Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobun...
Gespeichert in:
| Veröffentlicht in: | eLife Jg. 4; S. e04885 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
eLife Sciences Publications Ltd
09.01.2015
eLife Sciences Publications, Ltd |
| Schlagworte: | |
| ISSN: | 2050-084X, 2050-084X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7
+
cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.
Scientists have developed realistic models of the human liver, lung, and heart that allow them to observe living tissue in the laboratory. These models have helped us to better understand how these organs work and what goes wrong in diseases that affect these organs. The models can also be used to test how new drugs may affect a particular organ without the risk of exposing patients to the drug.
Efforts to develop a realistic laboratory model of human muscle tissues that can contract like real muscles have not been as successful to date. This shortcoming has potentially hindered the development of drugs to treat numerous disorders that affect muscles and movement in humans—such as muscular dystrophies, which are diseases in which people progressively lose muscle strength.
Some important drugs, like cholesterol-lowering statins, have detrimental effects on muscle tissue; one statin was so harmful to muscles that it had to be withdrawn from the market. As such, it would be useful to have experimental models that would allow scientists to test whether potential drugs damage or treat muscle tissue.
Madden et al. have now bioengineered a three-dimensional laboratory model of living muscle tissue made of cells taken from biopsies of several different human patients. These tissues were grown into bundles of muscle fibers on special polymer frames in the laboratory. The bioengineered muscle bundles respond to electrical and chemical signals and contract just like normal muscle. They also exhibit the same structure and signaling as healthy muscle tissue in humans.
Madden et al. exposed the muscle tissue bundles to three drugs known to affect muscles to determine if the model could be used to test whether drugs have harmful effects. This revealed that the bundles had weaker contractions in response to statins and the malaria drug chloroquine, just like normal muscles do—and that this effect worsened if more of each drug was used. Madden et al. also found that a drug that strengthens muscle contractions at low doses and damages muscle at high doses in humans has similar effects in the model.
As well as this model being used to screen for harmful effects of drugs before clinical trials, the technique used to create the model could be used to grow muscle tissue from patients with muscle diseases. This would help researchers and doctors to better understand the patient's condition and potentially develop more efficient therapies. Also, the technique could be eventually developed to grow healthy muscle tissue to implant in patients who have been injured. |
|---|---|
| AbstractList | Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7
+
cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.
Scientists have developed realistic models of the human liver, lung, and heart that allow them to observe living tissue in the laboratory. These models have helped us to better understand how these organs work and what goes wrong in diseases that affect these organs. The models can also be used to test how new drugs may affect a particular organ without the risk of exposing patients to the drug.
Efforts to develop a realistic laboratory model of human muscle tissues that can contract like real muscles have not been as successful to date. This shortcoming has potentially hindered the development of drugs to treat numerous disorders that affect muscles and movement in humans—such as muscular dystrophies, which are diseases in which people progressively lose muscle strength.
Some important drugs, like cholesterol-lowering statins, have detrimental effects on muscle tissue; one statin was so harmful to muscles that it had to be withdrawn from the market. As such, it would be useful to have experimental models that would allow scientists to test whether potential drugs damage or treat muscle tissue.
Madden et al. have now bioengineered a three-dimensional laboratory model of living muscle tissue made of cells taken from biopsies of several different human patients. These tissues were grown into bundles of muscle fibers on special polymer frames in the laboratory. The bioengineered muscle bundles respond to electrical and chemical signals and contract just like normal muscle. They also exhibit the same structure and signaling as healthy muscle tissue in humans.
Madden et al. exposed the muscle tissue bundles to three drugs known to affect muscles to determine if the model could be used to test whether drugs have harmful effects. This revealed that the bundles had weaker contractions in response to statins and the malaria drug chloroquine, just like normal muscles do—and that this effect worsened if more of each drug was used. Madden et al. also found that a drug that strengthens muscle contractions at low doses and damages muscle at high doses in humans has similar effects in the model.
As well as this model being used to screen for harmful effects of drugs before clinical trials, the technique used to create the model could be used to grow muscle tissue from patients with muscle diseases. This would help researchers and doctors to better understand the patient's condition and potentially develop more efficient therapies. Also, the technique could be eventually developed to grow healthy muscle tissue to implant in patients who have been injured. Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders. Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.DOI: http://dx.doi.org/10.7554/eLife.04885.001 Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders. Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04885.001 Scientists have developed realistic models of the human liver, lung, and heart that allow them to observe living tissue in the laboratory. These models have helped us to better understand how these organs work and what goes wrong in diseases that affect these organs. The models can also be used to test how new drugs may affect a particular organ without the risk of exposing patients to the drug. Efforts to develop a realistic laboratory model of human muscle tissues that can contract like real muscles have not been as successful to date. This shortcoming has potentially hindered the development of drugs to treat numerous disorders that affect muscles and movement in humans—such as muscular dystrophies, which are diseases in which people progressively lose muscle strength. Some important drugs, like cholesterol-lowering statins, have detrimental effects on muscle tissue; one statin was so harmful to muscles that it had to be withdrawn from the market. As such, it would be useful to have experimental models that would allow scientists to test whether potential drugs damage or treat muscle tissue. Madden et al. have now bioengineered a three-dimensional laboratory model of living muscle tissue made of cells taken from biopsies of several different human patients. These tissues were grown into bundles of muscle fibers on special polymer frames in the laboratory. The bioengineered muscle bundles respond to electrical and chemical signals and contract just like normal muscle. They also exhibit the same structure and signaling as healthy muscle tissue in humans. Madden et al. exposed the muscle tissue bundles to three drugs known to affect muscles to determine if the model could be used to test whether drugs have harmful effects. This revealed that the bundles had weaker contractions in response to statins and the malaria drug chloroquine, just like normal muscles do—and that this effect worsened if more of each drug was used. Madden et al. also found that a drug that strengthens muscle contractions at low doses and damages muscle at high doses in humans has similar effects in the model. As well as this model being used to screen for harmful effects of drugs before clinical trials, the technique used to create the model could be used to grow muscle tissue from patients with muscle diseases. This would help researchers and doctors to better understand the patient's condition and potentially develop more efficient therapies. Also, the technique could be eventually developed to grow healthy muscle tissue to implant in patients who have been injured. DOI: http://dx.doi.org/10.7554/eLife.04885.002 |
| Author | Madden, Lauran Bursac, Nenad Kraus, William E Truskey, George A Juhas, Mark |
| Author_xml | – sequence: 1 givenname: Lauran surname: Madden fullname: Madden, Lauran organization: Department of Biomedical Engineering, Duke University, Durham, United States – sequence: 2 givenname: Mark surname: Juhas fullname: Juhas, Mark organization: Department of Biomedical Engineering, Duke University, Durham, United States – sequence: 3 givenname: William E surname: Kraus fullname: Kraus, William E organization: Department of Medicine, Duke University School of Medicine, Durham, United States – sequence: 4 givenname: George A surname: Truskey fullname: Truskey, George A organization: Department of Biomedical Engineering, Duke University, Durham, United States – sequence: 5 givenname: Nenad surname: Bursac fullname: Bursac, Nenad organization: Department of Biomedical Engineering, Duke University, Durham, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25575180$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkt1rFDEUxYO02A_75LsM-CLI1tzJx2RehFqsLSz4oIJvIZO52WadSdZkRuh_b3a3lbaYl4R7f_fkkJwTchBiQEJeAz1vhOAfcOkdnlOulHhBjmsq6IIq_vPg0fmInOW8pmU1BYP2JTmqhWgEKHpMvn3yEcPKB8SEfXU7jyZU413s5tAPmKvRj95WdvDBWzNUCfMmhlwa0VX5Fw44leo4ZztgNcWqT_MqvyKHzgwZz-73U_Lj6vP3y-vF8uuXm8uL5cJKgGlhjMWuZhI6Ja2rOVjaSlf3tTKWMYbCCg4GQfLWONOLum4cgFRWsMIzYKfkZq_bR7PWm-RHk-50NF7vCjGttEmTL9Z03VkLPeVNqxwHbFqwtlGdNM5KJ3petD7utTZzN2JvMUzJDE9En3aCv9Wr-EdzxpoGaBF4dy-Q4u8Z86RHny0OgwkY56xBioaBUnx719tn6DrOKZSn0tBKKaiSqi3Um8eO_ll5-LsCwB6wKeac0GnrJzP5uDXoBw1UbyOidxHRu4iUmffPZh5k_0f_BRmXvm8 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3030098 crossref_primary_10_1002_advs_202203388 crossref_primary_10_1091_mbc_e17_01_0046 crossref_primary_10_1016_j_semcdb_2017_10_031 crossref_primary_10_1096_fba_2019_00013 crossref_primary_10_1186_s12915_020_00884_3 crossref_primary_10_1088_1748_605X_ab95e2 crossref_primary_10_3389_fbioe_2017_00022 crossref_primary_10_1146_annurev_bioeng_071114_040640 crossref_primary_10_1016_j_diff_2017_07_004 crossref_primary_10_1002_acr2_11760 crossref_primary_10_1002_adfm_201502018 crossref_primary_10_7554_eLife_60145 crossref_primary_10_1016_j_biomaterials_2024_122840 crossref_primary_10_1038_srep42296 crossref_primary_10_1002_adma_202105883 crossref_primary_10_3389_fcell_2025_1651553 crossref_primary_10_1088_1748_3190_aa5e5f crossref_primary_10_1007_s10439_016_1592_8 crossref_primary_10_1038_s41526_024_00353_z crossref_primary_10_1177_1535370221989259 crossref_primary_10_3389_fphys_2018_01130 crossref_primary_10_1002_adhm_202402201 crossref_primary_10_1089_ten_tea_2021_0202 crossref_primary_10_1002_btm2_10644 crossref_primary_10_1152_ajpcell_00308_2024 crossref_primary_10_1161_CIRCRESAHA_124_325562 crossref_primary_10_1089_ten_teb_2025_0017 crossref_primary_10_1002_advs_202413998 crossref_primary_10_1016_j_biomaterials_2022_121508 crossref_primary_10_1038_s41536_022_00222_x crossref_primary_10_1016_j_bbe_2017_12_001 crossref_primary_10_1038_s41536_022_00216_9 crossref_primary_10_1088_1758_5090_ac165b crossref_primary_10_1016_j_copbio_2017_05_003 crossref_primary_10_3389_fcell_2022_830415 crossref_primary_10_1038_s42003_025_07970_8 crossref_primary_10_1080_17460441_2020_1700225 crossref_primary_10_1002_bit_27231 crossref_primary_10_1371_journal_pone_0192654 crossref_primary_10_3390_cells11071233 crossref_primary_10_1038_s41467_024_51318_5 crossref_primary_10_1038_s41467_017_02636_4 crossref_primary_10_1002_admt_202300595 crossref_primary_10_1134_S0006297924120010 crossref_primary_10_3390_bioengineering4020056 crossref_primary_10_1016_j_biomaterials_2018_11_030 crossref_primary_10_1038_srep38815 crossref_primary_10_1002_term_3266 crossref_primary_10_1063_5_0054984 crossref_primary_10_1089_ten_tea_2023_0007 crossref_primary_10_1016_j_cobme_2020_05_006 crossref_primary_10_1038_s41467_017_01946_x crossref_primary_10_1002_adma_202110441 crossref_primary_10_1002_advs_202403622 crossref_primary_10_3389_fcell_2023_996952 crossref_primary_10_1016_j_actbio_2024_09_020 crossref_primary_10_1093_rb_rbaf059 crossref_primary_10_1038_s41598_020_62837_8 crossref_primary_10_1016_j_biomaterials_2018_08_058 crossref_primary_10_1089_ten_tea_2020_0255 crossref_primary_10_1016_j_biomaterials_2022_121649 crossref_primary_10_1126_scitranslmed_abn9074 crossref_primary_10_3390_bioengineering9110693 crossref_primary_10_1093_toxsci_kfaa049 crossref_primary_10_2174_1381612825666190308150055 crossref_primary_10_1016_j_biomaterials_2021_121033 crossref_primary_10_3390_bioengineering9110685 crossref_primary_10_7554_eLife_44530 crossref_primary_10_3389_fmed_2023_1247778 crossref_primary_10_1089_ten_tea_2020_0005 crossref_primary_10_1002_smtd_202100276 crossref_primary_10_1042_EBC20200149 crossref_primary_10_1089_ten_tea_2024_0044 crossref_primary_10_1080_17460441_2020_1736031 crossref_primary_10_1242_dmm_050107 crossref_primary_10_3389_fpubh_2018_00185 crossref_primary_10_1016_j_addr_2018_02_009 crossref_primary_10_1159_000447323 crossref_primary_10_1007_s00466_020_01882_6 crossref_primary_10_1089_ten_tea_2015_5000_abstracts crossref_primary_10_1007_s00125_015_3629_1 crossref_primary_10_1016_j_jhep_2024_01_002 crossref_primary_10_1089_ten_tec_2016_0264 crossref_primary_10_1093_rheumatology_keae082 crossref_primary_10_1002_stem_2502 crossref_primary_10_1002_adhm_201701498 crossref_primary_10_1089_ten_tea_2015_0359 crossref_primary_10_1371_journal_pone_0272610 crossref_primary_10_1039_D4MH00552J crossref_primary_10_3389_fbioe_2019_00020 crossref_primary_10_1002_advs_202203368 crossref_primary_10_1016_j_biomaterials_2016_09_024 crossref_primary_10_1002_adhm_202401844 crossref_primary_10_1073_pnas_2100077118 crossref_primary_10_1159_000443634 crossref_primary_10_1186_s13395_021_00268_3 crossref_primary_10_1016_j_ymeth_2015_10_002 crossref_primary_10_1371_journal_pone_0232081 crossref_primary_10_1002_term_2415 crossref_primary_10_1016_j_yexcr_2022_113133 crossref_primary_10_1002_admt_202300845 crossref_primary_10_12688_f1000research_8237_1 crossref_primary_10_3389_fphys_2018_01076 crossref_primary_10_3233_JND_221574 crossref_primary_10_1002_wnan_1777 crossref_primary_10_1016_j_biomaterials_2021_121273 crossref_primary_10_1186_s13395_015_0050_x crossref_primary_10_1371_journal_pone_0191497 crossref_primary_10_1002_adma_202207443 crossref_primary_10_1007_s42235_023_00355_9 crossref_primary_10_1111_jcmm_14292 crossref_primary_10_1002_adhm_202404695 crossref_primary_10_1016_j_yjmcc_2024_12_003 crossref_primary_10_1016_j_ymeth_2015_09_019 crossref_primary_10_1038_s42003_021_02059_4 crossref_primary_10_1038_s41551_018_0312_0 crossref_primary_10_1038_s41551_018_0290_2 crossref_primary_10_1002_smsc_202400228 crossref_primary_10_3390_molecules21091128 crossref_primary_10_1038_s41538_021_00090_7 crossref_primary_10_1088_1758_5090_ab1e7c crossref_primary_10_1007_s42765_024_00433_5 crossref_primary_10_1002_wnan_1703 crossref_primary_10_3390_biology10060539 crossref_primary_10_1089_ten_tea_2018_0165 crossref_primary_10_1016_j_biomaterials_2019_119708 crossref_primary_10_1002_admi_202400382 crossref_primary_10_1186_s13567_021_00942_w crossref_primary_10_1093_brain_awae379 crossref_primary_10_3389_fphys_2021_619710 crossref_primary_10_1089_ten_tec_2018_0062 crossref_primary_10_3390_bioengineering9120744 crossref_primary_10_1016_j_actbio_2021_01_017 crossref_primary_10_1021_acsbiomaterials_4c02225 crossref_primary_10_1038_am_2015_148 crossref_primary_10_1002_bit_27989 crossref_primary_10_1080_10255842_2015_1069557 crossref_primary_10_1093_cvr_cvab232 crossref_primary_10_1073_pnas_2426081122 crossref_primary_10_3390_ijms222413221 crossref_primary_10_1002_adhm_201900626 crossref_primary_10_1038_s41419_019_1647_5 crossref_primary_10_1177_20417314221122127 crossref_primary_10_3390_mi7120233 crossref_primary_10_3390_bioengineering7030085 crossref_primary_10_3390_ijms21217840 crossref_primary_10_1097_BOR_0000000000000697 crossref_primary_10_1016_j_actbio_2024_11_014 crossref_primary_10_1016_j_semcdb_2016_09_012 crossref_primary_10_1042_BSR20220284 crossref_primary_10_1002_advs_202400188 crossref_primary_10_1242_dmm_041368 crossref_primary_10_1002_bit_27075 crossref_primary_10_1038_srep28855 crossref_primary_10_7554_eLife_77204 crossref_primary_10_3390_cells14120882 crossref_primary_10_1007_s10439_019_02263_8 crossref_primary_10_1002_adfm_202417184 crossref_primary_10_1002_adbi_202000121 crossref_primary_10_1111_acel_13650 crossref_primary_10_1002_jcp_25960 crossref_primary_10_1016_j_drudis_2016_04_015 crossref_primary_10_1007_s00383_024_05811_z crossref_primary_10_1016_j_mtbio_2025_101456 crossref_primary_10_1093_rheumatology_kead186 crossref_primary_10_1155_2023_9802235 crossref_primary_10_1016_j_biomaterials_2022_121935 crossref_primary_10_1177_2041731420985205 crossref_primary_10_1007_s00018_016_2285_z crossref_primary_10_3390_mi9120671 crossref_primary_10_1088_1758_5090_ad4ba1 crossref_primary_10_3389_fcell_2021_661036 crossref_primary_10_3389_fphys_2025_1575689 crossref_primary_10_1063_5_0233737 crossref_primary_10_1089_adt_2018_860 crossref_primary_10_1126_scirobotics_adr5512 crossref_primary_10_1002_adhm_202403712 crossref_primary_10_1002_adbi_201900005 crossref_primary_10_3390_jfb16010021 crossref_primary_10_1016_j_addr_2018_10_010 crossref_primary_10_1016_j_arr_2024_102543 crossref_primary_10_3389_fceng_2025_1637075 crossref_primary_10_1002_smtd_202200849 crossref_primary_10_1002_adma_202501147 crossref_primary_10_1038_srep36498 crossref_primary_10_3389_fbioe_2021_782333 crossref_primary_10_7554_eLife_65512 crossref_primary_10_1016_j_tibtech_2024_08_001 crossref_primary_10_1140_epje_s10189_025_00497_0 crossref_primary_10_1038_s41598_021_91203_5 crossref_primary_10_1002_adfm_202401564 crossref_primary_10_1016_j_msec_2022_112661 crossref_primary_10_1038_s42003_021_02691_0 crossref_primary_10_1242_dmm_044867 crossref_primary_10_1016_j_actbio_2017_04_027 crossref_primary_10_1111_jcmm_16899 crossref_primary_10_7554_eLife_81738 crossref_primary_10_1021_acs_chemrev_4c00785 crossref_primary_10_3390_jpm10040178 crossref_primary_10_1038_s41596_022_00790_8 crossref_primary_10_1088_1758_5090_ab8f36 crossref_primary_10_1126_sciadv_adw5786 crossref_primary_10_1002_bit_28125 crossref_primary_10_1088_1758_5090_acfb3d crossref_primary_10_1159_000446067 crossref_primary_10_1124_pharmrev_120_000238 crossref_primary_10_1083_jcb_201709054 crossref_primary_10_3390_ijms22115654 crossref_primary_10_1039_C7CS00445A crossref_primary_10_1002_cm_21553 crossref_primary_10_1038_srep44570 crossref_primary_10_1016_j_drudis_2015_10_007 crossref_primary_10_1002_adhm_201700550 crossref_primary_10_1016_j_isci_2024_109199 crossref_primary_10_3389_fphys_2022_937899 crossref_primary_10_1016_j_biomaterials_2018_01_002 crossref_primary_10_1038_srep42290 crossref_primary_10_1038_s41598_018_32163_1 crossref_primary_10_7554_eLife_06430 crossref_primary_10_1016_j_biomaterials_2020_120154 crossref_primary_10_1038_s41598_020_78987_8 crossref_primary_10_1016_j_biomaterials_2019_119416 crossref_primary_10_1016_j_yexcr_2018_06_015 crossref_primary_10_1038_s42003_023_05439_0 |
| Cites_doi | 10.1016/j.ymeth.2008.10.016 10.1016/S0009-9236(98)90034-0 10.1016/j.pharmthera.2006.03.003 10.1002/mus.20504 10.1016/j.biocel.2013.05.016 10.1089/tea.2007.0104 10.1016/j.biomaterials.2014.07.035 10.1177/1535370214538589 10.1073/pnas.78.9.5623 10.1152/ajpcell.00595.2001 10.1126/science.1099993 10.1152/physrev.2000.80.3.1215 10.1002/mus.20931 10.1152/jn.1999.81.4.1718 10.1016/j.biomaterials.2011.01.062 10.1038/sj.mt.6300027 10.1007/BF02623656 10.1111/j.1399-6576.1982.tb01760.x 10.1111/j.1742-4658.2007.05935.x 10.1089/ten.tea.2010.0700 10.1152/jappl.2000.89.2.606 10.1016/S0002-9149(98)00424-X 10.1039/c3bm60166h 10.1016/j.jbiotec.2014.05.029 10.1073/pnas.1402723111 10.1113/jphysiol.2013.252650 10.1038/nbt.2989 10.1177/1545968305277167 10.1152/ajpcell.00179.2013 10.1152/japplphysiol.00273.2004 10.1016/j.pharmthera.2008.06.003 10.1038/nrd3845 10.1016/j.amjcard.2005.12.013 10.1038/nrendo.2012.49 10.1016/S0079-6107(00)00006-7 10.1371/journal.pone.0036221 10.1038/nature12354 10.1111/j.1440-1681.1974.tb00542.x 10.1152/jappl.1999.86.5.1445 10.1126/scitranslmed.3003497 10.1002/jcp.22271 10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2 10.1038/nbt.2914 10.1089/ten.tea.2012.0597 |
| ContentType | Journal Article |
| Copyright | 2015, Madden et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2015, Madden et al 2015 Madden et al |
| Copyright_xml | – notice: 2015, Madden et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2015, Madden et al 2015 Madden et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.7554/eLife.04885 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_2bcc1d04798f41e791cc78b6afc6f5d4 PMC4337710 25575180 10_7554_eLife_04885 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UH2 TR000505 – fundername: NCATS NIH HHS grantid: UH3 TR000505 – fundername: NIAMS NIH HHS grantid: R01 AR065873 – fundername: NCATS NIH HHS grantid: UH2TR000505 – fundername: NIAMS NIH HHS grantid: R01 AR055226 – fundername: NIAMS NIH HHS grantid: R01AR065873 – fundername: NIAMS NIH HHS grantid: R01AR055226 – fundername: ; grantid: R01AR055226 and R01AR065873 – fundername: ; grantid: UH2TR000505 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c611t-aaceb2361b86cf241c096f2d28ac333e5c541ae1649afad5227f1168c536cf313 |
| IEDL.DBID | 7X7 |
| ISICitedReferencesCount | 298 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347916200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:50:27 EDT 2025 Tue Nov 04 01:59:44 EST 2025 Fri Sep 05 13:57:32 EDT 2025 Tue Oct 07 06:52:58 EDT 2025 Mon Jul 21 05:48:12 EDT 2025 Sat Nov 29 04:58:59 EST 2025 Tue Nov 18 22:26:50 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | human biology muscle physiology contractile force drug testing tissue engineering medicine human human skeletal muscle |
| Language | English |
| License | This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c611t-aaceb2361b86cf241c096f2d28ac333e5c541ae1649afad5227f1168c536cf313 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/1966508689?pq-origsite=%requestingapplication% |
| PMID | 25575180 |
| PQID | 1966508689 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2bcc1d04798f41e791cc78b6afc6f5d4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4337710 proquest_miscellaneous_1657318844 proquest_journals_1966508689 pubmed_primary_25575180 crossref_citationtrail_10_7554_eLife_04885 crossref_primary_10_7554_eLife_04885 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-01-09 |
| PublicationDateYYYYMMDD | 2015-01-09 |
| PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2015 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
| References | Kleinstreuer (bib25) 2014; 32 Secher (bib38) 1982; 26 Mudera (bib31) 2010; 225 Salva (bib37) 2007; 15 Burniston (bib6) 2006; 33 Dobkin (bib14) 2005; 19 Kalamida (bib23) 2007; 274 Lee (bib26) 2013; 19 Bowes (bib5) 2012; 11 Powell (bib33) 2002; 283 Blau (bib3) 1981; 78 Bhatia (bib2) 2014; 32 Dennis (bib13) 2000; 36 Hinds (bib19) 2011; 32 Racca (bib34) 2013; 591 Shitara (bib40) 2006; 112 Chen (bib8) 2013; 499 Berchtold (bib1) 2000; 80 Lee (bib27) 2012; 7 Ciciliot (bib11) 2013; 45 Huang (bib20) 2005; 98 von Keutz (bib44) 1998; 82 Cheng (bib10) 2014; 306 Cheng (bib9) 2014; 239 Rassier (bib35) 1999; 86 Bottinelli (bib4) 2000; 73 Chen (bib7) 2000; 89 Ham (bib18) 1988; 24 Ryall (bib36) 2008; 120 Pedersen (bib32) 2012; 8 Fuglevand (bib16) 1999; 81 Kantola (bib24) 1998; 63 Shintani (bib39) 2004; 306 Dambach (bib12) 2012; 4 Guo (bib17) 2014; 2 Thompson (bib42) 2006; 97 Vandenburgh (bib43) 2008; 37 Juhas (bib22) 2014; 111 Juhas (bib21) 2014; 35 Smith (bib41) 2014; 185 Moulds (bib30) 1974; 1 Li (bib28) 2011; 17 Eberli (bib15) 2009; 47 Moon du (bib29) 2008; 14 18952174 - Methods. 2009 Feb;47(2):98-103 23629510 - J Physiol. 2013 Jun 15;591(Pt 12):3049-61 10937836 - In Vitro Cell Dev Biol Anim. 2000 May;36(5):327-35 24706792 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5508-13 22558391 - PLoS One. 2012;7(4):e36221 25093883 - Nat Biotechnol. 2014 Aug;32(8):760-72 23702032 - Int J Biochem Cell Biol. 2013 Oct;45(10):2191-9 24516722 - Biomater Sci. 2014 Jan 1;2(1):131-138 23136041 - Sci Transl Med. 2012 Nov 7;4(159):159ps22 24912506 - Exp Biol Med (Maywood). 2014 Sep;239(9):1203-14 24336652 - Am J Physiol Cell Physiol. 2014 Feb 15;306(4):C385-95 24837663 - Nat Biotechnol. 2014 Jun;32(6):583-91 4458993 - Clin Exp Pharmacol Physiol. 1974 May-Jun;1(3):197-209 7113631 - Acta Anaesthesiol Scand. 1982 Jun;26(3):231-4 22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65 25154662 - Biomaterials. 2014 Nov;35(35):9438-46 10200207 - J Neurophysiol. 1999 Apr;81(4):1718-29 16714062 - Pharmacol Ther. 2006 Oct;112(1):71-105 6946499 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623-7 18399787 - Tissue Eng Part A. 2008 Apr;14(4):473-82 9737641 - Am J Cardiol. 1998 Aug 27;82(4B):11J-17J 25686011 - Elife. 2015;4:e06430 18834902 - Pharmacol Ther. 2008 Dec;120(3):219-32 17235310 - Mol Ther. 2007 Feb;15(2):320-9 24909944 - J Biotechnol. 2014 Sep 20;185:15-8 10926644 - J Appl Physiol (1985). 2000 Aug;89(2):606-12 21324402 - Biomaterials. 2011 May;32(14):3575-83 15528435 - Science. 2004 Nov 5;306(5698):990-5 23197038 - Nat Rev Drug Discov. 2012 Dec;11(12):909-22 12372817 - Am J Physiol Cell Physiol. 2002 Nov;283(5):C1557-65 21657983 - Tissue Eng Part A. 2011 Nov;17(21-22):2641-50 23868258 - Nature. 2013 Jul 18;499(7458):295-300 16411205 - Muscle Nerve. 2006 May;33(5):655-63 17651090 - FEBS J. 2007 Aug;274(15):3799-845 10958931 - Prog Biophys Mol Biol. 2000;73(2-4):195-262 3045074 - In Vitro Cell Dev Biol. 1988 Aug;24(8):833-44 10233103 - J Appl Physiol (1985). 1999 May;86(5):1445-57 18236465 - Muscle Nerve. 2008 Apr;37(4):438-47 16581332 - Am J Cardiol. 2006 Apr 17;97(8A):69C-76C 9585793 - Clin Pharmacol Ther. 1998 Apr;63(4):397-402 16093417 - Neurorehabil Neural Repair. 2005 Sep;19(3):259-63 10893434 - Physiol Rev. 2000 Jul;80(3):1215-65 15475606 - J Appl Physiol (1985). 2005 Feb;98(2):706-13 20533296 - J Cell Physiol. 2010 Nov;225(3):646-53 23574457 - Tissue Eng Part A. 2013 Oct;19(19-20):2147-55 |
| References_xml | – volume: 47 start-page: 98 year: 2009 ident: bib15 article-title: Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro publication-title: Methods doi: 10.1016/j.ymeth.2008.10.016 – volume: 63 start-page: 397 year: 1998 ident: bib24 article-title: Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid publication-title: Clinical Pharmacology and Therapeutics doi: 10.1016/S0009-9236(98)90034-0 – volume: 112 start-page: 71 year: 2006 ident: bib40 article-title: Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions publication-title: Pharmacology and Therapeutics doi: 10.1016/j.pharmthera.2006.03.003 – volume: 33 start-page: 655 year: 2006 ident: bib6 article-title: Dose-dependent separation of the hypertrophic and myotoxic effects of the beta(2)-adrenergic receptor agonist clenbuterol in rat striated muscles publication-title: Muscle Nerve doi: 10.1002/mus.20504 – volume: 45 start-page: 2191 year: 2013 ident: bib11 article-title: Muscle type and fiber type specificity in muscle wasting publication-title: The International Journal of Biochemistry and Cell Biology doi: 10.1016/j.biocel.2013.05.016 – volume: 14 start-page: 473 year: 2008 ident: bib29 article-title: Cyclic mechanical preconditioning improves engineered muscle contraction publication-title: Tissue Engineering. Part A doi: 10.1089/tea.2007.0104 – volume: 35 start-page: 9438 year: 2014 ident: bib21 article-title: Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.07.035 – volume: 239 start-page: 1203 year: 2014 ident: bib9 article-title: Physiology and metabolism of tissue-engineered skeletal muscle publication-title: Experimental Biology and Medicine doi: 10.1177/1535370214538589 – volume: 78 start-page: 5623 year: 1981 ident: bib3 article-title: Isolation and characterization of human muscle cells publication-title: Proceedings of the National Academy of Sciences of USA doi: 10.1073/pnas.78.9.5623 – volume: 283 start-page: C1557 year: 2002 ident: bib33 article-title: Mechanical stimulation improves tissue-engineered human skeletal muscle publication-title: American Journal of Physiology Cell Physiology doi: 10.1152/ajpcell.00595.2001 – volume: 306 start-page: 990 year: 2004 ident: bib39 article-title: Autophagy in health and disease: a double-edged sword publication-title: Science doi: 10.1126/science.1099993 – volume: 80 start-page: 1215 year: 2000 ident: bib1 article-title: Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease publication-title: Physiological Reviews doi: 10.1152/physrev.2000.80.3.1215 – volume: 37 start-page: 438 year: 2008 ident: bib43 article-title: Drug-screening platform based on the contractility of tissue-engineered muscle publication-title: Muscle and Nerve doi: 10.1002/mus.20931 – volume: 81 start-page: 1718 year: 1999 ident: bib16 article-title: Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand publication-title: Journal of Neurophysiology doi: 10.1152/jn.1999.81.4.1718 – volume: 32 start-page: 3575 year: 2011 ident: bib19 article-title: The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.01.062 – volume: 15 start-page: 320 year: 2007 ident: bib37 article-title: Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle publication-title: Molecular Therapy doi: 10.1038/sj.mt.6300027 – volume: 24 start-page: 833 year: 1988 ident: bib18 article-title: Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum publication-title: In Vitro Cellular and Developmental Biology doi: 10.1007/BF02623656 – volume: 26 start-page: 231 year: 1982 ident: bib38 article-title: Effect of tubocurarine on human soleus and gastrocnemius muscles publication-title: Acta Anaesthesiologica Scandinavica doi: 10.1111/j.1399-6576.1982.tb01760.x – volume: 274 start-page: 3799 year: 2007 ident: bib23 article-title: Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity publication-title: The FEBS Journal doi: 10.1111/j.1742-4658.2007.05935.x – volume: 17 start-page: 2641 year: 2011 ident: bib28 article-title: The role of fibroblasts in self-assembled skeletal muscle publication-title: Tissue Engineering. Part A doi: 10.1089/ten.tea.2010.0700 – volume: 89 start-page: 606 year: 2000 ident: bib7 article-title: A physiological level of clenbuterol does not prevent atrophy or loss of force in skeletal muscle of old rats publication-title: Journal of Applied Physiology doi: 10.1152/jappl.2000.89.2.606 – volume: 82 start-page: 11J year: 1998 ident: bib44 article-title: Preclinical safety evaluation of cerivastatin, a novel HMG-CoA reductase inhibitor publication-title: The American Journal of Cardiology doi: 10.1016/S0002-9149(98)00424-X – volume: 2 start-page: 131 year: 2014 ident: bib17 article-title: In vitro differentiation of functional human skeletal myotubes in a defined system publication-title: Biomaterials Science doi: 10.1039/c3bm60166h – volume: 185 start-page: 15 year: 2014 ident: bib41 article-title: A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro publication-title: Journal of Biotechnology doi: 10.1016/j.jbiotec.2014.05.029 – volume: 111 start-page: 5508 year: 2014 ident: bib22 article-title: Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo publication-title: Proceedings of the National Academy of Sciences of USA doi: 10.1073/pnas.1402723111 – volume: 591 start-page: 3049 year: 2013 ident: bib34 article-title: Contractility and kinetics of human fetal and human adult skeletal muscle publication-title: The Journal of Physiology doi: 10.1113/jphysiol.2013.252650 – volume: 32 start-page: 760 year: 2014 ident: bib2 article-title: Microfluidic organs-on-chips publication-title: Nature Biotechnology doi: 10.1038/nbt.2989 – volume: 19 start-page: 259 year: 2005 ident: bib14 article-title: Underappreciated statin-induced myopathic weakness causes disability publication-title: Neurorehabilitation and Neural Repair doi: 10.1177/1545968305277167 – volume: 306 start-page: C385 year: 2014 ident: bib10 article-title: Conditions that promote primary human skeletal myoblast culture and muscle differentiation in vitro publication-title: American Journal of Physiology Cell Physiology doi: 10.1152/ajpcell.00179.2013 – volume: 98 start-page: 706 year: 2005 ident: bib20 article-title: Rapid formation of functional muscle in vitro using fibrin gels publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00273.2004 – volume: 120 start-page: 219 year: 2008 ident: bib36 article-title: The potential and the pitfalls of beta-adrenoceptor agonists for the management of skeletal muscle wasting publication-title: Pharmacology and Therapeutics doi: 10.1016/j.pharmthera.2008.06.003 – volume: 11 start-page: 909 year: 2012 ident: bib5 article-title: Reducing safety-related drug attrition: the use of in vitro pharmacological profiling publication-title: Nature Reviews. Drug Discovery doi: 10.1038/nrd3845 – volume: 97 start-page: 69C year: 2006 ident: bib42 article-title: An assessment of statin safety by muscle experts publication-title: The American Journal of Cardiology doi: 10.1016/j.amjcard.2005.12.013 – volume: 8 start-page: 457 year: 2012 ident: bib32 article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ publication-title: Nature Reviews Endocrinology doi: 10.1038/nrendo.2012.49 – volume: 73 start-page: 195 year: 2000 ident: bib4 article-title: Human skeletal muscle fibres: molecular and functional diversity publication-title: Progress in Biophysics and Molecular Biology doi: 10.1016/S0079-6107(00)00006-7 – volume: 7 start-page: e36221 year: 2012 ident: bib27 article-title: Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study publication-title: PLOS ONE doi: 10.1371/journal.pone.0036221 – volume: 499 start-page: 295 year: 2013 ident: bib8 article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity publication-title: Nature doi: 10.1038/nature12354 – volume: 1 start-page: 197 year: 1974 ident: bib30 article-title: A study of the action of caffeine, halothane, potassium chloride and procaine on normal human skeletal muscle publication-title: Clinical and Experimental Pharmacology and Physiology doi: 10.1111/j.1440-1681.1974.tb00542.x – volume: 86 start-page: 1445 year: 1999 ident: bib35 article-title: Length dependence of active force production in skeletal muscle publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1999.86.5.1445 – volume: 4 start-page: 159ps22 year: 2012 ident: bib12 article-title: Improving risk assessment publication-title: Science Translational Medicine doi: 10.1126/scitranslmed.3003497 – volume: 225 start-page: 646 year: 2010 ident: bib31 article-title: The effect of cell density on the maturation and contractile ability of muscle derived cells in a 3D tissue-engineered skeletal muscle model and determination of the cellular and mechanical stimuli required for the synthesis of a postural phenotype publication-title: Journal of Cellular Physiology doi: 10.1002/jcp.22271 – volume: 36 start-page: 327 year: 2000 ident: bib13 article-title: Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro publication-title: In Vitro Cellular and Developmental Biology Animal doi: 10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2 – volume: 32 start-page: 583 year: 2014 ident: bib25 article-title: Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms publication-title: Nature Biotechnology doi: 10.1038/nbt.2914 – volume: 19 start-page: 2147 year: 2013 ident: bib26 article-title: Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system publication-title: Tissue Engineering. Part A doi: 10.1089/ten.tea.2012.0597 – reference: 18952174 - Methods. 2009 Feb;47(2):98-103 – reference: 16714062 - Pharmacol Ther. 2006 Oct;112(1):71-105 – reference: 12372817 - Am J Physiol Cell Physiol. 2002 Nov;283(5):C1557-65 – reference: 24336652 - Am J Physiol Cell Physiol. 2014 Feb 15;306(4):C385-95 – reference: 9737641 - Am J Cardiol. 1998 Aug 27;82(4B):11J-17J – reference: 24912506 - Exp Biol Med (Maywood). 2014 Sep;239(9):1203-14 – reference: 16581332 - Am J Cardiol. 2006 Apr 17;97(8A):69C-76C – reference: 21324402 - Biomaterials. 2011 May;32(14):3575-83 – reference: 10233103 - J Appl Physiol (1985). 1999 May;86(5):1445-57 – reference: 18236465 - Muscle Nerve. 2008 Apr;37(4):438-47 – reference: 23629510 - J Physiol. 2013 Jun 15;591(Pt 12):3049-61 – reference: 23574457 - Tissue Eng Part A. 2013 Oct;19(19-20):2147-55 – reference: 23197038 - Nat Rev Drug Discov. 2012 Dec;11(12):909-22 – reference: 10958931 - Prog Biophys Mol Biol. 2000;73(2-4):195-262 – reference: 25154662 - Biomaterials. 2014 Nov;35(35):9438-46 – reference: 17651090 - FEBS J. 2007 Aug;274(15):3799-845 – reference: 18399787 - Tissue Eng Part A. 2008 Apr;14(4):473-82 – reference: 17235310 - Mol Ther. 2007 Feb;15(2):320-9 – reference: 10937836 - In Vitro Cell Dev Biol Anim. 2000 May;36(5):327-35 – reference: 25093883 - Nat Biotechnol. 2014 Aug;32(8):760-72 – reference: 16093417 - Neurorehabil Neural Repair. 2005 Sep;19(3):259-63 – reference: 9585793 - Clin Pharmacol Ther. 1998 Apr;63(4):397-402 – reference: 22558391 - PLoS One. 2012;7(4):e36221 – reference: 24706792 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5508-13 – reference: 25686011 - Elife. 2015;4:e06430 – reference: 24516722 - Biomater Sci. 2014 Jan 1;2(1):131-138 – reference: 10893434 - Physiol Rev. 2000 Jul;80(3):1215-65 – reference: 20533296 - J Cell Physiol. 2010 Nov;225(3):646-53 – reference: 22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65 – reference: 23868258 - Nature. 2013 Jul 18;499(7458):295-300 – reference: 4458993 - Clin Exp Pharmacol Physiol. 1974 May-Jun;1(3):197-209 – reference: 7113631 - Acta Anaesthesiol Scand. 1982 Jun;26(3):231-4 – reference: 15475606 - J Appl Physiol (1985). 2005 Feb;98(2):706-13 – reference: 16411205 - Muscle Nerve. 2006 May;33(5):655-63 – reference: 6946499 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623-7 – reference: 10926644 - J Appl Physiol (1985). 2000 Aug;89(2):606-12 – reference: 3045074 - In Vitro Cell Dev Biol. 1988 Aug;24(8):833-44 – reference: 10200207 - J Neurophysiol. 1999 Apr;81(4):1718-29 – reference: 24909944 - J Biotechnol. 2014 Sep 20;185:15-8 – reference: 23702032 - Int J Biochem Cell Biol. 2013 Oct;45(10):2191-9 – reference: 23136041 - Sci Transl Med. 2012 Nov 7;4(159):159ps22 – reference: 21657983 - Tissue Eng Part A. 2011 Nov;17(21-22):2641-50 – reference: 18834902 - Pharmacol Ther. 2008 Dec;120(3):219-32 – reference: 24837663 - Nat Biotechnol. 2014 Jun;32(6):583-91 – reference: 15528435 - Science. 2004 Nov 5;306(5698):990-5 |
| SSID | ssj0000748819 |
| Score | 2.537831 |
| Snippet | Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e04885 |
| SubjectTerms | Acetylcholine - pharmacology Acetylcholine receptors Bioengineering - methods Biomechanical Phenomena - drug effects Caffeine - pharmacology Calcium Calcium - metabolism Calcium Signaling - drug effects Cell culture contractile force Drug development drug testing Electrical stimuli Genes, Reporter Human Biology and Medicine human skeletal muscle Humans Hydrogels Hypertrophy Immunoglobulins Muscle contraction Muscle Contraction - physiology muscle physiology Muscle, Skeletal - drug effects Muscle, Skeletal - physiology Musculoskeletal system Myopathy Physiology Proteins Receptor mechanisms Reproducibility of Results Rodents Skeletal muscle Tissue engineering |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kUPBFzvOr5ykR7kmo12zapHlU8fDhOAQ_uLeSThItuq1st8L9906S7rIrB77cW2mmIZ1MMr_Jx28ATk1pFcEEzBetsjnhW5O3ytucS18YYWyZlga-XajLy_rqSn_aSfUVzoQleuCkuLNFi8htIEKvfcmd0hxR1a00HqWvbGQCLZTeCabiHKzIMLlOF_IUucwzd9F59ybYa7XngiJT_03w8t9Tkjtu5_wQHsx4kb1N7XwId1x_BPdSBsnrR_CZntxMKegsixn32PJ6aKdAnjCyZbfskG2uP7JVOhFLBYNn409yOYS92XIaqW62HphdTd_Hx_D1_MOX9x_zOU9CjpLzdW4MUnwsJG9riZ5cMlJc4heWFI9CCFdhVXLjKDDSxhtLiEt5zmWNlSB5wcUTOOiH3j0DVqBqjRdCm9aUXkrCY_R1uGapi9qVVQavN6prcCYRD7ksfjUUTAQ9N1HPTdRzBqdb4d-JO-NmsXehD7YigfA6viAzaGYzaP5nBhmcbHqwmUfh2NDsEgCorHUGr7bFNH7Cpojp3TCRjKwUzWt1SVU8TR2-bQmFW2FXqshA7ZnCXlP3S_ruR-ToLoVQBN6Ob-PfnsN9gmlVXPjRJ3CwXk3uBdzFP-tuXL2Mhv8XN_0MbQ priority: 102 providerName: Directory of Open Access Journals |
| Title | Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25575180 https://www.proquest.com/docview/1966508689 https://www.proquest.com/docview/1657318844 https://pubmed.ncbi.nlm.nih.gov/PMC4337710 https://doaj.org/article/2bcc1d04798f41e791cc78b6afc6f5d4 |
| Volume | 4 |
| WOSCitedRecordID | wos000347916200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Science Database (NC LIVE) customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCxIX3qWBsjJST0ih63ViOydEUSuQ2lXES8spcvwoEd2kJBuk_nvGjjewqOLCxYriiTXKjD3fjO0ZhA5kojnABBXPS65jwLcyLrnVMWF2JqnUyRAa-HLKFwuxXGZ5CLh14VjlZk30C7VulIuRH4KmODDBRPb68kfsqka53dVQQuMmmriy2U7P-ZKPMRYwjwIs3nAtj4PhPDSnlTWvnNamW4bI5-u_DmT-fVbyD-Nzcu9_2b6P7gbYid8MevIA3TD1Q3R7KER59Qh9hCcTMhMajX3hPry6asre5WDo8KpaVQpvblHidjhYCx2Nxd13sFwA4fGq72BsvG6wbvvz7jH6fHL86e27OJRbiBUjZB1LqcDNpoyUgikLll2Be2PnGuSnKKUmVWlCpAH_KpNWagBu3BLChEop0FNCd9FO3dRmD-GZ4qW0lGaylIllDGAdfO1ua2YzYZI0Qi83_75QIRe5K4lxUYBP4gRVeEEVXlAROhiJL4cUHNeTHTkhjiQub7Z_0bTnRZiGxbxUimiXVl_YhBieEaW4KJm0itlUJxHa34ixCJO5K37LMEIvxm6Yhm5vRdam6YGGpRyWR5HAEE8GjRk5Aa_NbW7NIsS3dGmL1e2euvrmU30nlHLAgE__zdYzdAdwXOojQ9k-2lm3vXmObqmf66prp35O-FZM0eToeJF_mPrQA7Rn89y1HNpJ_v4s__oLPjUgvA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkYqF6TQ9TqxkwNCvKquul2tREHtKTh-lAg2KckGtH-K38g4j4VFFbceuEXxxHKSzzPfjO0ZgG0ZaIE0QfmjVGgf-a30U2G1T7kdSiZ10IYGPk7EdBodHcWzDfjZn4Vx2yp7ndgoal0oFyPfQaQ4MsGj-OXpN99VjXKrq30JjRYW-2b5A1226sX4Lf7fp6PR7rvDN3t-V1XAV5zShS-lQm-ScZpGXFk0YApZvB1pHKZijJlQhQGVBt2IWFqpkZ8ISymPVMhQnlGG_V6AzQDBPhzA5mx8MDteRXXQIEdoY9uDgAJN9Y6ZZNY8d_MkXDN9TYWAs2jt37sz_zB3u9f-tw91Ha52xJq8amfCDdgw-U241JbaXN6C93hlutyLRpOmNCGZL4u0dlkmKjLP5pki_TlRUrZbh7GhsKT6grYZnRQyryvsmywKosv6pLoNH87lje7AIC9ycw_IUIlUWsZimcrAco7EFZ9251HjYWSC0INn_b9OVJdt3RX9-Jqg1-WAkTTASBpgeLC9Ej5tk4ycLfbagWYl4jKDNzeK8iTpFE0ySpWi2hUOiGxAjYipUiJKubSK21AHHmz1sEk6dVUlvzHjwZNVMyoat3okc1PUKMNDgQYgCrCLuy1CVyNBv9Qt3w09EGvYXRvqekuefW6SmQeMCWS59_89rMdwee_wYJJMxtP9B3AFWWvYxMHiLRgsyto8hIvq-yKrykfdjCTw6byx_QttjngX |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkYqF6Sw63ViJweEKO2KqqvVipd6C44fZQWblGQD2r_Gr2OcFyyquPXALYonlpN8nvlmbM8A7MpAC6QJyh-nQvvIb6WfCqt9yu1IMqmDJjTwcSpms-j4OJ5vwc_uLIzbVtnpxFpR61y5GPkQkeLIBI_ioW23Rcz3Jy9Pv_mugpRbae3KaTQQOTLrH-i-lS8O9_FfPx2PJwfvX7_x2woDvuKUrnwpFXqWjNM04sqiMVPI6O1Y45AVY8yEKgyoNOhSxNJKjVxFWEp5pEKG8owy7PcCbAuGTs8AtvcOZvO3fYQHjXOE9rY5FCjQbA_NdGHNczdnwg0zWFcLOIvi_r1T8w_TN7n2P3-063C1JdzkVTNDbsCWyW7CpaYE5_oWvMMr0-ZkNJrUJQvJcp2nlcs-UZLlYrlQpDs_SopmSzE25JaUX9Bmo_NCllWJfZNVTnRRnZS34cO5vNEdGGR5Zu4BGSmRSstYLFMZWM6R0OLT7pxqPIpMEHrwrPvviWqzsLtiIF8T9MYcSJIaJEkNEg92e-HTJvnI2WJ7DkC9iMsYXt_Ii5OkVUDJOFWKaldQILIBNSKmSoko5dIqbkMdeLDTQShp1ViZ_MaPB0_6ZlRAblVJZiavUIaHAg1DFGAXdxu09iNBf9Ut6408EBs43hjqZku2-FwnOQ8YE8h-7_97WI_hMgI6mR7Ojh7AFSSzYR0ei3dgsCoq8xAuqu-rRVk8aicngU_nDe1fmuSAsQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioengineered+human+myobundles+mimic+clinical+responses+of+skeletal+muscle+to+drugs&rft.jtitle=eLife&rft.au=Madden+Lauran&rft.au=Juhas%2C+Mark&rft.au=Kraus%2C+William+E&rft.au=Truskey%2C+George+A&rft.date=2015-01-09&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=4&rft_id=info:doi/10.7554%2FeLife.04885&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |