Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs

Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:eLife Jg. 4; S. e04885
Hauptverfasser: Madden, Lauran, Juhas, Mark, Kraus, William E, Truskey, George A, Bursac, Nenad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England eLife Sciences Publications Ltd 09.01.2015
eLife Sciences Publications, Ltd
Schlagworte:
ISSN:2050-084X, 2050-084X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7 + cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders. Scientists have developed realistic models of the human liver, lung, and heart that allow them to observe living tissue in the laboratory. These models have helped us to better understand how these organs work and what goes wrong in diseases that affect these organs. The models can also be used to test how new drugs may affect a particular organ without the risk of exposing patients to the drug. Efforts to develop a realistic laboratory model of human muscle tissues that can contract like real muscles have not been as successful to date. This shortcoming has potentially hindered the development of drugs to treat numerous disorders that affect muscles and movement in humans—such as muscular dystrophies, which are diseases in which people progressively lose muscle strength. Some important drugs, like cholesterol-lowering statins, have detrimental effects on muscle tissue; one statin was so harmful to muscles that it had to be withdrawn from the market. As such, it would be useful to have experimental models that would allow scientists to test whether potential drugs damage or treat muscle tissue. Madden et al. have now bioengineered a three-dimensional laboratory model of living muscle tissue made of cells taken from biopsies of several different human patients. These tissues were grown into bundles of muscle fibers on special polymer frames in the laboratory. The bioengineered muscle bundles respond to electrical and chemical signals and contract just like normal muscle. They also exhibit the same structure and signaling as healthy muscle tissue in humans. Madden et al. exposed the muscle tissue bundles to three drugs known to affect muscles to determine if the model could be used to test whether drugs have harmful effects. This revealed that the bundles had weaker contractions in response to statins and the malaria drug chloroquine, just like normal muscles do—and that this effect worsened if more of each drug was used. Madden et al. also found that a drug that strengthens muscle contractions at low doses and damages muscle at high doses in humans has similar effects in the model. As well as this model being used to screen for harmful effects of drugs before clinical trials, the technique used to create the model could be used to grow muscle tissue from patients with muscle diseases. This would help researchers and doctors to better understand the patient's condition and potentially develop more efficient therapies. Also, the technique could be eventually developed to grow healthy muscle tissue to implant in patients who have been injured.
AbstractList Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7 + cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders. Scientists have developed realistic models of the human liver, lung, and heart that allow them to observe living tissue in the laboratory. These models have helped us to better understand how these organs work and what goes wrong in diseases that affect these organs. The models can also be used to test how new drugs may affect a particular organ without the risk of exposing patients to the drug. Efforts to develop a realistic laboratory model of human muscle tissues that can contract like real muscles have not been as successful to date. This shortcoming has potentially hindered the development of drugs to treat numerous disorders that affect muscles and movement in humans—such as muscular dystrophies, which are diseases in which people progressively lose muscle strength. Some important drugs, like cholesterol-lowering statins, have detrimental effects on muscle tissue; one statin was so harmful to muscles that it had to be withdrawn from the market. As such, it would be useful to have experimental models that would allow scientists to test whether potential drugs damage or treat muscle tissue. Madden et al. have now bioengineered a three-dimensional laboratory model of living muscle tissue made of cells taken from biopsies of several different human patients. These tissues were grown into bundles of muscle fibers on special polymer frames in the laboratory. The bioengineered muscle bundles respond to electrical and chemical signals and contract just like normal muscle. They also exhibit the same structure and signaling as healthy muscle tissue in humans. Madden et al. exposed the muscle tissue bundles to three drugs known to affect muscles to determine if the model could be used to test whether drugs have harmful effects. This revealed that the bundles had weaker contractions in response to statins and the malaria drug chloroquine, just like normal muscles do—and that this effect worsened if more of each drug was used. Madden et al. also found that a drug that strengthens muscle contractions at low doses and damages muscle at high doses in humans has similar effects in the model. As well as this model being used to screen for harmful effects of drugs before clinical trials, the technique used to create the model could be used to grow muscle tissue from patients with muscle diseases. This would help researchers and doctors to better understand the patient's condition and potentially develop more efficient therapies. Also, the technique could be eventually developed to grow healthy muscle tissue to implant in patients who have been injured.
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.DOI: http://dx.doi.org/10.7554/eLife.04885.001
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.
Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues (‘myobundles’) using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7+ cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04885.001 Scientists have developed realistic models of the human liver, lung, and heart that allow them to observe living tissue in the laboratory. These models have helped us to better understand how these organs work and what goes wrong in diseases that affect these organs. The models can also be used to test how new drugs may affect a particular organ without the risk of exposing patients to the drug. Efforts to develop a realistic laboratory model of human muscle tissues that can contract like real muscles have not been as successful to date. This shortcoming has potentially hindered the development of drugs to treat numerous disorders that affect muscles and movement in humans—such as muscular dystrophies, which are diseases in which people progressively lose muscle strength. Some important drugs, like cholesterol-lowering statins, have detrimental effects on muscle tissue; one statin was so harmful to muscles that it had to be withdrawn from the market. As such, it would be useful to have experimental models that would allow scientists to test whether potential drugs damage or treat muscle tissue. Madden et al. have now bioengineered a three-dimensional laboratory model of living muscle tissue made of cells taken from biopsies of several different human patients. These tissues were grown into bundles of muscle fibers on special polymer frames in the laboratory. The bioengineered muscle bundles respond to electrical and chemical signals and contract just like normal muscle. They also exhibit the same structure and signaling as healthy muscle tissue in humans. Madden et al. exposed the muscle tissue bundles to three drugs known to affect muscles to determine if the model could be used to test whether drugs have harmful effects. This revealed that the bundles had weaker contractions in response to statins and the malaria drug chloroquine, just like normal muscles do—and that this effect worsened if more of each drug was used. Madden et al. also found that a drug that strengthens muscle contractions at low doses and damages muscle at high doses in humans has similar effects in the model. As well as this model being used to screen for harmful effects of drugs before clinical trials, the technique used to create the model could be used to grow muscle tissue from patients with muscle diseases. This would help researchers and doctors to better understand the patient's condition and potentially develop more efficient therapies. Also, the technique could be eventually developed to grow healthy muscle tissue to implant in patients who have been injured. DOI: http://dx.doi.org/10.7554/eLife.04885.002
Author Madden, Lauran
Bursac, Nenad
Kraus, William E
Truskey, George A
Juhas, Mark
Author_xml – sequence: 1
  givenname: Lauran
  surname: Madden
  fullname: Madden, Lauran
  organization: Department of Biomedical Engineering, Duke University, Durham, United States
– sequence: 2
  givenname: Mark
  surname: Juhas
  fullname: Juhas, Mark
  organization: Department of Biomedical Engineering, Duke University, Durham, United States
– sequence: 3
  givenname: William E
  surname: Kraus
  fullname: Kraus, William E
  organization: Department of Medicine, Duke University School of Medicine, Durham, United States
– sequence: 4
  givenname: George A
  surname: Truskey
  fullname: Truskey, George A
  organization: Department of Biomedical Engineering, Duke University, Durham, United States
– sequence: 5
  givenname: Nenad
  surname: Bursac
  fullname: Bursac, Nenad
  organization: Department of Biomedical Engineering, Duke University, Durham, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25575180$$D View this record in MEDLINE/PubMed
BookMark eNptkt1rFDEUxYO02A_75LsM-CLI1tzJx2RehFqsLSz4oIJvIZO52WadSdZkRuh_b3a3lbaYl4R7f_fkkJwTchBiQEJeAz1vhOAfcOkdnlOulHhBjmsq6IIq_vPg0fmInOW8pmU1BYP2JTmqhWgEKHpMvn3yEcPKB8SEfXU7jyZU413s5tAPmKvRj95WdvDBWzNUCfMmhlwa0VX5Fw44leo4ZztgNcWqT_MqvyKHzgwZz-73U_Lj6vP3y-vF8uuXm8uL5cJKgGlhjMWuZhI6Ja2rOVjaSlf3tTKWMYbCCg4GQfLWONOLum4cgFRWsMIzYKfkZq_bR7PWm-RHk-50NF7vCjGttEmTL9Z03VkLPeVNqxwHbFqwtlGdNM5KJ3petD7utTZzN2JvMUzJDE9En3aCv9Wr-EdzxpoGaBF4dy-Q4u8Z86RHny0OgwkY56xBioaBUnx719tn6DrOKZSn0tBKKaiSqi3Um8eO_ll5-LsCwB6wKeac0GnrJzP5uDXoBw1UbyOidxHRu4iUmffPZh5k_0f_BRmXvm8
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3030098
crossref_primary_10_1002_advs_202203388
crossref_primary_10_1091_mbc_e17_01_0046
crossref_primary_10_1016_j_semcdb_2017_10_031
crossref_primary_10_1096_fba_2019_00013
crossref_primary_10_1186_s12915_020_00884_3
crossref_primary_10_1088_1748_605X_ab95e2
crossref_primary_10_3389_fbioe_2017_00022
crossref_primary_10_1146_annurev_bioeng_071114_040640
crossref_primary_10_1016_j_diff_2017_07_004
crossref_primary_10_1002_acr2_11760
crossref_primary_10_1002_adfm_201502018
crossref_primary_10_7554_eLife_60145
crossref_primary_10_1016_j_biomaterials_2024_122840
crossref_primary_10_1038_srep42296
crossref_primary_10_1002_adma_202105883
crossref_primary_10_3389_fcell_2025_1651553
crossref_primary_10_1088_1748_3190_aa5e5f
crossref_primary_10_1007_s10439_016_1592_8
crossref_primary_10_1038_s41526_024_00353_z
crossref_primary_10_1177_1535370221989259
crossref_primary_10_3389_fphys_2018_01130
crossref_primary_10_1002_adhm_202402201
crossref_primary_10_1089_ten_tea_2021_0202
crossref_primary_10_1002_btm2_10644
crossref_primary_10_1152_ajpcell_00308_2024
crossref_primary_10_1161_CIRCRESAHA_124_325562
crossref_primary_10_1089_ten_teb_2025_0017
crossref_primary_10_1002_advs_202413998
crossref_primary_10_1016_j_biomaterials_2022_121508
crossref_primary_10_1038_s41536_022_00222_x
crossref_primary_10_1016_j_bbe_2017_12_001
crossref_primary_10_1038_s41536_022_00216_9
crossref_primary_10_1088_1758_5090_ac165b
crossref_primary_10_1016_j_copbio_2017_05_003
crossref_primary_10_3389_fcell_2022_830415
crossref_primary_10_1038_s42003_025_07970_8
crossref_primary_10_1080_17460441_2020_1700225
crossref_primary_10_1002_bit_27231
crossref_primary_10_1371_journal_pone_0192654
crossref_primary_10_3390_cells11071233
crossref_primary_10_1038_s41467_024_51318_5
crossref_primary_10_1038_s41467_017_02636_4
crossref_primary_10_1002_admt_202300595
crossref_primary_10_1134_S0006297924120010
crossref_primary_10_3390_bioengineering4020056
crossref_primary_10_1016_j_biomaterials_2018_11_030
crossref_primary_10_1038_srep38815
crossref_primary_10_1002_term_3266
crossref_primary_10_1063_5_0054984
crossref_primary_10_1089_ten_tea_2023_0007
crossref_primary_10_1016_j_cobme_2020_05_006
crossref_primary_10_1038_s41467_017_01946_x
crossref_primary_10_1002_adma_202110441
crossref_primary_10_1002_advs_202403622
crossref_primary_10_3389_fcell_2023_996952
crossref_primary_10_1016_j_actbio_2024_09_020
crossref_primary_10_1093_rb_rbaf059
crossref_primary_10_1038_s41598_020_62837_8
crossref_primary_10_1016_j_biomaterials_2018_08_058
crossref_primary_10_1089_ten_tea_2020_0255
crossref_primary_10_1016_j_biomaterials_2022_121649
crossref_primary_10_1126_scitranslmed_abn9074
crossref_primary_10_3390_bioengineering9110693
crossref_primary_10_1093_toxsci_kfaa049
crossref_primary_10_2174_1381612825666190308150055
crossref_primary_10_1016_j_biomaterials_2021_121033
crossref_primary_10_3390_bioengineering9110685
crossref_primary_10_7554_eLife_44530
crossref_primary_10_3389_fmed_2023_1247778
crossref_primary_10_1089_ten_tea_2020_0005
crossref_primary_10_1002_smtd_202100276
crossref_primary_10_1042_EBC20200149
crossref_primary_10_1089_ten_tea_2024_0044
crossref_primary_10_1080_17460441_2020_1736031
crossref_primary_10_1242_dmm_050107
crossref_primary_10_3389_fpubh_2018_00185
crossref_primary_10_1016_j_addr_2018_02_009
crossref_primary_10_1159_000447323
crossref_primary_10_1007_s00466_020_01882_6
crossref_primary_10_1089_ten_tea_2015_5000_abstracts
crossref_primary_10_1007_s00125_015_3629_1
crossref_primary_10_1016_j_jhep_2024_01_002
crossref_primary_10_1089_ten_tec_2016_0264
crossref_primary_10_1093_rheumatology_keae082
crossref_primary_10_1002_stem_2502
crossref_primary_10_1002_adhm_201701498
crossref_primary_10_1089_ten_tea_2015_0359
crossref_primary_10_1371_journal_pone_0272610
crossref_primary_10_1039_D4MH00552J
crossref_primary_10_3389_fbioe_2019_00020
crossref_primary_10_1002_advs_202203368
crossref_primary_10_1016_j_biomaterials_2016_09_024
crossref_primary_10_1002_adhm_202401844
crossref_primary_10_1073_pnas_2100077118
crossref_primary_10_1159_000443634
crossref_primary_10_1186_s13395_021_00268_3
crossref_primary_10_1016_j_ymeth_2015_10_002
crossref_primary_10_1371_journal_pone_0232081
crossref_primary_10_1002_term_2415
crossref_primary_10_1016_j_yexcr_2022_113133
crossref_primary_10_1002_admt_202300845
crossref_primary_10_12688_f1000research_8237_1
crossref_primary_10_3389_fphys_2018_01076
crossref_primary_10_3233_JND_221574
crossref_primary_10_1002_wnan_1777
crossref_primary_10_1016_j_biomaterials_2021_121273
crossref_primary_10_1186_s13395_015_0050_x
crossref_primary_10_1371_journal_pone_0191497
crossref_primary_10_1002_adma_202207443
crossref_primary_10_1007_s42235_023_00355_9
crossref_primary_10_1111_jcmm_14292
crossref_primary_10_1002_adhm_202404695
crossref_primary_10_1016_j_yjmcc_2024_12_003
crossref_primary_10_1016_j_ymeth_2015_09_019
crossref_primary_10_1038_s42003_021_02059_4
crossref_primary_10_1038_s41551_018_0312_0
crossref_primary_10_1038_s41551_018_0290_2
crossref_primary_10_1002_smsc_202400228
crossref_primary_10_3390_molecules21091128
crossref_primary_10_1038_s41538_021_00090_7
crossref_primary_10_1088_1758_5090_ab1e7c
crossref_primary_10_1007_s42765_024_00433_5
crossref_primary_10_1002_wnan_1703
crossref_primary_10_3390_biology10060539
crossref_primary_10_1089_ten_tea_2018_0165
crossref_primary_10_1016_j_biomaterials_2019_119708
crossref_primary_10_1002_admi_202400382
crossref_primary_10_1186_s13567_021_00942_w
crossref_primary_10_1093_brain_awae379
crossref_primary_10_3389_fphys_2021_619710
crossref_primary_10_1089_ten_tec_2018_0062
crossref_primary_10_3390_bioengineering9120744
crossref_primary_10_1016_j_actbio_2021_01_017
crossref_primary_10_1021_acsbiomaterials_4c02225
crossref_primary_10_1038_am_2015_148
crossref_primary_10_1002_bit_27989
crossref_primary_10_1080_10255842_2015_1069557
crossref_primary_10_1093_cvr_cvab232
crossref_primary_10_1073_pnas_2426081122
crossref_primary_10_3390_ijms222413221
crossref_primary_10_1002_adhm_201900626
crossref_primary_10_1038_s41419_019_1647_5
crossref_primary_10_1177_20417314221122127
crossref_primary_10_3390_mi7120233
crossref_primary_10_3390_bioengineering7030085
crossref_primary_10_3390_ijms21217840
crossref_primary_10_1097_BOR_0000000000000697
crossref_primary_10_1016_j_actbio_2024_11_014
crossref_primary_10_1016_j_semcdb_2016_09_012
crossref_primary_10_1042_BSR20220284
crossref_primary_10_1002_advs_202400188
crossref_primary_10_1242_dmm_041368
crossref_primary_10_1002_bit_27075
crossref_primary_10_1038_srep28855
crossref_primary_10_7554_eLife_77204
crossref_primary_10_3390_cells14120882
crossref_primary_10_1007_s10439_019_02263_8
crossref_primary_10_1002_adfm_202417184
crossref_primary_10_1002_adbi_202000121
crossref_primary_10_1111_acel_13650
crossref_primary_10_1002_jcp_25960
crossref_primary_10_1016_j_drudis_2016_04_015
crossref_primary_10_1007_s00383_024_05811_z
crossref_primary_10_1016_j_mtbio_2025_101456
crossref_primary_10_1093_rheumatology_kead186
crossref_primary_10_1155_2023_9802235
crossref_primary_10_1016_j_biomaterials_2022_121935
crossref_primary_10_1177_2041731420985205
crossref_primary_10_1007_s00018_016_2285_z
crossref_primary_10_3390_mi9120671
crossref_primary_10_1088_1758_5090_ad4ba1
crossref_primary_10_3389_fcell_2021_661036
crossref_primary_10_3389_fphys_2025_1575689
crossref_primary_10_1063_5_0233737
crossref_primary_10_1089_adt_2018_860
crossref_primary_10_1126_scirobotics_adr5512
crossref_primary_10_1002_adhm_202403712
crossref_primary_10_1002_adbi_201900005
crossref_primary_10_3390_jfb16010021
crossref_primary_10_1016_j_addr_2018_10_010
crossref_primary_10_1016_j_arr_2024_102543
crossref_primary_10_3389_fceng_2025_1637075
crossref_primary_10_1002_smtd_202200849
crossref_primary_10_1002_adma_202501147
crossref_primary_10_1038_srep36498
crossref_primary_10_3389_fbioe_2021_782333
crossref_primary_10_7554_eLife_65512
crossref_primary_10_1016_j_tibtech_2024_08_001
crossref_primary_10_1140_epje_s10189_025_00497_0
crossref_primary_10_1038_s41598_021_91203_5
crossref_primary_10_1002_adfm_202401564
crossref_primary_10_1016_j_msec_2022_112661
crossref_primary_10_1038_s42003_021_02691_0
crossref_primary_10_1242_dmm_044867
crossref_primary_10_1016_j_actbio_2017_04_027
crossref_primary_10_1111_jcmm_16899
crossref_primary_10_7554_eLife_81738
crossref_primary_10_1021_acs_chemrev_4c00785
crossref_primary_10_3390_jpm10040178
crossref_primary_10_1038_s41596_022_00790_8
crossref_primary_10_1088_1758_5090_ab8f36
crossref_primary_10_1126_sciadv_adw5786
crossref_primary_10_1002_bit_28125
crossref_primary_10_1088_1758_5090_acfb3d
crossref_primary_10_1159_000446067
crossref_primary_10_1124_pharmrev_120_000238
crossref_primary_10_1083_jcb_201709054
crossref_primary_10_3390_ijms22115654
crossref_primary_10_1039_C7CS00445A
crossref_primary_10_1002_cm_21553
crossref_primary_10_1038_srep44570
crossref_primary_10_1016_j_drudis_2015_10_007
crossref_primary_10_1002_adhm_201700550
crossref_primary_10_1016_j_isci_2024_109199
crossref_primary_10_3389_fphys_2022_937899
crossref_primary_10_1016_j_biomaterials_2018_01_002
crossref_primary_10_1038_srep42290
crossref_primary_10_1038_s41598_018_32163_1
crossref_primary_10_7554_eLife_06430
crossref_primary_10_1016_j_biomaterials_2020_120154
crossref_primary_10_1038_s41598_020_78987_8
crossref_primary_10_1016_j_biomaterials_2019_119416
crossref_primary_10_1016_j_yexcr_2018_06_015
crossref_primary_10_1038_s42003_023_05439_0
Cites_doi 10.1016/j.ymeth.2008.10.016
10.1016/S0009-9236(98)90034-0
10.1016/j.pharmthera.2006.03.003
10.1002/mus.20504
10.1016/j.biocel.2013.05.016
10.1089/tea.2007.0104
10.1016/j.biomaterials.2014.07.035
10.1177/1535370214538589
10.1073/pnas.78.9.5623
10.1152/ajpcell.00595.2001
10.1126/science.1099993
10.1152/physrev.2000.80.3.1215
10.1002/mus.20931
10.1152/jn.1999.81.4.1718
10.1016/j.biomaterials.2011.01.062
10.1038/sj.mt.6300027
10.1007/BF02623656
10.1111/j.1399-6576.1982.tb01760.x
10.1111/j.1742-4658.2007.05935.x
10.1089/ten.tea.2010.0700
10.1152/jappl.2000.89.2.606
10.1016/S0002-9149(98)00424-X
10.1039/c3bm60166h
10.1016/j.jbiotec.2014.05.029
10.1073/pnas.1402723111
10.1113/jphysiol.2013.252650
10.1038/nbt.2989
10.1177/1545968305277167
10.1152/ajpcell.00179.2013
10.1152/japplphysiol.00273.2004
10.1016/j.pharmthera.2008.06.003
10.1038/nrd3845
10.1016/j.amjcard.2005.12.013
10.1038/nrendo.2012.49
10.1016/S0079-6107(00)00006-7
10.1371/journal.pone.0036221
10.1038/nature12354
10.1111/j.1440-1681.1974.tb00542.x
10.1152/jappl.1999.86.5.1445
10.1126/scitranslmed.3003497
10.1002/jcp.22271
10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2
10.1038/nbt.2914
10.1089/ten.tea.2012.0597
ContentType Journal Article
Copyright 2015, Madden et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2015, Madden et al 2015 Madden et al
Copyright_xml – notice: 2015, Madden et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2015, Madden et al 2015 Madden et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.04885
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
ProQuest Biological Science
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_2bcc1d04798f41e791cc78b6afc6f5d4
PMC4337710
25575180
10_7554_eLife_04885
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UH2 TR000505
– fundername: NCATS NIH HHS
  grantid: UH3 TR000505
– fundername: NIAMS NIH HHS
  grantid: R01 AR065873
– fundername: NCATS NIH HHS
  grantid: UH2TR000505
– fundername: NIAMS NIH HHS
  grantid: R01 AR055226
– fundername: NIAMS NIH HHS
  grantid: R01AR065873
– fundername: NIAMS NIH HHS
  grantid: R01AR055226
– fundername: ;
  grantid: R01AR055226 and R01AR065873
– fundername: ;
  grantid: UH2TR000505
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c611t-aaceb2361b86cf241c096f2d28ac333e5c541ae1649afad5227f1168c536cf313
IEDL.DBID 7X7
ISICitedReferencesCount 298
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000347916200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-084X
IngestDate Fri Oct 03 12:50:27 EDT 2025
Tue Nov 04 01:59:44 EST 2025
Fri Sep 05 13:57:32 EDT 2025
Tue Oct 07 06:52:58 EDT 2025
Mon Jul 21 05:48:12 EDT 2025
Sat Nov 29 04:58:59 EST 2025
Tue Nov 18 22:26:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords human biology
muscle physiology
contractile force
drug testing
tissue engineering
medicine
human
human skeletal muscle
Language English
License This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c611t-aaceb2361b86cf241c096f2d28ac333e5c541ae1649afad5227f1168c536cf313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1966508689?pq-origsite=%requestingapplication%
PMID 25575180
PQID 1966508689
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_2bcc1d04798f41e791cc78b6afc6f5d4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4337710
proquest_miscellaneous_1657318844
proquest_journals_1966508689
pubmed_primary_25575180
crossref_citationtrail_10_7554_eLife_04885
crossref_primary_10_7554_eLife_04885
PublicationCentury 2000
PublicationDate 2015-01-09
PublicationDateYYYYMMDD 2015-01-09
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-09
  day: 09
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2015
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Kleinstreuer (bib25) 2014; 32
Secher (bib38) 1982; 26
Mudera (bib31) 2010; 225
Salva (bib37) 2007; 15
Burniston (bib6) 2006; 33
Dobkin (bib14) 2005; 19
Kalamida (bib23) 2007; 274
Lee (bib26) 2013; 19
Bowes (bib5) 2012; 11
Powell (bib33) 2002; 283
Blau (bib3) 1981; 78
Bhatia (bib2) 2014; 32
Dennis (bib13) 2000; 36
Hinds (bib19) 2011; 32
Racca (bib34) 2013; 591
Shitara (bib40) 2006; 112
Chen (bib8) 2013; 499
Berchtold (bib1) 2000; 80
Lee (bib27) 2012; 7
Ciciliot (bib11) 2013; 45
Huang (bib20) 2005; 98
von Keutz (bib44) 1998; 82
Cheng (bib10) 2014; 306
Cheng (bib9) 2014; 239
Rassier (bib35) 1999; 86
Bottinelli (bib4) 2000; 73
Chen (bib7) 2000; 89
Ham (bib18) 1988; 24
Ryall (bib36) 2008; 120
Pedersen (bib32) 2012; 8
Fuglevand (bib16) 1999; 81
Kantola (bib24) 1998; 63
Shintani (bib39) 2004; 306
Dambach (bib12) 2012; 4
Guo (bib17) 2014; 2
Thompson (bib42) 2006; 97
Vandenburgh (bib43) 2008; 37
Juhas (bib22) 2014; 111
Juhas (bib21) 2014; 35
Smith (bib41) 2014; 185
Moulds (bib30) 1974; 1
Li (bib28) 2011; 17
Eberli (bib15) 2009; 47
Moon du (bib29) 2008; 14
18952174 - Methods. 2009 Feb;47(2):98-103
23629510 - J Physiol. 2013 Jun 15;591(Pt 12):3049-61
10937836 - In Vitro Cell Dev Biol Anim. 2000 May;36(5):327-35
24706792 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5508-13
22558391 - PLoS One. 2012;7(4):e36221
25093883 - Nat Biotechnol. 2014 Aug;32(8):760-72
23702032 - Int J Biochem Cell Biol. 2013 Oct;45(10):2191-9
24516722 - Biomater Sci. 2014 Jan 1;2(1):131-138
23136041 - Sci Transl Med. 2012 Nov 7;4(159):159ps22
24912506 - Exp Biol Med (Maywood). 2014 Sep;239(9):1203-14
24336652 - Am J Physiol Cell Physiol. 2014 Feb 15;306(4):C385-95
24837663 - Nat Biotechnol. 2014 Jun;32(6):583-91
4458993 - Clin Exp Pharmacol Physiol. 1974 May-Jun;1(3):197-209
7113631 - Acta Anaesthesiol Scand. 1982 Jun;26(3):231-4
22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65
25154662 - Biomaterials. 2014 Nov;35(35):9438-46
10200207 - J Neurophysiol. 1999 Apr;81(4):1718-29
16714062 - Pharmacol Ther. 2006 Oct;112(1):71-105
6946499 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623-7
18399787 - Tissue Eng Part A. 2008 Apr;14(4):473-82
9737641 - Am J Cardiol. 1998 Aug 27;82(4B):11J-17J
25686011 - Elife. 2015;4:e06430
18834902 - Pharmacol Ther. 2008 Dec;120(3):219-32
17235310 - Mol Ther. 2007 Feb;15(2):320-9
24909944 - J Biotechnol. 2014 Sep 20;185:15-8
10926644 - J Appl Physiol (1985). 2000 Aug;89(2):606-12
21324402 - Biomaterials. 2011 May;32(14):3575-83
15528435 - Science. 2004 Nov 5;306(5698):990-5
23197038 - Nat Rev Drug Discov. 2012 Dec;11(12):909-22
12372817 - Am J Physiol Cell Physiol. 2002 Nov;283(5):C1557-65
21657983 - Tissue Eng Part A. 2011 Nov;17(21-22):2641-50
23868258 - Nature. 2013 Jul 18;499(7458):295-300
16411205 - Muscle Nerve. 2006 May;33(5):655-63
17651090 - FEBS J. 2007 Aug;274(15):3799-845
10958931 - Prog Biophys Mol Biol. 2000;73(2-4):195-262
3045074 - In Vitro Cell Dev Biol. 1988 Aug;24(8):833-44
10233103 - J Appl Physiol (1985). 1999 May;86(5):1445-57
18236465 - Muscle Nerve. 2008 Apr;37(4):438-47
16581332 - Am J Cardiol. 2006 Apr 17;97(8A):69C-76C
9585793 - Clin Pharmacol Ther. 1998 Apr;63(4):397-402
16093417 - Neurorehabil Neural Repair. 2005 Sep;19(3):259-63
10893434 - Physiol Rev. 2000 Jul;80(3):1215-65
15475606 - J Appl Physiol (1985). 2005 Feb;98(2):706-13
20533296 - J Cell Physiol. 2010 Nov;225(3):646-53
23574457 - Tissue Eng Part A. 2013 Oct;19(19-20):2147-55
References_xml – volume: 47
  start-page: 98
  year: 2009
  ident: bib15
  article-title: Optimization of human skeletal muscle precursor cell culture and myofiber formation in vitro
  publication-title: Methods
  doi: 10.1016/j.ymeth.2008.10.016
– volume: 63
  start-page: 397
  year: 1998
  ident: bib24
  article-title: Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid
  publication-title: Clinical Pharmacology and Therapeutics
  doi: 10.1016/S0009-9236(98)90034-0
– volume: 112
  start-page: 71
  year: 2006
  ident: bib40
  article-title: Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions
  publication-title: Pharmacology and Therapeutics
  doi: 10.1016/j.pharmthera.2006.03.003
– volume: 33
  start-page: 655
  year: 2006
  ident: bib6
  article-title: Dose-dependent separation of the hypertrophic and myotoxic effects of the beta(2)-adrenergic receptor agonist clenbuterol in rat striated muscles
  publication-title: Muscle Nerve
  doi: 10.1002/mus.20504
– volume: 45
  start-page: 2191
  year: 2013
  ident: bib11
  article-title: Muscle type and fiber type specificity in muscle wasting
  publication-title: The International Journal of Biochemistry and Cell Biology
  doi: 10.1016/j.biocel.2013.05.016
– volume: 14
  start-page: 473
  year: 2008
  ident: bib29
  article-title: Cyclic mechanical preconditioning improves engineered muscle contraction
  publication-title: Tissue Engineering. Part A
  doi: 10.1089/tea.2007.0104
– volume: 35
  start-page: 9438
  year: 2014
  ident: bib21
  article-title: Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.07.035
– volume: 239
  start-page: 1203
  year: 2014
  ident: bib9
  article-title: Physiology and metabolism of tissue-engineered skeletal muscle
  publication-title: Experimental Biology and Medicine
  doi: 10.1177/1535370214538589
– volume: 78
  start-page: 5623
  year: 1981
  ident: bib3
  article-title: Isolation and characterization of human muscle cells
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.78.9.5623
– volume: 283
  start-page: C1557
  year: 2002
  ident: bib33
  article-title: Mechanical stimulation improves tissue-engineered human skeletal muscle
  publication-title: American Journal of Physiology Cell Physiology
  doi: 10.1152/ajpcell.00595.2001
– volume: 306
  start-page: 990
  year: 2004
  ident: bib39
  article-title: Autophagy in health and disease: a double-edged sword
  publication-title: Science
  doi: 10.1126/science.1099993
– volume: 80
  start-page: 1215
  year: 2000
  ident: bib1
  article-title: Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease
  publication-title: Physiological Reviews
  doi: 10.1152/physrev.2000.80.3.1215
– volume: 37
  start-page: 438
  year: 2008
  ident: bib43
  article-title: Drug-screening platform based on the contractility of tissue-engineered muscle
  publication-title: Muscle and Nerve
  doi: 10.1002/mus.20931
– volume: 81
  start-page: 1718
  year: 1999
  ident: bib16
  article-title: Force-frequency and fatigue properties of motor units in muscles that control digits of the human hand
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.1999.81.4.1718
– volume: 32
  start-page: 3575
  year: 2011
  ident: bib19
  article-title: The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.01.062
– volume: 15
  start-page: 320
  year: 2007
  ident: bib37
  article-title: Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle
  publication-title: Molecular Therapy
  doi: 10.1038/sj.mt.6300027
– volume: 24
  start-page: 833
  year: 1988
  ident: bib18
  article-title: Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum
  publication-title: In Vitro Cellular and Developmental Biology
  doi: 10.1007/BF02623656
– volume: 26
  start-page: 231
  year: 1982
  ident: bib38
  article-title: Effect of tubocurarine on human soleus and gastrocnemius muscles
  publication-title: Acta Anaesthesiologica Scandinavica
  doi: 10.1111/j.1399-6576.1982.tb01760.x
– volume: 274
  start-page: 3799
  year: 2007
  ident: bib23
  article-title: Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity
  publication-title: The FEBS Journal
  doi: 10.1111/j.1742-4658.2007.05935.x
– volume: 17
  start-page: 2641
  year: 2011
  ident: bib28
  article-title: The role of fibroblasts in self-assembled skeletal muscle
  publication-title: Tissue Engineering. Part A
  doi: 10.1089/ten.tea.2010.0700
– volume: 89
  start-page: 606
  year: 2000
  ident: bib7
  article-title: A physiological level of clenbuterol does not prevent atrophy or loss of force in skeletal muscle of old rats
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.2000.89.2.606
– volume: 82
  start-page: 11J
  year: 1998
  ident: bib44
  article-title: Preclinical safety evaluation of cerivastatin, a novel HMG-CoA reductase inhibitor
  publication-title: The American Journal of Cardiology
  doi: 10.1016/S0002-9149(98)00424-X
– volume: 2
  start-page: 131
  year: 2014
  ident: bib17
  article-title: In vitro differentiation of functional human skeletal myotubes in a defined system
  publication-title: Biomaterials Science
  doi: 10.1039/c3bm60166h
– volume: 185
  start-page: 15
  year: 2014
  ident: bib41
  article-title: A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro
  publication-title: Journal of Biotechnology
  doi: 10.1016/j.jbiotec.2014.05.029
– volume: 111
  start-page: 5508
  year: 2014
  ident: bib22
  article-title: Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.1402723111
– volume: 591
  start-page: 3049
  year: 2013
  ident: bib34
  article-title: Contractility and kinetics of human fetal and human adult skeletal muscle
  publication-title: The Journal of Physiology
  doi: 10.1113/jphysiol.2013.252650
– volume: 32
  start-page: 760
  year: 2014
  ident: bib2
  article-title: Microfluidic organs-on-chips
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2989
– volume: 19
  start-page: 259
  year: 2005
  ident: bib14
  article-title: Underappreciated statin-induced myopathic weakness causes disability
  publication-title: Neurorehabilitation and Neural Repair
  doi: 10.1177/1545968305277167
– volume: 306
  start-page: C385
  year: 2014
  ident: bib10
  article-title: Conditions that promote primary human skeletal myoblast culture and muscle differentiation in vitro
  publication-title: American Journal of Physiology Cell Physiology
  doi: 10.1152/ajpcell.00179.2013
– volume: 98
  start-page: 706
  year: 2005
  ident: bib20
  article-title: Rapid formation of functional muscle in vitro using fibrin gels
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00273.2004
– volume: 120
  start-page: 219
  year: 2008
  ident: bib36
  article-title: The potential and the pitfalls of beta-adrenoceptor agonists for the management of skeletal muscle wasting
  publication-title: Pharmacology and Therapeutics
  doi: 10.1016/j.pharmthera.2008.06.003
– volume: 11
  start-page: 909
  year: 2012
  ident: bib5
  article-title: Reducing safety-related drug attrition: the use of in vitro pharmacological profiling
  publication-title: Nature Reviews. Drug Discovery
  doi: 10.1038/nrd3845
– volume: 97
  start-page: 69C
  year: 2006
  ident: bib42
  article-title: An assessment of statin safety by muscle experts
  publication-title: The American Journal of Cardiology
  doi: 10.1016/j.amjcard.2005.12.013
– volume: 8
  start-page: 457
  year: 2012
  ident: bib32
  article-title: Muscles, exercise and obesity: skeletal muscle as a secretory organ
  publication-title: Nature Reviews Endocrinology
  doi: 10.1038/nrendo.2012.49
– volume: 73
  start-page: 195
  year: 2000
  ident: bib4
  article-title: Human skeletal muscle fibres: molecular and functional diversity
  publication-title: Progress in Biophysics and Molecular Biology
  doi: 10.1016/S0079-6107(00)00006-7
– volume: 7
  start-page: e36221
  year: 2012
  ident: bib27
  article-title: Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0036221
– volume: 499
  start-page: 295
  year: 2013
  ident: bib8
  article-title: Ultrasensitive fluorescent proteins for imaging neuronal activity
  publication-title: Nature
  doi: 10.1038/nature12354
– volume: 1
  start-page: 197
  year: 1974
  ident: bib30
  article-title: A study of the action of caffeine, halothane, potassium chloride and procaine on normal human skeletal muscle
  publication-title: Clinical and Experimental Pharmacology and Physiology
  doi: 10.1111/j.1440-1681.1974.tb00542.x
– volume: 86
  start-page: 1445
  year: 1999
  ident: bib35
  article-title: Length dependence of active force production in skeletal muscle
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1999.86.5.1445
– volume: 4
  start-page: 159ps22
  year: 2012
  ident: bib12
  article-title: Improving risk assessment
  publication-title: Science Translational Medicine
  doi: 10.1126/scitranslmed.3003497
– volume: 225
  start-page: 646
  year: 2010
  ident: bib31
  article-title: The effect of cell density on the maturation and contractile ability of muscle derived cells in a 3D tissue-engineered skeletal muscle model and determination of the cellular and mechanical stimuli required for the synthesis of a postural phenotype
  publication-title: Journal of Cellular Physiology
  doi: 10.1002/jcp.22271
– volume: 36
  start-page: 327
  year: 2000
  ident: bib13
  article-title: Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro
  publication-title: In Vitro Cellular and Developmental Biology Animal
  doi: 10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2
– volume: 32
  start-page: 583
  year: 2014
  ident: bib25
  article-title: Phenotypic screening of the ToxCast chemical library to classify toxic and therapeutic mechanisms
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt.2914
– volume: 19
  start-page: 2147
  year: 2013
  ident: bib26
  article-title: Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system
  publication-title: Tissue Engineering. Part A
  doi: 10.1089/ten.tea.2012.0597
– reference: 18952174 - Methods. 2009 Feb;47(2):98-103
– reference: 16714062 - Pharmacol Ther. 2006 Oct;112(1):71-105
– reference: 12372817 - Am J Physiol Cell Physiol. 2002 Nov;283(5):C1557-65
– reference: 24336652 - Am J Physiol Cell Physiol. 2014 Feb 15;306(4):C385-95
– reference: 9737641 - Am J Cardiol. 1998 Aug 27;82(4B):11J-17J
– reference: 24912506 - Exp Biol Med (Maywood). 2014 Sep;239(9):1203-14
– reference: 16581332 - Am J Cardiol. 2006 Apr 17;97(8A):69C-76C
– reference: 21324402 - Biomaterials. 2011 May;32(14):3575-83
– reference: 10233103 - J Appl Physiol (1985). 1999 May;86(5):1445-57
– reference: 18236465 - Muscle Nerve. 2008 Apr;37(4):438-47
– reference: 23629510 - J Physiol. 2013 Jun 15;591(Pt 12):3049-61
– reference: 23574457 - Tissue Eng Part A. 2013 Oct;19(19-20):2147-55
– reference: 23197038 - Nat Rev Drug Discov. 2012 Dec;11(12):909-22
– reference: 10958931 - Prog Biophys Mol Biol. 2000;73(2-4):195-262
– reference: 25154662 - Biomaterials. 2014 Nov;35(35):9438-46
– reference: 17651090 - FEBS J. 2007 Aug;274(15):3799-845
– reference: 18399787 - Tissue Eng Part A. 2008 Apr;14(4):473-82
– reference: 17235310 - Mol Ther. 2007 Feb;15(2):320-9
– reference: 10937836 - In Vitro Cell Dev Biol Anim. 2000 May;36(5):327-35
– reference: 25093883 - Nat Biotechnol. 2014 Aug;32(8):760-72
– reference: 16093417 - Neurorehabil Neural Repair. 2005 Sep;19(3):259-63
– reference: 9585793 - Clin Pharmacol Ther. 1998 Apr;63(4):397-402
– reference: 22558391 - PLoS One. 2012;7(4):e36221
– reference: 24706792 - Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5508-13
– reference: 25686011 - Elife. 2015;4:e06430
– reference: 24516722 - Biomater Sci. 2014 Jan 1;2(1):131-138
– reference: 10893434 - Physiol Rev. 2000 Jul;80(3):1215-65
– reference: 20533296 - J Cell Physiol. 2010 Nov;225(3):646-53
– reference: 22473333 - Nat Rev Endocrinol. 2012 Aug;8(8):457-65
– reference: 23868258 - Nature. 2013 Jul 18;499(7458):295-300
– reference: 4458993 - Clin Exp Pharmacol Physiol. 1974 May-Jun;1(3):197-209
– reference: 7113631 - Acta Anaesthesiol Scand. 1982 Jun;26(3):231-4
– reference: 15475606 - J Appl Physiol (1985). 2005 Feb;98(2):706-13
– reference: 16411205 - Muscle Nerve. 2006 May;33(5):655-63
– reference: 6946499 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623-7
– reference: 10926644 - J Appl Physiol (1985). 2000 Aug;89(2):606-12
– reference: 3045074 - In Vitro Cell Dev Biol. 1988 Aug;24(8):833-44
– reference: 10200207 - J Neurophysiol. 1999 Apr;81(4):1718-29
– reference: 24909944 - J Biotechnol. 2014 Sep 20;185:15-8
– reference: 23702032 - Int J Biochem Cell Biol. 2013 Oct;45(10):2191-9
– reference: 23136041 - Sci Transl Med. 2012 Nov 7;4(159):159ps22
– reference: 21657983 - Tissue Eng Part A. 2011 Nov;17(21-22):2641-50
– reference: 18834902 - Pharmacol Ther. 2008 Dec;120(3):219-32
– reference: 24837663 - Nat Biotechnol. 2014 Jun;32(6):583-91
– reference: 15528435 - Science. 2004 Nov 5;306(5698):990-5
SSID ssj0000748819
Score 2.537831
Snippet Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e04885
SubjectTerms Acetylcholine - pharmacology
Acetylcholine receptors
Bioengineering - methods
Biomechanical Phenomena - drug effects
Caffeine - pharmacology
Calcium
Calcium - metabolism
Calcium Signaling - drug effects
Cell culture
contractile force
Drug development
drug testing
Electrical stimuli
Genes, Reporter
Human Biology and Medicine
human skeletal muscle
Humans
Hydrogels
Hypertrophy
Immunoglobulins
Muscle contraction
Muscle Contraction - physiology
muscle physiology
Muscle, Skeletal - drug effects
Muscle, Skeletal - physiology
Musculoskeletal system
Myopathy
Physiology
Proteins
Receptor mechanisms
Reproducibility of Results
Rodents
Skeletal muscle
Tissue engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kUPBFzvOr5ykR7kmo12zapHlU8fDhOAQ_uLeSThItuq1st8L9906S7rIrB77cW2mmIZ1MMr_Jx28ATk1pFcEEzBetsjnhW5O3ytucS18YYWyZlga-XajLy_rqSn_aSfUVzoQleuCkuLNFi8htIEKvfcmd0hxR1a00HqWvbGQCLZTeCabiHKzIMLlOF_IUucwzd9F59ybYa7XngiJT_03w8t9Tkjtu5_wQHsx4kb1N7XwId1x_BPdSBsnrR_CZntxMKegsixn32PJ6aKdAnjCyZbfskG2uP7JVOhFLBYNn409yOYS92XIaqW62HphdTd_Hx_D1_MOX9x_zOU9CjpLzdW4MUnwsJG9riZ5cMlJc4heWFI9CCFdhVXLjKDDSxhtLiEt5zmWNlSB5wcUTOOiH3j0DVqBqjRdCm9aUXkrCY_R1uGapi9qVVQavN6prcCYRD7ksfjUUTAQ9N1HPTdRzBqdb4d-JO-NmsXehD7YigfA6viAzaGYzaP5nBhmcbHqwmUfh2NDsEgCorHUGr7bFNH7Cpojp3TCRjKwUzWt1SVU8TR2-bQmFW2FXqshA7ZnCXlP3S_ruR-ToLoVQBN6Ob-PfnsN9gmlVXPjRJ3CwXk3uBdzFP-tuXL2Mhv8XN_0MbQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs
URI https://www.ncbi.nlm.nih.gov/pubmed/25575180
https://www.proquest.com/docview/1966508689
https://www.proquest.com/docview/1657318844
https://pubmed.ncbi.nlm.nih.gov/PMC4337710
https://doaj.org/article/2bcc1d04798f41e791cc78b6afc6f5d4
Volume 4
WOSCitedRecordID wos000347916200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M7P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Science Database (NC LIVE)
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCxIX3qWBsjJST0ih63ViOydEUSuQ2lXES8spcvwoEd2kJBuk_nvGjjewqOLCxYriiTXKjD3fjO0ZhA5kojnABBXPS65jwLcyLrnVMWF2JqnUyRAa-HLKFwuxXGZ5CLh14VjlZk30C7VulIuRH4KmODDBRPb68kfsqka53dVQQuMmmriy2U7P-ZKPMRYwjwIs3nAtj4PhPDSnlTWvnNamW4bI5-u_DmT-fVbyD-Nzcu9_2b6P7gbYid8MevIA3TD1Q3R7KER59Qh9hCcTMhMajX3hPry6asre5WDo8KpaVQpvblHidjhYCx2Nxd13sFwA4fGq72BsvG6wbvvz7jH6fHL86e27OJRbiBUjZB1LqcDNpoyUgikLll2Be2PnGuSnKKUmVWlCpAH_KpNWagBu3BLChEop0FNCd9FO3dRmD-GZ4qW0lGaylIllDGAdfO1ua2YzYZI0Qi83_75QIRe5K4lxUYBP4gRVeEEVXlAROhiJL4cUHNeTHTkhjiQub7Z_0bTnRZiGxbxUimiXVl_YhBieEaW4KJm0itlUJxHa34ixCJO5K37LMEIvxm6Yhm5vRdam6YGGpRyWR5HAEE8GjRk5Aa_NbW7NIsS3dGmL1e2euvrmU30nlHLAgE__zdYzdAdwXOojQ9k-2lm3vXmObqmf66prp35O-FZM0eToeJF_mPrQA7Rn89y1HNpJ_v4s__oLPjUgvA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-BAkYqF6TQ9TqxkwNCvKquul2tREHtKTh-lAg2KckGtH-K38g4j4VFFbceuEXxxHKSzzPfjO0ZgG0ZaIE0QfmjVGgf-a30U2G1T7kdSiZ10IYGPk7EdBodHcWzDfjZn4Vx2yp7ndgoal0oFyPfQaQ4MsGj-OXpN99VjXKrq30JjRYW-2b5A1226sX4Lf7fp6PR7rvDN3t-V1XAV5zShS-lQm-ScZpGXFk0YApZvB1pHKZijJlQhQGVBt2IWFqpkZ8ISymPVMhQnlGG_V6AzQDBPhzA5mx8MDteRXXQIEdoY9uDgAJN9Y6ZZNY8d_MkXDN9TYWAs2jt37sz_zB3u9f-tw91Ha52xJq8amfCDdgw-U241JbaXN6C93hlutyLRpOmNCGZL4u0dlkmKjLP5pki_TlRUrZbh7GhsKT6grYZnRQyryvsmywKosv6pLoNH87lje7AIC9ycw_IUIlUWsZimcrAco7EFZ9251HjYWSC0INn_b9OVJdt3RX9-Jqg1-WAkTTASBpgeLC9Ej5tk4ycLfbagWYl4jKDNzeK8iTpFE0ySpWi2hUOiGxAjYipUiJKubSK21AHHmz1sEk6dVUlvzHjwZNVMyoat3okc1PUKMNDgQYgCrCLuy1CVyNBv9Qt3w09EGvYXRvqekuefW6SmQeMCWS59_89rMdwee_wYJJMxtP9B3AFWWvYxMHiLRgsyto8hIvq-yKrykfdjCTw6byx_QttjngX
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLSAuvB-BAkYqF6Sw63ViJweEKO2KqqvVipd6C44fZQWblGQD2r_Gr2OcFyyquPXALYonlpN8nvlmbM8A7MpAC6QJyh-nQvvIb6WfCqt9yu1IMqmDJjTwcSpms-j4OJ5vwc_uLIzbVtnpxFpR61y5GPkQkeLIBI_ioW23Rcz3Jy9Pv_mugpRbae3KaTQQOTLrH-i-lS8O9_FfPx2PJwfvX7_x2woDvuKUrnwpFXqWjNM04sqiMVPI6O1Y45AVY8yEKgyoNOhSxNJKjVxFWEp5pEKG8owy7PcCbAuGTs8AtvcOZvO3fYQHjXOE9rY5FCjQbA_NdGHNczdnwg0zWFcLOIvi_r1T8w_TN7n2P3-063C1JdzkVTNDbsCWyW7CpaYE5_oWvMMr0-ZkNJrUJQvJcp2nlcs-UZLlYrlQpDs_SopmSzE25JaUX9Bmo_NCllWJfZNVTnRRnZS34cO5vNEdGGR5Zu4BGSmRSstYLFMZWM6R0OLT7pxqPIpMEHrwrPvviWqzsLtiIF8T9MYcSJIaJEkNEg92e-HTJvnI2WJ7DkC9iMsYXt_Ii5OkVUDJOFWKaldQILIBNSKmSoko5dIqbkMdeLDTQShp1ViZ_MaPB0_6ZlRAblVJZiavUIaHAg1DFGAXdxu09iNBf9Ut6408EBs43hjqZku2-FwnOQ8YE8h-7_97WI_hMgI6mR7Ojh7AFSSzYR0ei3dgsCoq8xAuqu-rRVk8aicngU_nDe1fmuSAsQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioengineered+human+myobundles+mimic+clinical+responses+of+skeletal+muscle+to+drugs&rft.jtitle=eLife&rft.au=Madden+Lauran&rft.au=Juhas%2C+Mark&rft.au=Kraus%2C+William+E&rft.au=Truskey%2C+George+A&rft.date=2015-01-09&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=4&rft_id=info:doi/10.7554%2FeLife.04885&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon