role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome
Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-hos...
Gespeichert in:
| Veröffentlicht in: | Environmental microbiology Jg. 11; H. 11; S. 2789 - 2805 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.11.2009
Blackwell Publishing Ltd |
| Schlagworte: | |
| ISSN: | 1462-2912, 1462-2920, 1462-2920 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted. |
|---|---|
| AbstractList | Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage–host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage–host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host‐cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage–host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell – many of them non‐essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted. SummaryInteractions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted. Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted.Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage-host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage-host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host-cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage-host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell - many of them non-essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted. Summary Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these bacteriophage–host interactions are often produced immediately after infection. A survey of the available set of published bacteriophage–host interactions reveals the targeted host proteins are inhibited, activated or functionally redirected by the phage protein. These interactions protect the bacteriophage from bacterial defence mechanisms or adapt the host‐cell metabolism to establish an efficient infection cycle. Regrettably, a large majority of bacteriophage early proteins lack any identified function. Recent research into the antibacterial potential of bacteriophage–host interactions indicates that phage early proteins seem to target a wide variety of processes in the host cell – many of them non‐essential. Since a clear understanding of such interactions may become important for regulations involving phage therapy and in biotechnological applications, increased scientific emphasis on the biological elucidation of such proteins is warranted. |
| Author | Roucourt, Bart Lavigne, Rob |
| Author_xml | – sequence: 1 fullname: Roucourt, Bart – sequence: 2 fullname: Lavigne, Rob |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19691505$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhS1URB_wF8A72EzwI7FjJCqhqrQV5SFB1aXlxDczHjLJYHs60_76OqRkwYLijS3d75x7dY8P0V7Xd4AQpiSj6bxdZjQXbMYUIxkjRGWEEaay3RN0MBX2pjdl--gwhCUhVHJJnqF9qoSiBSkO0I3vW8B9g10XwZs6ur4LuIK4BejwemHmgE1ncZVK4J1p8dr3EVyCti4uXIfjApK4gVS3uIa2fYcNtu4GfBil683dXeu6-dSiX8Fz9LQxbYAXD_cRuvp4-uPkfHb59ezi5MPlrBaUqlkJhORMlpA3ja3AMiUtkbXNawmFqGzZ1AmrSFWqXNSSl2kMaVUieG54JfkRej36pql_bSBEvXJhGNJ00G-ClrmgBU8rfJzkeWqVq8HzzT9JykVBcqEYS-jLB3RTrcDqtXcr42_1n_0n4HgEat-H4KHRtYtmCCF641pNiR4C10s9ZKmHXPUQuP4duN4lg_Ivg6nH49L3o3TrWrj9b50-_XwxvJJ-NupdiLCb9Mb_1CL9s0JffznT3zjhBf-k9HXiX418Y3pt5t4FffWdEcoJFUoUUvJ7IlzbSg |
| CitedBy_id | crossref_primary_10_1002_mbo3_1245 crossref_primary_10_1016_j_scitotenv_2024_170076 crossref_primary_10_1186_1471_2180_13_48 crossref_primary_10_1038_srep04823 crossref_primary_10_1093_femsre_fuaa041 crossref_primary_10_1093_nar_gkz1048 crossref_primary_10_3390_v14051057 crossref_primary_10_1111_j_1462_2920_2009_02101_x crossref_primary_10_1016_j_biotechadv_2021_107758 crossref_primary_10_1016_j_copbio_2020_08_015 crossref_primary_10_1007_s00705_016_2944_2 crossref_primary_10_3389_fmicb_2020_00947 crossref_primary_10_3390_polym14030613 crossref_primary_10_1016_j_jprot_2014_02_016 crossref_primary_10_1111_1758_2229_12872 crossref_primary_10_1074_jbc_RA119_010007 crossref_primary_10_1128_JB_01080_13 crossref_primary_10_1371_journal_pgen_1005770 crossref_primary_10_1038_srep19237 crossref_primary_10_1016_j_jmb_2019_02_008 crossref_primary_10_1371_journal_pone_0172303 crossref_primary_10_1146_annurev_virology_092818_015644 crossref_primary_10_1128_AEM_03656_14 crossref_primary_10_1093_nar_gkac674 crossref_primary_10_1098_rstb_2024_0073 crossref_primary_10_3389_fmicb_2018_00002 crossref_primary_10_3390_v14030555 crossref_primary_10_1111_1574_6968_12402 crossref_primary_10_3389_fmicb_2023_1148579 crossref_primary_10_3390_v14020181 crossref_primary_10_1371_journal_pbio_3000877 crossref_primary_10_1016_j_molcel_2025_04_010 crossref_primary_10_3389_fmicb_2015_01242 crossref_primary_10_1371_journal_pgen_1003269 crossref_primary_10_3390_antibiotics7010015 crossref_primary_10_3390_ijms24109100 crossref_primary_10_1093_ve_veac086 crossref_primary_10_3390_v10100537 crossref_primary_10_1038_ismej_2015_210 crossref_primary_10_3389_fmicb_2022_830692 crossref_primary_10_1007_s10529_022_03229_y crossref_primary_10_1128_msystems_00106_22 crossref_primary_10_1134_S0026261719040118 crossref_primary_10_1371_journal_pone_0035053 crossref_primary_10_1038_s41598_020_59396_3 crossref_primary_10_1074_jbc_M110_169003 crossref_primary_10_1093_nar_gkab793 crossref_primary_10_3390_ijms222212460 crossref_primary_10_1111_cmi_12330 crossref_primary_10_7554_eLife_16413 crossref_primary_10_1128_jvi_01769_21 crossref_primary_10_3389_fmicb_2023_1172635 crossref_primary_10_3390_biomedicines9040342 crossref_primary_10_3389_fmolb_2016_00037 crossref_primary_10_1016_j_addr_2016_03_003 crossref_primary_10_3390_life12081234 crossref_primary_10_3390_microorganisms8111707 crossref_primary_10_1016_j_isci_2023_107745 crossref_primary_10_1038_s41598_017_13363_7 crossref_primary_10_1128_AEM_01675_13 crossref_primary_10_1007_s00253_015_6674_2 crossref_primary_10_1038_ismej_2016_3 crossref_primary_10_1099_vir_0_043331_0 crossref_primary_10_1016_j_meegid_2016_06_011 crossref_primary_10_3389_fmicb_2016_01519 crossref_primary_10_1128_msystems_00017_20 crossref_primary_10_3389_fmicb_2022_1044143 crossref_primary_10_3390_microorganisms10112245 crossref_primary_10_1128_AEM_01170_19 crossref_primary_10_1128_AEM_00128_11 crossref_primary_10_1093_femsml_uqae002 crossref_primary_10_3390_v9060136 crossref_primary_10_3390_v13081557 crossref_primary_10_3389_fmicb_2016_00041 crossref_primary_10_3390_ijms22116159 crossref_primary_10_2217_fvl_15_3 crossref_primary_10_1038_s41564_024_01719_5 crossref_primary_10_3390_antibiotics11020164 crossref_primary_10_1128_spectrum_02372_23 crossref_primary_10_1089_phage_2020_0015 crossref_primary_10_3390_v12050544 crossref_primary_10_1093_molbev_msy027 crossref_primary_10_1016_j_foodres_2023_112665 crossref_primary_10_3390_v10080394 crossref_primary_10_1038_nrmicro_2017_61 crossref_primary_10_2217_fmb_14_147 crossref_primary_10_3389_fmicb_2017_00548 |
| Cites_doi | 10.1016/j.virol.2009.01.033 10.1046/j.1365-2958.1999.01147.x 10.1073/pnas.0501140102 10.1016/j.jmb.2007.12.077 10.1073/pnas.90.5.1761 10.1091/mbc.3.9.953 10.1016/S0021-9258(19)85067-6 10.1016/j.bbrc.2005.08.023 10.1007/978-1-4419-8632-0_8 10.1128/jb.170.7.3016-3024.1988 10.1016/j.jmb.2008.03.071 10.1128/JB.188.3.1184-1187.2006 10.1073/pnas.85.18.6632 10.1371/journal.pone.0000363 10.1016/j.dnarep.2005.08.007 10.1111/j.1365-2958.2008.06276.x 10.1016/S0021-9258(19)42709-9 10.1073/pnas.92.5.1451 10.1128/jb.177.10.2933-2937.1995 10.1038/nbt932 10.1016/j.tibtech.2004.07.004 10.1128/jb.175.1.85-93.1993 10.1146/annurev.genet.39.073003.113656 10.1006/jmbi.1995.0343 10.1111/j.1365-2958.2004.04204.x 10.1093/nar/9.22.5859 10.1006/plas.1996.0013 10.1128/JB.65.2.113-121.1953 10.1073/pnas.82.14.4678 10.1093/emboj/cdg603 10.1128/MMBR.67.1.86-156.2003 10.1038/228227a0 10.1073/pnas.48.2.293 10.1146/annurev.mi.25.100171.001101 10.1038/258354a0 10.1016/S0021-9258(18)54887-0 10.1128/JB.188.10.3470-3476.2006 10.1093/nar/gkm584 10.1128/MMBR.00013-07 10.1093/nar/9.19.4863 10.1146/annurev.bi.50.070181.001441 10.1128/JB.184.14.3957-3964.2002 10.1006/jmbi.1999.2782 10.1016/S0021-9258(17)39895-2 10.1016/S0022-2836(75)80140-9 10.1128/MMBR.48.4.299-325.1984 10.1016/S0021-9258(19)38298-5 10.1016/j.mib.2005.06.003 10.1126/science.1598572 10.1111/j.1432-1033.1975.tb20995.x 10.1006/jmbi.1999.2953 10.1073/pnas.76.10.4852 10.1016/S0022-2836(76)80032-0 10.1016/S0021-9258(19)34122-5 10.1128/jvi.24.3.736-745.1977 10.1016/S0021-9258(20)81892-4 10.1007/BF00285915 10.1038/197794a0 10.1146/annurev.mi.34.100180.001033 10.1016/S0021-9258(18)68277-8 10.1073/pnas.0408028101 10.1016/S0021-9258(17)36782-0 10.1006/jmbi.1997.1390 10.1128/jvi.61.2.366-374.1987 10.1006/jmbi.1998.2373 10.1016/j.jmb.2007.10.054 10.1038/sj.emboj.7600312 10.1016/S0968-0004(98)01193-1 10.1016/0022-2836(73)90003-X 10.1016/0042-6822(90)90437-V 10.1016/j.jmb.2006.08.074 10.1007/BF00268447 10.1093/emboj/16.8.1992 10.1111/j.1432-1033.1980.tb04467.x 10.1111/j.1432-1033.1977.tb11783.x 10.1126/science.377489 10.1016/j.jmb.2007.10.064 10.1128/jb.149.2.694-699.1982 10.1016/0022-2836(80)90399-X 10.1006/jmbi.1993.1563 10.1073/pnas.71.2.586 10.1016/0092-8674(81)90395-0 10.1016/0092-8674(81)90164-1 10.1038/381169a0 10.1128/jb.177.14.4066-4076.1995 10.1016/S0092-8674(01)00462-7 10.1126/science.275.5306.1655 10.1111/j.1365-2958.1994.tb00382.x 10.1016/0022-2836(85)90242-6 10.1128/jvi.33.1.547-549.1980 10.1016/0022-2836(84)90459-5 10.1038/nbt0204-167 10.1016/S0092-8674(05)80091-1 10.1128/JVI.74.9.4057-4063.2000 10.1111/j.1365-2958.2007.06058.x 10.1101/gad.5.8.1504 10.1016/0092-8674(91)90159-V 10.1016/0042-6822(92)90010-M 10.1016/j.resmic.2008.05.001 10.1038/sj.emboj.7601069 10.1016/j.jmb.2006.11.049 10.1021/bi00135a012 10.1046/j.1365-2958.1998.00729.x 10.1038/299369a0 10.1128/mr.57.2.434-450.1993 10.1021/pr070451j 10.1074/jbc.273.1.518 10.1126/science.176.4033.367 10.1016/j.jmb.2007.05.037 10.1002/j.1460-2075.1995.tb07328.x 10.1093/nar/10.5.1635 10.1128/MMBR.47.3.345-360.1983 10.1073/pnas.161253298 10.1016/S0378-1119(98)00238-8 10.1111/j.1365-2958.2006.05427.x 10.1002/j.1460-2075.1989.tb03544.x 10.1074/jbc.273.1.524 10.1046/j.1365-2958.2001.02668.x 10.1016/j.jmb.2006.11.050 10.1074/jbc.M211447200 10.1006/jmbi.1999.2605 10.1016/S0014-5793(01)02378-X 10.1016/0092-8674(83)90031-4 10.1016/0022-2836(86)90071-9 10.1099/00221287-146-10-2643 10.1016/S0092-8674(03)00233-2 10.1016/S0021-9258(18)47718-6 10.1073/pnas.72.7.2506 10.1016/0378-1119(90)90053-T 10.1016/S1097-2765(02)00435-5 10.1128/jb.174.2.619-622.1992 |
| ContentType | Journal Article |
| Copyright | 2009 Society for Applied Microbiology and Blackwell Publishing Ltd |
| Copyright_xml | – notice: 2009 Society for Applied Microbiology and Blackwell Publishing Ltd |
| DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QL 7T7 7U9 8FD C1K FR3 H94 P64 |
| DOI | 10.1111/j.1462-2920.2009.02029.x |
| DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1462-2920 |
| EndPage | 2805 |
| ExternalDocumentID | 19691505 10_1111_j_1462_2920_2009_02029_x EMI2029 ark_67375_WNG_P30353K9_W US201301696577 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XFK XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QL 7T7 7U9 8FD C1K FR3 H94 P64 |
| ID | FETCH-LOGICAL-c6119-8e004278e4ffdbed297d07cd4c7e56bd8fc119b0b8946c738fec7d97cd34a3b73 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 105 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000271244800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1462-2912 1462-2920 |
| IngestDate | Tue Oct 07 09:51:06 EDT 2025 Thu Oct 02 11:52:20 EDT 2025 Thu Oct 02 05:55:25 EDT 2025 Mon Jul 21 06:07:19 EDT 2025 Sat Nov 29 06:59:56 EST 2025 Tue Nov 18 21:08:26 EST 2025 Wed Jan 22 16:29:38 EST 2025 Tue Sep 09 05:32:23 EDT 2025 Wed Dec 27 19:17:26 EST 2023 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6119-8e004278e4ffdbed297d07cd4c7e56bd8fc119b0b8946c738fec7d97cd34a3b73 |
| Notes | http://dx.doi.org/10.1111/j.1462-2920.2009.02029.x istex:94D5695B03421E4814D63DEF8B651B4B52AE9F60 ArticleID:EMI2029 ark:/67375/WNG-P30353K9-W ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1462-2920.2009.02029.x |
| PMID | 19691505 |
| PQID | 1365046922 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_746153200 proquest_miscellaneous_734119497 proquest_miscellaneous_1365046922 pubmed_primary_19691505 crossref_citationtrail_10_1111_j_1462_2920_2009_02029_x crossref_primary_10_1111_j_1462_2920_2009_02029_x wiley_primary_10_1111_j_1462_2920_2009_02029_x_EMI2029 istex_primary_ark_67375_WNG_P30353K9_W fao_agris_US201301696577 |
| PublicationCentury | 2000 |
| PublicationDate | November 2009 |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: November 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford, UK |
| PublicationPlace_xml | – name: Oxford, UK – name: England |
| PublicationTitle | Environmental microbiology |
| PublicationTitleAlternate | Environ Microbiol |
| PublicationYear | 2009 |
| Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd |
| Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd |
| References | Hsu, T., and Karam, J.D. (1990) Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing. J Biol Chem 265: 5303-5316. Boyer, H.W. (1971) DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol 25: 153-176. Roucourt, B., Lecoutere, E., Chibeu, A., Hertveldt, K., Volckaert, G., and Lavigne, R. (2009) A procedure for systematic identification of bacteriophage-host interactions of P. aeruginosa phages. Virology 387: 50-58. Bickle, T.A., and Krüger, D.H. (1993) Biology of DNA restriction. Microbiol Rev 57: 434-450. Huber, H.E., Beauchamp, B.B., and Richardson, C.C. (1988) Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J Biol Chem 263: 13549-13556. Losick, R., and Pero, J. (1981) Cascades of Sigma factors. Cell 25: 582-584. Liu, J., Dehbi, M., Moeck, G., Arhin, F., Bauda, P., Bergeron, D., et al. (2004) Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22: 185-191. Tock, M.R., and Dryden, D.T.F. (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8: 466-472. McClelland, M. (1981) The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acids Res 9: 5859-5866. Mason, S.W., and Greenblatt, J. (1991) Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev 5: 1504-1512. Nechaev, S., and Geiduschek, E.P. (2008) Dissection of the bacteriophage t4 late promoter complex. J Mol Biol 379: 402-413. Tiemann, B., Depping, R., and Rüger, W. (1999) Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4. Gene Expr 8: 187-196. Odegrip, R., Schoen, S., Haggård-Ljungquist, E., Park, K., and Chattoraj, D.K. (2000) The interaction of bacteriophage P2 B protein with Escherichia coli DnaB helicase. J Virol 74: 4057-4063. Hesselbach, B.A., and Nakada, D. (1975) Inactive complex formation between E. coli RNA polymerase and inhibitor protein purified from T7 phage infected cells. Nature 258: 354-357. Nechaev, S., Kamali-Moghaddam, M., André, E., Léonetti, J., and Geiduschek, E.P. (2004) The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 101: 17365-17370. Belley, A., Callejo, M., Arhin, F., Dehbi, M., Fadhil, I., Liu, J., et al. (2006) Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Mol Microbiol 62: 1132-1143. Sevostyanova, A., Djordjevic, M., Kuznedelov, K., Naryshkina, T., Gelfand, M.S., Severinov, K., et al. (2007) Temporal regulation of viral transcription during development of Thermus thermophilus bacteriophage phiYS40. J Mol Biol 366: 420-435. Miller, E.S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., and Rüger, W. (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67: 86-156. Liberek, K., Georgopoulos, C., and Zylicz, M. (1988) Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci USA 85: 6632-6636. Putnam, C.D., and Tainer, J.A. (2005) Protein mimicry of DNA and pathway regulation. DNA Repair 4: 1410-1420. Powell, L.M., Dryden, D.T.F., Willcock, D.F., Pain, R.H., and Murray, N.E. (1993) DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-l-methionine. J Mol Biol 234: 60-71. Robertson, E.S., and Nicholson, A.W. (1990) Protein kinase of bacteriophage T7 induces the phosphorylation of only a small number of proteins in the infected cell. Virology 175: 525-534. Bertani, G., and Weigle, J.J. (1953) Host controlled variation in bacterial viruses. J Bacteriol 65: 113-121. Mallory, J.B., Alfano, C., and McMacken, R. (1990) Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J Biol Chem 265: 13297-13307. Kwan, T., Liu, J., DuBow, M., Gros, P., and Pelletier, J. (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102: 5174-5179. Kolesky, S., Ouhammouch, M., Brody, E.N., and Geiduschek, E.P. (1999) Sigma competition: the contest between bacteriophage T4 middle and late transcription. J Mol Biol 291: 267-281. Loenen, W.A.M., and Murray, N.E. (1986) Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage 1. J Mol Biol 190: 11-22. Marshall, P., Sharma, M., and Hinton, D.M. (1999) The bacteriophage T4 transcriptional activator MotA accepts various base-pair changes within its binding sequence. J Mol Biol 285: 931-944. Skórko, R., Zillig, W., Rohrer, H., Fujiki, H., and Mailhammer, R. (1977) Purification and properties of the NAD+: protein ADP-ribosyltransferase responsible for the T4-phage-induced modification of the alpha subunit of DNA-dependent RNA polymerase of Escherichia coli. Eur J Biochem 79: 55-66. Zylicz, M., Ang, D., Liberek, K., and Georgopoulos, C. (1989) Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8: 1601-1608. Saito, H., and Richardson, C.C. (1981) Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 27: 533-542. Dunn, J.J., and Studier, F.W. (1975) Effect of RNAase III, cleavage on translation of bacteriophage T7 messenger RNAs. J Mol Biol 99: 487-499. Hsu, T., Wei, R.X., Dawson, M., and Karam, J.D. (1987) Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication. J Virol 61: 366-374. Wong, K., Kassavetis, G.A., Leonetti, J., and Geiduschek, E.P. (2003) Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55. J Biol Chem 278: 7073-7080. Brown, E.D. (2004) Drugs against superbugs: private lessons from bacteriophages. Trends Biotechnol 22: 434-436. Comeau, A.M., Hatfull, G.F., Krisch, H.M., Lindell, D., Mann, N.H., and Prangishvili, D. (2008) Exploring the prokaryotic virosphere. Res Microbiol 159: 306-313. Golomb, M., and Chamberlin, M. (1974) Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249: 2858-2863. Py, B., Higgins, C.F., Krisch, H.M., and Carpousis, A.J. (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381: 169-172. Severinova, E., and Severinov, K. (2006) Localization of the Escherichia coli RNA polymerase beta′ subunit residue phosphorylated by bacteriophage T7 kinase Gp0.7. J Bacteriol 188: 3470-3476. Bonocora, R.P., Caignan, G., Woodrell, C., Werner, M.H., and Hinton, D.M. (2008) A basic/hydrofobic cleft of the T4 activator MotA interacts with the C-terminus of E. coli sigma70 to activate middle gene transcription. Mol Microbiol 69: 331-343. Rahmsdorf, H.J., Pai, S.H., Ponta, H., Herrlich, P., Roskoski, R.J., Schweiger, M., and Studier, F.W. (1974) Protein kinase induction in Escherichia coli by bacteriophage T7. Proc Natl Acad Sci USA 71: 586-589. Rifat, D., Wright, N.T., Varney, K.M., Weber, D.J., and Black, L.W. (2008) Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol 375: 720-734. Sommer, N., Salniene, V., Gineikiene, E., Nivinskas, R., and Rüger, W. (2000) T4 early promoter strength probed in vivo with unribosylated and ADP-ribosylated Escherichia coli RNA polymerase: a mutation analysis. Microbiology 146: 2643-2653. Finnin, M.S., Cicero, M.P., Davies, C., Porter, S.J., White, S.W., and Kreuzer, K.N. (1997) The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J 16: 1992-2003. Serrano-Heras, G., Ruiz-Masó, J.A., Del Solar, G., Espinosa, M., Bravo, A., and Salas, M. (2007) Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res 35: 5393-5401. Müller, U.R., and Marchin, G.L. (1977) Purification and properties of a T4 bacteriophage factor that modifies valyl-tRNA synthetase of Escherichia coli. J Biol Chem 252: 6640-6645. Pedulla, M.L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., Lewis, J.A., et al. (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171-182. Studier, F.W. (1972) Bacteriophage T7. Science 176: 367-376. O'Donnell, M., Kuriyan, J., Kong, X.P., Stukenberg, P.T., and Onrust, R. (1992) The sliding clamp of DNA polymerase III holoenzyme encircles DNA. Mol Biol Cell 3: 953-957. Pande, S., Makela, A., Dove, S.L., Nickels, B.E., Hochschild, A., and Hinton, D.M. (2002) The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 184: 3957-3964. Wei, P., and Stewart, C.R. (1995) Genes that protect against the host-killing activity of the E3 protein of Bacillus subtilis bacteriophage SP01. J Bacteriol 177: 2933-2937. Kashlev, M., Nudler, E., Goldfarb, A., White, T., and Kutter, E. (1993) Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA. Cell 75: 147-154. Jeruzalmi, D., Yurieva, O., Zhao, Y., Young, M., Stewart, J., Hingorani, M., et al. (2001) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106: 417-428. Krüger, D.H., and Bickle, T.A. (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47: 345-360. Court, R., Cook, N., Saikrishnan, K., and Wigley, D. (2007) The crystal structure of lambda-Gam prote 2004; 22 1997; 274 2005; 335 1997; 275 2004; 23 1999; 291 1999; 285 1996; 381 2007; 71 1999; 289 1982; 149 1975; 99 1977; 24 1999; 287 2003; 278 1972; 176 2001; 42 1980; 136 2001; 495 1994; 269 2005; 102 1980; 34 1980; 33 2006; 25 1986; 190 1995; 249 1962; 48 2007; 2 1988; 85 1953; 65 1992; 3 1990; 175 1977; 252 1983; 258 2002; 9 1984; 48 1988; 170 1974; 71 1971; 25 1989; 8 1974; 249 1981; 25 1981; 9 1981; 27 1994 1985; 82 1992; 31 1998b; 273 1995; 4 1993; 57 2004; 53 1987; 61 1991; 65 1984; 177 1992; 256 2005; 8 2000; 74 2005; 4 1994; 11 1978; 166 1999; 31 2008; 379 2008; 377 1993; 234 2008; 375 2006; 188 2003; 22 1987; 262 1982; 10 2008; 7 1988; 263 1995; 177 1996; 35 2003; 113 1990; 265 1979; 76 2007; 35 2001; 106 1980; 179 1980; 105 1990; 88 1991; 266 2006; 62 2007; 371 2002; 184 1993; 75 1989; 264 2008; 69 1982; 299 2006; 363 2008; 67 1997; 16 2008; 159 1977; 79 2005; 39 1993; 175 2001; 98 1998; 27 2004; 101 1976; 100 2007; 366 1995; 92 1963; 197 1992; 186 1973; 79 1995; 14 1979; 205 1998a; 273 2005 1993; 90 1970; 228 1975; 258 1999; 8 1985; 182 1997; 419 1975; 72 1998; 23 1983; 33 1991; 5 1992; 174 2000; 146 2009; 387 1975; 60 1981; 50 1998; 223 1983; 47 2003; 67 e_1_2_10_21_1 e_1_2_10_44_1 Huber H.E. (e_1_2_10_39_1) 1988; 263 Molineux I.J. (e_1_2_10_75_1) 2005 e_1_2_10_40_1 e_1_2_10_109_1 Guttman B. (e_1_2_10_31_1) 2005 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_112_1 e_1_2_10_32_1 e_1_2_10_51_1 Hsu T. (e_1_2_10_38_1) 1987; 61 Dharmalingam K. (e_1_2_10_20_1) 1982; 149 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 Koch T. (e_1_2_10_49_1) 1995; 4 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 Kutter E. (e_1_2_10_53_1) 2005 e_1_2_10_41_1 e_1_2_10_132_1 Carlson K. (e_1_2_10_13_1) 1994 e_1_2_10_90_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 Munn M.M. (e_1_2_10_79_1) 1991; 266 Hesselbach B.A. (e_1_2_10_34_1) 1977; 24 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 Kutter E. (e_1_2_10_52_1) 1994 e_1_2_10_69_1 e_1_2_10_42_1 Mosig G. (e_1_2_10_76_1) 1994 e_1_2_10_110_1 Müller U.R. (e_1_2_10_78_1) 1977; 252 e_1_2_10_91_1 Tiemann B. (e_1_2_10_122_1) 1999; 8 Pande S. (e_1_2_10_89_1) 2002; 184 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 Goff C.G. (e_1_2_10_27_1) 1980; 33 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_11_1 Hsu T. (e_1_2_10_37_1) 1990; 265 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_108_1 Mayer J.E. (e_1_2_10_71_1) 1983; 258 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 Wilkens K. (e_1_2_10_130_1) 1994 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 |
| References_xml | – reference: Losick, R., and Pero, J. (1981) Cascades of Sigma factors. Cell 25: 582-584. – reference: Kwan, T., Liu, J., Dubow, M., Gros, P., and Pelletier, J. (2006) Comparative genomic analysis of 18 Pseudomonas aeruginosa bacteriophages. J Bacteriol 188: 1184-1187. – reference: Roucourt, B., Lecoutere, E., Chibeu, A., Hertveldt, K., Volckaert, G., and Lavigne, R. (2009) A procedure for systematic identification of bacteriophage-host interactions of P. aeruginosa phages. Virology 387: 50-58. – reference: Court, R., Cook, N., Saikrishnan, K., and Wigley, D. (2007) The crystal structure of lambda-Gam protein suggests a model for RecBCD inhibition. J Mol Biol 371: 25-33. – reference: Dharmalingam, K., Revel, H.R., and Goldberg, E.B. (1982) Physical mapping and cloning of bacteriophage T4 anti-restriction endonuclease gene. J Bacteriol 149: 694-699. – reference: Orsini, G., Ouhammouch, M., Le Caer, J.P., and Brody, E.N. (1993) The asiA gene of bacteriophage T4 codes for the anti-sigma 70 protein. J Bacteriol 175: 85-93. – reference: Tiemann, B., Depping, R., and Rüger, W. (1999) Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4. Gene Expr 8: 187-196. – reference: Wood, L.F., Tszine, N.Y., and Christie, G.E. (1997) Activation of P2 late transcription by P2 Ogr protein requires a discrete contact site on the C terminus of the alpha subunit of Escherichia coli RNA polymerase. J Mol Biol 274: 1-7. – reference: Kolesky, S., Ouhammouch, M., Brody, E.N., and Geiduschek, E.P. (1999) Sigma competition: the contest between bacteriophage T4 middle and late transcription. J Mol Biol 291: 267-281. – reference: Mosig, G., Colowick, N.E., and Pietz, B.C. (1998) Several new bacteriophage T4 genes, mapped by sequencing deletion endpoints between genes 56 (dCTPase) and dda (a DNA-dependent ATPase-helicase) modulate transcription. Gene 223: 143-155. – reference: Zabeau, M., Friedman, S., Van Montagu, M., and Schell, J. (1980) The ral gene of phage λ. I. Identification of a non-essential gene that modulates restriction and modification in E. coli. Mol Gen Genet 179: 63-73. – reference: McClelland, M. (1981) The effect of sequence specific DNA methylation on restriction endonuclease cleavage. Nucleic Acids Res 9: 5859-5866. – reference: Saito, H., and Richardson, C.C. (1981) Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 27: 533-542. – reference: Tedin, K., Moll, I., Grill, S., Resch, A., Graschopf, A., Gualerzi, C.O., and Bläsi, U. (1999) Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs. Mol Microbiol 31: 67-77. – reference: Qimron, U., Kulczyk, A.W., Hamdan, S.M., Tabor, S., and Richardson, C.C. (2008) Inadequate inhibition of host RNA polymerase restricts T7 bacteriophage growth on hosts overexpressing udk. Mol Microbiol 67: 448-457. – reference: Frazier, M.W., and Mosig, G. (1990) The bacteriophage T4 gene mrh whose product inhibits late T4 gene expression in an Escherichia coli rpoH (sigma 32) mutant. Gene 88: 7-14. – reference: Lambert, L.J., Wei, Y., Schirf, V., Demeler, B., and Werner, M.H. (2004) T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J 23: 2952-2962. – reference: Nechaev, S., and Geiduschek, E.P. (2008) Dissection of the bacteriophage t4 late promoter complex. J Mol Biol 379: 402-413. – reference: Hsu, T., Wei, R.X., Dawson, M., and Karam, J.D. (1987) Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication. J Virol 61: 366-374. – reference: Mason, S.W., and Greenblatt, J. (1991) Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10. Genes Dev 5: 1504-1512. – reference: López de Saro, F.J., Georgescu, R.E., Goodman, M.F., and O'Donnell, M. (2003) Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J 22: 6408-6418. – reference: Marshall, P., Sharma, M., and Hinton, D.M. (1999) The bacteriophage T4 transcriptional activator MotA accepts various base-pair changes within its binding sequence. J Mol Biol 285: 931-944. – reference: Putnam, C.D., and Tainer, J.A. (2005) Protein mimicry of DNA and pathway regulation. DNA Repair 4: 1410-1420. – reference: Grill, S., Moll, I., Hasenöhrl, D., Gualerzi, C.O., and Bläsi, U. (2001) Modulation of ribosomal recruitment to 5′-terminal start codons by translation initiation factors IF2 and IF3. FEBS Lett 495: 167-171. – reference: Bickle, T.A., and Krüger, D.H. (1993) Biology of DNA restriction. Microbiol Rev 57: 434-450. – reference: Goldfarb, A., and Palm, P. (1981) Control of promoter utilization by bacteriophage T4-induced modification of RNA polymerase alpha subunit. Nucleic Acids Res 9: 4863-4878. – reference: O'Donnell, M., Kuriyan, J., Kong, X.P., Stukenberg, P.T., and Onrust, R. (1992) The sliding clamp of DNA polymerase III holoenzyme encircles DNA. Mol Biol Cell 3: 953-957. – reference: Friedman, D.I., Olson, E.R., Georgopoulos, C., Tilly, K., Herskowitz, I., and Banuett, F. (1984) Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol Rev 48: 299-325. – reference: Mayer, J.E., and Schweiger, M. (1983) RNase III is positively regulated by T7 protein kinase. J Biol Chem 258: 5340-5343. – reference: Klein, A., Lanka, E., and Schuster, H. (1980) Isolation of a complex between the P protein of phage lambda and the dnaB protein of Escherichia coli. Eur J Biochem 105: 1-6. – reference: Odegrip, R., Schoen, S., Haggård-Ljungquist, E., Park, K., and Chattoraj, D.K. (2000) The interaction of bacteriophage P2 B protein with Escherichia coli DnaB helicase. J Virol 74: 4057-4063. – reference: Marchand, I., Nicholson, A.W., and Dreyfus, M. (2001) Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase. Mol Microbiol 42: 767-776. – reference: Kashlev, M., Nudler, E., Goldfarb, A., White, T., and Kutter, E. (1993) Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA. Cell 75: 147-154. – reference: Koch, T., Raudonikiene, A., Wilkens, K., and Rüger, W. (1995) Overexpression, purification, and characterization of the ADP-ribosyltransferase (gpAlt) of bacteriophage T4: ADP-ribosylation of E. coli RNA polymerase modulates T4 'early' transcription. Gene Expr 4: 253-264. – reference: Wilkens, K., and Rüger, W. (1996) Characterization of bacteriophage T4 early promoters in vivo with a new promoter probe vector. Plasmid 35: 108-120. – reference: Iost, I., and Dreyfus, M. (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14: 3252-3261. – reference: Takahashi, I., and Marmur, J. (1963) Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature 197: 794-795. – reference: Kwan, T., Liu, J., DuBow, M., Gros, P., and Pelletier, J. (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci USA 102: 5174-5179. – reference: Chamberlin, M., McGrath, J., and Waskell, L. (1970) New RNA polymerase from Escherichia coli infected with bacteriophage T7. Nature 228: 227-231. – reference: Mallory, J.B., Alfano, C., and McMacken, R. (1990) Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J Biol Chem 265: 13297-13307. – reference: Tock, M.R., and Dryden, D.T.F. (2005) The biology of restriction and anti-restriction. Curr Opin Microbiol 8: 466-472. – reference: Yuzenkova, Y., Zenkin, N., and Severinov, K. (2008) Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7. J Mol Biol 375: 29-35. – reference: Richardson, A., Landry, S.J., and Georgopoulos, C. (1998) The ins and outs of a molecular chaperone machine. Trends Biochem Sci 23: 138-143. – reference: Severinov, K., Kashlev, M., Severinova, E., Bass, I., McWilliams, K., Kutter, E., et al. (1994) A non-essential domain of Escherichia coli RNA polymerase required for the action of the termination factor Alc. J Biol Chem 269: 14254-14259. – reference: Sommer, N., Salniene, V., Gineikiene, E., Nivinskas, R., and Rüger, W. (2000) T4 early promoter strength probed in vivo with unribosylated and ADP-ribosylated Escherichia coli RNA polymerase: a mutation analysis. Microbiology 146: 2643-2653. – reference: Loenen, W.A.M., and Murray, N.E. (1986) Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage 1. J Mol Biol 190: 11-22. – reference: Robertson, E.S., and Nicholson, A.W. (1990) Protein kinase of bacteriophage T7 induces the phosphorylation of only a small number of proteins in the infected cell. Virology 175: 525-534. – reference: Nechaev, S., and Severinov, K. (1999) Inhibition of Escherichia coli RNA polymerase by bacteriophage T7 gene 2 protein. J Mol Biol 289: 815-826. – reference: Warren, R.A.J. (1980) Modified bases in bacteriophage DNAs. Annu Rev Microbiol 34: 137-158. – reference: Savalia, D., Westblade, L.F., Goel, M., Florens, L., Kemp, P., Akulenko, N., et al. (2008) Genomic and proteomic analysis of phiEco32, a novel Escherichia coli bacteriophage. J Mol Biol 377: 774-789. – reference: Liberek, K., Georgopoulos, C., and Zylicz, M. (1988) Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci USA 85: 6632-6636. – reference: Bertani, G., and Weigle, J.J. (1953) Host controlled variation in bacterial viruses. J Bacteriol 65: 113-121. – reference: Kemp, P., Gupta, M., and Molineux, I.J. (2004) Bacteriophage T7 DNA ejection into cells is initiated by an enzyme-like mechanism. Mol Microbiol 53: 1251-1265. – reference: Iost, I., Guillerez, J., and Dreyfus, M. (1992) Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J Bacteriol 174: 619-622. – reference: Ouhammouch, M., Adelman, K., Harvey, S.R., Orsini, G., and Brody, E.N. (1995) Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters. Proc Natl Acad Sci USA 92: 1451-1455. – reference: Yuan, R. (1981) Structure and mechanism of multifunctional restriction endonucleases. Annu Rev Biochem 50: 285-319. – reference: Wei, P., and Stewart, C.R. (1995) Genes that protect against the host-killing activity of the E3 protein of Bacillus subtilis bacteriophage SP01. J Bacteriol 177: 2933-2937. – reference: Skorupski, K., Tomaschewski, J., Rüger, W., and Simon, L.D. (1988) A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease. J Bacteriol 170: 3016-3024. – reference: Strome, S., and Young, E.T. (1980) Translational discrimination against bacteriophage T7 gene 0.3 messenger RNA. J Mol Biol 136: 433-450. – reference: Nechaev, S., and Geiduschek, E.P. (2006) The role of an upstream promoter interaction in initiation of bacterial transcription. EMBO J 25: 1700-1709. – reference: Brown, E.D. (2004) Drugs against superbugs: private lessons from bacteriophages. Trends Biotechnol 22: 434-436. – reference: Severinova, E., and Severinov, K. (2006) Localization of the Escherichia coli RNA polymerase beta′ subunit residue phosphorylated by bacteriophage T7 kinase Gp0.7. J Bacteriol 188: 3470-3476. – reference: Studier, F.W. (1972) Bacteriophage T7. Science 176: 367-376. – reference: Liu, J., Dehbi, M., Moeck, G., Arhin, F., Bauda, P., Bergeron, D., et al. (2004) Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22: 185-191. – reference: Wilkens, K., Tiemann, B., Bazan, F., and Rüger, W. (1997) ADP-ribosylation and early transcription regulation by bacteriophage T4. Adv Exp Med Biol 419: 71-82. – reference: Kaczanowska, M., and Rydén-Aulin, M. (2007) Ribosome biogenesis and the translation process in Escherichia coli. Microbiol Mol Biol Rev 71: 477-494. – reference: Putnam, C.D., Shroyer, M.J., Lundquist, A.J., Mol, C.D., Arvai, A.S., Mosbaugh, D.W., and Tainer, J.A. (1999) Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol 287: 331-346. – reference: Westblade, L.F., Minakhin, L., Kuznedelov, K., Tackett, A.J., Chang, E.J., Mooney, R.A., et al. (2008) Rapid isolation and identification of bacteriophage T4-encoded modifications of Escherichia coli RNA polymerase: a generic method to study bacteriophage/host interactions. J Proteome Res 7: 1244-1250. – reference: Hsu, T., and Karam, J.D. (1990) Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing. J Biol Chem 265: 5303-5316. – reference: Marr, M.T., Datwyler, S.A., Meares, C.F., and Roberts, J.W. (2001) Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins. Proc Natl Acad Sci USA 98: 8972-8978. – reference: Zillig, W., Fujiki, H., Blum, W., Janeković, D., Schweiger, M., Rahmsdorf, H., et al. (1975) In vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by bacteriophage-T7-induced protein kinase. Proc Natl Acad Sci USA 72: 2506-2510. – reference: Colland, F., Orsini, G., Brody, E.N., Buc, H., and Kolb, A. (1998) The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. Mol Microbiol 27: 819-829. – reference: Comeau, A.M., Hatfull, G.F., Krisch, H.M., Lindell, D., Mann, N.H., and Prangishvili, D. (2008) Exploring the prokaryotic virosphere. Res Microbiol 159: 306-313. – reference: Hesselbach, B.A., and Nakada, D. (1975) Inactive complex formation between E. coli RNA polymerase and inhibitor protein purified from T7 phage infected cells. Nature 258: 354-357. – reference: Pfennig-Yeh, M.L., Ponta, H., Hirsch-Kauffmann, M., Rahmsdorf, H.J., Herrlich, P., and Schweiger, M. (1978) Early T7 gene expression: rates of RNA synthesis and degradation, protein kinase dependent termination of transcription, and efficiency of translation. Mol Gen Genet 166: 127-140. – reference: Py, B., Higgins, C.F., Krisch, H.M., and Carpousis, A.J. (1996) A DEAD-box RNA helicase in the Escherichia coli RNA degradosome. Nature 381: 169-172. – reference: Kassavetis, G.A., Elliott, T., Rabussay, D.P., and Geiduschek, E.P. (1983) Initiation of transcription at phage T4 late promoters with purified RNA polymerase. Cell 33: 887-897. – reference: Capson, T.L., Benkovic, S.J., and Nossal, N.G. (1991) Protein-DNA cross-linking demonstrates stepwise ATP-dependent assembly of T4 DNA polymerase and its accessory proteins on the primer-template. Cell 65: 249-258. – reference: Liu, Q., and Richardson, C.C. (1993) Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. Proc Natl Acad Sci USA 90: 1761-1765. – reference: Zylicz, M., Ang, D., Liberek, K., and Georgopoulos, C. (1989) Initiation of lambda DNA replication with purified host- and bacteriophage-encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins. EMBO J 8: 1601-1608. – reference: Müller, U.R., and Marchin, G.L. (1977) Purification and properties of a T4 bacteriophage factor that modifies valyl-tRNA synthetase of Escherichia coli. J Biol Chem 252: 6640-6645. – reference: Pedulla, M.L., Ford, M.E., Houtz, J.M., Karthikeyan, T., Wadsworth, C., Lewis, J.A., et al. (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171-182. – reference: Dodson, M., Roberts, J., McMacken, R., and Echols, H. (1985) Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: complexes with lambda O protein and with lambda O, lambda P, and Escherichia coli DnaB proteins. Proc Natl Acad Sci USA 82: 4678-4682. – reference: Miller, E.S., Kutter, E., Mosig, G., Arisaka, F., Kunisawa, T., and Rüger, W. (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67: 86-156. – reference: Yamada, Y., and Nakada, D. (1976) Early to late switch in bacteriophage T7 development: no translational discrimination between T7 early messenger RNA and late messenger RNA. J Mol Biol 100: 35-45. – reference: Studier, F.W. (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79: 237-248. – reference: Penner, M., Morad, I., Snyder, L., and Kaufmann, G. (1995) Phage T4-coded Stp: double-edged effector of coupled DNA and tRNA-restriction systems. J Mol Biol 249: 857-868. – reference: Belley, A., Callejo, M., Arhin, F., Dehbi, M., Fadhil, I., Liu, J., et al. (2006) Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Mol Microbiol 62: 1132-1143. – reference: Finnin, M.S., Cicero, M.P., Davies, C., Porter, S.J., White, S.W., and Kreuzer, K.N. (1997) The activation domain of the MotA transcription factor from bacteriophage T4. EMBO J 16: 1992-2003. – reference: LeClerc, J.E., and Richardson, C.C. (1979) Gene 2 protein of bacteriophage T7: purification and requirement for packaging of T7 DNA in vitro. Proc Natl Acad Sci USA 76: 4852-4856. – reference: Rifat, D., Wright, N.T., Varney, K.M., Weber, D.J., and Black, L.W. (2008) Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target. J Mol Biol 375: 720-734. – reference: Hilliard, J.J., Maurizi, M.R., and Simon, L.D. (1998a) Isolation and characterization of the phage T4 PinA protein, an inhibitor of the ATP-dependent Lon protease of Escherichia coli. J Biol Chem 273: 518-523. – reference: Bandyopadhyay, P.K., Studier, F.W., Hamilton, D.L., and Yuan, R. (1985) Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7. J Mol Biol 182: 567-578. – reference: Wiberg, J.S., Dirksen, M.L., Epstein, R.H., Luria, S.E., and Buchanan, J.M. (1962) Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci USA 48: 293-302. – reference: Wong, K., Kassavetis, G.A., Leonetti, J., and Geiduschek, E.P. (2003) Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55. J Biol Chem 278: 7073-7080. – reference: Hesselbach, B.A., and Nakada, D. (1977) 'Host shutoff' function of bacteriophage T7: involvement of T7 gene 2 and gene 0.7 in the inactivation of Escherichia coli RNA polymerase. J Virol 24: 736-745. – reference: Projan, S. (2004) Phage-inspired antibiotics? Nat Biotechnol 22: 167-168. – reference: Depping, R., Lohaus, C., Meyer, H.E., and Rüger, W. (2005) The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified. Biochem Biophys Res Commun 335: 1217-1223. – reference: Jeruzalmi, D., Yurieva, O., Zhao, Y., Young, M., Stewart, J., Hingorani, M., et al. (2001) Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 106: 417-428. – reference: Michalewicz, J., and Nicholson, A.W. (1992) Molecular cloning and expression of the bacteriophage T7, 0.7 (protein kinase) gene. Virology 186: 452-462. – reference: Pande, S., Makela, A., Dove, S.L., Nickels, B.E., Hochschild, A., and Hinton, D.M. (2002) The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 184: 3957-3964. – reference: Robertson, E.S., Aggison, L.A., and Nicholson, A.W. (1994) Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected Escherichia coli. Mol Microbiol 11: 1045-1057. – reference: Kobiler, O., Rokney, A., and Oppenheim, A.B. (2007) Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision. PLoS ONE 2: e363. – reference: Rahmsdorf, H.J., Pai, S.H., Ponta, H., Herrlich, P., Roskoski, R.J., Schweiger, M., and Studier, F.W. (1974) Protein kinase induction in Escherichia coli by bacteriophage T7. Proc Natl Acad Sci USA 71: 586-589. – reference: Sevostyanova, A., Djordjevic, M., Kuznedelov, K., Naryshkina, T., Gelfand, M.S., Severinov, K., et al. (2007) Temporal regulation of viral transcription during development of Thermus thermophilus bacteriophage phiYS40. J Mol Biol 366: 420-435. – reference: Wang, Z., and Mosbaugh, D.W. (1989) Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem 264: 1163-1171. – reference: García, L.R., and Molineux, I.J. (1995) Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J Bacteriol 177: 4066-4076. – reference: Rohrer, H., Zillig, W., and Mailhammer, R. (1975) ADP-ribosylation of DNA-dependent RNA polymerase of Escherichia coli by an NAD+: protein ADP-ribosyltransferase from bacteriophage T4. Eur J Biochem 60: 227-238. – reference: Zavriev, S.K., and Shemyakin, M.F. (1982) RNA polymerase-dependent mechanism for the stepwise T7 phage DNA transport from the virion into E. coli. Nucleic Acids Res 10: 1635-1652. – reference: Boyer, H.W. (1971) DNA restriction and modification mechanisms in bacteria. Annu Rev Microbiol 25: 153-176. – reference: Huber, H.E., Beauchamp, B.B., and Richardson, C.C. (1988) Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7. J Biol Chem 263: 13549-13556. – reference: Serrano-Heras, G., Ruiz-Masó, J.A., Del Solar, G., Espinosa, M., Bravo, A., and Salas, M. (2007) Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res 35: 5393-5401. – reference: Bair, C.L., Rifat, D., and Black, L.W. (2007) Exclusion of glucosyl-hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI*. J Mol Biol 366: 779-789. – reference: Tabor, S., Huber, H.E., and Richardson, C.C. (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem 262: 16212-16223. – reference: Golomb, M., and Chamberlin, M. (1974) Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249: 2858-2863. – reference: Arber, W. (1979) Promotion and limitation of genetic exchange. Science 205: 361-365. – reference: Oppenheim, A.B., Kobiler, O., Stavans, J., Court, D.L., and Adhya, S. (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39: 409-429. – reference: Christensen, A.C., and Young, E.T. (1982) T4 late transcripts are initiated near a conserved DNA sequence. Nature 299: 369-371. – reference: Goff, C.G., and Setzer, J. (1980) ADP ribosylation of Escherichia coli RNA polymerase is nonessential for bacteriophage T4 development. J Virol 33: 547-549. – reference: Dunn, J.J., and Studier, F.W. (1975) Effect of RNAase III, cleavage on translation of bacteriophage T7 messenger RNAs. J Mol Biol 99: 487-499. – reference: Krüger, D.H., and Bickle, T.A. (1983) Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 47: 345-360. – reference: Bonocora, R.P., Caignan, G., Woodrell, C., Werner, M.H., and Hinton, D.M. (2008) A basic/hydrofobic cleft of the T4 activator MotA interacts with the C-terminus of E. coli sigma70 to activate middle gene transcription. Mol Microbiol 69: 331-343. – reference: Skórko, R., Zillig, W., Rohrer, H., Fujiki, H., and Mailhammer, R. (1977) Purification and properties of the NAD+: protein ADP-ribosyltransferase responsible for the T4-phage-induced modification of the alpha subunit of DNA-dependent RNA polymerase of Escherichia coli. Eur J Biochem 79: 55-66. – reference: Robertson, E.S., and Nicholson, A.W. (1992) Phosphorylation of Escherichia coli translation initiation factors by the bacteriophage T7 protein kinase. Biochemistry 31: 4822-4827. – reference: Powell, L.M., Dryden, D.T.F., Willcock, D.F., Pain, R.H., and Murray, N.E. (1993) DNA recognition by the EcoK methyltransferase. The influence of DNA methylation and the cofactor S-adenosyl-l-methionine. J Mol Biol 234: 60-71. – reference: Mace, D.C., and Alberts, B.M. (1984) Characterization of the stimulatory effect of T4 gene 45 protein and the gene 44/62 protein complex on DNA synthesis by T4 DNA polymerase. J Mol Biol 177: 313-327. – reference: Munn, M.M., and Alberts, B.M. (1991) The T4 DNA polymerase accessory proteins form an ATP-dependent complex on a primer-template junction. J Biol Chem 266: 20024-20033. – reference: Nechaev, S., Kamali-Moghaddam, M., André, E., Léonetti, J., and Geiduschek, E.P. (2004) The bacteriophage T4 late-transcription coactivator gp33 binds the flap domain of Escherichia coli RNA polymerase. Proc Natl Acad Sci USA 101: 17365-17370. – reference: Miller, A., Wood, D., Ebright, R.H., and Rothman-Denes, L.B. (1997) RNA polymerase beta′ subunit: a target of DNA binding-independent activation. Science 275: 1655-1657. – reference: Baxter, K., Lee, J., Minakhin, L., Severinov, K., and Hinton, D.M. (2006) Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA. J Mol Biol 363: 931-944. – reference: Herendeen, D.R., Kassavetis, G.A., and Geiduschek, E.P. (1992) A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science 256: 1298-1303. – reference: Hilliard, J.J., Simon, L.D., Van Melderen, L., and Maurizi, M.R. (1998b) Pin A inhibits ATP hydrolysis and energy-dependent protein degradation by Lon protease. J Biol Chem 273: 524-527. – reference: Walkinshaw, M.D., Taylor, P., Sturrock, S.S., Atanasiu, C., Berge, T., Henderson, R.M., et al. (2002) Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol Cell 9: 187-194. – volume: 8 start-page: 466 year: 2005 end-page: 472 article-title: The biology of restriction and anti‐restriction publication-title: Curr Opin Microbiol – volume: 22 start-page: 434 year: 2004 end-page: 436 article-title: Drugs against superbugs: private lessons from bacteriophages publication-title: Trends Biotechnol – start-page: 29 year: 2005 end-page: 66 – volume: 234 start-page: 60 year: 1993 end-page: 71 article-title: DNA recognition by the K methyltransferase. The influence of DNA methylation and the cofactor ‐adenosyl‐l‐methionine publication-title: J Mol Biol – volume: 274 start-page: 1 year: 1997 end-page: 7 article-title: Activation of P2 late transcription by P2 Ogr protein requires a discrete contact site on the C terminus of the alpha subunit of RNA polymerase publication-title: J Mol Biol – volume: 273 start-page: 524 year: 1998b end-page: 527 article-title: Pin A inhibits ATP hydrolysis and energy‐dependent protein degradation by Lon protease publication-title: J Biol Chem – volume: 22 start-page: 6408 year: 2003 end-page: 6418 article-title: Competitive processivity‐clamp usage by DNA polymerases during DNA replication and repair publication-title: EMBO J – volume: 381 start-page: 169 year: 1996 end-page: 172 article-title: A DEAD‐box RNA helicase in the RNA degradosome publication-title: Nature – volume: 136 start-page: 433 year: 1980 end-page: 450 article-title: Translational discrimination against bacteriophage T7 gene 0.3 messenger RNA publication-title: J Mol Biol – volume: 79 start-page: 55 year: 1977 end-page: 66 article-title: Purification and properties of the NAD+: protein ADP‐ribosyltransferase responsible for the T4‐phage‐induced modification of the alpha subunit of DNA‐dependent RNA polymerase of publication-title: Eur J Biochem – volume: 258 start-page: 354 year: 1975 end-page: 357 article-title: Inactive complex formation between RNA polymerase and inhibitor protein purified from T7 phage infected cells publication-title: Nature – volume: 74 start-page: 4057 year: 2000 end-page: 4063 article-title: The interaction of bacteriophage P2 B protein with DnaB helicase publication-title: J Virol – volume: 31 start-page: 4822 year: 1992 end-page: 4827 article-title: Phosphorylation of translation initiation factors by the bacteriophage T7 protein kinase publication-title: Biochemistry – volume: 101 start-page: 17365 year: 2004 end-page: 17370 article-title: The bacteriophage T4 late‐transcription coactivator gp33 binds the flap domain of RNA polymerase publication-title: Proc Natl Acad Sci USA – volume: 42 start-page: 767 year: 2001 end-page: 776 article-title: Bacteriophage T7 protein kinase phosphorylates RNase E and stabilizes mRNAs synthesized by T7 RNA polymerase publication-title: Mol Microbiol – volume: 179 start-page: 63 year: 1980 end-page: 73 article-title: The gene of phage λ. I. Identification of a non‐essential gene that modulates restriction and modification in publication-title: Mol Gen Genet – volume: 263 start-page: 13549 year: 1988 end-page: 13556 article-title: dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7 publication-title: J Biol Chem – start-page: 369 year: 1994 end-page: 381 – volume: 72 start-page: 2506 year: 1975 end-page: 2510 article-title: and phosphorylation of DNA‐dependent RNA polymerase of by bacteriophage‐T7‐induced protein kinase publication-title: Proc Natl Acad Sci USA – volume: 188 start-page: 1184 year: 2006 end-page: 1187 article-title: Comparative genomic analysis of 18 bacteriophages publication-title: J Bacteriol – start-page: 127 year: 1994 end-page: 131 – volume: 375 start-page: 720 year: 2008 end-page: 734 article-title: Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target publication-title: J Mol Biol – volume: 71 start-page: 477 year: 2007 end-page: 494 article-title: Ribosome biogenesis and the translation process in publication-title: Microbiol Mol Biol Rev – start-page: 343 year: 1994 end-page: 346 – volume: 67 start-page: 86 year: 2003 end-page: 156 article-title: Bacteriophage T4 genome publication-title: Microbiol Mol Biol Rev – start-page: 132 year: 1994 end-page: 141 – volume: 363 start-page: 931 year: 2006 end-page: 944 article-title: Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA publication-title: J Mol Biol – volume: 186 start-page: 452 year: 1992 end-page: 462 article-title: Molecular cloning and expression of the bacteriophage T7, 0.7 (protein kinase) gene publication-title: Virology – volume: 90 start-page: 1761 year: 1993 end-page: 1765 article-title: Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H‐NS of publication-title: Proc Natl Acad Sci USA – volume: 264 start-page: 1163 year: 1989 end-page: 1171 article-title: Uracil‐DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil‐DNA glycosylase publication-title: J Biol Chem – volume: 34 start-page: 137 year: 1980 end-page: 158 article-title: Modified bases in bacteriophage DNAs publication-title: Annu Rev Microbiol – volume: 67 start-page: 448 year: 2008 end-page: 457 article-title: Inadequate inhibition of host RNA polymerase restricts T7 bacteriophage growth on hosts overexpressing udk publication-title: Mol Microbiol – volume: 177 start-page: 4066 year: 1995 end-page: 4076 article-title: Rate of translocation of bacteriophage T7 DNA across the membranes of publication-title: J Bacteriol – volume: 82 start-page: 4678 year: 1985 end-page: 4682 article-title: Specialized nucleoprotein structures at the origin of replication of bacteriophage lambda: complexes with lambda O protein and with lambda O, lambda P, and DnaB proteins publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 2952 year: 2004 end-page: 2962 article-title: T4 AsiA blocks DNA recognition by remodeling sigma70 region 4 publication-title: EMBO J – volume: 98 start-page: 8972 year: 2001 end-page: 8978 article-title: Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 1635 year: 1982 end-page: 1652 article-title: RNA polymerase‐dependent mechanism for the stepwise T7 phage DNA transport from the virion into publication-title: Nucleic Acids Res – volume: 273 start-page: 518 year: 1998a end-page: 523 article-title: Isolation and characterization of the phage T4 PinA protein, an inhibitor of the ATP‐dependent Lon protease of publication-title: J Biol Chem – volume: 88 start-page: 7 year: 1990 end-page: 14 article-title: The bacteriophage T4 gene whose product inhibits late T4 gene expression in an rpoH (sigma 32) mutant publication-title: Gene – volume: 266 start-page: 20024 year: 1991 end-page: 20033 article-title: The T4 DNA polymerase accessory proteins form an ATP‐dependent complex on a primer–template junction publication-title: J Biol Chem – volume: 69 start-page: 331 year: 2008 end-page: 343 article-title: A basic/hydrofobic cleft of the T4 activator MotA interacts with the C‐terminus of sigma70 to activate middle gene transcription publication-title: Mol Microbiol – volume: 249 start-page: 857 year: 1995 end-page: 868 article-title: Phage T4‐coded Stp: double‐edged effector of coupled DNA and tRNA‐restriction systems publication-title: J Mol Biol – volume: 48 start-page: 299 year: 1984 end-page: 325 article-title: Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda publication-title: Microbiol Rev – volume: 25 start-page: 153 year: 1971 end-page: 176 article-title: DNA restriction and modification mechanisms in bacteria publication-title: Annu Rev Microbiol – volume: 9 start-page: 4863 year: 1981 end-page: 4878 article-title: Control of promoter utilization by bacteriophage T4‐induced modification of RNA polymerase alpha subunit publication-title: Nucleic Acids Res – volume: 176 start-page: 367 year: 1972 end-page: 376 article-title: Bacteriophage T7 publication-title: Science – volume: 31 start-page: 67 year: 1999 end-page: 77 article-title: Translation initiation factor 3 antagonizes authentic start codon selection on leaderless mRNAs publication-title: Mol Microbiol – volume: 4 start-page: 253 year: 1995 end-page: 264 article-title: Overexpression, purification, and characterization of the ADP‐ribosyltransferase (gpAlt) of bacteriophage T4: ADP‐ribosylation of RNA polymerase modulates T4 ‘early’ transcription publication-title: Gene Expr – volume: 269 start-page: 14254 year: 1994 end-page: 14259 article-title: A non‐essential domain of RNA polymerase required for the action of the termination factor Alc publication-title: J Biol Chem – volume: 146 start-page: 2643 year: 2000 end-page: 2653 article-title: T4 early promoter strength probed with unribosylated and ADP‐ribosylated RNA polymerase: a mutation analysis publication-title: Microbiology – volume: 48 start-page: 293 year: 1962 end-page: 302 article-title: Early enzyme synthesis and its control in infected with some amber mutants of bacteriophage T4 publication-title: Proc Natl Acad Sci USA – volume: 47 start-page: 345 year: 1983 end-page: 360 article-title: Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts publication-title: Microbiol Rev – volume: 33 start-page: 547 year: 1980 end-page: 549 article-title: ADP ribosylation of RNA polymerase is nonessential for bacteriophage T4 development publication-title: J Virol – volume: 265 start-page: 5303 year: 1990 end-page: 5316 article-title: Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing publication-title: J Biol Chem – volume: 8 start-page: 187 year: 1999 end-page: 196 article-title: Overexpression, purification, and partial characterization of ADP‐ribosyltransferases modA and modB of bacteriophage T4 publication-title: Gene Expr – volume: 252 start-page: 6640 year: 1977 end-page: 6645 article-title: Purification and properties of a T4 bacteriophage factor that modifies valyl‐tRNA synthetase of publication-title: J Biol Chem – volume: 495 start-page: 167 year: 2001 end-page: 171 article-title: Modulation of ribosomal recruitment to 5′‐terminal start codons by translation initiation factors IF2 and IF3 publication-title: FEBS Lett – volume: 177 start-page: 2933 year: 1995 end-page: 2937 article-title: Genes that protect against the host‐killing activity of the E3 protein of Bacillus subtilis bacteriophage SP01 publication-title: J Bacteriol – volume: 174 start-page: 619 year: 1992 end-page: 622 article-title: Bacteriophage T7 RNA polymerase travels far ahead of ribosomes publication-title: J Bacteriol – volume: 166 start-page: 127 year: 1978 end-page: 140 article-title: Early T7 gene expression: rates of RNA synthesis and degradation, protein kinase dependent termination of transcription, and efficiency of translation publication-title: Mol Gen Genet – volume: 11 start-page: 1045 year: 1994 end-page: 1057 article-title: Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7‐infected publication-title: Mol Microbiol – volume: 35 start-page: 5393 year: 2007 end-page: 5401 article-title: Protein p56 from the phage phi29 inhibits DNA‐binding ability of uracil‐DNA glycosylase publication-title: Nucleic Acids Res – volume: 170 start-page: 3016 year: 1988 end-page: 3024 article-title: A bacteriophage T4 gene which functions to inhibit Lon protease publication-title: J Bacteriol – volume: 285 start-page: 931 year: 1999 end-page: 944 article-title: The bacteriophage T4 transcriptional activator MotA accepts various base‐pair changes within its binding sequence publication-title: J Mol Biol – volume: 57 start-page: 434 year: 1993 end-page: 450 article-title: Biology of DNA restriction publication-title: Microbiol Rev – volume: 190 start-page: 11 year: 1986 end-page: 22 article-title: Modification enhancement by the restriction alleviation protein (Ral) of bacteriophage 1 publication-title: J Mol Biol – volume: 102 start-page: 5174 year: 2005 end-page: 5179 article-title: The complete genomes and proteomes of 27 bacteriophages publication-title: Proc Natl Acad Sci USA – volume: 4 start-page: 1410 year: 2005 end-page: 1420 article-title: Protein mimicry of DNA and pathway regulation publication-title: DNA Repair – volume: 53 start-page: 1251 year: 2004 end-page: 1265 article-title: Bacteriophage T7 DNA ejection into cells is initiated by an enzyme‐like mechanism publication-title: Mol Microbiol – volume: 22 start-page: 185 year: 2004 end-page: 191 article-title: Antimicrobial drug discovery through bacteriophage genomics publication-title: Nat Biotechnol – volume: 377 start-page: 774 year: 2008 end-page: 789 article-title: Genomic and proteomic analysis of phiEco32, a novel bacteriophage publication-title: J Mol Biol – volume: 249 start-page: 2858 year: 1974 end-page: 2863 article-title: Characterization of T7‐specific ribonucleic acid polymerase. IV. Resolution of the major transcripts by gel electrophoresis publication-title: J Biol Chem – volume: 278 start-page: 7073 year: 2003 end-page: 7080 article-title: Mutational and functional analysis of a segment of the sigma family bacteriophage T4 late promoter recognition protein gp55 publication-title: J Biol Chem – volume: 291 start-page: 267 year: 1999 end-page: 281 article-title: Sigma competition: the contest between bacteriophage T4 middle and late transcription publication-title: J Mol Biol – volume: 265 start-page: 13297 year: 1990 end-page: 13307 article-title: Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of DnaB helicase by lambda P replication protein publication-title: J Biol Chem – volume: 335 start-page: 1217 year: 2005 end-page: 1223 article-title: The mono‐ADP‐ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified publication-title: Biochem Biophys Res Commun – volume: 27 start-page: 819 year: 1998 end-page: 829 article-title: The bacteriophage T4 AsiA protein: a molecular switch for sigma 70‐dependent promoters publication-title: Mol Microbiol – volume: 9 start-page: 187 year: 2002 end-page: 194 article-title: Structure of Ocr from bacteriophage T7, a protein that mimics B‐form DNA publication-title: Mol Cell – volume: 262 start-page: 16212 year: 1987 end-page: 16223 article-title: thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7 publication-title: J Biol Chem – volume: 85 start-page: 6632 year: 1988 end-page: 6636 article-title: Role of the DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication publication-title: Proc Natl Acad Sci USA – volume: 223 start-page: 143 year: 1998 end-page: 155 article-title: Several new bacteriophage T4 genes, mapped by sequencing deletion endpoints between genes 56 (dCTPase) and dda (a DNA‐dependent ATPase‐helicase) modulate transcription publication-title: Gene – volume: 258 start-page: 5340 year: 1983 end-page: 5343 article-title: RNase III is positively regulated by T7 protein kinase publication-title: J Biol Chem – volume: 61 start-page: 366 year: 1987 end-page: 374 article-title: Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication publication-title: J Virol – volume: 65 start-page: 113 year: 1953 end-page: 121 article-title: Host controlled variation in bacterial viruses publication-title: J Bacteriol – volume: 188 start-page: 3470 year: 2006 end-page: 3476 article-title: Localization of the RNA polymerase beta′ subunit residue phosphorylated by bacteriophage T7 kinase Gp0.7 publication-title: J Bacteriol – volume: 65 start-page: 249 year: 1991 end-page: 258 article-title: Protein–DNA cross‐linking demonstrates stepwise ATP‐dependent assembly of T4 DNA polymerase and its accessory proteins on the primer–template publication-title: Cell – volume: 5 start-page: 1504 year: 1991 end-page: 1512 article-title: Assembly of transcription elongation complexes containing the N protein of phage lambda and the elongation factors NusA, NusB, NusG, and S10 publication-title: Genes Dev – volume: 177 start-page: 313 year: 1984 end-page: 327 article-title: Characterization of the stimulatory effect of T4 gene 45 protein and the gene 44/62 protein complex on DNA synthesis by T4 DNA polymerase publication-title: J Mol Biol – volume: 105 start-page: 1 year: 1980 end-page: 6 article-title: Isolation of a complex between the P protein of phage lambda and the dnaB protein of publication-title: Eur J Biochem – volume: 24 start-page: 736 year: 1977 end-page: 745 article-title: ‘Host shutoff’ function of bacteriophage T7: involvement of T7 gene 2 and gene 0.7 in the inactivation of RNA polymerase publication-title: J Virol – volume: 375 start-page: 29 year: 2008 end-page: 35 article-title: Mapping of RNA polymerase residues that interact with bacteriophage Xp10 transcription antitermination factor p7 publication-title: J Mol Biol – volume: 175 start-page: 525 year: 1990 end-page: 534 article-title: Protein kinase of bacteriophage T7 induces the phosphorylation of only a small number of proteins in the infected cell publication-title: Virology – volume: 2 start-page: e363 year: 2007 article-title: Phage lambda CIII: a protease inhibitor regulating the lysis‐lysogeny decision publication-title: PLoS ONE – volume: 299 start-page: 369 year: 1982 end-page: 371 article-title: T4 late transcripts are initiated near a conserved DNA sequence publication-title: Nature – volume: 25 start-page: 582 year: 1981 end-page: 584 article-title: Cascades of Sigma factors publication-title: Cell – volume: 205 start-page: 361 year: 1979 end-page: 365 article-title: Promotion and limitation of genetic exchange publication-title: Science – volume: 184 start-page: 3957 year: 2002 end-page: 3964 article-title: The bacteriophage T4 transcription activator MotA interacts with the far‐C‐terminal region of the sigma70 subunit of RNA polymerase publication-title: J Bacteriol – volume: 25 start-page: 1700 year: 2006 end-page: 1709 article-title: The role of an upstream promoter interaction in initiation of bacterial transcription publication-title: EMBO J – volume: 39 start-page: 409 year: 2005 end-page: 429 article-title: Switches in bacteriophage lambda development publication-title: Annu Rev Genet – volume: 9 start-page: 5859 year: 1981 end-page: 5866 article-title: The effect of sequence specific DNA methylation on restriction endonuclease cleavage publication-title: Nucleic Acids Res – volume: 197 start-page: 794 year: 1963 end-page: 795 article-title: Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for publication-title: Nature – volume: 35 start-page: 108 year: 1996 end-page: 120 article-title: Characterization of bacteriophage T4 early promoters with a new promoter probe vector publication-title: Plasmid – volume: 3 start-page: 953 year: 1992 end-page: 957 article-title: The sliding clamp of DNA polymerase III holoenzyme encircles DNA publication-title: Mol Biol Cell – start-page: 277 year: 2005 end-page: 301 – volume: 182 start-page: 567 year: 1985 end-page: 578 article-title: Inhibition of the type I restriction‐modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7 publication-title: J Mol Biol – volume: 23 start-page: 138 year: 1998 end-page: 143 article-title: The ins and outs of a molecular chaperone machine publication-title: Trends Biochem Sci – volume: 16 start-page: 1992 year: 1997 end-page: 2003 article-title: The activation domain of the MotA transcription factor from bacteriophage T4 publication-title: EMBO J – volume: 113 start-page: 171 year: 2003 end-page: 182 article-title: Origins of highly mosaic mycobacteriophage genomes publication-title: Cell – volume: 106 start-page: 417 year: 2001 end-page: 428 article-title: Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of DNA polymerase III publication-title: Cell – volume: 100 start-page: 35 year: 1976 end-page: 45 article-title: Early to late switch in bacteriophage T7 development: no translational discrimination between T7 early messenger RNA and late messenger RNA publication-title: J Mol Biol – volume: 60 start-page: 227 year: 1975 end-page: 238 article-title: ADP‐ribosylation of DNA‐dependent RNA polymerase of by an NAD+: protein ADP‐ribosyltransferase from bacteriophage T4 publication-title: Eur J Biochem – volume: 275 start-page: 1655 year: 1997 end-page: 1657 article-title: RNA polymerase beta′ subunit: a target of DNA binding‐independent activation publication-title: Science – volume: 75 start-page: 147 year: 1993 end-page: 154 article-title: Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA publication-title: Cell – volume: 149 start-page: 694 year: 1982 end-page: 699 article-title: Physical mapping and cloning of bacteriophage T4 anti‐restriction endonuclease gene publication-title: J Bacteriol – volume: 287 start-page: 331 year: 1999 end-page: 346 article-title: Protein mimicry of DNA from crystal structures of the uracil‐DNA glycosylase inhibitor protein and its complex with uracil‐DNA glycosylase publication-title: J Mol Biol – volume: 228 start-page: 227 year: 1970 end-page: 231 article-title: New RNA polymerase from infected with bacteriophage T7 publication-title: Nature – volume: 7 start-page: 1244 year: 2008 end-page: 1250 article-title: Rapid isolation and identification of bacteriophage T4‐encoded modifications of RNA polymerase: a generic method to study bacteriophage/host interactions publication-title: J Proteome Res – volume: 366 start-page: 779 year: 2007 end-page: 789 article-title: Exclusion of glucosyl‐hydroxymethylcytosine DNA containing bacteriophages is overcome by the injected protein inhibitor IPI* publication-title: J Mol Biol – volume: 387 start-page: 50 year: 2009 end-page: 58 article-title: A procedure for systematic identification of bacteriophage–host interactions of phages publication-title: Virology – volume: 79 start-page: 237 year: 1973 end-page: 248 article-title: Analysis of bacteriophage T7 early RNAs and proteins on slab gels publication-title: J Mol Biol – volume: 379 start-page: 402 year: 2008 end-page: 413 article-title: Dissection of the bacteriophage t4 late promoter complex publication-title: J Mol Biol – volume: 22 start-page: 167 year: 2004 end-page: 168 article-title: Phage‐inspired antibiotics? publication-title: Nat Biotechnol – volume: 27 start-page: 533 year: 1981 end-page: 542 article-title: Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7 publication-title: Cell – volume: 71 start-page: 586 year: 1974 end-page: 589 article-title: Protein kinase induction in by bacteriophage T7 publication-title: Proc Natl Acad Sci USA – volume: 50 start-page: 285 year: 1981 end-page: 319 article-title: Structure and mechanism of multifunctional restriction endonucleases publication-title: Annu Rev Biochem – volume: 76 start-page: 4852 year: 1979 end-page: 4856 article-title: Gene 2 protein of bacteriophage T7: purification and requirement for packaging of T7 DNA publication-title: Proc Natl Acad Sci USA – volume: 159 start-page: 306 year: 2008 end-page: 313 article-title: Exploring the prokaryotic virosphere publication-title: Res Microbiol – volume: 366 start-page: 420 year: 2007 end-page: 435 article-title: Temporal regulation of viral transcription during development of bacteriophage phiYS40 publication-title: J Mol Biol – volume: 99 start-page: 487 year: 1975 end-page: 499 article-title: Effect of RNAase III, cleavage on translation of bacteriophage T7 messenger RNAs publication-title: J Mol Biol – volume: 8 start-page: 1601 year: 1989 end-page: 1608 article-title: Initiation of lambda DNA replication with purified host‐ and bacteriophage‐encoded proteins: the role of the dnaK, dnaJ and grpE heat shock proteins publication-title: EMBO J – volume: 289 start-page: 815 year: 1999 end-page: 826 article-title: Inhibition of RNA polymerase by bacteriophage T7 gene 2 protein publication-title: J Mol Biol – volume: 14 start-page: 3252 year: 1995 end-page: 3261 article-title: The stability of lacZ mRNA depends upon the simultaneity of its synthesis and translation publication-title: EMBO J – volume: 175 start-page: 85 year: 1993 end-page: 93 article-title: The gene of bacteriophage T4 codes for the anti‐sigma 70 protein publication-title: J Bacteriol – volume: 92 start-page: 1451 year: 1995 end-page: 1455 article-title: Bacteriophage T4 MotA and AsiA proteins suffice to direct RNA polymerase to initiate transcription at T4 middle promoters publication-title: Proc Natl Acad Sci USA – volume: 371 start-page: 25 year: 2007 end-page: 33 article-title: The crystal structure of lambda‐Gam protein suggests a model for RecBCD inhibition publication-title: J Mol Biol – start-page: 165 year: 2005 end-page: 222 – volume: 62 start-page: 1132 year: 2006 end-page: 1143 article-title: Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus publication-title: Mol Microbiol – volume: 256 start-page: 1298 year: 1992 end-page: 1303 article-title: A transcriptional enhancer whose function imposes a requirement that proteins track along DNA publication-title: Science – volume: 419 start-page: 71 year: 1997 end-page: 82 article-title: ADP‐ribosylation and early transcription regulation by bacteriophage T4 publication-title: Adv Exp Med Biol – volume: 33 start-page: 887 year: 1983 end-page: 897 article-title: Initiation of transcription at phage T4 late promoters with purified RNA polymerase publication-title: Cell – ident: e_1_2_10_106_1 doi: 10.1016/j.virol.2009.01.033 – ident: e_1_2_10_121_1 doi: 10.1046/j.1365-2958.1999.01147.x – volume: 8 start-page: 187 year: 1999 ident: e_1_2_10_122_1 article-title: Overexpression, purification, and partial characterization of ADP‐ribosyltransferases modA and modB of bacteriophage T4 publication-title: Gene Expr – ident: e_1_2_10_54_1 doi: 10.1073/pnas.0501140102 – ident: e_1_2_10_108_1 doi: 10.1016/j.jmb.2007.12.077 – ident: e_1_2_10_60_1 doi: 10.1073/pnas.90.5.1761 – ident: e_1_2_10_85_1 doi: 10.1091/mbc.3.9.953 – ident: e_1_2_10_125_1 doi: 10.1016/S0021-9258(19)85067-6 – ident: e_1_2_10_19_1 doi: 10.1016/j.bbrc.2005.08.023 – ident: e_1_2_10_132_1 doi: 10.1007/978-1-4419-8632-0_8 – ident: e_1_2_10_114_1 doi: 10.1128/jb.170.7.3016-3024.1988 – ident: e_1_2_10_81_1 doi: 10.1016/j.jmb.2008.03.071 – ident: e_1_2_10_55_1 doi: 10.1128/JB.188.3.1184-1187.2006 – ident: e_1_2_10_58_1 doi: 10.1073/pnas.85.18.6632 – ident: e_1_2_10_48_1 doi: 10.1371/journal.pone.0000363 – ident: e_1_2_10_96_1 doi: 10.1016/j.dnarep.2005.08.007 – ident: e_1_2_10_9_1 doi: 10.1111/j.1365-2958.2008.06276.x – ident: e_1_2_10_29_1 doi: 10.1016/S0021-9258(19)42709-9 – ident: e_1_2_10_88_1 doi: 10.1073/pnas.92.5.1451 – ident: e_1_2_10_127_1 doi: 10.1128/jb.177.10.2933-2937.1995 – ident: e_1_2_10_59_1 doi: 10.1038/nbt932 – ident: e_1_2_10_11_1 doi: 10.1016/j.tibtech.2004.07.004 – ident: e_1_2_10_87_1 doi: 10.1128/jb.175.1.85-93.1993 – ident: e_1_2_10_86_1 doi: 10.1146/annurev.genet.39.073003.113656 – start-page: 127 volume-title: Molecular Biology of Bacteriophage T4. year: 1994 ident: e_1_2_10_76_1 – ident: e_1_2_10_91_1 doi: 10.1006/jmbi.1995.0343 – ident: e_1_2_10_46_1 doi: 10.1111/j.1365-2958.2004.04204.x – ident: e_1_2_10_64_1 doi: 10.1093/nar/9.22.5859 – ident: e_1_2_10_131_1 doi: 10.1006/plas.1996.0013 – ident: e_1_2_10_7_1 doi: 10.1128/JB.65.2.113-121.1953 – ident: e_1_2_10_21_1 doi: 10.1073/pnas.82.14.4678 – ident: e_1_2_10_62_1 doi: 10.1093/emboj/cdg603 – ident: e_1_2_10_74_1 doi: 10.1128/MMBR.67.1.86-156.2003 – ident: e_1_2_10_14_1 doi: 10.1038/228227a0 – ident: e_1_2_10_129_1 doi: 10.1073/pnas.48.2.293 – ident: e_1_2_10_10_1 doi: 10.1146/annurev.mi.25.100171.001101 – ident: e_1_2_10_33_1 doi: 10.1038/258354a0 – volume: 266 start-page: 20024 year: 1991 ident: e_1_2_10_79_1 article-title: The T4 DNA polymerase accessory proteins form an ATP‐dependent complex on a primer–template junction publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)54887-0 – ident: e_1_2_10_111_1 doi: 10.1128/JB.188.10.3470-3476.2006 – ident: e_1_2_10_109_1 doi: 10.1093/nar/gkm584 – ident: e_1_2_10_43_1 doi: 10.1128/MMBR.00013-07 – ident: e_1_2_10_28_1 doi: 10.1093/nar/9.19.4863 – ident: e_1_2_10_136_1 doi: 10.1146/annurev.bi.50.070181.001441 – volume: 184 start-page: 3957 year: 2002 ident: e_1_2_10_89_1 article-title: The bacteriophage T4 transcription activator MotA interacts with the far‐C‐terminal region of the sigma70 subunit of Escherichia coli RNA polymerase publication-title: J Bacteriol doi: 10.1128/JB.184.14.3957-3964.2002 – ident: e_1_2_10_82_1 doi: 10.1006/jmbi.1999.2782 – volume: 252 start-page: 6640 year: 1977 ident: e_1_2_10_78_1 article-title: Purification and properties of a T4 bacteriophage factor that modifies valyl‐tRNA synthetase of Escherichia coli publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)39895-2 – ident: e_1_2_10_22_1 doi: 10.1016/S0022-2836(75)80140-9 – ident: e_1_2_10_25_1 doi: 10.1128/MMBR.48.4.299-325.1984 – ident: e_1_2_10_66_1 doi: 10.1016/S0021-9258(19)38298-5 – start-page: 343 volume-title: Molecular Biology of Bacteriophage T4. year: 1994 ident: e_1_2_10_52_1 – ident: e_1_2_10_123_1 doi: 10.1016/j.mib.2005.06.003 – ident: e_1_2_10_32_1 doi: 10.1126/science.1598572 – ident: e_1_2_10_105_1 doi: 10.1111/j.1432-1033.1975.tb20995.x – ident: e_1_2_10_50_1 doi: 10.1006/jmbi.1999.2953 – ident: e_1_2_10_57_1 doi: 10.1073/pnas.76.10.4852 – ident: e_1_2_10_135_1 doi: 10.1016/S0022-2836(76)80032-0 – volume: 265 start-page: 5303 year: 1990 ident: e_1_2_10_37_1 article-title: Transcriptional mapping of a DNA replication gene cluster in bacteriophage T4. Sites for initiation, termination, and mRNA processing publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)34122-5 – volume: 24 start-page: 736 year: 1977 ident: e_1_2_10_34_1 article-title: ‘Host shutoff’ function of bacteriophage T7: involvement of T7 gene 2 and gene 0.7 in the inactivation of Escherichia coli RNA polymerase publication-title: J Virol doi: 10.1128/jvi.24.3.736-745.1977 – volume: 258 start-page: 5340 year: 1983 ident: e_1_2_10_71_1 article-title: RNase III is positively regulated by T7 protein kinase publication-title: J Biol Chem doi: 10.1016/S0021-9258(20)81892-4 – ident: e_1_2_10_92_1 doi: 10.1007/BF00285915 – ident: e_1_2_10_120_1 doi: 10.1038/197794a0 – start-page: 277 volume-title: The Bacteriophages. year: 2005 ident: e_1_2_10_75_1 – ident: e_1_2_10_126_1 doi: 10.1146/annurev.mi.34.100180.001033 – volume: 263 start-page: 13549 year: 1988 ident: e_1_2_10_39_1 article-title: Escherichia coli dGTP triphosphohydrolase is inhibited by gene 1.2 protein of bacteriophage T7 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)68277-8 – ident: e_1_2_10_83_1 doi: 10.1073/pnas.0408028101 – ident: e_1_2_10_110_1 doi: 10.1016/S0021-9258(17)36782-0 – ident: e_1_2_10_134_1 doi: 10.1006/jmbi.1997.1390 – volume: 61 start-page: 366 year: 1987 ident: e_1_2_10_38_1 article-title: Identification of two new bacteriophage T4 genes that may have roles in transcription and DNA replication publication-title: J Virol doi: 10.1128/jvi.61.2.366-374.1987 – ident: e_1_2_10_69_1 doi: 10.1006/jmbi.1998.2373 – ident: e_1_2_10_137_1 doi: 10.1016/j.jmb.2007.10.054 – ident: e_1_2_10_56_1 doi: 10.1038/sj.emboj.7600312 – ident: e_1_2_10_100_1 doi: 10.1016/S0968-0004(98)01193-1 – volume: 4 start-page: 253 year: 1995 ident: e_1_2_10_49_1 article-title: Overexpression, purification, and characterization of the ADP‐ribosyltransferase (gpAlt) of bacteriophage T4: ADP‐ribosylation of E. coli RNA polymerase modulates T4 ‘early’ transcription publication-title: Gene Expr – ident: e_1_2_10_118_1 doi: 10.1016/0022-2836(73)90003-X – ident: e_1_2_10_102_1 doi: 10.1016/0042-6822(90)90437-V – start-page: 132 volume-title: Molecular Biology of Bacteriophage T4. year: 1994 ident: e_1_2_10_130_1 – ident: e_1_2_10_5_1 doi: 10.1016/j.jmb.2006.08.074 – ident: e_1_2_10_138_1 doi: 10.1007/BF00268447 – ident: e_1_2_10_23_1 doi: 10.1093/emboj/16.8.1992 – ident: e_1_2_10_47_1 doi: 10.1111/j.1432-1033.1980.tb04467.x – ident: e_1_2_10_113_1 doi: 10.1111/j.1432-1033.1977.tb11783.x – ident: e_1_2_10_2_1 doi: 10.1126/science.377489 – ident: e_1_2_10_101_1 doi: 10.1016/j.jmb.2007.10.064 – volume: 149 start-page: 694 year: 1982 ident: e_1_2_10_20_1 article-title: Physical mapping and cloning of bacteriophage T4 anti‐restriction endonuclease gene publication-title: J Bacteriol doi: 10.1128/jb.149.2.694-699.1982 – ident: e_1_2_10_116_1 doi: 10.1016/0022-2836(80)90399-X – ident: e_1_2_10_93_1 doi: 10.1006/jmbi.1993.1563 – ident: e_1_2_10_99_1 doi: 10.1073/pnas.71.2.586 – ident: e_1_2_10_107_1 doi: 10.1016/0092-8674(81)90395-0 – ident: e_1_2_10_63_1 doi: 10.1016/0092-8674(81)90164-1 – ident: e_1_2_10_97_1 doi: 10.1038/381169a0 – ident: e_1_2_10_26_1 doi: 10.1128/jb.177.14.4066-4076.1995 – ident: e_1_2_10_42_1 doi: 10.1016/S0092-8674(01)00462-7 – ident: e_1_2_10_73_1 doi: 10.1126/science.275.5306.1655 – ident: e_1_2_10_104_1 doi: 10.1111/j.1365-2958.1994.tb00382.x – ident: e_1_2_10_4_1 doi: 10.1016/0022-2836(85)90242-6 – volume: 33 start-page: 547 year: 1980 ident: e_1_2_10_27_1 article-title: ADP ribosylation of Escherichia coli RNA polymerase is nonessential for bacteriophage T4 development publication-title: J Virol doi: 10.1128/jvi.33.1.547-549.1980 – ident: e_1_2_10_65_1 doi: 10.1016/0022-2836(84)90459-5 – ident: e_1_2_10_94_1 doi: 10.1038/nbt0204-167 – ident: e_1_2_10_44_1 doi: 10.1016/S0092-8674(05)80091-1 – ident: e_1_2_10_84_1 doi: 10.1128/JVI.74.9.4057-4063.2000 – ident: e_1_2_10_98_1 doi: 10.1111/j.1365-2958.2007.06058.x – ident: e_1_2_10_70_1 doi: 10.1101/gad.5.8.1504 – ident: e_1_2_10_12_1 doi: 10.1016/0092-8674(91)90159-V – ident: e_1_2_10_72_1 doi: 10.1016/0042-6822(92)90010-M – ident: e_1_2_10_17_1 doi: 10.1016/j.resmic.2008.05.001 – ident: e_1_2_10_80_1 doi: 10.1038/sj.emboj.7601069 – ident: e_1_2_10_3_1 doi: 10.1016/j.jmb.2006.11.049 – ident: e_1_2_10_103_1 doi: 10.1021/bi00135a012 – ident: e_1_2_10_16_1 doi: 10.1046/j.1365-2958.1998.00729.x – ident: e_1_2_10_15_1 doi: 10.1038/299369a0 – start-page: 165 volume-title: Bacteriophages Biology and Application. year: 2005 ident: e_1_2_10_53_1 – ident: e_1_2_10_8_1 doi: 10.1128/mr.57.2.434-450.1993 – ident: e_1_2_10_128_1 doi: 10.1021/pr070451j – ident: e_1_2_10_35_1 doi: 10.1074/jbc.273.1.518 – start-page: 29 volume-title: Bacteriophages Biology and Application. year: 2005 ident: e_1_2_10_31_1 – ident: e_1_2_10_117_1 doi: 10.1126/science.176.4033.367 – ident: e_1_2_10_18_1 doi: 10.1016/j.jmb.2007.05.037 – ident: e_1_2_10_40_1 doi: 10.1002/j.1460-2075.1995.tb07328.x – ident: e_1_2_10_139_1 doi: 10.1093/nar/10.5.1635 – start-page: 369 volume-title: Molecular Biology of Bacteriophage T4. year: 1994 ident: e_1_2_10_13_1 – ident: e_1_2_10_51_1 doi: 10.1128/MMBR.47.3.345-360.1983 – ident: e_1_2_10_68_1 doi: 10.1073/pnas.161253298 – ident: e_1_2_10_77_1 doi: 10.1016/S0378-1119(98)00238-8 – ident: e_1_2_10_6_1 doi: 10.1111/j.1365-2958.2006.05427.x – ident: e_1_2_10_141_1 doi: 10.1002/j.1460-2075.1989.tb03544.x – ident: e_1_2_10_36_1 doi: 10.1074/jbc.273.1.524 – ident: e_1_2_10_67_1 doi: 10.1046/j.1365-2958.2001.02668.x – ident: e_1_2_10_112_1 doi: 10.1016/j.jmb.2006.11.050 – ident: e_1_2_10_133_1 doi: 10.1074/jbc.M211447200 – ident: e_1_2_10_95_1 doi: 10.1006/jmbi.1999.2605 – ident: e_1_2_10_30_1 doi: 10.1016/S0014-5793(01)02378-X – ident: e_1_2_10_45_1 doi: 10.1016/0092-8674(83)90031-4 – ident: e_1_2_10_61_1 doi: 10.1016/0022-2836(86)90071-9 – ident: e_1_2_10_115_1 doi: 10.1099/00221287-146-10-2643 – ident: e_1_2_10_90_1 doi: 10.1016/S0092-8674(03)00233-2 – ident: e_1_2_10_119_1 doi: 10.1016/S0021-9258(18)47718-6 – ident: e_1_2_10_140_1 doi: 10.1073/pnas.72.7.2506 – ident: e_1_2_10_24_1 doi: 10.1016/0378-1119(90)90053-T – ident: e_1_2_10_124_1 doi: 10.1016/S1097-2765(02)00435-5 – ident: e_1_2_10_41_1 doi: 10.1128/jb.174.2.619-622.1992 |
| SSID | ssj0017370 |
| Score | 2.305279 |
| SecondaryResourceType | review_article |
| Snippet | Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved in these... Summary Interactions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved... SummaryInteractions between bacteriophage proteins and bacterial proteins are important for efficient infection of the host cell. The phage proteins involved... |
| SourceID | proquest pubmed crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2789 |
| SubjectTerms | Bacteria Bacteria - virology bacterial proteins Bacterial Proteins - metabolism bacteriophages Bacteriophages - physiology defense mechanisms Host-Parasite Interactions hosts metabolism physiology Protein Interaction Mapping surveys therapeutics Viral Proteins Viral Proteins - metabolism virology |
| Title | role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome |
| URI | https://api.istex.fr/ark:/67375/WNG-P30353K9-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2009.02029.x https://www.ncbi.nlm.nih.gov/pubmed/19691505 https://www.proquest.com/docview/1365046922 https://www.proquest.com/docview/734119497 https://www.proquest.com/docview/746153200 |
| Volume | 11 |
| WOSCitedRecordID | wos000271244800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1462-2920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017370 issn: 1462-2912 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB7RFKReeNMuj8pIiNui7K7XD24ICEigqAKi5mb5tRABmyhpUMmvx2NvF6UqqELccpjxxt4Z72fPNzMATyynxlmHMcOC5VQwmpva2LwwNTIwmLdGxGYTfDwW06k86vhPmAuT6kP0F27oGXG_RgfXZnXeycscuy11ZSfDOV4-C3hytwxmXA9g99WH0eR9H1PgVWwd12kV53g9F4619bHaafQ8QFhc_dOL8Og2vI3fp9GN_zmzm3C9Q6nkRTKrW3DFt7fhWupb-fMObIJxEeQlknlDsODEMqVHrEhH-yKLL2GfIrp1xKRy0GG0WBJiFoTw7nfWkgA9SeKCeUcwgPCcaOIiTySpLtabDWbL94-Yf_d3YTJ6_enl27xr4pBbVhQyFz618_C0aZzxrpTcDbl11HJfM-NEY4OYGRohKbO8EuGx3MkgUVFdGV7dg0E7b_0BEFfoilGnNS8N1VYLTMKtqRelHkojbAb87G0p21U4x0Yb39TWSadUuLLYf1OquLLqNIOi11ykKh-X0DkIBqH057AZq8nHEkPABZOs5jyDp9FK-rH08isS6Hitjsdv1FGADXX1TqrjDB6fmZEKbo1LrVs_X68Usg_x6qIsMyB_kOEBgRSSSv4XEYqAPvztDPaTlf6en2QynAbqDFg0xktPXIUNAn_d_1fFB7AXY3Ixo_MhDE6Wa_8IrtofJ7PV8hB2-FQcds77C0onPaM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgA40X7mPhaiTEW1CTOHbMGwLK0Eo1wartzfItUAFJ1a5o9Ndzjp0FdRpoQrz14Ryndr7jHPtcPkKeWcGMsw5jhhlPWcVZakpj08yUmIHBvTVVIJsQ43F1dCT3OzogrIWJ_SH6Cze0jLBfo4HjhfRZK89TpFvq-k7CQV6-AIdykwGqAO6bbz4OJ6M-qCCKwB3XaWVnEnvOHWvta3W51i34sLj8J-c5pOv-bfhADW_816ndJNc7P5W-isC6RS755ja5Gpkrf94hK4AXxcxE2tYUW07MY4HEgnaJX3T2BXYqqhtHTWwIDaOFphBTEMLb32lDwfmkMRvMO4ohhJdUUxcyRaLqbLlaYb18_4j2u79LJsO3B693047GIbU8y2Ra-Ujo4VldO-NdLoUbCOuYFb7kxlW1BTEzMJVk3IqigscKJ0GiYLowotgmG03b-B1CXaYLzpzWIjdMW11hGW7JfJXrgTSVTYg4fV3Kdj3OkWrjm1o76-QKVxYZOKUKK6tOEpL1mrPY5-MCOjuACKU_w3asJp9yDAJnXPJSiIQ8DzDpx9Lzr5hCJ0p1OH6n9sFxKIs9qQ4T8vQURwoMG5daN75dLhTmH-LlRZ4nhP5BRoAPkkkmxV9EGLr08LcTci_C9Pf8JJdwHigTwgMaLzxxBVsE_rr_r4pPyNbuwYeRGr0f7z0g10KELtR3PiQbx_Olf0Su2B_H08X8cWfDvwDeB0Cr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BChUX3qXmuUiIm1Fsr_fBDVECqFUUAVF7W-3LEAF2lDSo5Nezs3aNUhVUIW45zKyz65n1tzuPD-CZ5dQ46zBmmLGUCkZTUxqbZqbEDAzmrRGRbIKPx-LoSE46OiCshWn7Q_QXbugZcb9GB_dzV5318jxFuqWu72Q4yMsXAVBuUeSUGcDW3ofR9KAPKvAicsd1WtmZxJ5zx9r4Wl2udBMwLC7_yXmAdBPfxg_U6MZ_ndpNuN7hVPKqNaxbcMnXt-Fqy1z58w6sg3kRzEwkTUWw5cSiLZBYki7xi8y_hJ2K6NoR0zaEDqPFphCzIIS3v7OaBPBJ2mww7wiGEF4STVzMFGlV56v1Guvl-0c03_1dmI7efHr9Lu1oHFLLskymwreEHp5WlTPe5ZK7IbeOWu5LZpyobBAzQyMkZZYXIjyWOxkkCqoLw4sdGNRN7XeBuEwXjDqteW6otlpgGW5Jvcj1UBphE-Cnr0vZrsc5Um18UxtnnVzhyiIDp1RxZdVJAlmvOW_7fFxAZzdYhNKfw3asph9zDAJnTLKS8wSeRzPpx9KLr5hCx0t1OH6rJgE4lMW-VIcJPD21IxUcG5da175ZLRXmH-LlRZ4nQP4gwwMGySSV_C8iFCF9-NsJ3GvN9Pf8JJPhPFAmwKI1XnjiKmwR-Ov-vyo-ge3J3kgdvB_vP4BrMUAXyzsfwuB4sfKP4Ir9cTxbLh53LvwLBp5AJg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+interactions+between+phage+and+bacterial+proteins+within+the+infected+cell%3A+a+diverse+and+puzzling+interactome&rft.jtitle=Environmental+microbiology&rft.au=Roucourt%2C+Bart&rft.au=Lavigne%2C+Rob&rft.date=2009-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=11&rft.issue=11&rft.spage=2789&rft.epage=2805&rft_id=info:doi/10.1111%2Fj.1462-2920.2009.02029.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P30353K9_W |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |