Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage
Highlights Zero capacity fading after over 3000 cycles at 1 C. Only 6.4% capacity is lost when rate is increased by 50 times. Diffusion mechanism of formation and fracture of hydrogen bonds is proposed. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage system...
Uloženo v:
| Vydáno v: | Nano-micro letters Ročník 13; číslo 1; s. 139 - 16 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Singapore
Springer Nature Singapore
01.12.2021
Springer Nature B.V SpringerOpen |
| Témata: | |
| ISSN: | 2311-6706, 2150-5551, 2150-5551 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Highlights
Zero capacity fading after over 3000 cycles at 1 C.
Only 6.4% capacity is lost when rate is increased by 50 times.
Diffusion mechanism of formation and fracture of hydrogen bonds is proposed.
Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH
4
+
in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH
4
+
insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH
4
+
diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH
4
+
storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH
4
+
storage in cubic PBAs creates a blueprint for fast and sustainable energy storage. |
|---|---|
| AbstractList | Abstract Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4 + in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4 + insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4 + diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4 + storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4 + storage in cubic PBAs creates a blueprint for fast and sustainable energy storage. Highlights Zero capacity fading after over 3000 cycles at 1 C. Only 6.4% capacity is lost when rate is increased by 50 times. Diffusion mechanism of formation and fracture of hydrogen bonds is proposed. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH 4 + in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH 4 + insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH 4 + diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH 4 + storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH 4 + storage in cubic PBAs creates a blueprint for fast and sustainable energy storage. Zero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and fracture of hydrogen bonds is proposed. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage. HighlightsZero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and fracture of hydrogen bonds is proposed.Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH 4 + in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH 4 + insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH 4 + diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH 4 + storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH 4 + storage in cubic PBAs creates a blueprint for fast and sustainable energy storage. Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage.Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always in the process of development. On the basis of density functional theory calculations, the excellent performance of NH4+ insertion in Prussian blue analogues (PBAs) is proposed, especially for copper hexacyanoferrate (CuHCF). In this work, we prove the outstanding cycling and rate performance of CuHCF via electrochemical analyses, delivering no capacity fading during ultra-long cycles of 3000 times and high capacity retention of 93.6% at 50 C. One of main contributions to superior performance from highly reversible redox reaction and structural change is verified during the ammoniation/de-ammoniation progresses. More importantly, we propose the NH4+ diffusion mechanism in CuHCF based on continuous formation and fracture of hydrogen bonds from a joint theoretical and experimental study, which is another essential reason for rapid charge transfer and superior NH4+ storage. Lastly, a full cell by coupling CuHCF cathode and polyaniline anode is constructed to explore the practical application of CuHCF. In brief, the outstanding aqueous NH4+ storage in cubic PBAs creates a blueprint for fast and sustainable energy storage. |
| ArticleNumber | 139 |
| Author | Yang, Zhengwei Zhang, Liyuan Xia, Maoting Zhang, Junwei Zhang, Xikun Shu, Jie Yu, Haoxiang |
| Author_xml | – sequence: 1 givenname: Xikun surname: Zhang fullname: Zhang, Xikun organization: School of Materials Science and Chemical Engineering, Ningbo University – sequence: 2 givenname: Maoting surname: Xia fullname: Xia, Maoting organization: School of Materials Science and Chemical Engineering, Ningbo University – sequence: 3 givenname: Haoxiang surname: Yu fullname: Yu, Haoxiang organization: School of Materials Science and Chemical Engineering, Ningbo University – sequence: 4 givenname: Junwei surname: Zhang fullname: Zhang, Junwei organization: School of Materials Science and Chemical Engineering, Ningbo University – sequence: 5 givenname: Zhengwei surname: Yang fullname: Yang, Zhengwei organization: School of Materials Science and Chemical Engineering, Ningbo University – sequence: 6 givenname: Liyuan surname: Zhang fullname: Zhang, Liyuan organization: School of Materials Science and Chemical Engineering, Ningbo University – sequence: 7 givenname: Jie surname: Shu fullname: Shu, Jie email: shujie@nbu.edu.cn organization: School of Materials Science and Chemical Engineering, Ningbo University |
| BookMark | eNp9Uk1v1DAUtFARLaV_gFMkLkjIxfbzR3xBWirKVqrgUHq2bMdZUmXjYntR--9xmoqqPezJlj0zb-Zp3qKDKU4BofeUnFJC1OfMScsIJoxiQqSi-O4VOmJUECyEoAf1DpRiqYg8RCc5D44IxhVTgr9Bh8AptKDZEVqt77sUN2Fqvsapw6uKzCV0zfVYksVXxboxNHbqmnObS7P6swtxl5sfa_6puSox2U14h173dszh5PE8Rtfn336drfHlz-8XZ6tL7CWlBXvrFfRAPZNM9x5c13upnXU1RegdaIA2UOUt64S0LMggGUDPaUtIH4DCMbpYdLtob8xtGrY23ZtoB_PwENPG2FQGPwbjXKdbwVVPpORW8VY46HrugDMNXvGq9WXRut25beh8mGra8Zno859p-G028a9pqWZSsSrw8VEgxbqTXMx2yD6Mo53mBRkmOAOhuZ59f3gBvYm7NNVVGSapFqolCvaiBGjFhRSzb7agfIo5p9D_t0yJmWthllqYWgvzUAtzV0ntC5Ifii1DnKMN434qLNRc50ybkJ5c7WH9A56pyrM |
| CitedBy_id | crossref_primary_10_1002_anie_202413354 crossref_primary_10_1016_j_ccr_2021_214297 crossref_primary_10_1002_adma_202304209 crossref_primary_10_1039_D5SC00171D crossref_primary_10_1016_j_jtice_2023_104845 crossref_primary_10_1002_eem2_70102 crossref_primary_10_1016_j_jpowsour_2023_232994 crossref_primary_10_1039_D2QI00265E crossref_primary_10_1016_j_cej_2023_148098 crossref_primary_10_1016_j_ensm_2025_104539 crossref_primary_10_1002_ange_202423908 crossref_primary_10_1016_j_nanoen_2025_110764 crossref_primary_10_1007_s12598_024_03227_1 crossref_primary_10_1016_j_gee_2024_06_004 crossref_primary_10_1016_j_jcis_2024_03_047 crossref_primary_10_1016_j_matt_2023_06_041 crossref_primary_10_1002_smll_202204888 crossref_primary_10_1002_smll_202408467 crossref_primary_10_1007_s12598_024_02818_2 crossref_primary_10_1016_j_electacta_2021_139525 crossref_primary_10_1016_j_gee_2023_02_001 crossref_primary_10_1002_anie_202301629 crossref_primary_10_1002_adma_202508001 crossref_primary_10_1002_ange_202414479 crossref_primary_10_1016_j_compositesb_2022_110241 crossref_primary_10_1016_j_desal_2024_118504 crossref_primary_10_1016_j_cej_2024_157804 crossref_primary_10_1016_j_cej_2025_163027 crossref_primary_10_1016_j_seppur_2023_125204 crossref_primary_10_1007_s11581_021_04188_6 crossref_primary_10_1016_j_jmst_2022_09_012 crossref_primary_10_1016_j_mattod_2023_12_010 crossref_primary_10_1002_ange_202212941 crossref_primary_10_1016_j_cej_2023_143197 crossref_primary_10_1016_j_surfin_2025_106456 crossref_primary_10_1002_anie_202303480 crossref_primary_10_1021_acssuschemeng_5c06135 crossref_primary_10_1073_pnas_2414112122 crossref_primary_10_1002_anie_202207711 crossref_primary_10_1016_j_scriptamat_2022_114975 crossref_primary_10_1002_cssc_202300207 crossref_primary_10_1002_sstr_202400163 crossref_primary_10_1016_j_electacta_2025_146455 crossref_primary_10_1016_j_est_2024_115209 crossref_primary_10_1016_j_jechem_2024_06_030 crossref_primary_10_1002_aenm_202400702 crossref_primary_10_1039_D5MH00582E crossref_primary_10_1002_ange_202413354 crossref_primary_10_1016_j_watres_2024_121789 crossref_primary_10_1002_batt_202300546 crossref_primary_10_1002_ange_202303480 crossref_primary_10_1007_s40843_023_2448_0 crossref_primary_10_1016_j_dwt_2024_100533 crossref_primary_10_1002_aenm_202500589 crossref_primary_10_1016_j_jcis_2024_04_210 crossref_primary_10_1016_j_nanoen_2021_106400 crossref_primary_10_1016_j_jiec_2023_05_043 crossref_primary_10_1002_sus2_265 crossref_primary_10_1002_adfm_202407313 crossref_primary_10_1016_j_cej_2024_156480 crossref_primary_10_1016_j_cej_2025_164306 crossref_primary_10_1002_ange_202301629 crossref_primary_10_1002_aenm_202404254 crossref_primary_10_1016_j_jcis_2025_137342 crossref_primary_10_1016_j_cej_2024_158266 crossref_primary_10_1016_j_jcis_2022_11_115 crossref_primary_10_1002_adma_202305575 crossref_primary_10_1016_j_mtener_2022_101189 crossref_primary_10_1002_advs_202511815 crossref_primary_10_1039_D2QI01171A crossref_primary_10_1016_j_cej_2023_143163 crossref_primary_10_1002_adfm_202400598 crossref_primary_10_1016_j_cej_2024_151119 crossref_primary_10_1016_j_electacta_2022_141097 crossref_primary_10_1002_adma_202415676 crossref_primary_10_1002_aenm_202202908 crossref_primary_10_1016_j_jmst_2023_06_010 crossref_primary_10_1016_S1003_6326_23_66346_0 crossref_primary_10_1002_ange_202207711 crossref_primary_10_1002_inf2_12549 crossref_primary_10_1002_adfm_202112179 crossref_primary_10_1002_aenm_202502595 crossref_primary_10_1002_aenm_202401006 crossref_primary_10_1016_j_joule_2023_10_010 crossref_primary_10_1002_smll_202501370 crossref_primary_10_1007_s40820_021_00700_9 crossref_primary_10_1002_adma_202308210 crossref_primary_10_1016_j_est_2022_105402 crossref_primary_10_1002_adma_202308628 crossref_primary_10_1039_D3EE02030D crossref_primary_10_1002_ange_202115046 crossref_primary_10_1016_j_cej_2025_165854 crossref_primary_10_1016_j_jechem_2025_09_008 crossref_primary_10_1088_1361_6528_ad690b crossref_primary_10_1016_j_electacta_2023_143227 crossref_primary_10_1016_j_ccr_2022_214478 crossref_primary_10_1016_j_jmst_2021_08_035 crossref_primary_10_1002_adma_202419446 crossref_primary_10_1021_acs_est_5c01683 crossref_primary_10_1016_j_jcis_2024_07_158 crossref_primary_10_1002_sstr_202300201 crossref_primary_10_1002_ange_202511864 crossref_primary_10_1002_anie_202212941 crossref_primary_10_1007_s12274_023_6059_2 crossref_primary_10_1002_anie_202115046 crossref_primary_10_1002_anie_202414479 crossref_primary_10_1002_adma_202201877 crossref_primary_10_1016_j_enchem_2022_100090 crossref_primary_10_1002_adfm_202420884 crossref_primary_10_1002_smll_202310835 crossref_primary_10_1016_j_ccr_2022_214867 crossref_primary_10_1016_j_cej_2024_158074 crossref_primary_10_1002_chem_202301536 crossref_primary_10_1007_s12274_022_5021_z crossref_primary_10_1002_smll_202107115 crossref_primary_10_1002_anie_202511864 crossref_primary_10_1016_j_jcis_2024_04_131 crossref_primary_10_1016_j_apsusc_2022_154654 crossref_primary_10_1039_D5RE00216H crossref_primary_10_1002_anie_202423908 crossref_primary_10_1007_s11581_023_04920_4 |
| Cites_doi | 10.1002/anie.201803664 10.1039/C9TA00254E 10.1002/celc.201901223 10.1002/adfm.201600747 10.1039/C9TA12376H 10.1016/j.jelechem.2018.04.011 10.1016/j.nanoen.2019.04.059 10.1038/s41560-019-0388-0 10.1016/j.cej.2020.124923 10.1002/adfm.202008743 10.1002/aenm.201903351 10.1038/ncomms11982 10.1039/D0TA06979E 10.1021/acsaem.0c01791 10.1002/celc.202000886 10.1021/acsami.9b20129 10.1021/acsami.0c08084 10.1016/j.nanoen.2015.02.006 10.1038/NMAT2612 10.1016/j.chempr.2019.03.009 10.1038/NMAT3601 10.1021/acsami.6b04014 10.1039/c8ta02291g 10.1016/j.cej.2020.127767 10.1002/smll.201906946 10.1021/acs.jpcc.7b07920 10.1557/PROC-369-69 10.1021/acsami.5b12620 10.1002/anie.201912203 10.1016/j.nanoen.2019.01.048 10.1016/j.ensm.2020.03.011 10.1021/acsami.6b01352 10.1002/smll.202002856 10.1002/adfm.202001263 10.1016/j.ensm.2018.09.02 10.1002/cssc.201301036 10.1016/j.ssnmr.2008.12.011 10.1016/j.cej.2019.123653 10.1002/cssc.201901622 10.1039/C6EE00093B 10.1039/C7CC02516E 10.1038/ncomms12122 10.1021/acs.chemmater.6b00026 10.1021/acs.nanolett.5b02642 10.1016/j.cej.2020.127759 10.1016/j.ensm.2020.04.028 10.1002/adma.201604007 10.1016/j.nanoen.2020.104621 10.1016/j.isci.2018.04.008 10.1021/acsenergylett.0c00109 10.1021/acsaem.8b00789 10.1039/d0dt00471e 10.1143/jpsjs.79sa.163 10.1021/ic101103g 10.1002/cnma.201500021 10.1002/cssc.201900582 10.1002/anie.201707473 10.1016/j.ssi.2019.115025 10.1016/j.chempr.2019.05.020 10.1002/adma.201907802 10.1039/C8NH00484F 10.1126/science.1241488 10.1016/j.jpowsour.2014.10.196 10.1039/c3ee44164d |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.1007/s40820-021-00671-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2150-5551 |
| EndPage | 16 |
| ExternalDocumentID | oai_doaj_org_article_bbd98547f0664a7485b3df4b34293c74 PMC8192672 10_1007_s40820_021_00671_x |
| GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX AFFHD CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c611t-cac73f31c2629fc3bdfc69bab820efb39338e17ca2d56a2e6e6233f41800fe313 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 90 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000660004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2311-6706 2150-5551 |
| IngestDate | Fri Oct 03 12:37:05 EDT 2025 Tue Nov 04 01:54:15 EST 2025 Thu Oct 02 06:21:09 EDT 2025 Sat Oct 18 22:47:56 EDT 2025 Sat Oct 18 23:16:33 EDT 2025 Sat Nov 29 02:07:25 EST 2025 Tue Nov 18 21:43:05 EST 2025 Fri Feb 21 02:46:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Copper hexacyanoferrate Ultra-long cycling performance Hydrogen bonds Excellent rate performance Aqueous ammonium ion batteries |
| Language | English |
| License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c611t-cac73f31c2629fc3bdfc69bab820efb39338e17ca2d56a2e6e6233f41800fe313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1007/s40820-021-00671-x |
| PMID | 34138392 |
| PQID | 2539745654 |
| PQPubID | 2044332 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bbd98547f0664a7485b3df4b34293c74 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8192672 proquest_miscellaneous_2542359491 proquest_journals_2619578073 proquest_journals_2539745654 crossref_primary_10_1007_s40820_021_00671_x crossref_citationtrail_10_1007_s40820_021_00671_x springer_journals_10_1007_s40820_021_00671_x |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore – name: Heidelberg |
| PublicationTitle | Nano-micro letters |
| PublicationTitleAbbrev | Nano-Micro Lett |
| PublicationYear | 2021 |
| Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
| References | Li, Zhang, Xiang, Zhang (CR39) 2017; 121 Yan, Huang, Guo, Dong, Wang (CR14) 2020; 5 Wu, Wu, Wei, Hu, Qian (CR33) 2016; 8 Jiang, Lu, Zhao, Liu, Zhang (CR36) 2019; 4 Liao, Wang, Ye, Sun, Wen (CR11) 2020; 59 Li, Zhang, Ma, Ma, Wang (CR19) 2019; 12 Lunk, Hartl, Hartl, Fait, Shenderovich (CR62) 2010; 49 Xia, Zhang, Yu, Yang, Chen (CR15) 2021 Xie, Zhao, Mao, Huang (CR25) 2020; 49 Wang, Mi, Nie, Dong, Tang (CR51) 2018; 818 Yu, Wei, Zhang, Zeng, Wang (CR26) 2021; 31 Mao, Chen, Qin, Shi, Liu (CR56) 2019; 58 Li, McKinnon, Dahn (CR1) 1994; 141 Zhang, Liu, Zhang, Chi, Zhang (CR10) 2020; 392 Lumley, Nam, Choi (CR47) 2020; 12 Wu, Sun, Guo, Qian, Liu (CR54) 2015; 1 Brezesinski, Wang, Tolbert, Dunn (CR59) 2010; 9 Wu, Xu, Jiang, Wei, Hong (CR38) 2018; 1 Wang, Liu, Sun, Tang, Pan (CR44) 2019; 12 Liu, Wang, Liu, Deng, Dou (CR13) 2020; 16 Xu, Harris, Thomas (CR61) 2019; 35 Chao, Fan (CR20) 2019; 5 Xia, Zhang, Liu, Yu, Chen (CR9) 2020; 394 Xie, Zuo, Wang, Wang, Huo (CR37) 2019; 61 Lukatskaya, Mashtalir, Ren, Dall’Agnese, Rozier (CR23) 2013; 60 Zhang, An, Yin, Jiang, Dong (CR22) 2019; 7 Wu, Sun, Shen, Qian, Cao (CR53) 2014; 7 Wang, Xie, Tang, Wang, Yan (CR17) 2018; 57 Kim, Kim, Arumugam, Woo, Jo (CR34) 2016; 8 Augustyn, Simon, Dunn (CR58) 2014; 7 Liu, He, Cheng, Li, Lu (CR49) 2020; 16 Zhu, Li, Jin, Jiao (CR46) 2020; 8 Selvasekarapandian, Hema, Kawamura, Kamishima, Baskaran (CR63) 2010; 79 Adil, Sarkar, Roy, Panda, Nagendra (CR12) 2020; 12 Han, Mariani, Zhang, Zarrabeitia, Gao (CR43) 2020; 30 Jiang, Yu, Wang, Li, Sun (CR31) 2016; 26 Chao, Zhu, Yang, Xia, Liu (CR57) 2016; 7 Du, Tao, Li, Yang, Gao (CR45) 2019; 10 Zhang, Xia, Liu, Peng, Yu (CR16) 2021 Kuchena, Wang (CR21) 2020; 3 Cai, Yang, Qu, Wang (CR52) 2017; 53 Sa, Kinnibrugh, Wang, Gautam, Chapman (CR60) 2016; 28 Hao, Li, Zhang, Yang, Zeng (CR8) 2020; 30 Chen, Shao, Zhou, Liu, Jiang (CR35) 2016; 7 Wu, Qi, Hong, Li, Hernande (CR24) 2017; 56 Zuo, Wang, Wu, Qiu, Zhang (CR42) 2019; 340 Chen, Lan, Humphreys, Tao (CR6) 2020; 28 Liu, Cheng, Yu, Zhu, Peng (CR5) 2019; 18 Su, McDonagh, Qiao, Wang (CR2) 2017; 29 Dong, Shin, Jiang, Wu, Li (CR27) 2019; 5 Wang, Wang, Liang, Yan, Jiang (CR40) 2019; 6 Li, Yan, Liang, Wang, Wang (CR32) 2019; 4 Liu, Turcheniuk, Fu, Yang, Liu (CR7) 2020; 71 Wang, Ha, Chen, Xu, Pan (CR29) 2018; 6 Ramanujapuram, Gordon, Magasinski, Ward, Nitta (CR4) 2016; 9 Chen, Peng, Liu, Le, Zhu (CR18) 2015; 15 Ali, Lee, Susanto, Choi, Cho (CR64) 2016; 8 Kasiri, Glenneberg, Kun, Zampardi, Mantia (CR48) 2020; 7 Wang, Wang, Tang, Xu, Liang (CR41) 2020; 8 Liang, Wang, Huang, Mo, Li (CR28) 2020; 32 Wang, Han, Wang, Bahlawane, Pan (CR30) 2018; 3 Augustyn, Come, Lowe, Kim, Taberna (CR55) 2013; 12 Yu, Li, Lu, Xu, Wang (CR3) 2015; 275 Wu, Luo, Sun, Qian, Cao (CR50) 2015; 13 M Adil (671_CR12) 2020; 12 BQ Wang (671_CR30) 2018; 3 DW Su (671_CR2) 2017; 29 XK Zhang (671_CR16) 2021 YZ Jiang (671_CR31) 2016; 26 L Yan (671_CR14) 2020; 5 XY Wu (671_CR50) 2015; 13 V Augustyn (671_CR55) 2013; 12 DP Cai (671_CR52) 2017; 53 SG Chen (671_CR6) 2020; 28 DL Chao (671_CR57) 2016; 7 SL Liu (671_CR13) 2020; 16 Z Chen (671_CR18) 2015; 15 M Liao (671_CR11) 2020; 59 WF Li (671_CR39) 2017; 121 BQ Wang (671_CR44) 2019; 12 YD Zhang (671_CR22) 2019; 7 BX Xie (671_CR37) 2019; 61 MR Lukatskaya (671_CR23) 2013; 60 XY Wu (671_CR33) 2016; 8 JN Hao (671_CR8) 2020; 30 KJ Zhu (671_CR46) 2020; 8 A Ramanujapuram (671_CR4) 2016; 9 MT Xia (671_CR15) 2021 M Xie (671_CR25) 2020; 49 MC Xu (671_CR61) 2019; 35 SY Dong (671_CR27) 2019; 5 G Kasiri (671_CR48) 2020; 7 Y Liu (671_CR49) 2020; 16 YJ Mao (671_CR56) 2019; 58 GY Du (671_CR45) 2019; 10 CY Li (671_CR19) 2019; 12 W Li (671_CR1) 1994; 141 MT Liu (671_CR7) 2020; 71 T Brezesinski (671_CR59) 2010; 9 CY Li (671_CR32) 2019; 4 DX Zuo (671_CR42) 2019; 340 YQ Zhang (671_CR10) 2020; 392 G Ali (671_CR64) 2016; 8 V Augustyn (671_CR58) 2014; 7 SL Yu (671_CR3) 2015; 275 TT Liu (671_CR5) 2019; 18 D-M Kim (671_CR34) 2016; 8 L Chen (671_CR35) 2016; 7 DL Chao (671_CR20) 2019; 5 XY Wu (671_CR24) 2017; 56 XF Wang (671_CR17) 2018; 57 XY Wu (671_CR54) 2015; 1 DX Yu (671_CR26) 2021; 31 J Han (671_CR43) 2020; 30 XY Wu (671_CR38) 2018; 1 X Wang (671_CR41) 2020; 8 SF Kuchena (671_CR21) 2020; 3 GJ Liang (671_CR28) 2020; 32 X-Y Wu (671_CR53) 2014; 7 LW Jiang (671_CR36) 2019; 4 J Wang (671_CR51) 2018; 818 MT Xia (671_CR9) 2020; 394 BQ Wang (671_CR29) 2018; 6 S Selvasekarapandian (671_CR63) 2010; 79 H-J Lunk (671_CR62) 2010; 49 BQ Wang (671_CR40) 2019; 6 MA Lumley (671_CR47) 2020; 12 N Sa (671_CR60) 2016; 28 |
| References_xml | – volume: 57 start-page: 11569 year: 2018 ident: CR17 article-title: Redox chemistry of molybdenum trioxide for ultrafast hydrogen ion storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803664 – volume: 7 start-page: 11314 year: 2019 ident: CR22 article-title: A novel aqueous ammonium dual-ion battery based on organic polymers publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00254E – volume: 6 start-page: 4848 year: 2019 ident: CR40 article-title: An all-Prussian-blue-based aqueous sodium-ion battery publication-title: ChemElectroChem doi: 10.1002/celc.201901223 – volume: 26 start-page: 5315 year: 2016 ident: CR31 article-title: Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600747 – volume: 8 start-page: 3222 year: 2020 ident: CR41 article-title: Manganese hexacyanoferrate reinforced by PEDOT coating toward high-rate and long-life sodium-ion battery cathode publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12376H – volume: 818 start-page: 10 year: 2018 ident: CR51 article-title: Sodium-rich iron hexacyanoferrate with nickel doping as a high performance cathode for aqueous sodium ion batteries publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.04.011 – volume: 61 start-page: 201 year: 2019 ident: CR37 article-title: Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.059 – volume: 4 start-page: 495 year: 2019 ident: CR36 article-title: Building aqueous K-ion batteries for energy storage publication-title: Nat. Energy doi: 10.1038/s41560-019-0388-0 – volume: 394 start-page: 124923 year: 2020 ident: CR9 article-title: Commercially available Prussian blue get energetic in aqueous K-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124923 – volume: 31 start-page: 2008743 year: 2021 ident: CR26 article-title: Boosting Zn and NH storage in aqueous media via in-situ electrochemical induced VS /VO heterostructures publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008743 – volume: 10 start-page: 1903351 year: 2019 ident: CR45 article-title: Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903351 – volume: 7 start-page: 11982 year: 2016 ident: CR35 article-title: Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics publication-title: Nat. Commun. doi: 10.1038/ncomms11982 – volume: 8 start-page: 21103 year: 2020 ident: CR46 article-title: Low defects potassium cobalt hexacyanoferrate as a superior cathode for aqueous potassium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06979E – volume: 3 start-page: 11690 year: 2020 ident: CR21 article-title: Superior polyaniline cathode material with enhanced capacity for ammonium ion storage publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01791 – volume: 7 start-page: 3301 year: 2020 ident: CR48 article-title: Microstructural changes of Prussian blue derivatives during cycling in zinc containing electrolytes publication-title: ChemElectroChem doi: 10.1002/celc.202000886 – volume: 12 start-page: 11489 year: 2020 ident: CR12 article-title: Practical aqueous calcium-ion battery full-cells for future stationary storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20129 – volume: 12 start-page: 36014 year: 2020 ident: CR47 article-title: Elucidating structure-composition-property relationships of Ni-based Prussian blue analogues for electrochemical seawater desalination publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08084 – volume: 13 start-page: 117 year: 2015 ident: CR50 article-title: Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.006 – volume: 9 start-page: 146 year: 2010 ident: CR59 article-title: Ordered mesoporous α-MoO with iso-oriented nanocrystalline walls for thin-film pseudocapacitors publication-title: Nat. Mater. doi: 10.1038/NMAT2612 – volume: 5 start-page: 1 year: 2019 ident: CR27 article-title: Ultra-fast NH storage: Strong H bonding between NH and bi-layered V O publication-title: Chem doi: 10.1016/j.chempr.2019.03.009 – volume: 12 start-page: 518 year: 2013 ident: CR55 article-title: High-rate electrochemical energy storage through Li intercalation pseudocapacitance publication-title: Nat. Mater. doi: 10.1038/NMAT3601 – volume: 8 start-page: 15422 year: 2016 ident: CR64 article-title: Polythiophene-wrapped olivine NaFePO as a cathode for Na-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04014 – volume: 6 start-page: 8947 year: 2018 ident: CR29 article-title: Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes publication-title: J. Mater. Chem. A doi: 10.1039/c8ta02291g – year: 2021 ident: CR16 article-title: Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127767 – volume: 16 start-page: 1906964 year: 2020 ident: CR49 article-title: A heterostructure coupling of bioinspired, adhesive polydopamine, and porous Prussian blue nanocubics as cathode for high-performance sodium-ion battery publication-title: Small doi: 10.1002/smll.201906946 – volume: 121 start-page: 27805 year: 2017 ident: CR39 article-title: Electrochemical properties and redox mechanism of Na Ni Co [Fe(CN) ] nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b07920 – volume: 141 start-page: 2310 year: 1994 ident: CR1 article-title: Lithium intercalation from aqueous solutions publication-title: J. Electrochem. Soc. doi: 10.1557/PROC-369-69 – volume: 8 start-page: 5393 year: 2016 ident: CR33 article-title: Highly crystallized Na CoFe(CN) with suppressed lattice defects as superior cathode material for sodium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12620 – volume: 59 start-page: 2273 year: 2020 ident: CR11 article-title: A deep-cycle aqueous zinc-ion battery containing an oxygen-deficient vanadium oxide cathode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912203 – volume: 58 start-page: 192 year: 2019 ident: CR56 article-title: Capacitance controlled, hierarchical porous 3D ultra-thin carbon networks reinforced Prussian blue for high performance Na-ion battery cathode publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.048 – volume: 28 start-page: 205 year: 2020 ident: CR6 article-title: Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO battery publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.03.011 – volume: 8 start-page: 8554 year: 2016 ident: CR34 article-title: Co-intercalation of Mg and Na in Na Fe (CN)6 as a high-voltage cathode for magnesium batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01352 – volume: 16 start-page: 2002856 year: 2020 ident: CR13 article-title: Nanomanufacturing of RGO-CNT hybrid film for flexible aqueous Al-ion batteries publication-title: Small doi: 10.1002/smll.202002856 – volume: 30 start-page: 2001263 year: 2020 ident: CR8 article-title: Designing dendrite-free zinc anodes for advanced aqueous zinc batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001263 – volume: 18 start-page: 68 year: 2019 ident: CR5 article-title: An overview and future perspectives of aqueous rechargeable polyvalent ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.02 – volume: 7 start-page: 407 year: 2014 ident: CR53 article-title: Energetic aqueous rechargeable sodium-ion battery based on Na CuFe(CN) -NaTi (PO ) intercalation chemistry publication-title: Chemsuschem doi: 10.1002/cssc.201301036 – volume: 35 start-page: 93 year: 2019 ident: CR61 article-title: In situ solid-state H NMR studies of hydration of the solid acid catalyst ZSM-5 in its ammonium form publication-title: Solid State Nucl. Mag. doi: 10.1016/j.ssnmr.2008.12.011 – volume: 392 start-page: 123652 year: 2020 ident: CR10 article-title: Low-cost MgFe Mn O cathode materials for high-performance aqueous rechargeable magnesium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123653 – volume: 12 start-page: 3732 year: 2019 ident: CR19 article-title: A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery publication-title: Chemsuschem doi: 10.1002/cssc.201901622 – volume: 9 start-page: 1841 year: 2016 ident: CR4 article-title: Degradation and stabilization of lithium cobalt oxide in aqueous electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00093B – volume: 53 start-page: 6780 year: 2017 ident: CR52 article-title: Comparison of the electrochemical performance of iron hexacyanoferrate with high and low quality as cathode materials for aqueous sodium-ion batteries publication-title: Chem. Commun. doi: 10.1039/C7CC02516E – volume: 7 start-page: 12122 year: 2016 ident: CR57 article-title: Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance publication-title: Nat. Commun. doi: 10.1038/ncomms12122 – volume: 28 start-page: 2962 year: 2016 ident: CR60 article-title: Structural evolution of reversible Mg insertion into a bilayer structure of V O ·nH O xerogel material publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00026 – volume: 15 start-page: 6802 year: 2015 ident: CR18 article-title: Hierarchical nanostructured WO with biomimetic proton channels and mixed ionic-electronic conductivity for electrochemical energy storage publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02642 – year: 2021 ident: CR15 article-title: Hydrogen bond chemistry in Fe [Fe(CN) ] host for aqueous NH batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127759 – volume: 30 start-page: 196 year: 2020 ident: CR43 article-title: Gelified acetate-based water-in-salt electrolyte stabilizing hexacyanoferrate cathode for aqueous potassium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.028 – volume: 29 start-page: 1604007 year: 2017 ident: CR2 article-title: High-capacity aqueous potassium-ion batteries for large-scale energy storage publication-title: Adv. Mater. doi: 10.1002/adma.201604007 – volume: 71 start-page: 104627 year: 2020 ident: CR7 article-title: Scalable, safe, high-rate supercapacitor separators based on the Al O nanowire polyvinyl butyral nonwoven membranes publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104621 – volume: 3 start-page: 110 year: 2018 ident: CR30 article-title: Prussian blue analogs for rechargeable batteries publication-title: iScience doi: 10.1016/j.isci.2018.04.008 – volume: 5 start-page: 685 year: 2020 ident: CR14 article-title: Solid-state proton battery operated at ultralow temperature publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00109 – volume: 1 start-page: 3077 year: 2018 ident: CR38 article-title: NH topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00789 – volume: 49 start-page: 3488 year: 2020 ident: CR25 article-title: K0.38(H2O)0.82MoS2 as a universal host for rechargeable aqueous cation (K+, Na+, Li+, NH4+, Mg2+, Al3+) batteries publication-title: Dalton Trans. doi: 10.1039/d0dt00471e – volume: 79 start-page: 163 year: 2010 ident: CR63 article-title: Characterization of PVA-NH NO polymer electrolyte and its application in rechargeable proton battery publication-title: J. Phys. Soc. Jpn. doi: 10.1143/jpsjs.79sa.163 – volume: 49 start-page: 9400 year: 2010 ident: CR62 article-title: “Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveries publication-title: Inorg. Chem. doi: 10.1021/ic101103g – volume: 1 start-page: 188 year: 2015 ident: CR54 article-title: Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium ion batteries publication-title: ChemNanoMat doi: 10.1002/cnma.201500021 – volume: 12 start-page: 2415 year: 2019 ident: CR44 article-title: Intercalation pseudocapacitance boosting ultrafast sodium storage in Prussian blue analogs publication-title: Chemsuschem doi: 10.1002/cssc.201900582 – volume: 56 start-page: 13026 year: 2017 ident: CR24 article-title: Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707473 – volume: 340 start-page: 115025 year: 2019 ident: CR42 article-title: Comprehensive study of Na MnFe(CN) ·yH O cathodes with cube morphology: Structure, valence state and electrochemical properties publication-title: Solid State Ionics doi: 10.1016/j.ssi.2019.115025 – volume: 5 start-page: 1357 year: 2019 ident: CR20 article-title: Intercalation pseudocapacitive behavior powers aqueous batteries publication-title: Chem doi: 10.1016/j.chempr.2019.05.020 – volume: 32 start-page: 1907802 year: 2020 ident: CR28 article-title: Initiating hexagonal MoO for superb-stable and fast NH storage based on hydrogen bond chemistry publication-title: Adv. Mater. doi: 10.1002/adma.201907802 – volume: 4 start-page: 991 year: 2019 ident: CR32 article-title: Achieving high-performance Prussian blue analogue cathode with ultra-stable redox reaction for ammonium ion storage publication-title: Nanoscale Horiz. doi: 10.1039/C8NH00484F – volume: 60 start-page: 5718 year: 2013 ident: CR23 article-title: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide publication-title: Science doi: 10.1126/science.1241488 – volume: 275 start-page: 45 year: 2015 ident: CR3 article-title: A promising cathode material of sodium iron-nickel hexacyanoferrate for sodium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.196 – volume: 7 start-page: 1597 year: 2014 ident: CR58 article-title: Pseudocapacitive oxide materials for high-rate electrochemical energy storage publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44164d – volume: 9 start-page: 146 year: 2010 ident: 671_CR59 publication-title: Nat. Mater. doi: 10.1038/NMAT2612 – volume: 6 start-page: 8947 year: 2018 ident: 671_CR29 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta02291g – volume: 7 start-page: 3301 year: 2020 ident: 671_CR48 publication-title: ChemElectroChem doi: 10.1002/celc.202000886 – volume: 31 start-page: 2008743 year: 2021 ident: 671_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008743 – volume: 4 start-page: 991 year: 2019 ident: 671_CR32 publication-title: Nanoscale Horiz. doi: 10.1039/C8NH00484F – volume: 7 start-page: 1597 year: 2014 ident: 671_CR58 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44164d – year: 2021 ident: 671_CR16 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127767 – volume: 5 start-page: 1357 year: 2019 ident: 671_CR20 publication-title: Chem doi: 10.1016/j.chempr.2019.05.020 – volume: 7 start-page: 407 year: 2014 ident: 671_CR53 publication-title: Chemsuschem doi: 10.1002/cssc.201301036 – volume: 141 start-page: 2310 year: 1994 ident: 671_CR1 publication-title: J. Electrochem. Soc. doi: 10.1557/PROC-369-69 – volume: 13 start-page: 117 year: 2015 ident: 671_CR50 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.006 – volume: 12 start-page: 2415 year: 2019 ident: 671_CR44 publication-title: Chemsuschem doi: 10.1002/cssc.201900582 – volume: 12 start-page: 518 year: 2013 ident: 671_CR55 publication-title: Nat. Mater. doi: 10.1038/NMAT3601 – volume: 49 start-page: 3488 year: 2020 ident: 671_CR25 publication-title: Dalton Trans. doi: 10.1039/d0dt00471e – volume: 121 start-page: 27805 year: 2017 ident: 671_CR39 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b07920 – volume: 340 start-page: 115025 year: 2019 ident: 671_CR42 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2019.115025 – volume: 16 start-page: 2002856 year: 2020 ident: 671_CR13 publication-title: Small doi: 10.1002/smll.202002856 – volume: 4 start-page: 495 year: 2019 ident: 671_CR36 publication-title: Nat. Energy doi: 10.1038/s41560-019-0388-0 – volume: 16 start-page: 1906964 year: 2020 ident: 671_CR49 publication-title: Small doi: 10.1002/smll.201906946 – volume: 30 start-page: 2001263 year: 2020 ident: 671_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001263 – volume: 392 start-page: 123652 year: 2020 ident: 671_CR10 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123653 – volume: 8 start-page: 15422 year: 2016 ident: 671_CR64 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04014 – volume: 7 start-page: 12122 year: 2016 ident: 671_CR57 publication-title: Nat. Commun. doi: 10.1038/ncomms12122 – volume: 71 start-page: 104627 year: 2020 ident: 671_CR7 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104621 – volume: 58 start-page: 192 year: 2019 ident: 671_CR56 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.048 – volume: 57 start-page: 11569 year: 2018 ident: 671_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803664 – volume: 61 start-page: 201 year: 2019 ident: 671_CR37 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.059 – volume: 275 start-page: 45 year: 2015 ident: 671_CR3 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.10.196 – volume: 9 start-page: 1841 year: 2016 ident: 671_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00093B – volume: 394 start-page: 124923 year: 2020 ident: 671_CR9 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124923 – volume: 60 start-page: 5718 year: 2013 ident: 671_CR23 publication-title: Science doi: 10.1126/science.1241488 – volume: 28 start-page: 2962 year: 2016 ident: 671_CR60 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00026 – volume: 6 start-page: 4848 year: 2019 ident: 671_CR40 publication-title: ChemElectroChem doi: 10.1002/celc.201901223 – volume: 8 start-page: 21103 year: 2020 ident: 671_CR46 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06979E – volume: 59 start-page: 2273 year: 2020 ident: 671_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912203 – volume: 12 start-page: 36014 year: 2020 ident: 671_CR47 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c08084 – volume: 818 start-page: 10 year: 2018 ident: 671_CR51 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2018.04.011 – volume: 35 start-page: 93 year: 2019 ident: 671_CR61 publication-title: Solid State Nucl. Mag. doi: 10.1016/j.ssnmr.2008.12.011 – volume: 53 start-page: 6780 year: 2017 ident: 671_CR52 publication-title: Chem. Commun. doi: 10.1039/C7CC02516E – volume: 49 start-page: 9400 year: 2010 ident: 671_CR62 publication-title: Inorg. Chem. doi: 10.1021/ic101103g – volume: 3 start-page: 11690 year: 2020 ident: 671_CR21 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c01791 – volume: 7 start-page: 11982 year: 2016 ident: 671_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms11982 – volume: 26 start-page: 5315 year: 2016 ident: 671_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600747 – volume: 18 start-page: 68 year: 2019 ident: 671_CR5 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.09.02 – volume: 8 start-page: 3222 year: 2020 ident: 671_CR41 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12376H – volume: 8 start-page: 8554 year: 2016 ident: 671_CR34 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01352 – volume: 79 start-page: 163 year: 2010 ident: 671_CR63 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/jpsjs.79sa.163 – volume: 7 start-page: 11314 year: 2019 ident: 671_CR22 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00254E – volume: 3 start-page: 110 year: 2018 ident: 671_CR30 publication-title: iScience doi: 10.1016/j.isci.2018.04.008 – volume: 1 start-page: 188 year: 2015 ident: 671_CR54 publication-title: ChemNanoMat doi: 10.1002/cnma.201500021 – volume: 30 start-page: 196 year: 2020 ident: 671_CR43 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.028 – volume: 12 start-page: 3732 year: 2019 ident: 671_CR19 publication-title: Chemsuschem doi: 10.1002/cssc.201901622 – volume: 12 start-page: 11489 year: 2020 ident: 671_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20129 – volume: 10 start-page: 1903351 year: 2019 ident: 671_CR45 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903351 – volume: 56 start-page: 13026 year: 2017 ident: 671_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201707473 – volume: 32 start-page: 1907802 year: 2020 ident: 671_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201907802 – volume: 28 start-page: 205 year: 2020 ident: 671_CR6 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.03.011 – volume: 15 start-page: 6802 year: 2015 ident: 671_CR18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02642 – volume: 8 start-page: 5393 year: 2016 ident: 671_CR33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12620 – year: 2021 ident: 671_CR15 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127759 – volume: 1 start-page: 3077 year: 2018 ident: 671_CR38 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00789 – volume: 29 start-page: 1604007 year: 2017 ident: 671_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.201604007 – volume: 5 start-page: 685 year: 2020 ident: 671_CR14 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00109 – volume: 5 start-page: 1 year: 2019 ident: 671_CR27 publication-title: Chem doi: 10.1016/j.chempr.2019.03.009 |
| SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
| Score | 2.5209146 |
| Snippet | Highlights
Zero capacity fading after over 3000 cycles at 1 C.
Only 6.4% capacity is lost when rate is increased by 50 times.
Diffusion mechanism of formation... Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH 4 + in aqueous solution is... HighlightsZero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and... Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4+ in aqueous solution is always... Zero capacity fading after over 3000 cycles at 1 C.Only 6.4% capacity is lost when rate is increased by 50 times.Diffusion mechanism of formation and fracture... Abstract Aqueous ammonium ion batteries are regarded as eco-friendly and sustainable energy storage systems. And applicable host for NH4 + in aqueous solution... |
| SourceID | doaj pubmedcentral proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 139 |
| SubjectTerms | Aqueous ammonium ion batteries Aqueous batteries Aqueous solutions Bonded joints Charge transfer Copper hexacyanoferrate Density functional theory Diffusion rate Energy storage Engineering Excellent rate performance Fading Hydrogen bonds Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Pigments Polyanilines Redox reactions Renewable energy Storage batteries Storage systems Ultra-long cycling performance |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQxQIWiKcIFGQkdsVi_IrjZYsYzQKNkKCou8hPUWmUqWamqPw99zqZRyoVNmzjjJM599j3WHbOJeS9SsIGyIwspJiYio1nTjvPkjDNxMQQ6mK7-OOLmc-biwv79aDUF54J6-2Be-A-eh9to5XJkBuVM6rRXsasvISJVAZTnEAnxh4spoBJwmBFpv3-IJZVVgcuNQo9XeTeyEyjcZnZ-2NqoSCvD4m2F9IGt7BKpTrOWW0m9fAFTvkOD6s2TxiedsDZn7ObUZYrxQBGCvb2-ctbm7Alt00fk0eDKKWnPRhPyL3UPSUPD6wKn5Gz2e-4WgLbKBYiZhBV5Eek5wvom4Fk9YtEXRfp1K039BTeYHm9pvOZoif0G6zrYdp6Ts6nn79_mrGh_gKD6PENCy4YmSUPohY2B-ljDrX1zsOfTdlLC8vbxE1wIuraiVQn0FIyKw4iNCfJ5Qty1C279JJQawFSkesctFQuOtfERriJ9An61NpVhG_xasNgTo41Mhbtzla5YNwCxm3BuL2pyMnuN1e9Ncdf7z7DMOzuRFvtcgHI1g5ka_9Ftoocb4PYDmN93QoNmg6F8R3NsETVSHxZkXe7ZhjEuDPjOowGdAGqVltleUXMiBuj9x23dJc_ix04WtrVRlTkw5ZF-4ffjcer_4HHa_JAIOvL8Z5jcrRZXac35H74tblcr96WIfkH9aktNA priority: 102 providerName: Directory of Open Access Journals – databaseName: Materials Science Database dbid: KB. link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcIAD34hAQUHiVgzrrzg5oS1itQe0QoKi3iJ_pVRaJWWTovLvmfEmm6aCXrjG2cTrefa8ZJz3CHkjAy8cZEbqgg9U-txSo4ylget8pr1zWZRd_P5Zr1b58XHxpX_h1vbbKoc1MS7UvnH4jvw9V5A5kX7ID2c_KbpGYXW1t9C4SW4xDlwfi7KH7wY8cY2-TGOVEM2V5SWtGonKLmKUM1MoX6ZHlUzFJWT3Pt1u6bTGQlb0q2OMZnqW9d_hxK_x0Lt5RnHPA-YARi8muS5aAkx47NVdmFdKsTHDLe7_79g8IPd6bpvOt2B8SG6E-hG5e0nx8DGZL3_7TQOgTdHPmAI4EGY-PVpD5ygwX7sOqal9ujBtl86hE815m66W8iD92gFaT8ITcrT49O3jkvYuDhQwwDrqjNOiEszxjBeVE9ZXLiussTBYobKigIfkwLQz3KvM8JAFYGSikgyobBUEE0_JXt3U4RlJiwJCwqusckpI443Jfc7NTNgA11TKJIQN4126XuIcnTbW5U6cOcaohBiVMUblRUIOdr852wp8XHv2IYZxdyaKc8cDzeak7Od6aa0vciV1BXROGi1zZYWvpBWQ-4XTMiH7QxjLfsVoyzGGf2-GB12F00ck5PWuGZYCrO-YGoMBlwBurApZsIToCbYm_Z221Kc_oqg4CuNlmifk7YDC8eb_Ho_n1_-VF-QOx_kQt__sk71ucx5ektvuV3fabl7FyfoHrCE7mw priority: 102 providerName: ProQuest |
| Title | Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage |
| URI | https://link.springer.com/article/10.1007/s40820-021-00671-x https://www.proquest.com/docview/2539745654 https://www.proquest.com/docview/2619578073 https://www.proquest.com/docview/2542359491 https://pubmed.ncbi.nlm.nih.gov/PMC8192672 https://doaj.org/article/bbd98547f0664a7485b3df4b34293c74 |
| Volume | 13 |
| WOSCitedRecordID | wos000660004200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2150-5551 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070760 issn: 2311-6706 databaseCode: C24 dateStart: 20091201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BywEOvCsMJTISt7Io3ofXPiZVoiAgiihFgYu1L5dKkYNiF8GF387MxombiiLBZQ_ZjTOamd35nJn9hpCXwrPcQmSk1jtPhcsM1VIb6pnK-spZmwbaxU_v1HSazef5rL0UVm-q3TcpyXBSby-7YWvkPsWSAjxiEwrIcR_pxLCQ67jjHGcKuzF1uUFsqSwuMdQI5HPhHYmZRNIy1XFjSiYgprdBdg2iFaavQpe6JKGp6qft7Zs_i7UT4UIjgB30erX28koCNsS18b3_08h9crfFsfFg7XgPyA1fPSR3LrEbPiKDyU-3WoKDxti7mIIjoEu5-HQBIlFAuWbhY125eKzrJh6A4MuLOp5OxFF80oBnnvnH5HQ8-ng8oW3HBgr2ThpqtVW85IllKctLy40rbZobbUBOXxqewwuxT5TVzMlUM596QF-8FAnA1tLzhB-QvWpZ-SckznMwBCvT0koutNM6cxnTfW48PFNKHZFko-XCtnTm2FVjUWyJmIN6ClBPEdRT_IjI0fY739ZkHn9dPUTjbVciEXf4YLk6K9p9XRjj8kwKVQJ0E1qJTBruSmE4xHlulYjI4cb0RXs61AWTgAIRSl8zDS-1ErcKj8iL7TRse8zl6AqNAY8AHCxzkScRUTsetSPv7kx1_jUQiCMJXqpYRF5t_Kr78ev18fTflj8jtxm6Zij9OSR7zerCPye37PfmvF71yE01z3pkfziazj70wgbuhf9DYHw7fN3DGtwTHH-NYJzJL7B29ub97PNvOzw67Q |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48EYYChgJTmVFvA-vfUAoPKpETaNItKg9mX25VIqckqTQ_il-I7MbO2kq6K0Hrl5n7fV-M_NtZvcbgFfc0dxgZCTGWUe4zTRRQmniqMza0hqTBtnFr305GGT7-_lwDX43Z2H8tsrGJwZHbcfG_0f-lgqMnJ5-8PfHP4ivGuWzq00JjTkstt3ZL1yyTd_1PuH8vqZ06_Puxy6pqwoQfKdkRowykpUsMTSleWmYtqVJc600xkJXaoYr_Mwl0ihqRaqoSx0yBFbyBKlV6VjCsN9rsM4R7O0WrA97O8ODBsFU-kpQy7ykL-fMz6njcK8lw5YCasILpsmlLqegHPlEHeDnBF761FmokJckJJXttD75E87_-WrRbeJ3Wfiok5DTlegaihCsMOeL-z4vJH9DTN2687_Nxl24XbP3uDM3t3uw5qr7cOucpuMD6HTP7GSMZhn7is0E4e8NycZ7I_wYBLm9HrlYVTbeUtNZ3MFBj0-m8aDLN-MvM7THQ_cQ9q5kDI-gVY0r9xjiPEcI0DItjWBcWaUym1HVZtphn0KoCJJmfgtTi7j7WiKjYiE_HTBRICaKgIniNILNxW-O5xIml979wcNmcaeXHw8XxpPDovZmhdY2zwSXJRJWriTPhGa25Johu2FG8gg2GtgUtU-cFkvM_L0Zl_LCOwgWwctFMzo7n8FSlZ8M7ALZv8h5nkQgV7C88r6rLdXR9yCb7qX_UkkjeNOgfvnwf3-PJ5cP5QXc6O7u9It-b7D9FG5Sb4ths9MGtGaTE_cMrpufs6Pp5HntKmL4dtX28AfXHZtV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbQQAgeuCMCA4LE27DW-BInj2VQFTFVk2Bob5GvY1KVTm02jX_POW6aNBNDQrzGjuMcf_b5rGN_h5D3wrPSgmek1jtPhSsM1VIb6pkqRspZm0fZxR-HajYrTk7Ko61b_PG0-yYkub7TgCpNdbN_7sJ-d_EN0ySPKB4vwOU2o8Aib8PWRCGuD3r9caYwM1MfJ8T0ymJLrUagtgvvBc0kCpipXidTMgH-vXW4a0KtMJQVM9ZlGc3VKG9v4vy5WwNvF5MCDJjs9XOY14Kx0cdNHv6_dR6RBy2_TcdrQD4mt3z9hNzfUj18SsbTX265AOCmmNOYAkAQai49nkP3KLBfM_eprl060asmHcNPLC5W6Wwq9tJvDSD21D8jx5PP3w-mtM3kQAEHWUOttooHnlmWszJYblyweWm0gX76YHgJG2WfKauZk7lmPvfAyngQGdDZ4HnGn5OdelH7FyQtSxgUFvJgJRfaaV24gukRNx7alFInJNtYvLKtzDlm25hXnUBzNE8F5qmieaqrhOx175yvRT7-WvsjDmRXEwW644PF8rRq53tljCsLKVQASie0EoU03AVhOPh_bpVIyO4GBlW7aqwqJoEdIsW-oRg2uxKnEE_Iu64YlgOM8egaBwOaAH4sS1FmCVEDdA36Oyypz35GYXEUx8sVS8iHDcb6j99sj5f_Vv0tuXv0aVIdfpl9fUXuMURpPB20S3aa5YV_Te7Yy-ZstXwTZ_JvJ1k9iA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Bond-Assisted+Ultra-Stable+and+Fast+Aqueous+NH4%2B+Storage&rft.jtitle=Nano-micro+letters&rft.au=Zhang%2C+Xikun&rft.au=Xia%2C+Maoting&rft.au=Yu%2C+Haoxiang&rft.au=Zhang%2C+Junwei&rft.date=2021-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1007%2Fs40820-021-00671-x&rft.externalDocID=10_1007_s40820_021_00671_x |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |