbid: KB.
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcIAD34hAQUHiVgzrrzg5oS1itQe0QoKi3iJ_pVRaJWWTovLvmfEmm6aCXrjG2cTrefa8ZJz3CHkjAy8cZEbqgg9U-txSo4ylget8pr1zWZRd_P5Zr1b58XHxpX_h1vbbKoc1MS7UvnH4jvw9V5A5kX7ID2c_KbpGYXW1t9C4SW4xDlwfi7KH7wY8cY2-TGOVEM2V5SWtGonKLmKUM1MoX6ZHlUzFJWT3Pt1u6bTGQlb0q2OMZnqW9d_hxK_x0Lt5RnHPA-YARi8muS5aAkx47NVdmFdKsTHDLe7_79g8IPd6bpvOt2B8SG6E-hG5e0nx8DGZL3_7TQOgTdHPmAI4EGY-PVpD5ygwX7sOqal9ujBtl86hE815m66W8iD92gFaT8ITcrT49O3jkvYuDhQwwDrqjNOiEszxjBeVE9ZXLiussTBYobKigIfkwLQz3KvM8JAFYGSikgyobBUEE0_JXt3U4RlJiwJCwqusckpI443Jfc7NTNgA11TKJIQN4126XuIcnTbW5U6cOcaohBiVMUblRUIOdr852wp8XHv2IYZxdyaKc8cDzeak7Od6aa0vciV1BXROGi1zZYWvpBWQ-4XTMiH7QxjLfsVoyzGGf2-GB12F00ck5PWuGZYCrO-YGoMBlwBurApZsIToCbYm_Z221Kc_oqg4CuNlmifk7YDC8eb_Ho_n1_-VF-QOx_kQt__sk71ucx5ektvuV3fabl7FyfoHrCE7mw
  priority: 102
  providerName: ProQuest
Title Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage
URI https://link.springer.com/article/10.1007/s40820-021-00671-x
https://www.proquest.com/docview/2539745654
https://www.proquest.com/docview/2619578073
https://www.proquest.com/docview/2542359491
https://pubmed.ncbi.nlm.nih.gov/PMC8192672
https://doaj.org/article/bbd98547f0664a7485b3df4b34293c74
Volume 13
WOSCitedRecordID wos000660004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2150-5551
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070760
  issn: 2311-6706
  databaseCode: C24
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BywEOvCsMJTISt7Io3ofXPiZVoiAgiihFgYu1L5dKkYNiF8GF387MxombiiLBZQ_ZjTOamd35nJn9hpCXwrPcQmSk1jtPhcsM1VIb6pnK-spZmwbaxU_v1HSazef5rL0UVm-q3TcpyXBSby-7YWvkPsWSAjxiEwrIcR_pxLCQ67jjHGcKuzF1uUFsqSwuMdQI5HPhHYmZRNIy1XFjSiYgprdBdg2iFaavQpe6JKGp6qft7Zs_i7UT4UIjgB30erX28koCNsS18b3_08h9crfFsfFg7XgPyA1fPSR3LrEbPiKDyU-3WoKDxti7mIIjoEu5-HQBIlFAuWbhY125eKzrJh6A4MuLOp5OxFF80oBnnvnH5HQ8-ng8oW3HBgr2ThpqtVW85IllKctLy40rbZobbUBOXxqewwuxT5TVzMlUM596QF-8FAnA1tLzhB-QvWpZ-SckznMwBCvT0koutNM6cxnTfW48PFNKHZFko-XCtnTm2FVjUWyJmIN6ClBPEdRT_IjI0fY739ZkHn9dPUTjbVciEXf4YLk6K9p9XRjj8kwKVQJ0E1qJTBruSmE4xHlulYjI4cb0RXs61AWTgAIRSl8zDS-1ErcKj8iL7TRse8zl6AqNAY8AHCxzkScRUTsetSPv7kx1_jUQiCMJXqpYRF5t_Kr78ev18fTflj8jtxm6Zij9OSR7zerCPye37PfmvF71yE01z3pkfziazj70wgbuhf9DYHw7fN3DGtwTHH-NYJzJL7B29ub97PNvOzw67Q
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYYChgJTmVFvA-vfUAoPKpETaNItKg9mX25VIqckqTQ_il-I7MbO2kq6K0Hrl5n7fV-M_NtZvcbgFfc0dxgZCTGWUe4zTRRQmniqMza0hqTBtnFr305GGT7-_lwDX43Z2H8tsrGJwZHbcfG_0f-lgqMnJ5-8PfHP4ivGuWzq00JjTkstt3ZL1yyTd_1PuH8vqZ06_Puxy6pqwoQfKdkRowykpUsMTSleWmYtqVJc600xkJXaoYr_Mwl0ihqRaqoSx0yBFbyBKlV6VjCsN9rsM4R7O0WrA97O8ODBsFU-kpQy7ykL-fMz6njcK8lw5YCasILpsmlLqegHPlEHeDnBF761FmokJckJJXttD75E87_-WrRbeJ3Wfiok5DTlegaihCsMOeL-z4vJH9DTN2687_Nxl24XbP3uDM3t3uw5qr7cOucpuMD6HTP7GSMZhn7is0E4e8NycZ7I_wYBLm9HrlYVTbeUtNZ3MFBj0-m8aDLN-MvM7THQ_cQ9q5kDI-gVY0r9xjiPEcI0DItjWBcWaUym1HVZtphn0KoCJJmfgtTi7j7WiKjYiE_HTBRICaKgIniNILNxW-O5xIml979wcNmcaeXHw8XxpPDovZmhdY2zwSXJRJWriTPhGa25Johu2FG8gg2GtgUtU-cFkvM_L0Zl_LCOwgWwctFMzo7n8FSlZ8M7ALZv8h5nkQgV7C88r6rLdXR9yCb7qX_UkkjeNOgfvnwf3-PJ5cP5QXc6O7u9It-b7D9FG5Sb4ths9MGtGaTE_cMrpufs6Pp5HntKmL4dtX28AfXHZtV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQQAgeuCMCA4LE27DW-BInj2VQFTFVk2Bob5GvY1KVTm02jX_POW6aNBNDQrzGjuMcf_b5rGN_h5D3wrPSgmek1jtPhSsM1VIb6pkqRspZm0fZxR-HajYrTk7Ko61b_PG0-yYkub7TgCpNdbN_7sJ-d_EN0ySPKB4vwOU2o8Aib8PWRCGuD3r9caYwM1MfJ8T0ymJLrUagtgvvBc0kCpipXidTMgH-vXW4a0KtMJQVM9ZlGc3VKG9v4vy5WwNvF5MCDJjs9XOY14Kx0cdNHv6_dR6RBy2_TcdrQD4mt3z9hNzfUj18SsbTX265AOCmmNOYAkAQai49nkP3KLBfM_eprl060asmHcNPLC5W6Wwq9tJvDSD21D8jx5PP3w-mtM3kQAEHWUOttooHnlmWszJYblyweWm0gX76YHgJG2WfKauZk7lmPvfAyngQGdDZ4HnGn5OdelH7FyQtSxgUFvJgJRfaaV24gukRNx7alFInJNtYvLKtzDlm25hXnUBzNE8F5qmieaqrhOx175yvRT7-WvsjDmRXEwW644PF8rRq53tljCsLKVQASie0EoU03AVhOPh_bpVIyO4GBlW7aqwqJoEdIsW-oRg2uxKnEE_Iu64YlgOM8egaBwOaAH4sS1FmCVEDdA36Oyypz35GYXEUx8sVS8iHDcb6j99sj5f_Vv0tuXv0aVIdfpl9fUXuMURpPB20S3aa5YV_Te7Yy-ZstXwTZ_JvJ1k9iA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Bond-Assisted+Ultra-Stable+and+Fast+Aqueous+NH4%2B+Storage&rft.jtitle=Nano-micro+letters&rft.au=Zhang%2C+Xikun&rft.au=Xia%2C+Maoting&rft.au=Yu%2C+Haoxiang&rft.au=Zhang%2C+Junwei&rft.date=2021-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-021-00671-x&rft.externalDocID=10_1007_s40820_021_00671_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon