role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome

Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-hos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental microbiology Ročník 11; číslo 11; s. 2789 - 2805
Hlavní autoři: Roucourt, Bart, Lavigne, Rob
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.11.2009
Blackwell Publishing Ltd
Témata:
ISSN:1462-2912, 1462-2920, 1462-2920
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.
AbstractList SummaryInteractions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.
Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.
Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.
Summary Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage–host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage–host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host‐cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage–host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell – many of them non‐essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.
Author Roucourt, Bart
Lavigne, Rob
Author_xml – sequence: 1
  fullname: Roucourt, Bart
– sequence: 2
  fullname: Lavigne, Rob
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19691505$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URB_wF8A72EzwI7FjJCqhqrQV5SFB1aXlxDczHjLJYHs60_76OqRkwYLijS3d75x7dY8P0V7Xd4AQpiSj6bxdZjQXbMYUIxkjRGWEEaay3RN0MBX2pjdl--gwhCUhVHJJnqF9qoSiBSkO0I3vW8B9g10XwZs6ur4LuIK4BejwemHmgE1ncZVK4J1p8dr3EVyCti4uXIfjApK4gVS3uIa2fYcNtu4GfBil683dXeu6-dSiX8Fz9LQxbYAXD_cRuvp4-uPkfHb59ezi5MPlrBaUqlkJhORMlpA3ja3AMiUtkbXNawmFqGzZ1AmrSFWqXNSSl2kMaVUieG54JfkRej36pql_bSBEvXJhGNJ00G-ClrmgBU8rfJzkeWqVq8HzzT9JykVBcqEYS-jLB3RTrcDqtXcr42_1n_0n4HgEat-H4KHRtYtmCCF641pNiR4C10s9ZKmHXPUQuP4duN4lg_Ivg6nH49L3o3TrWrj9b50-_XwxvJJ-NupdiLCb9Mb_1CL9s0JffznT3zjhBf-k9HXiX418Y3pt5t4FffWdEcoJFUoUUvJ7IlzbSg
CitedBy_id crossref_primary_10_1002_mbo3_1245
crossref_primary_10_1016_j_scitotenv_2024_170076
crossref_primary_10_1186_1471_2180_13_48
crossref_primary_10_1038_srep04823
crossref_primary_10_1093_femsre_fuaa041
crossref_primary_10_1093_nar_gkz1048
crossref_primary_10_3390_v14051057
crossref_primary_10_1111_j_1462_2920_2009_02101_x
crossref_primary_10_1016_j_biotechadv_2021_107758
crossref_primary_10_1016_j_copbio_2020_08_015
crossref_primary_10_1007_s00705_016_2944_2
crossref_primary_10_3389_fmicb_2020_00947
crossref_primary_10_3390_polym14030613
crossref_primary_10_1016_j_jprot_2014_02_016
crossref_primary_10_1111_1758_2229_12872
crossref_primary_10_1074_jbc_RA119_010007
crossref_primary_10_1128_JB_01080_13
crossref_primary_10_1371_journal_pgen_1005770
crossref_primary_10_1038_srep19237
crossref_primary_10_1016_j_jmb_2019_02_008
crossref_primary_10_1371_journal_pone_0172303
crossref_primary_10_1146_annurev_virology_092818_015644
crossref_primary_10_1128_AEM_03656_14
crossref_primary_10_1093_nar_gkac674
crossref_primary_10_1098_rstb_2024_0073
crossref_primary_10_3389_fmicb_2018_00002
crossref_primary_10_3390_v14030555
crossref_primary_10_1111_1574_6968_12402
crossref_primary_10_3389_fmicb_2023_1148579
crossref_primary_10_3390_v14020181
crossref_primary_10_1371_journal_pbio_3000877
crossref_primary_10_1016_j_molcel_2025_04_010
crossref_primary_10_3389_fmicb_2015_01242
crossref_primary_10_1371_journal_pgen_1003269
crossref_primary_10_3390_antibiotics7010015
crossref_primary_10_3390_ijms24109100
crossref_primary_10_1093_ve_veac086
crossref_primary_10_3390_v10100537
crossref_primary_10_1038_ismej_2015_210
crossref_primary_10_3389_fmicb_2022_830692
crossref_primary_10_1007_s10529_022_03229_y
crossref_primary_10_1128_msystems_00106_22
crossref_primary_10_1134_S0026261719040118
crossref_primary_10_1371_journal_pone_0035053
crossref_primary_10_1038_s41598_020_59396_3
crossref_primary_10_1074_jbc_M110_169003
crossref_primary_10_1093_nar_gkab793
crossref_primary_10_3390_ijms222212460
crossref_primary_10_1111_cmi_12330
crossref_primary_10_7554_eLife_16413
crossref_primary_10_1128_jvi_01769_21
crossref_primary_10_3389_fmicb_2023_1172635
crossref_primary_10_3390_biomedicines9040342
crossref_primary_10_3389_fmolb_2016_00037
crossref_primary_10_1016_j_addr_2016_03_003
crossref_primary_10_3390_life12081234
crossref_primary_10_3390_microorganisms8111707
crossref_primary_10_1016_j_isci_2023_107745
crossref_primary_10_1038_s41598_017_13363_7
crossref_primary_10_1128_AEM_01675_13
crossref_primary_10_1007_s00253_015_6674_2
crossref_primary_10_1038_ismej_2016_3
crossref_primary_10_1099_vir_0_043331_0
crossref_primary_10_1016_j_meegid_2016_06_011
crossref_primary_10_3389_fmicb_2016_01519
crossref_primary_10_1128_msystems_00017_20
crossref_primary_10_3389_fmicb_2022_1044143
crossref_primary_10_3390_microorganisms10112245
crossref_primary_10_1128_AEM_01170_19
crossref_primary_10_1128_AEM_00128_11
crossref_primary_10_1093_femsml_uqae002
crossref_primary_10_3390_v9060136
crossref_primary_10_3390_v13081557
crossref_primary_10_3389_fmicb_2016_00041
crossref_primary_10_3390_ijms22116159
crossref_primary_10_2217_fvl_15_3
crossref_primary_10_1038_s41564_024_01719_5
crossref_primary_10_3390_antibiotics11020164
crossref_primary_10_1128_spectrum_02372_23
crossref_primary_10_1089_phage_2020_0015
crossref_primary_10_3390_v12050544
crossref_primary_10_1093_molbev_msy027
crossref_primary_10_1016_j_foodres_2023_112665
crossref_primary_10_3390_v10080394
crossref_primary_10_1038_nrmicro_2017_61
crossref_primary_10_2217_fmb_14_147
crossref_primary_10_3389_fmicb_2017_00548
Cites_doi 10.1016/j.virol.2009.01.033
10.1046/j.1365-2958.1999.01147.x
10.1073/pnas.0501140102
10.1016/j.jmb.2007.12.077
10.1073/pnas.90.5.1761
10.1091/mbc.3.9.953
10.1016/S0021-9258(19)85067-6
10.1016/j.bbrc.2005.08.023
10.1007/978-1-4419-8632-0_8
10.1128/jb.170.7.3016-3024.1988
10.1016/j.jmb.2008.03.071
10.1128/JB.188.3.1184-1187.2006
10.1073/pnas.85.18.6632
10.1371/journal.pone.0000363
10.1016/j.dnarep.2005.08.007
10.1111/j.1365-2958.2008.06276.x
10.1016/S0021-9258(19)42709-9
10.1073/pnas.92.5.1451
10.1128/jb.177.10.2933-2937.1995
10.1038/nbt932
10.1016/j.tibtech.2004.07.004
10.1128/jb.175.1.85-93.1993
10.1146/annurev.genet.39.073003.113656
10.1006/jmbi.1995.0343
10.1111/j.1365-2958.2004.04204.x
10.1093/nar/9.22.5859
10.1006/plas.1996.0013
10.1128/JB.65.2.113-121.1953
10.1073/pnas.82.14.4678
10.1093/emboj/cdg603
10.1128/MMBR.67.1.86-156.2003
10.1038/228227a0
10.1073/pnas.48.2.293
10.1146/annurev.mi.25.100171.001101
10.1038/258354a0
10.1016/S0021-9258(18)54887-0
10.1128/JB.188.10.3470-3476.2006
10.1093/nar/gkm584
10.1128/MMBR.00013-07
10.1093/nar/9.19.4863
10.1146/annurev.bi.50.070181.001441
10.1128/JB.184.14.3957-3964.2002
10.1006/jmbi.1999.2782
10.1016/S0021-9258(17)39895-2
10.1016/S0022-2836(75)80140-9
10.1128/MMBR.48.4.299-325.1984
10.1016/S0021-9258(19)38298-5
10.1016/j.mib.2005.06.003
10.1126/science.1598572
10.1111/j.1432-1033.1975.tb20995.x
10.1006/jmbi.1999.2953
10.1073/pnas.76.10.4852
10.1016/S0022-2836(76)80032-0
10.1016/S0021-9258(19)34122-5
10.1128/jvi.24.3.736-745.1977
10.1016/S0021-9258(20)81892-4
10.1007/BF00285915
10.1038/197794a0
10.1146/annurev.mi.34.100180.001033
10.1016/S0021-9258(18)68277-8
10.1073/pnas.0408028101
10.1016/S0021-9258(17)36782-0
10.1006/jmbi.1997.1390
10.1128/jvi.61.2.366-374.1987
10.1006/jmbi.1998.2373
10.1016/j.jmb.2007.10.054
10.1038/sj.emboj.7600312
10.1016/S0968-0004(98)01193-1
10.1016/0022-2836(73)90003-X
10.1016/0042-6822(90)90437-V
10.1016/j.jmb.2006.08.074
10.1007/BF00268447
10.1093/emboj/16.8.1992
10.1111/j.1432-1033.1980.tb04467.x
10.1111/j.1432-1033.1977.tb11783.x
10.1126/science.377489
10.1016/j.jmb.2007.10.064
10.1128/jb.149.2.694-699.1982
10.1016/0022-2836(80)90399-X
10.1006/jmbi.1993.1563
10.1073/pnas.71.2.586
10.1016/0092-8674(81)90395-0
10.1016/0092-8674(81)90164-1
10.1038/381169a0
10.1128/jb.177.14.4066-4076.1995
10.1016/S0092-8674(01)00462-7
10.1126/science.275.5306.1655
10.1111/j.1365-2958.1994.tb00382.x
10.1016/0022-2836(85)90242-6
10.1128/jvi.33.1.547-549.1980
10.1016/0022-2836(84)90459-5
10.1038/nbt0204-167
10.1016/S0092-8674(05)80091-1
10.1128/JVI.74.9.4057-4063.2000
10.1111/j.1365-2958.2007.06058.x
10.1101/gad.5.8.1504
10.1016/0092-8674(91)90159-V
10.1016/0042-6822(92)90010-M
10.1016/j.resmic.2008.05.001
10.1038/sj.emboj.7601069
10.1016/j.jmb.2006.11.049
10.1021/bi00135a012
10.1046/j.1365-2958.1998.00729.x
10.1038/299369a0
10.1128/mr.57.2.434-450.1993
10.1021/pr070451j
10.1074/jbc.273.1.518
10.1126/science.176.4033.367
10.1016/j.jmb.2007.05.037
10.1002/j.1460-2075.1995.tb07328.x
10.1093/nar/10.5.1635
10.1128/MMBR.47.3.345-360.1983
10.1073/pnas.161253298
10.1016/S0378-1119(98)00238-8
10.1111/j.1365-2958.2006.05427.x
10.1002/j.1460-2075.1989.tb03544.x
10.1074/jbc.273.1.524
10.1046/j.1365-2958.2001.02668.x
10.1016/j.jmb.2006.11.050
10.1074/jbc.M211447200
10.1006/jmbi.1999.2605
10.1016/S0014-5793(01)02378-X
10.1016/0092-8674(83)90031-4
10.1016/0022-2836(86)90071-9
10.1099/00221287-146-10-2643
10.1016/S0092-8674(03)00233-2
10.1016/S0021-9258(18)47718-6
10.1073/pnas.72.7.2506
10.1016/0378-1119(90)90053-T
10.1016/S1097-2765(02)00435-5
10.1128/jb.174.2.619-622.1992
ContentType Journal Article
Copyright 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
Copyright_xml – notice: 2009 Society for Applied Microbiology and Blackwell Publishing Ltd
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QL
7T7
7U9
8FD
C1K
FR3
H94
P64
DOI 10.1111/j.1462-2920.2009.02029.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Virology and AIDS Abstracts

MEDLINE
AGRICOLA
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 2805
ExternalDocumentID 19691505
10_1111_j_1462_2920_2009_02029_x
EMI2029
ark_67375_WNG_P30353K9_W
US201301696577
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QL
7T7
7U9
8FD
C1K
FR3
H94
P64
ID FETCH-LOGICAL-c6119-8e004278e4ffdbed297d07cd4c7e56bd8fc119b0b8946c738fec7d97cd34a3b73
IEDL.DBID DRFUL
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271244800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1462-2912
1462-2920
IngestDate Tue Oct 07 09:51:06 EDT 2025
Thu Oct 02 11:52:20 EDT 2025
Thu Oct 02 05:55:25 EDT 2025
Mon Jul 21 06:07:19 EDT 2025
Sat Nov 29 06:59:56 EST 2025
Tue Nov 18 21:08:26 EST 2025
Wed Jan 22 16:29:38 EST 2025
Tue Sep 09 05:32:23 EDT 2025
Wed Dec 27 19:17:26 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6119-8e004278e4ffdbed297d07cd4c7e56bd8fc119b0b8946c738fec7d97cd34a3b73
Notes http://dx.doi.org/10.1111/j.1462-2920.2009.02029.x
istex:94D5695B03421E4814D63DEF8B651B4B52AE9F60
ArticleID:EMI2029
ark:/67375/WNG-P30353K9-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1462-2920.2009.02029.x
PMID 19691505
PQID 1365046922
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_746153200
proquest_miscellaneous_734119497
proquest_miscellaneous_1365046922
pubmed_primary_19691505
crossref_citationtrail_10_1111_j_1462_2920_2009_02029_x
crossref_primary_10_1111_j_1462_2920_2009_02029_x
wiley_primary_10_1111_j_1462_2920_2009_02029_x_EMI2029
istex_primary_ark_67375_WNG_P30353K9_W
fao_agris_US201301696577
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2009
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
References Hsu, T., and Karam, J.D. (1990) Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing. J Biol Chem 265: 5303-5316.
Boyer, H.W. (1971) DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol 25: 153-176.
Roucourt, B., Lecoutere, E., Chibeu, A., Hertveldt, K., Volckaert, G., and Lavigne, R. (2009) A procedure for systematic identification of bacteriophage-host interactions of P. aeruginosa phages. Virology 387: 50-58.
Bickle, T.A., and Krüger, D.H. (1993) Biology of DNA restriction. Microbiol Rev 57: 434-450.
Huber, H.E., Beauchamp, B.B., and Richardson, C.C. (1988) Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J Biol Chem 263: 13549-13556.
Losick, R., and Pero, J. (1981) Cascades of Sigma factors. Cell 25: 582-584.
Liu, J., Dehbi, M., Moeck, G., Arhin, F., Bauda, P., Bergeron, D., et al. (2004) Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22: 185-191.
Tock, M.R., and Dryden, D.T.F. (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8: 466-472.
McClelland, M. (1981) The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acids Res 9: 5859-5866.
Mason, S.W., and Greenblatt, J. (1991) Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev 5: 1504-1512.
Nechaev, S., and Geiduschek, E.P. (2008) Dissection of the bacteriophage t4 late promoter complex. J Mol Biol 379: 402-413.
Tiemann, B., Depping, R., and Rüger, W. (1999) Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4. Gene Expr 8: 187-196.
Odegrip, R., Schoen, S., Haggård-Ljungquist, E., Park, K., and Chattoraj, D.K. (2000) The interaction of bacteriophage P2 B protein with Escherichia coli DnaB helicase. J Virol 74: 4057-4063.
Hesselbach, B.A., and Nakada, D. (1975) Inactive complex formation between E. coli RNA polymerase and inhibitor protein purified from T7 phage infected cells. Nature 258: 354-357.
Nechaev, S., Kamali-Moghaddam, M., André, E., Léonetti, J., and Geiduschek, E.P. (2004) The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 101: 17365-17370.
Belley, A., Callejo, M., Arhin, F., Dehbi, M., Fadhil, I., Liu, J., et al. (2006) Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Mol Microbiol 62: 1132-1143.
Sevostyanova, A., Djordjevic, M., Kuznedelov, K., Naryshkina, T., Gelfand, M.S., Severinov, K., et al. (2007) Temporal regulation of viral transcription during development of Thermus thermophilus bacteriophage phiYS40. J Mol Biol 366: 420-435.
Miller, E.S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., and Rüger, W. (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67: 86-156.
Liberek, K., Georgopoulos, C., and Zylicz, M. (1988) Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci USA 85: 6632-6636.
Putnam, C.D., and Tainer, J.A. (2005) Protein mimicry of DNA and pathway regulation. DNA Repair 4: 1410-1420.
Powell, L.M., Dryden, D.T.F., Willcock, D.F., Pain, R.H., and Murray, N.E. (1993) DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-l-methionine. J Mol Biol 234: 60-71.
Robertson, E.S., and Nicholson, A.W. (1990) Protein kinase of bacteriophage T7 induces the phosphorylation of only a small number of proteins in the infected cell. Virology 175: 525-534.
Bertani, G., and Weigle, J.J. (1953) Host controlled variation in bacterial viruses. J Bacteriol 65: 113-121.
Mallory, J.B., Alfano, C., and McMacken, R. (1990) Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J Biol Chem 265: 13297-13307.
Kwan, T., Liu, J., DuBow, M., Gros, P., and Pelletier, J. (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102: 5174-5179.
Kolesky, S., Ouhammouch, M., Brody, E.N., and Geiduschek, E.P. (1999) Sigma competition: the contest between bacteriophage T4 middle and late transcription. J Mol Biol 291: 267-281.
Loenen, W.A.M., and Murray, N.E. (1986) Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage 1. J Mol Biol 190: 11-22.
Marshall, P., Sharma, M., and Hinton, D.M. (1999) The bacteriophage T4 transcriptional activator MotA accepts various base-pair changes within its binding sequence. J Mol Biol 285: 931-944.
Skórko, R., Zillig, W., Rohrer, H., Fujiki, H., and Mailhammer, R. (1977) Purification and properties of the NAD+: protein ADP-ribosyltransferase responsible for the T4-phage-induced modification of the alpha subunit of DNA-dependent RNA polymerase of Escherichia coli. Eur J Biochem 79: 55-66.
Zylicz, M., Ang, D., Liberek, K., and Georgopoulos, C. (1989) Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8: 1601-1608.
Saito, H., and Richardson, C.C. (1981) Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 27: 533-542.
Dunn, J.J., and Studier, F.W. (1975) Effect of RNAase III, cleavage on translation of bacteriophage T7 messenger RNAs. J Mol Biol 99: 487-499.
Hsu, T., Wei, R.X., Dawson, M., and Karam, J.D. (1987) Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication. J Virol 61: 366-374.
Wong, K., Kassavetis, G.A., Leonetti, J., and Geiduschek, E.P. (2003) Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55. J Biol Chem 278: 7073-7080.
Brown, E.D. (2004) Drugs against superbugs: private lessons from bacteriophages. Trends Biotechnol 22: 434-436.
Comeau, A.M., Hatfull, G.F., Krisch, H.M., Lindell, D., Mann, N.H., and Prangishvili, D. (2008) Exploring the prokaryotic virosphere. Res Microbiol 159: 306-313.
Golomb, M., and Chamberlin, M. (1974) Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249: 2858-2863.
Py, B., Higgins, C.F., Krisch, H.M., and Carpousis, A.J. (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381: 169-172.
Severinova, E., and Severinov, K. (2006) Localization of the Escherichia coli RNA polymerase beta′ subunit residue phosphorylated by bacteriophage T7 kinase Gp0.7. J Bacteriol 188: 3470-3476.
Bonocora, R.P., Caignan, G., Woodrell, C., Werner, M.H., and Hinton, D.M. (2008) A basic/hydrofobic cleft of the T4 activator MotA interacts with the C-terminus of E. coli sigma70 to activate middle gene transcription. Mol Microbiol 69: 331-343.
Rahmsdorf, H.J., Pai, S.H., Ponta, H., Herrlich, P., Roskoski, R.J., Schweiger, M., and Studier, F.W. (1974) Protein kinase induction in Escherichia coli by bacteriophage T7. Proc Natl Acad Sci USA 71: 586-589.
Rifat, D., Wright, N.T., Varney, K.M., Weber, D.J., and Black, L.W. (2008) Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol 375: 720-734.
Sommer, N., Salniene, V., Gineikiene, E., Nivinskas, R., and Rüger, W. (2000) T4 early promoter strength probed in vivo with unribosylated and ADP-ribosylated Escherichia coli RNA polymerase: a mutation analysis. Microbiology 146: 2643-2653.
Finnin, M.S., Cicero, M.P., Davies, C., Porter, S.J., White, S.W., and Kreuzer, K.N. (1997) The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J 16: 1992-2003.
Serrano-Heras, G., Ruiz-Masó, J.A., Del Solar, G., Espinosa, M., Bravo, A., and Salas, M. (2007) Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res 35: 5393-5401.
Müller, U.R., and Marchin, G.L. (1977) Purification and properties of a T4 bacteriophage factor that modifies valyl-tRNA synthetase of Escherichia coli. J Biol Chem 252: 6640-6645.
Pedulla, M.L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., Lewis, J.A., et al. (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171-182.
Studier, F.W. (1972) Bacteriophage T7. Science 176: 367-376.
O'Donnell, M., Kuriyan, J., Kong, X.P., Stukenberg, P.T., and Onrust, R. (1992) The sliding clamp of DNA polymerase III holoenzyme encircles DNA. Mol Biol Cell 3: 953-957.
Pande, S., Makela, A., Dove, S.L., Nickels, B.E., Hochschild, A., and Hinton, D.M. (2002) The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 184: 3957-3964.
Wei, P., and Stewart, C.R. (1995) Genes that protect against the host-killing activity of the E3 protein of Bacillus subtilis bacteriophage SP01. J Bacteriol 177: 2933-2937.
Kashlev, M., Nudler, E., Goldfarb, A., White, T., and Kutter, E. (1993) Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA. Cell 75: 147-154.
Jeruzalmi, D., Yurieva, O., Zhao, Y., Young, M., Stewart, J., Hingorani, M., et al. (2001) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106: 417-428.
Krüger, D.H., and Bickle, T.A. (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47: 345-360.
Court, R., Cook, N., Saikrishnan, K., and Wigley, D. (2007) The crystal structure of lambda-Gam prote
2004; 22
1997; 274
2005; 335
1997; 275
2004; 23
1999; 291
1999; 285
1996; 381
2007; 71
1999; 289
1982; 149
1975; 99
1977; 24
1999; 287
2003; 278
1972; 176
2001; 42
1980; 136
2001; 495
1994; 269
2005; 102
1980; 34
1980; 33
2006; 25
1986; 190
1995; 249
1962; 48
2007; 2
1988; 85
1953; 65
1992; 3
1990; 175
1977; 252
1983; 258
2002; 9
1984; 48
1988; 170
1974; 71
1971; 25
1989; 8
1974; 249
1981; 25
1981; 9
1981; 27
1994
1985; 82
1992; 31
1998b; 273
1995; 4
1993; 57
2004; 53
1987; 61
1991; 65
1984; 177
1992; 256
2005; 8
2000; 74
2005; 4
1994; 11
1978; 166
1999; 31
2008; 379
2008; 377
1993; 234
2008; 375
2006; 188
2003; 22
1987; 262
1982; 10
2008; 7
1988; 263
1995; 177
1996; 35
2003; 113
1990; 265
1979; 76
2007; 35
2001; 106
1980; 179
1980; 105
1990; 88
1991; 266
2006; 62
2007; 371
2002; 184
1993; 75
1989; 264
2008; 69
1982; 299
2006; 363
2008; 67
1997; 16
2008; 159
1977; 79
2005; 39
1993; 175
2001; 98
1998; 27
2004; 101
1976; 100
2007; 366
1995; 92
1963; 197
1992; 186
1973; 79
1995; 14
1979; 205
1998a; 273
2005
1993; 90
1970; 228
1975; 258
1999; 8
1985; 182
1997; 419
1975; 72
1998; 23
1983; 33
1991; 5
1992; 174
2000; 146
2009; 387
1975; 60
1981; 50
1998; 223
1983; 47
2003; 67
e_1_2_10_21_1
e_1_2_10_44_1
Huber H.E. (e_1_2_10_39_1) 1988; 263
Molineux I.J. (e_1_2_10_75_1) 2005
e_1_2_10_40_1
e_1_2_10_109_1
Guttman B. (e_1_2_10_31_1) 2005
e_1_2_10_131_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_14_1
e_1_2_10_112_1
e_1_2_10_32_1
e_1_2_10_51_1
Hsu T. (e_1_2_10_38_1) 1987; 61
Dharmalingam K. (e_1_2_10_20_1) 1982; 149
e_1_2_10_120_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
Koch T. (e_1_2_10_49_1) 1995; 4
e_1_2_10_124_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
Kutter E. (e_1_2_10_53_1) 2005
e_1_2_10_41_1
e_1_2_10_132_1
Carlson K. (e_1_2_10_13_1) 1994
e_1_2_10_90_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
Munn M.M. (e_1_2_10_79_1) 1991; 266
Hesselbach B.A. (e_1_2_10_34_1) 1977; 24
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
Kutter E. (e_1_2_10_52_1) 1994
e_1_2_10_69_1
e_1_2_10_42_1
Mosig G. (e_1_2_10_76_1) 1994
e_1_2_10_110_1
Müller U.R. (e_1_2_10_78_1) 1977; 252
e_1_2_10_91_1
Tiemann B. (e_1_2_10_122_1) 1999; 8
Pande S. (e_1_2_10_89_1) 2002; 184
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
Goff C.G. (e_1_2_10_27_1) 1980; 33
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_11_1
Hsu T. (e_1_2_10_37_1) 1990; 265
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_126_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_108_1
Mayer J.E. (e_1_2_10_71_1) 1983; 258
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
Wilkens K. (e_1_2_10_130_1) 1994
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_47_1
References_xml – reference: Losick, R., and Pero, J. (1981) Cascades of Sigma factors. Cell 25: 582-584.
– reference: Kwan, T., Liu, J., Dubow, M., Gros, P., and Pelletier, J. (2006) Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 188: 1184-1187.
– reference: Roucourt, B., Lecoutere, E., Chibeu, A., Hertveldt, K., Volckaert, G., and Lavigne, R. (2009) A procedure for systematic identification of bacteriophage-host interactions of P. aeruginosa phages. Virology 387: 50-58.
– reference: Court, R., Cook, N., Saikrishnan, K., and Wigley, D. (2007) The crystal structure of lambda-Gam protein suggests a model for RecBCD inhibition. J Mol Biol 371: 25-33.
– reference: Dharmalingam, K., Revel, H.R., and Goldberg, E.B. (1982) Physical mapping and cloning of bacteriophage T4 anti-restriction endonuclease gene. J Bacteriol 149: 694-699.
– reference: Orsini, G., Ouhammouch, M., Le Caer, J.P., and Brody, E.N. (1993) The asiA gene of bacteriophage T4 codes for the anti-sigma 70 protein. J Bacteriol 175: 85-93.
– reference: Tiemann, B., Depping, R., and Rüger, W. (1999) Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4. Gene Expr 8: 187-196.
– reference: Wood, L.F., Tszine, N.Y., and Christie, G.E. (1997) Activation of P2 late transcription by P2 Ogr protein requires a discrete contact site on the C terminus of the alpha subunit of Escherichia coli RNA polymerase. J Mol Biol 274: 1-7.
– reference: Kolesky, S., Ouhammouch, M., Brody, E.N., and Geiduschek, E.P. (1999) Sigma competition: the contest between bacteriophage T4 middle and late transcription. J Mol Biol 291: 267-281.
– reference: Mosig, G., Colowick, N.E., and Pietz, B.C. (1998) Several new bacteriophage T4 genes, mapped by sequencing deletion endpoints between genes 56 (dCTPase) and dda (a DNA-dependent ATPase-helicase) modulate transcription. Gene 223: 143-155.
– reference: Zabeau, M., Friedman, S., Van Montagu, M., and Schell, J. (1980) The ral gene of phage λ. I. Identification of a non-essential gene that modulates restriction and modification in E. coli. Mol Gen Genet 179: 63-73.
– reference: McClelland, M. (1981) The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acids Res 9: 5859-5866.
– reference: Saito, H., and Richardson, C.C. (1981) Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 27: 533-542.
– reference: Tedin, K., Moll, I., Grill, S., Resch, A., Graschopf, A., Gualerzi, C.O., and Bläsi, U. (1999) Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol Microbiol 31: 67-77.
– reference: Qimron, U., Kulczyk, A.W., Hamdan, S.M., Tabor, S., and Richardson, C.C. (2008) Inadequate inhibition of host RNA polymerase restricts T7 bacteriophage growth on hosts overexpressing udk. Mol Microbiol 67: 448-457.
– reference: Frazier, M.W., and Mosig, G. (1990) The bacteriophage T4 gene mrh whose product inhibits late T4 gene expression in an Escherichia coli rpoH (sigma 32) mutant. Gene 88: 7-14.
– reference: Lambert, L.J., Wei, Y., Schirf, V., Demeler, B., and Werner, M.H. (2004) T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J 23: 2952-2962.
– reference: Nechaev, S., and Geiduschek, E.P. (2008) Dissection of the bacteriophage t4 late promoter complex. J Mol Biol 379: 402-413.
– reference: Hsu, T., Wei, R.X., Dawson, M., and Karam, J.D. (1987) Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication. J Virol 61: 366-374.
– reference: Mason, S.W., and Greenblatt, J. (1991) Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev 5: 1504-1512.
– reference: López de Saro, F.J., Georgescu, R.E., Goodman, M.F., and O'Donnell, M. (2003) Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J 22: 6408-6418.
– reference: Marshall, P., Sharma, M., and Hinton, D.M. (1999) The bacteriophage T4 transcriptional activator MotA accepts various base-pair changes within its binding sequence. J Mol Biol 285: 931-944.
– reference: Putnam, C.D., and Tainer, J.A. (2005) Protein mimicry of DNA and pathway regulation. DNA Repair 4: 1410-1420.
– reference: Grill, S., Moll, I., Hasenöhrl, D., Gualerzi, C.O., and Bläsi, U. (2001) Modulation of ribosomal recruitment to 5′-terminal start codons by translation initiation factors IF2 and IF3. FEBS Lett 495: 167-171.
– reference: Bickle, T.A., and Krüger, D.H. (1993) Biology of DNA restriction. Microbiol Rev 57: 434-450.
– reference: Goldfarb, A., and Palm, P. (1981) Control of promoter utilization by bacteriophage T4-induced modification of RNA polymerase alpha subunit. Nucleic Acids Res 9: 4863-4878.
– reference: O'Donnell, M., Kuriyan, J., Kong, X.P., Stukenberg, P.T., and Onrust, R. (1992) The sliding clamp of DNA polymerase III holoenzyme encircles DNA. Mol Biol Cell 3: 953-957.
– reference: Friedman, D.I., Olson, E.R., Georgopoulos, C., Tilly, K., Herskowitz, I., and Banuett, F. (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48: 299-325.
– reference: Mayer, J.E., and Schweiger, M. (1983) RNase III is positively regulated by T7 protein kinase. J Biol Chem 258: 5340-5343.
– reference: Klein, A., Lanka, E., and Schuster, H. (1980) Isolation of a complex between the P protein of phage lambda and the dnaB protein of Escherichia coli. Eur J Biochem 105: 1-6.
– reference: Odegrip, R., Schoen, S., Haggård-Ljungquist, E., Park, K., and Chattoraj, D.K. (2000) The interaction of bacteriophage P2 B protein with Escherichia coli DnaB helicase. J Virol 74: 4057-4063.
– reference: Marchand, I., Nicholson, A.W., and Dreyfus, M. (2001) Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Mol Microbiol 42: 767-776.
– reference: Kashlev, M., Nudler, E., Goldfarb, A., White, T., and Kutter, E. (1993) Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA. Cell 75: 147-154.
– reference: Koch, T., Raudonikiene, A., Wilkens, K., and Rüger, W. (1995) Overexpression, purification, and characterization of the ADP-ribosyltransferase (gpAlt) of bacteriophage T4: ADP-ribosylation of E. coli RNA polymerase modulates T4 'early' transcription. Gene Expr 4: 253-264.
– reference: Wilkens, K., and Rüger, W. (1996) Characterization of bacteriophage T4 early promoters in vivo with a new promoter probe vector. Plasmid 35: 108-120.
– reference: Iost, I., and Dreyfus, M. (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14: 3252-3261.
– reference: Takahashi, I., and Marmur, J. (1963) Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature 197: 794-795.
– reference: Kwan, T., Liu, J., DuBow, M., Gros, P., and Pelletier, J. (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102: 5174-5179.
– reference: Chamberlin, M., McGrath, J., and Waskell, L. (1970) New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature 228: 227-231.
– reference: Mallory, J.B., Alfano, C., and McMacken, R. (1990) Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J Biol Chem 265: 13297-13307.
– reference: Tock, M.R., and Dryden, D.T.F. (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8: 466-472.
– reference: Yuzenkova, Y., Zenkin, N., and Severinov, K. (2008) Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7. J Mol Biol 375: 29-35.
– reference: Richardson, A., Landry, S.J., and Georgopoulos, C. (1998) The ins and outs of a molecular chaperone machine. Trends Biochem Sci 23: 138-143.
– reference: Severinov, K., Kashlev, M., Severinova, E., Bass, I., McWilliams, K., Kutter, E., et al. (1994) A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Alc. J Biol Chem 269: 14254-14259.
– reference: Sommer, N., Salniene, V., Gineikiene, E., Nivinskas, R., and Rüger, W. (2000) T4 early promoter strength probed in vivo with unribosylated and ADP-ribosylated Escherichia coli RNA polymerase: a mutation analysis. Microbiology 146: 2643-2653.
– reference: Loenen, W.A.M., and Murray, N.E. (1986) Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage 1. J Mol Biol 190: 11-22.
– reference: Robertson, E.S., and Nicholson, A.W. (1990) Protein kinase of bacteriophage T7 induces the phosphorylation of only a small number of proteins in the infected cell. Virology 175: 525-534.
– reference: Nechaev, S., and Severinov, K. (1999) Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein. J Mol Biol 289: 815-826.
– reference: Warren, R.A.J. (1980) Modified bases in bacteriophage DNAs. Annu Rev Microbiol 34: 137-158.
– reference: Savalia, D., Westblade, L.F., Goel, M., Florens, L., Kemp, P., Akulenko, N., et al. (2008) Genomic and proteomic analysis of phiEco32, a novel Escherichia coli bacteriophage. J Mol Biol 377: 774-789.
– reference: Liberek, K., Georgopoulos, C., and Zylicz, M. (1988) Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci USA 85: 6632-6636.
– reference: Bertani, G., and Weigle, J.J. (1953) Host controlled variation in bacterial viruses. J Bacteriol 65: 113-121.
– reference: Kemp, P., Gupta, M., and Molineux, I.J. (2004) Bacteriophage T7 DNA ejection into cells is initiated by an enzyme-like mechanism. Mol Microbiol 53: 1251-1265.
– reference: Iost, I., Guillerez, J., and Dreyfus, M. (1992) Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J Bacteriol 174: 619-622.
– reference: Ouhammouch, M., Adelman, K., Harvey, S.R., Orsini, G., and Brody, E.N. (1995) Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters. Proc Natl Acad Sci USA 92: 1451-1455.
– reference: Yuan, R. (1981) Structure and mechanism of multifunctional restriction endonucleases. Annu Rev Biochem 50: 285-319.
– reference: Wei, P., and Stewart, C.R. (1995) Genes that protect against the host-killing activity of the E3 protein of Bacillus subtilis bacteriophage SP01. J Bacteriol 177: 2933-2937.
– reference: Skorupski, K., Tomaschewski, J., Rüger, W., and Simon, L.D. (1988) A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease. J Bacteriol 170: 3016-3024.
– reference: Strome, S., and Young, E.T. (1980) Translational discrimination against bacteriophage T7 gene 0.3 messenger RNA. J Mol Biol 136: 433-450.
– reference: Nechaev, S., and Geiduschek, E.P. (2006) The role of an upstream promoter interaction in initiation of bacterial transcription. EMBO J 25: 1700-1709.
– reference: Brown, E.D. (2004) Drugs against superbugs: private lessons from bacteriophages. Trends Biotechnol 22: 434-436.
– reference: Severinova, E., and Severinov, K. (2006) Localization of the Escherichia coli RNA polymerase beta′ subunit residue phosphorylated by bacteriophage T7 kinase Gp0.7. J Bacteriol 188: 3470-3476.
– reference: Studier, F.W. (1972) Bacteriophage T7. Science 176: 367-376.
– reference: Liu, J., Dehbi, M., Moeck, G., Arhin, F., Bauda, P., Bergeron, D., et al. (2004) Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22: 185-191.
– reference: Wilkens, K., Tiemann, B., Bazan, F., and Rüger, W. (1997) ADP-ribosylation and early transcription regulation by bacteriophage T4. Adv Exp Med Biol 419: 71-82.
– reference: Kaczanowska, M., and Rydén-Aulin, M. (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71: 477-494.
– reference: Putnam, C.D., Shroyer, M.J., Lundquist, A.J., Mol, C.D., Arvai, A.S., Mosbaugh, D.W., and Tainer, J.A. (1999) Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol 287: 331-346.
– reference: Westblade, L.F., Minakhin, L., Kuznedelov, K., Tackett, A.J., Chang, E.J., Mooney, R.A., et al. (2008) Rapid isolation and identification of bacteriophage T4-encoded modifications of Escherichia coli RNA polymerase: a generic method to study bacteriophage/host interactions. J Proteome Res 7: 1244-1250.
– reference: Hsu, T., and Karam, J.D. (1990) Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing. J Biol Chem 265: 5303-5316.
– reference: Marr, M.T., Datwyler, S.A., Meares, C.F., and Roberts, J.W. (2001) Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins. Proc Natl Acad Sci USA 98: 8972-8978.
– reference: Zillig, W., Fujiki, H., Blum, W., Janeković, D., Schweiger, M., Rahmsdorf, H., et al. (1975) In vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by bacteriophage-T7-induced protein kinase. Proc Natl Acad Sci USA 72: 2506-2510.
– reference: Colland, F., Orsini, G., Brody, E.N., Buc, H., and Kolb, A. (1998) The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. Mol Microbiol 27: 819-829.
– reference: Comeau, A.M., Hatfull, G.F., Krisch, H.M., Lindell, D., Mann, N.H., and Prangishvili, D. (2008) Exploring the prokaryotic virosphere. Res Microbiol 159: 306-313.
– reference: Hesselbach, B.A., and Nakada, D. (1975) Inactive complex formation between E. coli RNA polymerase and inhibitor protein purified from T7 phage infected cells. Nature 258: 354-357.
– reference: Pfennig-Yeh, M.L., Ponta, H., Hirsch-Kauffmann, M., Rahmsdorf, H.J., Herrlich, P., and Schweiger, M. (1978) Early T7 gene expression: rates of RNA synthesis and degradation, protein kinase dependent termination of transcription, and efficiency of translation. Mol Gen Genet 166: 127-140.
– reference: Py, B., Higgins, C.F., Krisch, H.M., and Carpousis, A.J. (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381: 169-172.
– reference: Kassavetis, G.A., Elliott, T., Rabussay, D.P., and Geiduschek, E.P. (1983) Initiation of transcription at phage T4 late promoters with purified RNA polymerase. Cell 33: 887-897.
– reference: Capson, T.L., Benkovic, S.J., and Nossal, N.G. (1991) Protein-DNA cross-linking demonstrates stepwise ATP-dependent assembly of T4 DNA polymerase and its accessory proteins on the primer-template. Cell 65: 249-258.
– reference: Liu, Q., and Richardson, C.C. (1993) Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. Proc Natl Acad Sci USA 90: 1761-1765.
– reference: Zylicz, M., Ang, D., Liberek, K., and Georgopoulos, C. (1989) Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8: 1601-1608.
– reference: Müller, U.R., and Marchin, G.L. (1977) Purification and properties of a T4 bacteriophage factor that modifies valyl-tRNA synthetase of Escherichia coli. J Biol Chem 252: 6640-6645.
– reference: Pedulla, M.L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., Lewis, J.A., et al. (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171-182.
– reference: Dodson, M., Roberts, J., McMacken, R., and Echols, H. (1985) Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: complexes with lambda O protein and with lambda O, lambda P, and Escherichia coli DnaB proteins. Proc Natl Acad Sci USA 82: 4678-4682.
– reference: Miller, E.S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., and Rüger, W. (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67: 86-156.
– reference: Yamada, Y., and Nakada, D. (1976) Early to late switch in bacteriophage T7 development: no translational discrimination between T7 early messenger RNA and late messenger RNA. J Mol Biol 100: 35-45.
– reference: Studier, F.W. (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79: 237-248.
– reference: Penner, M., Morad, I., Snyder, L., and Kaufmann, G. (1995) Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems. J Mol Biol 249: 857-868.
– reference: Belley, A., Callejo, M., Arhin, F., Dehbi, M., Fadhil, I., Liu, J., et al. (2006) Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Mol Microbiol 62: 1132-1143.
– reference: Finnin, M.S., Cicero, M.P., Davies, C., Porter, S.J., White, S.W., and Kreuzer, K.N. (1997) The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J 16: 1992-2003.
– reference: LeClerc, J.E., and Richardson, C.C. (1979) Gene 2 protein of bacteriophage T7: purification and requirement for packaging of T7 DNA in vitro. Proc Natl Acad Sci USA 76: 4852-4856.
– reference: Rifat, D., Wright, N.T., Varney, K.M., Weber, D.J., and Black, L.W. (2008) Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol 375: 720-734.
– reference: Hilliard, J.J., Maurizi, M.R., and Simon, L.D. (1998a) Isolation and characterization of the phage T4 PinA protein, an inhibitor of the ATP-dependent Lon protease of Escherichia coli. J Biol Chem 273: 518-523.
– reference: Bandyopadhyay, P.K., Studier, F.W., Hamilton, D.L., and Yuan, R. (1985) Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7. J Mol Biol 182: 567-578.
– reference: Wiberg, J.S., Dirksen, M.L., Epstein, R.H., Luria, S.E., and Buchanan, J.M. (1962) Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci USA 48: 293-302.
– reference: Wong, K., Kassavetis, G.A., Leonetti, J., and Geiduschek, E.P. (2003) Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55. J Biol Chem 278: 7073-7080.
– reference: Hesselbach, B.A., and Nakada, D. (1977) 'Host shutoff' function of bacteriophage T7: involvement of T7 gene 2 and gene 0.7 in the inactivation of Escherichia coli RNA polymerase. J Virol 24: 736-745.
– reference: Projan, S. (2004) Phage-inspired antibiotics? Nat Biotechnol 22: 167-168.
– reference: Depping, R., Lohaus, C., Meyer, H.E., and Rüger, W. (2005) The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified. Biochem Biophys Res Commun 335: 1217-1223.
– reference: Jeruzalmi, D., Yurieva, O., Zhao, Y., Young, M., Stewart, J., Hingorani, M., et al. (2001) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106: 417-428.
– reference: Michalewicz, J., and Nicholson, A.W. (1992) Molecular cloning and expression of the bacteriophage T7, 0.7 (protein kinase) gene. Virology 186: 452-462.
– reference: Pande, S., Makela, A., Dove, S.L., Nickels, B.E., Hochschild, A., and Hinton, D.M. (2002) The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 184: 3957-3964.
– reference: Robertson, E.S., Aggison, L.A., and Nicholson, A.W. (1994) Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Mol Microbiol 11: 1045-1057.
– reference: Kobiler, O., Rokney, A., and Oppenheim, A.B. (2007) Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision. PLoS ONE 2: e363.
– reference: Rahmsdorf, H.J., Pai, S.H., Ponta, H., Herrlich, P., Roskoski, R.J., Schweiger, M., and Studier, F.W. (1974) Protein kinase induction in Escherichia coli by bacteriophage T7. Proc Natl Acad Sci USA 71: 586-589.
– reference: Sevostyanova, A., Djordjevic, M., Kuznedelov, K., Naryshkina, T., Gelfand, M.S., Severinov, K., et al. (2007) Temporal regulation of viral transcription during development of Thermus thermophilus bacteriophage phiYS40. J Mol Biol 366: 420-435.
– reference: Wang, Z., and Mosbaugh, D.W. (1989) Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem 264: 1163-1171.
– reference: García, L.R., and Molineux, I.J. (1995) Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J Bacteriol 177: 4066-4076.
– reference: Rohrer, H., Zillig, W., and Mailhammer, R. (1975) ADP-ribosylation of DNA-dependent RNA polymerase of Escherichia coli by an NAD+: protein ADP-ribosyltransferase from bacteriophage T4. Eur J Biochem 60: 227-238.
– reference: Zavriev, S.K., and Shemyakin, M.F. (1982) RNA polymerase-dependent mechanism for the stepwise T7 phage DNA transport from the virion into E. coli. Nucleic Acids Res 10: 1635-1652.
– reference: Boyer, H.W. (1971) DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol 25: 153-176.
– reference: Huber, H.E., Beauchamp, B.B., and Richardson, C.C. (1988) Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J Biol Chem 263: 13549-13556.
– reference: Serrano-Heras, G., Ruiz-Masó, J.A., Del Solar, G., Espinosa, M., Bravo, A., and Salas, M. (2007) Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res 35: 5393-5401.
– reference: Bair, C.L., Rifat, D., and Black, L.W. (2007) Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J Mol Biol 366: 779-789.
– reference: Tabor, S., Huber, H.E., and Richardson, C.C. (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem 262: 16212-16223.
– reference: Golomb, M., and Chamberlin, M. (1974) Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249: 2858-2863.
– reference: Arber, W. (1979) Promotion and limitation of genetic exchange. Science 205: 361-365.
– reference: Oppenheim, A.B., Kobiler, O., Stavans, J., Court, D.L., and Adhya, S. (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39: 409-429.
– reference: Christensen, A.C., and Young, E.T. (1982) T4 late transcripts are initiated near a conserved DNA sequence. Nature 299: 369-371.
– reference: Goff, C.G., and Setzer, J. (1980) ADP ribosylation of Escherichia coli RNA polymerase is nonessential for bacteriophage T4 development. J Virol 33: 547-549.
– reference: Dunn, J.J., and Studier, F.W. (1975) Effect of RNAase III, cleavage on translation of bacteriophage T7 messenger RNAs. J Mol Biol 99: 487-499.
– reference: Krüger, D.H., and Bickle, T.A. (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47: 345-360.
– reference: Bonocora, R.P., Caignan, G., Woodrell, C., Werner, M.H., and Hinton, D.M. (2008) A basic/hydrofobic cleft of the T4 activator MotA interacts with the C-terminus of E. coli sigma70 to activate middle gene transcription. Mol Microbiol 69: 331-343.
– reference: Skórko, R., Zillig, W., Rohrer, H., Fujiki, H., and Mailhammer, R. (1977) Purification and properties of the NAD+: protein ADP-ribosyltransferase responsible for the T4-phage-induced modification of the alpha subunit of DNA-dependent RNA polymerase of Escherichia coli. Eur J Biochem 79: 55-66.
– reference: Robertson, E.S., and Nicholson, A.W. (1992) Phosphorylation of Escherichia coli translation initiation factors by the bacteriophage T7 protein kinase. Biochemistry 31: 4822-4827.
– reference: Powell, L.M., Dryden, D.T.F., Willcock, D.F., Pain, R.H., and Murray, N.E. (1993) DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-l-methionine. J Mol Biol 234: 60-71.
– reference: Mace, D.C., and Alberts, B.M. (1984) Characterization of the stimulatory effect of T4 gene 45 protein and the gene 44/62 protein complex on DNA synthesis by T4 DNA polymerase. J Mol Biol 177: 313-327.
– reference: Munn, M.M., and Alberts, B.M. (1991) The T4 DNA polymerase accessory proteins form an ATP-dependent complex on a primer-template junction. J Biol Chem 266: 20024-20033.
– reference: Nechaev, S., Kamali-Moghaddam, M., André, E., Léonetti, J., and Geiduschek, E.P. (2004) The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 101: 17365-17370.
– reference: Miller, A., Wood, D., Ebright, R.H., and Rothman-Denes, L.B. (1997) RNA polymerase beta′ subunit: a target of DNA binding-independent activation. Science 275: 1655-1657.
– reference: Baxter, K., Lee, J., Minakhin, L., Severinov, K., and Hinton, D.M. (2006) Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA. J Mol Biol 363: 931-944.
– reference: Herendeen, D.R., Kassavetis, G.A., and Geiduschek, E.P. (1992) A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 256: 1298-1303.
– reference: Hilliard, J.J., Simon, L.D., Van Melderen, L., and Maurizi, M.R. (1998b) Pin A inhibits ATP hydrolysis and energy-dependent protein degradation by Lon protease. J Biol Chem 273: 524-527.
– reference: Walkinshaw, M.D., Taylor, P., Sturrock, S.S., Atanasiu, C., Berge, T., Henderson, R.M., et al. (2002) Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 9: 187-194.
– volume: 8
  start-page: 466
  year: 2005
  end-page: 472
  article-title: The biology of restriction and anti‐restriction
  publication-title: Curr Opin Microbiol
– volume: 22
  start-page: 434
  year: 2004
  end-page: 436
  article-title: Drugs against superbugs: private lessons from bacteriophages
  publication-title: Trends Biotechnol
– start-page: 29
  year: 2005
  end-page: 66
– volume: 234
  start-page: 60
  year: 1993
  end-page: 71
  article-title: DNA recognition by the K methyltransferase. The influence of DNA methylation and the cofactor ‐adenosyl‐l‐methionine
  publication-title: J Mol Biol
– volume: 274
  start-page: 1
  year: 1997
  end-page: 7
  article-title: Activation of P2 late transcription by P2 Ogr protein requires a discrete contact site on the C terminus of the alpha subunit of RNA polymerase
  publication-title: J Mol Biol
– volume: 273
  start-page: 524
  year: 1998b
  end-page: 527
  article-title: Pin A inhibits ATP hydrolysis and energy‐dependent protein degradation by Lon protease
  publication-title: J Biol Chem
– volume: 22
  start-page: 6408
  year: 2003
  end-page: 6418
  article-title: Competitive processivity‐clamp usage by DNA polymerases during DNA replication and repair
  publication-title: EMBO J
– volume: 381
  start-page: 169
  year: 1996
  end-page: 172
  article-title: A DEAD‐box RNA helicase in the RNA degradosome
  publication-title: Nature
– volume: 136
  start-page: 433
  year: 1980
  end-page: 450
  article-title: Translational discrimination against bacteriophage T7 gene 0.3 messenger RNA
  publication-title: J Mol Biol
– volume: 79
  start-page: 55
  year: 1977
  end-page: 66
  article-title: Purification and properties of the NAD+: protein ADP‐ribosyltransferase responsible for the T4‐phage‐induced modification of the alpha subunit of DNA‐dependent RNA polymerase of
  publication-title: Eur J Biochem
– volume: 258
  start-page: 354
  year: 1975
  end-page: 357
  article-title: Inactive complex formation between RNA polymerase and inhibitor protein purified from T7 phage infected cells
  publication-title: Nature
– volume: 74
  start-page: 4057
  year: 2000
  end-page: 4063
  article-title: The interaction of bacteriophage P2 B protein with DnaB helicase
  publication-title: J Virol
– volume: 31
  start-page: 4822
  year: 1992
  end-page: 4827
  article-title: Phosphorylation of translation initiation factors by the bacteriophage T7 protein kinase
  publication-title: Biochemistry
– volume: 101
  start-page: 17365
  year: 2004
  end-page: 17370
  article-title: The bacteriophage T4 late‐transcription coactivator gp33 binds the flap domain of RNA polymerase
  publication-title: Proc Natl Acad Sci USA
– volume: 42
  start-page: 767
  year: 2001
  end-page: 776
  article-title: Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase
  publication-title: Mol Microbiol
– volume: 179
  start-page: 63
  year: 1980
  end-page: 73
  article-title: The gene of phage λ. I. Identification of a non‐essential gene that modulates restriction and modification in
  publication-title: Mol Gen Genet
– volume: 263
  start-page: 13549
  year: 1988
  end-page: 13556
  article-title: dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7
  publication-title: J Biol Chem
– start-page: 369
  year: 1994
  end-page: 381
– volume: 72
  start-page: 2506
  year: 1975
  end-page: 2510
  article-title: and phosphorylation of DNA‐dependent RNA polymerase of by bacteriophage‐T7‐induced protein kinase
  publication-title: Proc Natl Acad Sci USA
– volume: 188
  start-page: 1184
  year: 2006
  end-page: 1187
  article-title: Comparative genomic analysis of 18 bacteriophages
  publication-title: J Bacteriol
– start-page: 127
  year: 1994
  end-page: 131
– volume: 375
  start-page: 720
  year: 2008
  end-page: 734
  article-title: Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target
  publication-title: J Mol Biol
– volume: 71
  start-page: 477
  year: 2007
  end-page: 494
  article-title: Ribosome biogenesis and the translation process in
  publication-title: Microbiol Mol Biol Rev
– start-page: 343
  year: 1994
  end-page: 346
– volume: 67
  start-page: 86
  year: 2003
  end-page: 156
  article-title: Bacteriophage T4 genome
  publication-title: Microbiol Mol Biol Rev
– start-page: 132
  year: 1994
  end-page: 141
– volume: 363
  start-page: 931
  year: 2006
  end-page: 944
  article-title: Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA
  publication-title: J Mol Biol
– volume: 186
  start-page: 452
  year: 1992
  end-page: 462
  article-title: Molecular cloning and expression of the bacteriophage T7, 0.7 (protein kinase) gene
  publication-title: Virology
– volume: 90
  start-page: 1761
  year: 1993
  end-page: 1765
  article-title: Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H‐NS of
  publication-title: Proc Natl Acad Sci USA
– volume: 264
  start-page: 1163
  year: 1989
  end-page: 1171
  article-title: Uracil‐DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil‐DNA glycosylase
  publication-title: J Biol Chem
– volume: 34
  start-page: 137
  year: 1980
  end-page: 158
  article-title: Modified bases in bacteriophage DNAs
  publication-title: Annu Rev Microbiol
– volume: 67
  start-page: 448
  year: 2008
  end-page: 457
  article-title: Inadequate inhibition of host RNA polymerase restricts T7 bacteriophage growth on hosts overexpressing udk
  publication-title: Mol Microbiol
– volume: 177
  start-page: 4066
  year: 1995
  end-page: 4076
  article-title: Rate of translocation of bacteriophage T7 DNA across the membranes of
  publication-title: J Bacteriol
– volume: 82
  start-page: 4678
  year: 1985
  end-page: 4682
  article-title: Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: complexes with lambda O protein and with lambda O, lambda P, and DnaB proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 2952
  year: 2004
  end-page: 2962
  article-title: T4 AsiA blocks DNA recognition by remodeling sigma70 region 4
  publication-title: EMBO J
– volume: 98
  start-page: 8972
  year: 2001
  end-page: 8978
  article-title: Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 1635
  year: 1982
  end-page: 1652
  article-title: RNA polymerase‐dependent mechanism for the stepwise T7 phage DNA transport from the virion into
  publication-title: Nucleic Acids Res
– volume: 273
  start-page: 518
  year: 1998a
  end-page: 523
  article-title: Isolation and characterization of the phage T4 PinA protein, an inhibitor of the ATP‐dependent Lon protease of
  publication-title: J Biol Chem
– volume: 88
  start-page: 7
  year: 1990
  end-page: 14
  article-title: The bacteriophage T4 gene whose product inhibits late T4 gene expression in an rpoH (sigma 32) mutant
  publication-title: Gene
– volume: 266
  start-page: 20024
  year: 1991
  end-page: 20033
  article-title: The T4 DNA polymerase accessory proteins form an ATP‐dependent complex on a primer–template junction
  publication-title: J Biol Chem
– volume: 69
  start-page: 331
  year: 2008
  end-page: 343
  article-title: A basic/hydrofobic cleft of the T4 activator MotA interacts with the C‐terminus of sigma70 to activate middle gene transcription
  publication-title: Mol Microbiol
– volume: 249
  start-page: 857
  year: 1995
  end-page: 868
  article-title: Phage T4‐coded Stp: double‐edged effector of coupled DNA and tRNA‐restriction systems
  publication-title: J Mol Biol
– volume: 48
  start-page: 299
  year: 1984
  end-page: 325
  article-title: Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda
  publication-title: Microbiol Rev
– volume: 25
  start-page: 153
  year: 1971
  end-page: 176
  article-title: DNA restriction and modification mechanisms in bacteria
  publication-title: Annu Rev Microbiol
– volume: 9
  start-page: 4863
  year: 1981
  end-page: 4878
  article-title: Control of promoter utilization by bacteriophage T4‐induced modification of RNA polymerase alpha subunit
  publication-title: Nucleic Acids Res
– volume: 176
  start-page: 367
  year: 1972
  end-page: 376
  article-title: Bacteriophage T7
  publication-title: Science
– volume: 31
  start-page: 67
  year: 1999
  end-page: 77
  article-title: Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs
  publication-title: Mol Microbiol
– volume: 4
  start-page: 253
  year: 1995
  end-page: 264
  article-title: Overexpression, purification, and characterization of the ADP‐ribosyltransferase (gpAlt) of bacteriophage T4: ADP‐ribosylation of RNA polymerase modulates T4 ‘early’ transcription
  publication-title: Gene Expr
– volume: 269
  start-page: 14254
  year: 1994
  end-page: 14259
  article-title: A non‐essential domain of RNA polymerase required for the action of the termination factor Alc
  publication-title: J Biol Chem
– volume: 146
  start-page: 2643
  year: 2000
  end-page: 2653
  article-title: T4 early promoter strength probed with unribosylated and ADP‐ribosylated RNA polymerase: a mutation analysis
  publication-title: Microbiology
– volume: 48
  start-page: 293
  year: 1962
  end-page: 302
  article-title: Early enzyme synthesis and its control in infected with some amber mutants of bacteriophage T4
  publication-title: Proc Natl Acad Sci USA
– volume: 47
  start-page: 345
  year: 1983
  end-page: 360
  article-title: Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts
  publication-title: Microbiol Rev
– volume: 33
  start-page: 547
  year: 1980
  end-page: 549
  article-title: ADP ribosylation of RNA polymerase is nonessential for bacteriophage T4 development
  publication-title: J Virol
– volume: 265
  start-page: 5303
  year: 1990
  end-page: 5316
  article-title: Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing
  publication-title: J Biol Chem
– volume: 8
  start-page: 187
  year: 1999
  end-page: 196
  article-title: Overexpression, purification, and partial characterization of ADP‐ribosyltransferases modA and modB of bacteriophage T4
  publication-title: Gene Expr
– volume: 252
  start-page: 6640
  year: 1977
  end-page: 6645
  article-title: Purification and properties of a T4 bacteriophage factor that modifies valyl‐tRNA synthetase of
  publication-title: J Biol Chem
– volume: 495
  start-page: 167
  year: 2001
  end-page: 171
  article-title: Modulation of ribosomal recruitment to 5′‐terminal start codons by translation initiation factors IF2 and IF3
  publication-title: FEBS Lett
– volume: 177
  start-page: 2933
  year: 1995
  end-page: 2937
  article-title: Genes that protect against the host‐killing activity of the E3 protein of Bacillus subtilis bacteriophage SP01
  publication-title: J Bacteriol
– volume: 174
  start-page: 619
  year: 1992
  end-page: 622
  article-title: Bacteriophage T7 RNA polymerase travels far ahead of ribosomes
  publication-title: J Bacteriol
– volume: 166
  start-page: 127
  year: 1978
  end-page: 140
  article-title: Early T7 gene expression: rates of RNA synthesis and degradation, protein kinase dependent termination of transcription, and efficiency of translation
  publication-title: Mol Gen Genet
– volume: 11
  start-page: 1045
  year: 1994
  end-page: 1057
  article-title: Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7‐infected
  publication-title: Mol Microbiol
– volume: 35
  start-page: 5393
  year: 2007
  end-page: 5401
  article-title: Protein p56 from the phage phi29 inhibits DNA‐binding ability of uracil‐DNA glycosylase
  publication-title: Nucleic Acids Res
– volume: 170
  start-page: 3016
  year: 1988
  end-page: 3024
  article-title: A bacteriophage T4 gene which functions to inhibit Lon protease
  publication-title: J Bacteriol
– volume: 285
  start-page: 931
  year: 1999
  end-page: 944
  article-title: The bacteriophage T4 transcriptional activator MotA accepts various base‐pair changes within its binding sequence
  publication-title: J Mol Biol
– volume: 57
  start-page: 434
  year: 1993
  end-page: 450
  article-title: Biology of DNA restriction
  publication-title: Microbiol Rev
– volume: 190
  start-page: 11
  year: 1986
  end-page: 22
  article-title: Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage 1
  publication-title: J Mol Biol
– volume: 102
  start-page: 5174
  year: 2005
  end-page: 5179
  article-title: The complete genomes and proteomes of 27 bacteriophages
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 1410
  year: 2005
  end-page: 1420
  article-title: Protein mimicry of DNA and pathway regulation
  publication-title: DNA Repair
– volume: 53
  start-page: 1251
  year: 2004
  end-page: 1265
  article-title: Bacteriophage T7 DNA ejection into cells is initiated by an enzyme‐like mechanism
  publication-title: Mol Microbiol
– volume: 22
  start-page: 185
  year: 2004
  end-page: 191
  article-title: Antimicrobial drug discovery through bacteriophage genomics
  publication-title: Nat Biotechnol
– volume: 377
  start-page: 774
  year: 2008
  end-page: 789
  article-title: Genomic and proteomic analysis of phiEco32, a novel bacteriophage
  publication-title: J Mol Biol
– volume: 249
  start-page: 2858
  year: 1974
  end-page: 2863
  article-title: Characterization of T7‐specific ribonucleic acid polymerase. IV. Resolution of the major transcripts by gel electrophoresis
  publication-title: J Biol Chem
– volume: 278
  start-page: 7073
  year: 2003
  end-page: 7080
  article-title: Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55
  publication-title: J Biol Chem
– volume: 291
  start-page: 267
  year: 1999
  end-page: 281
  article-title: Sigma competition: the contest between bacteriophage T4 middle and late transcription
  publication-title: J Mol Biol
– volume: 265
  start-page: 13297
  year: 1990
  end-page: 13307
  article-title: Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of DnaB helicase by lambda P replication protein
  publication-title: J Biol Chem
– volume: 335
  start-page: 1217
  year: 2005
  end-page: 1223
  article-title: The mono‐ADP‐ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified
  publication-title: Biochem Biophys Res Commun
– volume: 27
  start-page: 819
  year: 1998
  end-page: 829
  article-title: The bacteriophage T4 AsiA protein: a molecular switch for sigma 70‐dependent promoters
  publication-title: Mol Microbiol
– volume: 9
  start-page: 187
  year: 2002
  end-page: 194
  article-title: Structure of Ocr from bacteriophage T7, a protein that mimics B‐form DNA
  publication-title: Mol Cell
– volume: 262
  start-page: 16212
  year: 1987
  end-page: 16223
  article-title: thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7
  publication-title: J Biol Chem
– volume: 85
  start-page: 6632
  year: 1988
  end-page: 6636
  article-title: Role of the DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication
  publication-title: Proc Natl Acad Sci USA
– volume: 223
  start-page: 143
  year: 1998
  end-page: 155
  article-title: Several new bacteriophage T4 genes, mapped by sequencing deletion endpoints between genes 56 (dCTPase) and dda (a DNA‐dependent ATPase‐helicase) modulate transcription
  publication-title: Gene
– volume: 258
  start-page: 5340
  year: 1983
  end-page: 5343
  article-title: RNase III is positively regulated by T7 protein kinase
  publication-title: J Biol Chem
– volume: 61
  start-page: 366
  year: 1987
  end-page: 374
  article-title: Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication
  publication-title: J Virol
– volume: 65
  start-page: 113
  year: 1953
  end-page: 121
  article-title: Host controlled variation in bacterial viruses
  publication-title: J Bacteriol
– volume: 188
  start-page: 3470
  year: 2006
  end-page: 3476
  article-title: Localization of the RNA polymerase beta′ subunit residue phosphorylated by bacteriophage T7 kinase Gp0.7
  publication-title: J Bacteriol
– volume: 65
  start-page: 249
  year: 1991
  end-page: 258
  article-title: Protein–DNA cross‐linking demonstrates stepwise ATP‐dependent assembly of T4 DNA polymerase and its accessory proteins on the primer–template
  publication-title: Cell
– volume: 5
  start-page: 1504
  year: 1991
  end-page: 1512
  article-title: Assembly of transcription elongation complexes containing the N protein of phage lambda and the elongation factors NusA, NusB, NusG, and S10
  publication-title: Genes Dev
– volume: 177
  start-page: 313
  year: 1984
  end-page: 327
  article-title: Characterization of the stimulatory effect of T4 gene 45 protein and the gene 44/62 protein complex on DNA synthesis by T4 DNA polymerase
  publication-title: J Mol Biol
– volume: 105
  start-page: 1
  year: 1980
  end-page: 6
  article-title: Isolation of a complex between the P protein of phage lambda and the dnaB protein of
  publication-title: Eur J Biochem
– volume: 24
  start-page: 736
  year: 1977
  end-page: 745
  article-title: ‘Host shutoff’ function of bacteriophage T7: involvement of T7 gene 2 and gene 0.7 in the inactivation of RNA polymerase
  publication-title: J Virol
– volume: 375
  start-page: 29
  year: 2008
  end-page: 35
  article-title: Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7
  publication-title: J Mol Biol
– volume: 175
  start-page: 525
  year: 1990
  end-page: 534
  article-title: Protein kinase of bacteriophage T7 induces the phosphorylation of only a small number of proteins in the infected cell
  publication-title: Virology
– volume: 2
  start-page: e363
  year: 2007
  article-title: Phage lambda CIII: a protease inhibitor regulating the lysis‐lysogeny decision
  publication-title: PLoS ONE
– volume: 299
  start-page: 369
  year: 1982
  end-page: 371
  article-title: T4 late transcripts are initiated near a conserved DNA sequence
  publication-title: Nature
– volume: 25
  start-page: 582
  year: 1981
  end-page: 584
  article-title: Cascades of Sigma factors
  publication-title: Cell
– volume: 205
  start-page: 361
  year: 1979
  end-page: 365
  article-title: Promotion and limitation of genetic exchange
  publication-title: Science
– volume: 184
  start-page: 3957
  year: 2002
  end-page: 3964
  article-title: The bacteriophage T4 transcription activator MotA interacts with the far‐C‐terminal region of the sigma70 subunit of RNA polymerase
  publication-title: J Bacteriol
– volume: 25
  start-page: 1700
  year: 2006
  end-page: 1709
  article-title: The role of an upstream promoter interaction in initiation of bacterial transcription
  publication-title: EMBO J
– volume: 39
  start-page: 409
  year: 2005
  end-page: 429
  article-title: Switches in bacteriophage lambda development
  publication-title: Annu Rev Genet
– volume: 9
  start-page: 5859
  year: 1981
  end-page: 5866
  article-title: The effect of sequence specific DNA methylation on restriction endonuclease cleavage
  publication-title: Nucleic Acids Res
– volume: 197
  start-page: 794
  year: 1963
  end-page: 795
  article-title: Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for
  publication-title: Nature
– volume: 35
  start-page: 108
  year: 1996
  end-page: 120
  article-title: Characterization of bacteriophage T4 early promoters with a new promoter probe vector
  publication-title: Plasmid
– volume: 3
  start-page: 953
  year: 1992
  end-page: 957
  article-title: The sliding clamp of DNA polymerase III holoenzyme encircles DNA
  publication-title: Mol Biol Cell
– start-page: 277
  year: 2005
  end-page: 301
– volume: 182
  start-page: 567
  year: 1985
  end-page: 578
  article-title: Inhibition of the type I restriction‐modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7
  publication-title: J Mol Biol
– volume: 23
  start-page: 138
  year: 1998
  end-page: 143
  article-title: The ins and outs of a molecular chaperone machine
  publication-title: Trends Biochem Sci
– volume: 16
  start-page: 1992
  year: 1997
  end-page: 2003
  article-title: The activation domain of the MotA transcription factor from bacteriophage T4
  publication-title: EMBO J
– volume: 113
  start-page: 171
  year: 2003
  end-page: 182
  article-title: Origins of highly mosaic mycobacteriophage genomes
  publication-title: Cell
– volume: 106
  start-page: 417
  year: 2001
  end-page: 428
  article-title: Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of DNA polymerase III
  publication-title: Cell
– volume: 100
  start-page: 35
  year: 1976
  end-page: 45
  article-title: Early to late switch in bacteriophage T7 development: no translational discrimination between T7 early messenger RNA and late messenger RNA
  publication-title: J Mol Biol
– volume: 60
  start-page: 227
  year: 1975
  end-page: 238
  article-title: ADP‐ribosylation of DNA‐dependent RNA polymerase of by an NAD+: protein ADP‐ribosyltransferase from bacteriophage T4
  publication-title: Eur J Biochem
– volume: 275
  start-page: 1655
  year: 1997
  end-page: 1657
  article-title: RNA polymerase beta′ subunit: a target of DNA binding‐independent activation
  publication-title: Science
– volume: 75
  start-page: 147
  year: 1993
  end-page: 154
  article-title: Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA
  publication-title: Cell
– volume: 149
  start-page: 694
  year: 1982
  end-page: 699
  article-title: Physical mapping and cloning of bacteriophage T4 anti‐restriction endonuclease gene
  publication-title: J Bacteriol
– volume: 287
  start-page: 331
  year: 1999
  end-page: 346
  article-title: Protein mimicry of DNA from crystal structures of the uracil‐DNA glycosylase inhibitor protein and its complex with uracil‐DNA glycosylase
  publication-title: J Mol Biol
– volume: 228
  start-page: 227
  year: 1970
  end-page: 231
  article-title: New RNA polymerase from infected with bacteriophage T7
  publication-title: Nature
– volume: 7
  start-page: 1244
  year: 2008
  end-page: 1250
  article-title: Rapid isolation and identification of bacteriophage T4‐encoded modifications of RNA polymerase: a generic method to study bacteriophage/host interactions
  publication-title: J Proteome Res
– volume: 366
  start-page: 779
  year: 2007
  end-page: 789
  article-title: Exclusion of glucosyl‐hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*
  publication-title: J Mol Biol
– volume: 387
  start-page: 50
  year: 2009
  end-page: 58
  article-title: A procedure for systematic identification of bacteriophage–host interactions of phages
  publication-title: Virology
– volume: 79
  start-page: 237
  year: 1973
  end-page: 248
  article-title: Analysis of bacteriophage T7 early RNAs and proteins on slab gels
  publication-title: J Mol Biol
– volume: 379
  start-page: 402
  year: 2008
  end-page: 413
  article-title: Dissection of the bacteriophage t4 late promoter complex
  publication-title: J Mol Biol
– volume: 22
  start-page: 167
  year: 2004
  end-page: 168
  article-title: Phage‐inspired antibiotics?
  publication-title: Nat Biotechnol
– volume: 27
  start-page: 533
  year: 1981
  end-page: 542
  article-title: Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7
  publication-title: Cell
– volume: 71
  start-page: 586
  year: 1974
  end-page: 589
  article-title: Protein kinase induction in by bacteriophage T7
  publication-title: Proc Natl Acad Sci USA
– volume: 50
  start-page: 285
  year: 1981
  end-page: 319
  article-title: Structure and mechanism of multifunctional restriction endonucleases
  publication-title: Annu Rev Biochem
– volume: 76
  start-page: 4852
  year: 1979
  end-page: 4856
  article-title: Gene 2 protein of bacteriophage T7: purification and requirement for packaging of T7 DNA
  publication-title: Proc Natl Acad Sci USA
– volume: 159
  start-page: 306
  year: 2008
  end-page: 313
  article-title: Exploring the prokaryotic virosphere
  publication-title: Res Microbiol
– volume: 366
  start-page: 420
  year: 2007
  end-page: 435
  article-title: Temporal regulation of viral transcription during development of bacteriophage phiYS40
  publication-title: J Mol Biol
– volume: 99
  start-page: 487
  year: 1975
  end-page: 499
  article-title: Effect of RNAase III, cleavage on translation of bacteriophage T7 messenger RNAs
  publication-title: J Mol Biol
– volume: 8
  start-page: 1601
  year: 1989
  end-page: 1608
  article-title: Initiation of lambda DNA replication with purified host‐ and bacteriophage‐encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins
  publication-title: EMBO J
– volume: 289
  start-page: 815
  year: 1999
  end-page: 826
  article-title: Inhibition of RNA polymerase by bacteriophage T7 gene 2 protein
  publication-title: J Mol Biol
– volume: 14
  start-page: 3252
  year: 1995
  end-page: 3261
  article-title: The stability of lacZ mRNA depends upon the simultaneity of its synthesis and translation
  publication-title: EMBO J
– volume: 175
  start-page: 85
  year: 1993
  end-page: 93
  article-title: The gene of bacteriophage T4 codes for the anti‐sigma 70 protein
  publication-title: J Bacteriol
– volume: 92
  start-page: 1451
  year: 1995
  end-page: 1455
  article-title: Bacteriophage T4 MotA and AsiA proteins suffice to direct RNA polymerase to initiate transcription at T4 middle promoters
  publication-title: Proc Natl Acad Sci USA
– volume: 371
  start-page: 25
  year: 2007
  end-page: 33
  article-title: The crystal structure of lambda‐Gam protein suggests a model for RecBCD inhibition
  publication-title: J Mol Biol
– start-page: 165
  year: 2005
  end-page: 222
– volume: 62
  start-page: 1132
  year: 2006
  end-page: 1143
  article-title: Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus
  publication-title: Mol Microbiol
– volume: 256
  start-page: 1298
  year: 1992
  end-page: 1303
  article-title: A transcriptional enhancer whose function imposes a requirement that proteins track along DNA
  publication-title: Science
– volume: 419
  start-page: 71
  year: 1997
  end-page: 82
  article-title: ADP‐ribosylation and early transcription regulation by bacteriophage T4
  publication-title: Adv Exp Med Biol
– volume: 33
  start-page: 887
  year: 1983
  end-page: 897
  article-title: Initiation of transcription at phage T4 late promoters with purified RNA polymerase
  publication-title: Cell
– ident: e_1_2_10_106_1
  doi: 10.1016/j.virol.2009.01.033
– ident: e_1_2_10_121_1
  doi: 10.1046/j.1365-2958.1999.01147.x
– volume: 8
  start-page: 187
  year: 1999
  ident: e_1_2_10_122_1
  article-title: Overexpression, purification, and partial characterization of ADP‐ribosyltransferases modA and modB of bacteriophage T4
  publication-title: Gene Expr
– ident: e_1_2_10_54_1
  doi: 10.1073/pnas.0501140102
– ident: e_1_2_10_108_1
  doi: 10.1016/j.jmb.2007.12.077
– ident: e_1_2_10_60_1
  doi: 10.1073/pnas.90.5.1761
– ident: e_1_2_10_85_1
  doi: 10.1091/mbc.3.9.953
– ident: e_1_2_10_125_1
  doi: 10.1016/S0021-9258(19)85067-6
– ident: e_1_2_10_19_1
  doi: 10.1016/j.bbrc.2005.08.023
– ident: e_1_2_10_132_1
  doi: 10.1007/978-1-4419-8632-0_8
– ident: e_1_2_10_114_1
  doi: 10.1128/jb.170.7.3016-3024.1988
– ident: e_1_2_10_81_1
  doi: 10.1016/j.jmb.2008.03.071
– ident: e_1_2_10_55_1
  doi: 10.1128/JB.188.3.1184-1187.2006
– ident: e_1_2_10_58_1
  doi: 10.1073/pnas.85.18.6632
– ident: e_1_2_10_48_1
  doi: 10.1371/journal.pone.0000363
– ident: e_1_2_10_96_1
  doi: 10.1016/j.dnarep.2005.08.007
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1365-2958.2008.06276.x
– ident: e_1_2_10_29_1
  doi: 10.1016/S0021-9258(19)42709-9
– ident: e_1_2_10_88_1
  doi: 10.1073/pnas.92.5.1451
– ident: e_1_2_10_127_1
  doi: 10.1128/jb.177.10.2933-2937.1995
– ident: e_1_2_10_59_1
  doi: 10.1038/nbt932
– ident: e_1_2_10_11_1
  doi: 10.1016/j.tibtech.2004.07.004
– ident: e_1_2_10_87_1
  doi: 10.1128/jb.175.1.85-93.1993
– ident: e_1_2_10_86_1
  doi: 10.1146/annurev.genet.39.073003.113656
– start-page: 127
  volume-title: Molecular Biology of Bacteriophage T4.
  year: 1994
  ident: e_1_2_10_76_1
– ident: e_1_2_10_91_1
  doi: 10.1006/jmbi.1995.0343
– ident: e_1_2_10_46_1
  doi: 10.1111/j.1365-2958.2004.04204.x
– ident: e_1_2_10_64_1
  doi: 10.1093/nar/9.22.5859
– ident: e_1_2_10_131_1
  doi: 10.1006/plas.1996.0013
– ident: e_1_2_10_7_1
  doi: 10.1128/JB.65.2.113-121.1953
– ident: e_1_2_10_21_1
  doi: 10.1073/pnas.82.14.4678
– ident: e_1_2_10_62_1
  doi: 10.1093/emboj/cdg603
– ident: e_1_2_10_74_1
  doi: 10.1128/MMBR.67.1.86-156.2003
– ident: e_1_2_10_14_1
  doi: 10.1038/228227a0
– ident: e_1_2_10_129_1
  doi: 10.1073/pnas.48.2.293
– ident: e_1_2_10_10_1
  doi: 10.1146/annurev.mi.25.100171.001101
– ident: e_1_2_10_33_1
  doi: 10.1038/258354a0
– volume: 266
  start-page: 20024
  year: 1991
  ident: e_1_2_10_79_1
  article-title: The T4 DNA polymerase accessory proteins form an ATP‐dependent complex on a primer–template junction
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)54887-0
– ident: e_1_2_10_111_1
  doi: 10.1128/JB.188.10.3470-3476.2006
– ident: e_1_2_10_109_1
  doi: 10.1093/nar/gkm584
– ident: e_1_2_10_43_1
  doi: 10.1128/MMBR.00013-07
– ident: e_1_2_10_28_1
  doi: 10.1093/nar/9.19.4863
– ident: e_1_2_10_136_1
  doi: 10.1146/annurev.bi.50.070181.001441
– volume: 184
  start-page: 3957
  year: 2002
  ident: e_1_2_10_89_1
  article-title: The bacteriophage T4 transcription activator MotA interacts with the far‐C‐terminal region of the sigma70 subunit of Escherichia coli RNA polymerase
  publication-title: J Bacteriol
  doi: 10.1128/JB.184.14.3957-3964.2002
– ident: e_1_2_10_82_1
  doi: 10.1006/jmbi.1999.2782
– volume: 252
  start-page: 6640
  year: 1977
  ident: e_1_2_10_78_1
  article-title: Purification and properties of a T4 bacteriophage factor that modifies valyl‐tRNA synthetase of Escherichia coli
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)39895-2
– ident: e_1_2_10_22_1
  doi: 10.1016/S0022-2836(75)80140-9
– ident: e_1_2_10_25_1
  doi: 10.1128/MMBR.48.4.299-325.1984
– ident: e_1_2_10_66_1
  doi: 10.1016/S0021-9258(19)38298-5
– start-page: 343
  volume-title: Molecular Biology of Bacteriophage T4.
  year: 1994
  ident: e_1_2_10_52_1
– ident: e_1_2_10_123_1
  doi: 10.1016/j.mib.2005.06.003
– ident: e_1_2_10_32_1
  doi: 10.1126/science.1598572
– ident: e_1_2_10_105_1
  doi: 10.1111/j.1432-1033.1975.tb20995.x
– ident: e_1_2_10_50_1
  doi: 10.1006/jmbi.1999.2953
– ident: e_1_2_10_57_1
  doi: 10.1073/pnas.76.10.4852
– ident: e_1_2_10_135_1
  doi: 10.1016/S0022-2836(76)80032-0
– volume: 265
  start-page: 5303
  year: 1990
  ident: e_1_2_10_37_1
  article-title: Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)34122-5
– volume: 24
  start-page: 736
  year: 1977
  ident: e_1_2_10_34_1
  article-title: ‘Host shutoff’ function of bacteriophage T7: involvement of T7 gene 2 and gene 0.7 in the inactivation of Escherichia coli RNA polymerase
  publication-title: J Virol
  doi: 10.1128/jvi.24.3.736-745.1977
– volume: 258
  start-page: 5340
  year: 1983
  ident: e_1_2_10_71_1
  article-title: RNase III is positively regulated by T7 protein kinase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(20)81892-4
– ident: e_1_2_10_92_1
  doi: 10.1007/BF00285915
– ident: e_1_2_10_120_1
  doi: 10.1038/197794a0
– start-page: 277
  volume-title: The Bacteriophages.
  year: 2005
  ident: e_1_2_10_75_1
– ident: e_1_2_10_126_1
  doi: 10.1146/annurev.mi.34.100180.001033
– volume: 263
  start-page: 13549
  year: 1988
  ident: e_1_2_10_39_1
  article-title: Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)68277-8
– ident: e_1_2_10_83_1
  doi: 10.1073/pnas.0408028101
– ident: e_1_2_10_110_1
  doi: 10.1016/S0021-9258(17)36782-0
– ident: e_1_2_10_134_1
  doi: 10.1006/jmbi.1997.1390
– volume: 61
  start-page: 366
  year: 1987
  ident: e_1_2_10_38_1
  article-title: Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication
  publication-title: J Virol
  doi: 10.1128/jvi.61.2.366-374.1987
– ident: e_1_2_10_69_1
  doi: 10.1006/jmbi.1998.2373
– ident: e_1_2_10_137_1
  doi: 10.1016/j.jmb.2007.10.054
– ident: e_1_2_10_56_1
  doi: 10.1038/sj.emboj.7600312
– ident: e_1_2_10_100_1
  doi: 10.1016/S0968-0004(98)01193-1
– volume: 4
  start-page: 253
  year: 1995
  ident: e_1_2_10_49_1
  article-title: Overexpression, purification, and characterization of the ADP‐ribosyltransferase (gpAlt) of bacteriophage T4: ADP‐ribosylation of E. coli RNA polymerase modulates T4 ‘early’ transcription
  publication-title: Gene Expr
– ident: e_1_2_10_118_1
  doi: 10.1016/0022-2836(73)90003-X
– ident: e_1_2_10_102_1
  doi: 10.1016/0042-6822(90)90437-V
– start-page: 132
  volume-title: Molecular Biology of Bacteriophage T4.
  year: 1994
  ident: e_1_2_10_130_1
– ident: e_1_2_10_5_1
  doi: 10.1016/j.jmb.2006.08.074
– ident: e_1_2_10_138_1
  doi: 10.1007/BF00268447
– ident: e_1_2_10_23_1
  doi: 10.1093/emboj/16.8.1992
– ident: e_1_2_10_47_1
  doi: 10.1111/j.1432-1033.1980.tb04467.x
– ident: e_1_2_10_113_1
  doi: 10.1111/j.1432-1033.1977.tb11783.x
– ident: e_1_2_10_2_1
  doi: 10.1126/science.377489
– ident: e_1_2_10_101_1
  doi: 10.1016/j.jmb.2007.10.064
– volume: 149
  start-page: 694
  year: 1982
  ident: e_1_2_10_20_1
  article-title: Physical mapping and cloning of bacteriophage T4 anti‐restriction endonuclease gene
  publication-title: J Bacteriol
  doi: 10.1128/jb.149.2.694-699.1982
– ident: e_1_2_10_116_1
  doi: 10.1016/0022-2836(80)90399-X
– ident: e_1_2_10_93_1
  doi: 10.1006/jmbi.1993.1563
– ident: e_1_2_10_99_1
  doi: 10.1073/pnas.71.2.586
– ident: e_1_2_10_107_1
  doi: 10.1016/0092-8674(81)90395-0
– ident: e_1_2_10_63_1
  doi: 10.1016/0092-8674(81)90164-1
– ident: e_1_2_10_97_1
  doi: 10.1038/381169a0
– ident: e_1_2_10_26_1
  doi: 10.1128/jb.177.14.4066-4076.1995
– ident: e_1_2_10_42_1
  doi: 10.1016/S0092-8674(01)00462-7
– ident: e_1_2_10_73_1
  doi: 10.1126/science.275.5306.1655
– ident: e_1_2_10_104_1
  doi: 10.1111/j.1365-2958.1994.tb00382.x
– ident: e_1_2_10_4_1
  doi: 10.1016/0022-2836(85)90242-6
– volume: 33
  start-page: 547
  year: 1980
  ident: e_1_2_10_27_1
  article-title: ADP ribosylation of Escherichia coli RNA polymerase is nonessential for bacteriophage T4 development
  publication-title: J Virol
  doi: 10.1128/jvi.33.1.547-549.1980
– ident: e_1_2_10_65_1
  doi: 10.1016/0022-2836(84)90459-5
– ident: e_1_2_10_94_1
  doi: 10.1038/nbt0204-167
– ident: e_1_2_10_44_1
  doi: 10.1016/S0092-8674(05)80091-1
– ident: e_1_2_10_84_1
  doi: 10.1128/JVI.74.9.4057-4063.2000
– ident: e_1_2_10_98_1
  doi: 10.1111/j.1365-2958.2007.06058.x
– ident: e_1_2_10_70_1
  doi: 10.1101/gad.5.8.1504
– ident: e_1_2_10_12_1
  doi: 10.1016/0092-8674(91)90159-V
– ident: e_1_2_10_72_1
  doi: 10.1016/0042-6822(92)90010-M
– ident: e_1_2_10_17_1
  doi: 10.1016/j.resmic.2008.05.001
– ident: e_1_2_10_80_1
  doi: 10.1038/sj.emboj.7601069
– ident: e_1_2_10_3_1
  doi: 10.1016/j.jmb.2006.11.049
– ident: e_1_2_10_103_1
  doi: 10.1021/bi00135a012
– ident: e_1_2_10_16_1
  doi: 10.1046/j.1365-2958.1998.00729.x
– ident: e_1_2_10_15_1
  doi: 10.1038/299369a0
– start-page: 165
  volume-title: Bacteriophages Biology and Application.
  year: 2005
  ident: e_1_2_10_53_1
– ident: e_1_2_10_8_1
  doi: 10.1128/mr.57.2.434-450.1993
– ident: e_1_2_10_128_1
  doi: 10.1021/pr070451j
– ident: e_1_2_10_35_1
  doi: 10.1074/jbc.273.1.518
– start-page: 29
  volume-title: Bacteriophages Biology and Application.
  year: 2005
  ident: e_1_2_10_31_1
– ident: e_1_2_10_117_1
  doi: 10.1126/science.176.4033.367
– ident: e_1_2_10_18_1
  doi: 10.1016/j.jmb.2007.05.037
– ident: e_1_2_10_40_1
  doi: 10.1002/j.1460-2075.1995.tb07328.x
– ident: e_1_2_10_139_1
  doi: 10.1093/nar/10.5.1635
– start-page: 369
  volume-title: Molecular Biology of Bacteriophage T4.
  year: 1994
  ident: e_1_2_10_13_1
– ident: e_1_2_10_51_1
  doi: 10.1128/MMBR.47.3.345-360.1983
– ident: e_1_2_10_68_1
  doi: 10.1073/pnas.161253298
– ident: e_1_2_10_77_1
  doi: 10.1016/S0378-1119(98)00238-8
– ident: e_1_2_10_6_1
  doi: 10.1111/j.1365-2958.2006.05427.x
– ident: e_1_2_10_141_1
  doi: 10.1002/j.1460-2075.1989.tb03544.x
– ident: e_1_2_10_36_1
  doi: 10.1074/jbc.273.1.524
– ident: e_1_2_10_67_1
  doi: 10.1046/j.1365-2958.2001.02668.x
– ident: e_1_2_10_112_1
  doi: 10.1016/j.jmb.2006.11.050
– ident: e_1_2_10_133_1
  doi: 10.1074/jbc.M211447200
– ident: e_1_2_10_95_1
  doi: 10.1006/jmbi.1999.2605
– ident: e_1_2_10_30_1
  doi: 10.1016/S0014-5793(01)02378-X
– ident: e_1_2_10_45_1
  doi: 10.1016/0092-8674(83)90031-4
– ident: e_1_2_10_61_1
  doi: 10.1016/0022-2836(86)90071-9
– ident: e_1_2_10_115_1
  doi: 10.1099/00221287-146-10-2643
– ident: e_1_2_10_90_1
  doi: 10.1016/S0092-8674(03)00233-2
– ident: e_1_2_10_119_1
  doi: 10.1016/S0021-9258(18)47718-6
– ident: e_1_2_10_140_1
  doi: 10.1073/pnas.72.7.2506
– ident: e_1_2_10_24_1
  doi: 10.1016/0378-1119(90)90053-T
– ident: e_1_2_10_124_1
  doi: 10.1016/S1097-2765(02)00435-5
– ident: e_1_2_10_41_1
  doi: 10.1128/jb.174.2.619-622.1992
SSID ssj0017370
Score 2.305279
SecondaryResourceType review_article
Snippet Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these...
Summary Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved...
SummaryInteractions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved...
SourceID proquest
pubmed
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2789
SubjectTerms Bacteria
Bacteria - virology
bacterial proteins
Bacterial Proteins - metabolism
bacteriophages
Bacteriophages - physiology
defense mechanisms
Host-Parasite Interactions
hosts
metabolism
physiology
Protein Interaction Mapping
surveys
therapeutics
Viral Proteins
Viral Proteins - metabolism
virology
Title role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome
URI https://api.istex.fr/ark:/67375/WNG-P30353K9-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2009.02029.x
https://www.ncbi.nlm.nih.gov/pubmed/19691505
https://www.proquest.com/docview/1365046922
https://www.proquest.com/docview/734119497
https://www.proquest.com/docview/746153200
Volume 11
WOSCitedRecordID wos000271244800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1462-2920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017370
  issn: 1462-2912
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RLUhceEPDozIS4haUpx1zQ8CCRLWqgFX3ZtmxU1ZAstrtorK_nhk7DdqqoApxy2HGiZ2Z8Wd7_A3As6RsKqJ2inkhixjnY4yD-HdjwxMjNRe4QvCU-QdiMqlmM3nY5z_RXZjADzFsuJFn-HhNDq7N6ryTZzFVW-ppJ3EdL18gntzN0IzLEey--TieHgxnCiL3peN6rfRcXs-FbW1NVjuN7hDC0uifXoRHt-Gtn5_GN_9nz27BjR6lslfBrG7DFdfegWuhbuXPu7BB42KUl8i6hhHhxDJcj1ixPu2LLb5gnGK6tcwEOmhszVNCzFGI9n7nLUPoyUIumLOMDhBeMs2szxMJqov1ZkO35YdXdN_dPZiO335-_T7uizjENU9TGVculPNwRdNY42wmhU1EbYtauJIbWzU1ipnEVLLgtcgrfK2wEiXyQudG5Pdh1Hat2wOG4QPxFM9zXZlCJLUxziSpTbBR7axMIxBnf0vVPcM5Fdr4prZWOpmikaX6m1L5kVWnEaSD5iKwfFxCZw8NQuljDMZq-imjI-CUS14KEcFzbyVDW3r5lRLoRKmOJu_UIcKGMv8g1VEET8_MSKFb01Dr1nXrlaLsQ9q6yLII2B9kBCKQVBZS_EWkIECPnx3Bg2Clv_snucTVQBkB98Z46Y4rDBD09PBfFR_BdX8m5290PobRyXLtnsDV-sfJfLXchx0xq_Z75_0F4u88WQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BCyoX3qXhaSTELShPO-aGgKWoy6qCrtqbZccOrIBktdtFZX89M3a6aKuCKsQthxkndr4Zf7bHMwDPkrKpKLVTzAtZxDgfox_EvxsbnhipucAVgk-ZPxSjUXV0JPf7ckB0Fybkh1htuJFleH9NBk4b0metPIup3FKfdxIX8vIFEsrNAlGFcN9883EwHq4OFUTua8f1WumZwJ5z21qbrS43ukMOS8N_ch4hXee3foIa3PivXbsJ13ueyl4FYN2CS669DVdD5cqfd2CJ8GIUmci6hlHKiVm4IDFnfeAXm35BT8V0a5kJCaGxNZ8UYoJCtPs7aRmSTxaiwZxldITwkmlmfaRIUJ0ulku6L796Rffd3YXx4O3B6924L-MQ1zxNZVy5UNDDFU1jjbOZFDYRtS1q4UpubNXUKGYSU8mC1yKv8LXCSpTIC50bkW_DRtu1bgcYOhBkVDzPdWUKkdTGOJOkNsFGtbMyjUCc_i5V9znOqdTGN7W21skUjSxV4JTKj6w6iSBdaU5Dno8L6OwgIpT-jO5YjT9ldAiccslLISJ47mGyakvPvlIInSjV4eid2kfiUOZ7Uh1G8PQURwoNm4Zat65bzBXFH9LmRZZFwP4gI5CDpLKQ4i8iBVF6_OwI7gWY_u6f5BLXA2UE3KPxwh1X6CLo6f6_Kj6Brd2DD0M1fD_aewDX_Amdv9_5EDaOZwv3CK7UP44n89nj3oZ_AWymP2E
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB5BFxAX3rDhaSTELSgPx465IZYC2qqqgGr3ZtmxAxWQVu0WLf31zDjZoK4WtELccphxYmdm_NkefwPwLCnqkqidYsEVj3E-xjiIfze2IrHKCIkrhECZP5LjcXl4qCZdOSC6C9PyQ_QbbuQZIV6Tg_uFq097eRZTuaWOdxIX8uoFAsodTjVlBrCz92E4HfWHCjIPteM6rfRUYs-ZbW3NVhdrM0cMS8N_fBYg3ca3YYIaXv-vXbsB1zqcyl61hnUTLvjmFlxuK1f-vA0bNC9GmYlsXjOinFi2FyRWrEv8YosvGKmYaRyzLSE0thZIIWYoRLu_s4Yh-GRtNph3jI4QXjLDXMgUaVUX682G7sv3r5h_93dgOnzz6fW7uCvjEFciTVVc-ragh-d17ax3mZIukZXjlfSFsK6sKxSziS0VF5XMS3ytdAolcm5yK_O7MGjmjd8FhgEEEZXIc1NaLpPKWm-T1CXYqPFOpRHIk9-lq47jnEptfNNba51M08hSBU6lw8jq4wjSXnPR8nycQ2cXLUKbzxiO9fRjRofAqVCikDKC58FM-rbM8iul0MlCH4zf6gkChyLfV_oggqcndqTRsWmoTePn65Wm_EPavMiyCNgfZCRikFRxJf8iwgnS42dHcK8109_9U0LheqCIQARrPHfHNYYIerr_r4pP4Mpkb6hH78f7D-BqOKAL1zsfwuBoufaP4FL142i2Wj7uXPgXlng-3A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+interactions+between+phage+and+bacterial+proteins+within+the+infected+cell%3A+a+diverse+and+puzzling+interactome&rft.jtitle=Environmental+microbiology&rft.au=Roucourt%2C+Bart&rft.au=Lavigne%2C+Rob&rft.date=2009-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=11&rft.issue=11&rft.spage=2789&rft.epage=2805&rft_id=info:doi/10.1111%2Fj.1462-2920.2009.02029.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P30353K9_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon