Generalized multilevel function-on-scalar regression and principal component analysis

This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scient...

Full description

Saved in:
Bibliographic Details
Published in:Biometrics Vol. 71; no. 2; pp. 344 - 353
Main Authors: Goldsmith, Jeff, Zipunnikov, Vadim, Schrack, Jennifer
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01.06.2015
International Biometric Society
Subjects:
ISSN:0006-341X, 1541-0420, 1541-0420
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly 600 subjects over 5 days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject-specific and subject-day-specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within-function and within-subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application have good estimation and inferential properties with reasonable computation times for moderate datasets, in both cross-sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time-specific change in probability of being active over a 24-hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.
AbstractList Summary This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly 600 subjects over 5 days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject‐specific and subject‐day‐specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within‐function and within‐subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application have good estimation and inferential properties with reasonable computation times for moderate datasets, in both cross‐sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time‐specific change in probability of being active over a 24‐hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.
Summary This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly 600 subjects over 5 days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject-specific and subject-day-specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within-function and within-subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application have good estimation and inferential properties with reasonable computation times for moderate datasets, in both cross-sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time-specific change in probability of being active over a 24-hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly 600 subjects over 5 days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject-specific and subject-day-specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within-function and within-subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application have good estimation and inferential properties with reasonable computation times for moderate datasets, in both cross-sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time-specific change in probability of being active over a 24-hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly 600 subjects over 5 days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject-specific and subject-day-specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within-function and within-subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application have good estimation and inferential properties with reasonable computation times for moderate datasets, in both cross-sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time-specific change in probability of being active over a 24-hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly 600 subjects over 5 days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject-specific and subject-day-specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within-function and within-subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application have good estimation and inferential properties with reasonable computation times for moderate datasets, in both cross-sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time-specific change in probability of being active over a 24-hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.
This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential family distribution and multilevel in that they are clustered within groups or subjects. This data structure is increasingly common across scientific domains and is exemplified by our motivating example, in which binary curves indicating physical activity or inactivity are observed for nearly six hundred subjects over five days. We use a generalized linear model to incorporate scalar covariates into the mean structure, and decompose subject-specific and subject-day-specific deviations using multilevel functional principal components analysis. Thus, functional fixed effects are estimated while accounting for within-function and within-subject correlations, and major directions of variability within and between subjects are identified. Fixed effect coefficient functions and principal component basis functions are estimated using penalized splines; model parameters are estimated in a Bayesian framework using Stan, a programming language that implements a Hamiltonian Monte Carlo sampler. Simulations designed to mimic the application have good estimation and inferential properties with reasonable computation times for moderate datasets, in both cross-sectional and multilevel scenarios; code is publicly available. In the application we identify effects of age and BMI on the time-specific change in probability of being active over a twenty-four hour period; in addition, the principal components analysis identifies the patterns of activity that distinguish subjects and days within subjects.
Author Goldsmith, Jeff
Zipunnikov, Vadim
Schrack, Jennifer
AuthorAffiliation 4 Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health
1 Department of Biostatistics, Mailman School of Public Health, Columbia University
3 Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University
2 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University
AuthorAffiliation_xml – name: 2 Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University
– name: 3 Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University
– name: 1 Department of Biostatistics, Mailman School of Public Health, Columbia University
– name: 4 Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health
Author_xml – sequence: 1
  givenname: Jeff
  surname: Goldsmith
  fullname: Goldsmith, Jeff
  email: jeff.goldsmith@columbia.edu
  organization: Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, U.S.A
– sequence: 2
  givenname: Vadim
  surname: Zipunnikov
  fullname: Zipunnikov, Vadim
  organization: Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Maryland, Baltimore, U.S.A
– sequence: 3
  givenname: Jennifer
  surname: Schrack
  fullname: Schrack, Jennifer
  organization: Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25620473$$D View this record in MEDLINE/PubMed
BookMark eNqFkd9rFDEQx4NU7LX64ruy4IsIW_NrN5sXwSv2LFQL0qr4ErLZ2ZozuzmT3er515vr9qoW0RAImfnM8J357qGd3veA0EOCD0g6z2vruwNCqajuoBkpOMkxp3gHzTDGZc44-biL9mJcpq8sML2HdmlRUswFm6HzBfQQtLM_oMm60Q3WwSW4rB17M1jf5-lGo50OWYCLADGmYKb7JlsF2xu70i4zvlslRf2Q4tqto4330d1WuwgPrt99dH706uzwdX5yujg-fHmSm5KQKtdto0UrpdQcKoFLSEOwpqpraIuWlsRQaTjTQOqGla1uMJACmCbC8NpURcH20Yup72qsO2hM0pBmUUlap8NaeW3Vn5neflYX_lJxLqQUmwZPrxsE_3WEOKjORgPO6R78GBURBFMuNrv6L1pKggmvKprQJ7fQpR9D2s0VhSmTlLFEPf5d_I3qrTkJwBNggo8xQKuMHfTGlTSLdYpgtfFfbfxXV_6nkme3SrZd_wqTCf6WTF__g1Tz49M325pHU80yDj780swLVgmGUz6f8jYO8P0mr8MXVQomCvXh7UK9n7NPcn50pt6xn7D52yM
CODEN BIOMA5
CitedBy_id crossref_primary_10_1080_10618600_2022_2035738
crossref_primary_10_1016_j_csda_2024_108094
crossref_primary_10_1002_cjs_70011
crossref_primary_10_1093_biostatistics_kxab018
crossref_primary_10_3390_math9111305
crossref_primary_10_1007_s11222_024_10538_x
crossref_primary_10_1111_biom_13878
crossref_primary_10_1515_ijb_2023_0029
crossref_primary_10_1016_j_csda_2017_02_004
crossref_primary_10_3389_fams_2024_1399426
crossref_primary_10_1080_10618600_2023_2276114
crossref_primary_10_1002_sim_9421
crossref_primary_10_3390_s21041545
crossref_primary_10_1080_10618600_2024_2362227
crossref_primary_10_1136_bjsports_2020_103604
crossref_primary_10_1249_MSS_0000000000000968
crossref_primary_10_1177_1471082X20917586
crossref_primary_10_1177_1471082X16681317
crossref_primary_10_1111_bdi_12963
crossref_primary_10_1016_j_csda_2016_07_010
crossref_primary_10_1002_qre_2018
crossref_primary_10_1016_j_csda_2018_07_015
crossref_primary_10_1007_s12561_023_09383_9
crossref_primary_10_1016_j_trc_2021_103007
crossref_primary_10_1080_09291016_2021_1929673
crossref_primary_10_1155_2021_8829509
crossref_primary_10_1080_24725854_2023_2222162
crossref_primary_10_1159_000515576
crossref_primary_10_1002_sim_10304
crossref_primary_10_1007_s12561_019_09236_4
crossref_primary_10_1016_j_jprocont_2022_06_015
crossref_primary_10_1111_biom_13269
crossref_primary_10_1111_sjos_12773
crossref_primary_10_1002_sim_7254
crossref_primary_10_1111_cts_12865
crossref_primary_10_3390_jcm13226894
crossref_primary_10_1007_s11749_023_00884_9
crossref_primary_10_1111_biom_12781
crossref_primary_10_1002_sta4_121
crossref_primary_10_1002_pst_2350
crossref_primary_10_1007_s10994_023_06499_3
crossref_primary_10_1002_sim_7534
crossref_primary_10_1177_09622802231206472
crossref_primary_10_1080_10618600_2021_1950006
crossref_primary_10_1093_biostatistics_kxae040
crossref_primary_10_1093_sleep_zsac078
crossref_primary_10_1007_s10182_025_00531_8
crossref_primary_10_1080_02664763_2019_1572718
crossref_primary_10_1177_1471082X20930894
crossref_primary_10_1371_journal_pone_0169576
crossref_primary_10_1080_00949655_2025_2511926
crossref_primary_10_1002_adbi_202300138
crossref_primary_10_1016_j_cobeha_2019_12_005
crossref_primary_10_1093_biostatistics_kxaa023
crossref_primary_10_1080_01621459_2025_2460232
crossref_primary_10_1007_s42952_019_00044_6
crossref_primary_10_1093_sleep_zsae037
crossref_primary_10_1214_23_BA1393
crossref_primary_10_1080_01621459_2017_1366907
crossref_primary_10_1007_s13253_015_0212_7
crossref_primary_10_1111_biom_12885
crossref_primary_10_1111_biom_12963
crossref_primary_10_1007_s10389_023_01879_4
crossref_primary_10_1002_sim_8794
crossref_primary_10_1111_biom_13220
crossref_primary_10_1177_20556683211067362
crossref_primary_10_1002_da_22949
crossref_primary_10_1080_10618600_2024_2374584
crossref_primary_10_1016_j_jmva_2021_104806
crossref_primary_10_1093_biostatistics_kxab041
crossref_primary_10_1016_j_comcom_2020_04_052
crossref_primary_10_1214_23_BA1380
crossref_primary_10_2196_59497
crossref_primary_10_1080_10618600_2019_1710837
crossref_primary_10_1002_sim_10240
crossref_primary_10_1002_sim_9180
crossref_primary_10_1038_s41598_022_15528_5
crossref_primary_10_1007_s12561_019_09250_6
crossref_primary_10_1177_0962280215595832
crossref_primary_10_1002_ksa_12624
crossref_primary_10_1093_jrsssc_qlae016
crossref_primary_10_1080_10618600_2022_2115500
crossref_primary_10_1002_bimj_202000315
crossref_primary_10_1002_sta4_109
crossref_primary_10_1111_jgs_19435
crossref_primary_10_1002_sim_70265
crossref_primary_10_1080_26941899_2025_2521329
crossref_primary_10_1002_sim_70222
crossref_primary_10_1016_j_annepidem_2023_08_004
crossref_primary_10_1007_s43441_020_00188_2
crossref_primary_10_1016_j_csda_2023_107900
crossref_primary_10_1002_bimj_202300363
crossref_primary_10_1080_01621459_2017_1379403
crossref_primary_10_2196_20700
crossref_primary_10_1016_j_csda_2020_106912
crossref_primary_10_1007_s12561_018_09230_2
Cites_doi 10.1111/biom.12083
10.1093/biostatistics/kxt029
10.1093/gerona/62.8.844
10.1007/s00421-010-1672-7
10.1111/j.0006-341X.2002.00121.x
10.1201/b10905-6
10.2202/1557-4679.1246
10.1002/sim.3680
10.1001/jama.2013.278896
10.1249/mss.0b013e31815a51b3
10.1007/b98888
10.1017/CBO9780511755453
10.1111/j.1467-9868.2008.00656.x
10.1007/s00421-005-0112-6
10.1198/016214504000001745
10.1080/01621459.1998.10473755
10.1111/j.1541-0420.2012.01808.x
10.1007/s10182-009-0113-6
10.1111/1467-9868.00196
10.1111/j.1467-9868.2006.00539.x
10.1016/j.csda.2008.09.015
ContentType Journal Article
Copyright Copyright © 2015 International Biometric Society
2015, The International Biometric Society
2015, The International Biometric Society.
Copyright_xml – notice: Copyright © 2015 International Biometric Society
– notice: 2015, The International Biometric Society
– notice: 2015, The International Biometric Society.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
5PM
DOI 10.1111/biom.12278
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
ProQuest Computer Science Collection
MEDLINE - Academic
CrossRef
AGRICOLA
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 353
ExternalDocumentID PMC4479975
3722156301
25620473
10_1111_biom_12278
BIOM12278
24538730
ark_67375_WNG_VB3Z9BFT_R
Genre article
Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL123407
– fundername: Intramural NIH HHS
– fundername: NHLBI NIH HHS
  grantid: R01HL123407
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAMMB
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFFHD
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGQPQ
AGTJU
AGXDD
AHGBF
AHMBA
AIAGR
AIDQK
AIDYY
AIHAF
AIURR
AJAOE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
H13
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AGORE
ALIPV
ALUQN
3V.
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AELPN
AEQDE
AEUQT
AFFTP
AFPWT
AIBGX
AIWBW
AJBDE
JSODD
VQA
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
PKN
JQ2
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c6118-afda7f999a4e8706e1223d8bbef5f261c29c43ae1bd36fad0e15e3a17c4bc8553
IEDL.DBID DRFUL
ISICitedReferencesCount 109
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356810000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-341X
1541-0420
IngestDate Tue Nov 04 01:59:05 EST 2025
Fri Oct 03 00:13:17 EDT 2025
Thu Oct 02 06:01:08 EDT 2025
Mon Nov 10 02:55:44 EST 2025
Wed Feb 19 01:53:33 EST 2025
Sat Nov 29 07:53:20 EST 2025
Tue Nov 18 22:46:19 EST 2025
Wed Jan 22 17:03:50 EST 2025
Thu Jul 03 22:31:29 EDT 2025
Tue Nov 11 03:34:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Penalized splines
Hamiltonian Monte Carlo
Bayesian inference
Generalized functional data
Accelerometry
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2015, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6118-afda7f999a4e8706e1223d8bbef5f261c29c43ae1bd36fad0e15e3a17c4bc8553
Notes ark:/67375/WNG-VB3Z9BFT-R
istex:152754DD3ED3983D3A4E1649124B3BD57A9A3D6F
ArticleID:BIOM12278
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
jeff.goldsmith@columbia.edu
OpenAccessLink http://doi.org/10.1111/biom.12278
PMID 25620473
PQID 1690239233
PQPubID 35366
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4479975
proquest_miscellaneous_1710247047
proquest_miscellaneous_1691014882
proquest_journals_1690239233
pubmed_primary_25620473
crossref_citationtrail_10_1111_biom_12278
crossref_primary_10_1111_biom_12278
wiley_primary_10_1111_biom_12278_BIOM12278
jstor_primary_24538730
istex_primary_ark_67375_WNG_VB3Z9BFT_R
PublicationCentury 2000
PublicationDate June 2015
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biom
PublicationYear 2015
Publisher Blackwell Publishing Ltd
International Biometric Society
Publisher_xml – name: Blackwell Publishing Ltd
– name: International Biometric Society
References Goldsmith, J., Greven, S., and Crainiceanu, C. M. (2013). Corrected confidence bands for functional data using principal components. Biometrics 69, 41-51.
Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized basis expansions. International Journal of Biostatistics 6, Article 28.
Bai, J., He, B., Shou, H., Zipunnikov, V., Glass, T. A., and Crainiceanu, C. M. (2014). Normalization and extraction of interpretable metrics from raw accelerometry data. Biostatistics 15, 102-116.
Spierer, D. K., Hagins, M., Rundle, A., and Pappas, E. (2011). A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging. European Journal of Applied Physiology 111, 659-667.
Scheipl, F., Staicu, A.-M., and Greven, S. (2013). Additive mixed models for correlated functional data. Under Review.
Hall, P., Müller, H.-G., and Yao, F. (2008). Modelling sparse generalized longitudinal observations with latent Gaussian processes. Journal of the Royal Statistical Society, Series B 70, 703-723.
van der Linde, A. (2009). A Bayesian latent variable approach to functional principal components analysis with binary and count. Advances in Statistical Analysis 93, 307-333.
Brage, S., Brage, N., Ekelund, U., Luan, J., Franks, P. W., Froberg, K., and Wareham, N. J. (2006). Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living. European Journal of Applied Physiology 96, 517-524.
Bishop, C. M. (1999). Bayesian PCA. Advances in Neural Information Processing Systems 382-388.
Guo, W. (2002). Functional mixed effects models. Biometrics 58, 121-128.
Schrack, J. A., Zipunnikov, V., Goldsmith, J., Bai, J., Simonshick, E. M., Crainiceanu, C. M., and Ferrucci, L. (2014). Assessing the physical cliff": Detailed quantification of aging and physical activity. Journal of Gerontology: Medical Sciences 69, 973-979.
Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge: Cambridge University Press.
Serban, N., Staicu, A.-M., and Carrol, R. J. (2013). Multilevel cross-dependent binary longitudinal data. Biometrics 69, 903-913.
Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., and McDowell, M. (2008). Physical activity in the united states measured by accelerometer. Medicine & Science in Sports & Exercise 40, 181-188.
Brumback, B. and Rice, J. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves. Journal of the American Statistical Association 93, 961-976.
van der Linde, A. (2008). Variational Bayesian functional PCA. Computational Statistics and Data Analysis 53, 517-533.
Atkinson, H. H., Rosano, C., Simonsick, E. M., Williamson, J. D., Davis, C., Ambrosius, W. T., Rapp, S. R., Cesari, M., Newman, A. B., Harris, T. B., Rubin, S. M., Yaffe, K., Satterfield, S., and Kritchevsky, S. B. (2007). Cognitive function, gait speed decline, and comorbidities: the health, aging and body composition study. The Journals of Gerontology, Series A, Biological Sciences and Medical Sciences 62, 844-850.
Di, C.-Z., Crainiceanu, C. M., Caffo, B. S., and Punjabi, N. M. (2009). Multilevel functional principal component analysis. Annals of Applied Statistics 4, 458-488.
Shiroma, E. J., Freedson, P. S., Trost, S. G., and Lee, I. M. (2013). Patterns of accelerometer-assessed sedentary behavior in older women. Journal of the American Medical Association 310, 2562-2563.
Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society, Series B 68, 179-199.
Stan Development Team. (2013). Stan Modeling Language User's Guide and Reference Manual, Version 1.3.
Yao, F., Müller, H., and Wang, J. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association 100, 577-590.
Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution, critique and future directions (with discussion). Statistics in Medicine 28, 3049-3082.
Tipping, M. E. and Bishop, C. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B 61, 611-622.
Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. New York: Springer.
2002; 58
2006; 96
2013; 69
2011
2006; 68
2005; 100
2009; 93
2013; 310
2014; 15
2014; 69
2005
2007; 62
2003
1998; 93
2009; 4
2013
1999; 61
2008; 53
2008; 40
2008; 70
2010; 6
2011; 111
1999
2009; 28
Bai (2024010914312509800_biom12278-bib-0002) 2014; 15
van der Linde (2024010914312509800_biom12278-bib-0028) 2009; 93
Bishop (2024010914312509800_biom12278-bib-0003) 1999
Atkinson (2024010914312509800_biom12278-bib-0001) 2007; 62
Scheipl (2024010914312509800_biom12278-bib-0019) 2013
Hall (2024010914312509800_biom12278-bib-0010) 2008; 70
Shiroma (2024010914312509800_biom12278-bib-0022) 2013; 310
Spierer (2024010914312509800_biom12278-bib-0023) 2011; 111
Hoffman (2024010914312509800_biom12278-bib-0011) 2011
van der Linde (2024010914312509800_biom12278-bib-0027) 2008; 53
Goldsmith (2024010914312509800_biom12278-bib-0008) 2013
Serban (2024010914312509800_biom12278-bib-0021) 2013; 69
Brumback (2024010914312509800_biom12278-bib-0005) 1998; 93
Reiss (2024010914312509800_biom12278-bib-0017) 2010; 6
Goldsmith (2024010914312509800_biom12278-bib-0007) 2013; 69
Tipping (2024010914312509800_biom12278-bib-0025) 1999; 61
Plummer (2024010914312509800_biom12278-bib-0015) 2003
Guo (2024010914312509800_biom12278-bib-0009) 2002; 58
Stan Development Team (2024010914312509800_biom12278-bib-0024) 2013
Brage (2024010914312509800_biom12278-bib-0004) 2006; 96
Ruppert (2024010914312509800_biom12278-bib-0018) 2003
Di (2024010914312509800_biom12278-bib-0006) 2009; 4
Yao (2024010914312509800_biom12278-bib-0029) 2005; 100
Morris (2024010914312509800_biom12278-bib-0013) 2006; 68
Ramsay (2024010914312509800_biom12278-bib-0016) 2005
Troiano (2024010914312509800_biom12278-bib-0026) 2008; 40
Neal (2024010914312509800_biom12278-bib-0014) 2011
Schrack (2024010914312509800_biom12278-bib-0020) 2014; 69
Lunn (2024010914312509800_biom12278-bib-0012) 2009; 28
21969982 - Int J Biostat. 2010;6(1):Article 28
19759841 - J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199
24346993 - JAMA. 2013 Dec 18;310(23):2562-3
18091006 - Med Sci Sports Exerc. 2008 Jan;40(1):181-8
20953878 - Eur J Appl Physiol. 2011 Apr;111(4):659-67
24336819 - J Gerontol A Biol Sci Med Sci. 2014 Aug;69(8):973-9
23999141 - Biostatistics. 2014 Jan;15(1):102-16
17702875 - J Gerontol A Biol Sci Med Sci. 2007 Aug;62(8):844-50
16344938 - Eur J Appl Physiol. 2006 Mar;96(5):517-24
19630097 - Stat Med. 2009 Nov 10;28(25):3049-67
23003003 - Biometrics. 2013 Mar;69(1):41-51
20221415 - Ann Appl Stat. 2009 Mar 1;3(1):458-488
11890306 - Biometrics. 2002 Mar;58(1):121-8
24131242 - Biometrics. 2013 Dec;69(4):903-13
References_xml – reference: Stan Development Team. (2013). Stan Modeling Language User's Guide and Reference Manual, Version 1.3.
– reference: Bishop, C. M. (1999). Bayesian PCA. Advances in Neural Information Processing Systems 382-388.
– reference: Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge: Cambridge University Press.
– reference: Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis. New York: Springer.
– reference: Serban, N., Staicu, A.-M., and Carrol, R. J. (2013). Multilevel cross-dependent binary longitudinal data. Biometrics 69, 903-913.
– reference: Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009). The BUGS project: Evolution, critique and future directions (with discussion). Statistics in Medicine 28, 3049-3082.
– reference: Bai, J., He, B., Shou, H., Zipunnikov, V., Glass, T. A., and Crainiceanu, C. M. (2014). Normalization and extraction of interpretable metrics from raw accelerometry data. Biostatistics 15, 102-116.
– reference: Tipping, M. E. and Bishop, C. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B 61, 611-622.
– reference: Hall, P., Müller, H.-G., and Yao, F. (2008). Modelling sparse generalized longitudinal observations with latent Gaussian processes. Journal of the Royal Statistical Society, Series B 70, 703-723.
– reference: Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society, Series B 68, 179-199.
– reference: van der Linde, A. (2009). A Bayesian latent variable approach to functional principal components analysis with binary and count. Advances in Statistical Analysis 93, 307-333.
– reference: Brumback, B. and Rice, J. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves. Journal of the American Statistical Association 93, 961-976.
– reference: Yao, F., Müller, H., and Wang, J. (2005). Functional data analysis for sparse longitudinal data. Journal of the American Statistical Association 100, 577-590.
– reference: Shiroma, E. J., Freedson, P. S., Trost, S. G., and Lee, I. M. (2013). Patterns of accelerometer-assessed sedentary behavior in older women. Journal of the American Medical Association 310, 2562-2563.
– reference: Reiss, P. T., Huang, L., and Mennes, M. (2010). Fast function-on-scalar regression with penalized basis expansions. International Journal of Biostatistics 6, Article 28.
– reference: Goldsmith, J., Greven, S., and Crainiceanu, C. M. (2013). Corrected confidence bands for functional data using principal components. Biometrics 69, 41-51.
– reference: Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., and McDowell, M. (2008). Physical activity in the united states measured by accelerometer. Medicine & Science in Sports & Exercise 40, 181-188.
– reference: Atkinson, H. H., Rosano, C., Simonsick, E. M., Williamson, J. D., Davis, C., Ambrosius, W. T., Rapp, S. R., Cesari, M., Newman, A. B., Harris, T. B., Rubin, S. M., Yaffe, K., Satterfield, S., and Kritchevsky, S. B. (2007). Cognitive function, gait speed decline, and comorbidities: the health, aging and body composition study. The Journals of Gerontology, Series A, Biological Sciences and Medical Sciences 62, 844-850.
– reference: Schrack, J. A., Zipunnikov, V., Goldsmith, J., Bai, J., Simonshick, E. M., Crainiceanu, C. M., and Ferrucci, L. (2014). Assessing the physical cliff": Detailed quantification of aging and physical activity. Journal of Gerontology: Medical Sciences 69, 973-979.
– reference: van der Linde, A. (2008). Variational Bayesian functional PCA. Computational Statistics and Data Analysis 53, 517-533.
– reference: Guo, W. (2002). Functional mixed effects models. Biometrics 58, 121-128.
– reference: Di, C.-Z., Crainiceanu, C. M., Caffo, B. S., and Punjabi, N. M. (2009). Multilevel functional principal component analysis. Annals of Applied Statistics 4, 458-488.
– reference: Brage, S., Brage, N., Ekelund, U., Luan, J., Franks, P. W., Froberg, K., and Wareham, N. J. (2006). Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living. European Journal of Applied Physiology 96, 517-524.
– reference: Scheipl, F., Staicu, A.-M., and Greven, S. (2013). Additive mixed models for correlated functional data. Under Review.
– reference: Spierer, D. K., Hagins, M., Rundle, A., and Pappas, E. (2011). A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging. European Journal of Applied Physiology 111, 659-667.
– start-page: 382
  year: 1999
  end-page: 388
  article-title: Bayesian PCA
  publication-title: Advances in Neural Information Processing Systems
– year: 2013
  article-title: Assessing systematic effects of stroke on motor control using hierarchical function‐on‐scalar regression
– volume: 40
  start-page: 181
  year: 2008
  end-page: 188
  article-title: Physical activity in the united states measured by accelerometer
  publication-title: Medicine & Science in Sports & Exercise
– volume: 58
  start-page: 121
  year: 2002
  end-page: 128
  article-title: Functional mixed effects models
  publication-title: Biometrics
– year: 2005
– start-page: 20
  year: 2003
  end-page: 22
– volume: 69
  start-page: 973
  year: 2014
  end-page: 979
  article-title: Assessing the physical cliff”: Detailed quantification of aging and physical activity
  publication-title: Journal of Gerontology: Medical Sciences
– year: 2003
– volume: 96
  start-page: 517
  year: 2006
  end-page: 524
  article-title: Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free‐living
  publication-title: European Journal of Applied Physiology
– year: 2011
  article-title: The no‐u‐turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
– volume: 310
  start-page: 2562
  year: 2013
  end-page: 2563
  article-title: Patterns of accelerometer‐assessed sedentary behavior in older women
  publication-title: Journal of the American Medical Association
– year: 2013
  article-title: Additive mixed models for correlated functional data
  publication-title: Under Review
– volume: 69
  start-page: 903
  year: 2013
  end-page: 913
  article-title: Multilevel cross‐dependent binary longitudinal data
  publication-title: Biometrics
– volume: 61
  start-page: 611
  year: 1999
  end-page: 622
  article-title: Probabilistic principal component analysis
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 62
  start-page: 844
  year: 2007
  end-page: 850
  article-title: Cognitive function, gait speed decline, and comorbidities: the health, aging and body composition study
  publication-title: The Journals of Gerontology, Series A, Biological Sciences and Medical Sciences
– volume: 70
  start-page: 703
  year: 2008
  end-page: 723
  article-title: Modelling sparse generalized longitudinal observations with latent Gaussian processes
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 93
  start-page: 307
  year: 2009
  end-page: 333
  article-title: A Bayesian latent variable approach to functional principal components analysis with binary and count
  publication-title: Advances in Statistical Analysis
– volume: 100
  start-page: 577
  year: 2005
  end-page: 590
  article-title: Functional data analysis for sparse longitudinal data
  publication-title: Journal of the American Statistical Association
– volume: 69
  start-page: 41
  year: 2013
  end-page: 51
  article-title: Corrected confidence bands for functional data using principal components
  publication-title: Biometrics
– start-page: 113
  year: 2011
  end-page: 162
– volume: 93
  start-page: 961
  year: 1998
  end-page: 976
  article-title: Smoothing spline models for the analysis of nested and crossed samples of curves
  publication-title: Journal of the American Statistical Association
– volume: 28
  start-page: 3049
  year: 2009
  end-page: 3082
  article-title: The BUGS project: Evolution, critique and future directions (with discussion)
  publication-title: Statistics in Medicine
– volume: 111
  start-page: 659
  year: 2011
  end-page: 667
  article-title: A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging
  publication-title: European Journal of Applied Physiology
– year: 2013
  publication-title: Stan Modeling Language User's Guide and Reference Manual, Version 1.3
– volume: 53
  start-page: 517
  year: 2008
  end-page: 533
  article-title: Variational Bayesian functional PCA
  publication-title: Computational Statistics and Data Analysis
– volume: 6
  year: 2010
  article-title: Fast function‐on‐scalar regression with penalized basis expansions
  publication-title: International Journal of Biostatistics
– volume: 15
  start-page: 102
  year: 2014
  end-page: 116
  article-title: Normalization and extraction of interpretable metrics from raw accelerometry data
  publication-title: Biostatistics
– volume: 4
  start-page: 458
  year: 2009
  end-page: 488
  article-title: Multilevel functional principal component analysis
  publication-title: Annals of Applied Statistics
– volume: 68
  start-page: 179
  year: 2006
  end-page: 199
  article-title: Wavelet‐based functional mixed models
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 69
  start-page: 903
  year: 2013
  ident: 2024010914312509800_biom12278-bib-0021
  article-title: Multilevel cross-dependent binary longitudinal data
  publication-title: Biometrics
  doi: 10.1111/biom.12083
– volume: 15
  start-page: 102
  year: 2014
  ident: 2024010914312509800_biom12278-bib-0002
  article-title: Normalization and extraction of interpretable metrics from raw accelerometry data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxt029
– volume: 62
  start-page: 844
  year: 2007
  ident: 2024010914312509800_biom12278-bib-0001
  article-title: Cognitive function, gait speed decline, and comorbidities: the health, aging and body composition study
  publication-title: The Journals of Gerontology, Series A, Biological Sciences and Medical Sciences
  doi: 10.1093/gerona/62.8.844
– volume: 111
  start-page: 659
  year: 2011
  ident: 2024010914312509800_biom12278-bib-0023
  article-title: A comparison of energy expenditure estimates from the actiheart and actical physical activity monitors during low intensity activities, walking, and jogging
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-010-1672-7
– year: 2013
  ident: 2024010914312509800_biom12278-bib-0024
  publication-title: Stan Modeling Language User's Guide and Reference Manual, Version 1.3
– volume: 58
  start-page: 121
  year: 2002
  ident: 2024010914312509800_biom12278-bib-0009
  article-title: Functional mixed effects models
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00121.x
– start-page: 113
  volume-title: Handbook of Markov Chain Monte Carlo
  year: 2011
  ident: 2024010914312509800_biom12278-bib-0014
  doi: 10.1201/b10905-6
– volume: 6
  year: 2010
  ident: 2024010914312509800_biom12278-bib-0017
  article-title: Fast function-on-scalar regression with penalized basis expansions
  publication-title: International Journal of Biostatistics
  doi: 10.2202/1557-4679.1246
– volume: 28
  start-page: 3049
  year: 2009
  ident: 2024010914312509800_biom12278-bib-0012
  article-title: The BUGS project: Evolution, critique and future directions (with discussion)
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.3680
– start-page: 382
  year: 1999
  ident: 2024010914312509800_biom12278-bib-0003
  article-title: Bayesian PCA
  publication-title: Advances in Neural Information Processing Systems
– year: 2013
  ident: 2024010914312509800_biom12278-bib-0008
  article-title: Assessing systematic effects of stroke on motor control using hierarchical function-on-scalar regression
  publication-title: Technical Report
– volume: 310
  start-page: 2562
  year: 2013
  ident: 2024010914312509800_biom12278-bib-0022
  article-title: Patterns of accelerometer-assessed sedentary behavior in older women
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.2013.278896
– volume: 40
  start-page: 181
  year: 2008
  ident: 2024010914312509800_biom12278-bib-0026
  article-title: Physical activity in the united states measured by accelerometer
  publication-title: Medicine & Science in Sports & Exercise
  doi: 10.1249/mss.0b013e31815a51b3
– volume-title: Functional Data Analysis
  year: 2005
  ident: 2024010914312509800_biom12278-bib-0016
  doi: 10.1007/b98888
– volume-title: Semiparametric Regression
  year: 2003
  ident: 2024010914312509800_biom12278-bib-0018
  doi: 10.1017/CBO9780511755453
– volume: 70
  start-page: 703
  year: 2008
  ident: 2024010914312509800_biom12278-bib-0010
  article-title: Modelling sparse generalized longitudinal observations with latent Gaussian processes
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2008.00656.x
– start-page: 20
  volume-title: Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). March
  year: 2003
  ident: 2024010914312509800_biom12278-bib-0015
– volume: 96
  start-page: 517
  year: 2006
  ident: 2024010914312509800_biom12278-bib-0004
  article-title: Effect of combined movement and heart rate monitor placement on physical activity estimates during treadmill locomotion and free-living
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-005-0112-6
– volume: 100
  start-page: 577
  year: 2005
  ident: 2024010914312509800_biom12278-bib-0029
  article-title: Functional data analysis for sparse longitudinal data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000001745
– year: 2013
  ident: 2024010914312509800_biom12278-bib-0019
  article-title: Additive mixed models for correlated functional data
  publication-title: Under Review
– volume: 69
  start-page: 973
  year: 2014
  ident: 2024010914312509800_biom12278-bib-0020
  article-title: Assessing the physical cliff”: Detailed quantification of aging and physical activity
  publication-title: Journal of Gerontology: Medical Sciences
– volume: 93
  start-page: 961
  year: 1998
  ident: 2024010914312509800_biom12278-bib-0005
  article-title: Smoothing spline models for the analysis of nested and crossed samples of curves
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1998.10473755
– volume: 69
  start-page: 41
  year: 2013
  ident: 2024010914312509800_biom12278-bib-0007
  article-title: Corrected confidence bands for functional data using principal components
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01808.x
– year: 2011
  ident: 2024010914312509800_biom12278-bib-0011
  article-title: The no-u-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
– volume: 93
  start-page: 307
  year: 2009
  ident: 2024010914312509800_biom12278-bib-0028
  article-title: A Bayesian latent variable approach to functional principal components analysis with binary and count
  publication-title: Advances in Statistical Analysis
  doi: 10.1007/s10182-009-0113-6
– volume: 4
  start-page: 458
  year: 2009
  ident: 2024010914312509800_biom12278-bib-0006
  article-title: Multilevel functional principal component analysis
  publication-title: Annals of Applied Statistics
– volume: 61
  start-page: 611
  year: 1999
  ident: 2024010914312509800_biom12278-bib-0025
  article-title: Probabilistic principal component analysis
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/1467-9868.00196
– volume: 68
  start-page: 179
  year: 2006
  ident: 2024010914312509800_biom12278-bib-0013
  article-title: Wavelet-based functional mixed models
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.1467-9868.2006.00539.x
– volume: 53
  start-page: 517
  year: 2008
  ident: 2024010914312509800_biom12278-bib-0027
  article-title: Variational Bayesian functional PCA
  publication-title: Computational Statistics and Data Analysis
  doi: 10.1016/j.csda.2008.09.015
– reference: 21969982 - Int J Biostat. 2010;6(1):Article 28
– reference: 19630097 - Stat Med. 2009 Nov 10;28(25):3049-67
– reference: 24336819 - J Gerontol A Biol Sci Med Sci. 2014 Aug;69(8):973-9
– reference: 16344938 - Eur J Appl Physiol. 2006 Mar;96(5):517-24
– reference: 24346993 - JAMA. 2013 Dec 18;310(23):2562-3
– reference: 23003003 - Biometrics. 2013 Mar;69(1):41-51
– reference: 17702875 - J Gerontol A Biol Sci Med Sci. 2007 Aug;62(8):844-50
– reference: 19759841 - J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199
– reference: 23999141 - Biostatistics. 2014 Jan;15(1):102-16
– reference: 20221415 - Ann Appl Stat. 2009 Mar 1;3(1):458-488
– reference: 18091006 - Med Sci Sports Exerc. 2008 Jan;40(1):181-8
– reference: 24131242 - Biometrics. 2013 Dec;69(4):903-13
– reference: 20953878 - Eur J Appl Physiol. 2011 Apr;111(4):659-67
– reference: 11890306 - Biometrics. 2002 Mar;58(1):121-8
SSID ssj0009502
Score 2.5103338
Snippet This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an exponential...
Summary This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an...
Summary This manuscript considers regression models for generalized, multilevel functional responses: functions are generalized in that they follow an...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 344
SubjectTerms Accelerometry
Accelerometry - statistics & numerical data
age
Aged
Aged, 80 and over
Aging - physiology
Bayes Theorem
Bayesian inference
Biometry
body mass index
Computer Simulation
data collection
DISCUSSION PAPER
Female
Generalized functional data
Generalized linear models
Hamiltonian Monte Carlo
Humans
Linear Models
Male
Middle Aged
Models, Statistical
Monte Carlo Method
Motor Activity
Penalized splines
physical activity
Principal Component Analysis
Principal components analysis
probability
Regression Analysis
Title Generalized multilevel function-on-scalar regression and principal component analysis
URI https://api.istex.fr/ark:/67375/WNG-VB3Z9BFT-R/fulltext.pdf
https://www.jstor.org/stable/24538730
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.12278
https://www.ncbi.nlm.nih.gov/pubmed/25620473
https://www.proquest.com/docview/1690239233
https://www.proquest.com/docview/1691014882
https://www.proquest.com/docview/1710247047
https://pubmed.ncbi.nlm.nih.gov/PMC4479975
Volume 71
WOSCitedRecordID wos000356810000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB_aO4X64J_TarSWiCIoRJLsbjYBXzz1VGhPKa2evoTNZqPFkpacFfXJj-Bn9JM4s5ukd1gK4ksIySSb3Z3Zncn-9jcA96JMsSItkoCWpAKOoU6QJSYOuKqYkTpMS5e1ZEtOp-lslr1ZgcfdXhjHD9H_cCPLsOM1Gbgq5gtGTtvTH0W0k3MVhjEqrhjA8NnOZG9rgXQ3dGzhhO_i0aylJyUkz8nTSxPSkNr2W4dNPM3r_Bs8uejU2llpcun_6nMZLrbeqP_Eqc8VWDH1CM67_JTfR3Bhuyd1nY9gjRxTx-t8Fd63fNX7P0zpW1TiAcGPfJonqa9___xlD3PUAdX4jfnoALe1r-rSP3K_-LFogrQf1lhJvO7oUa7B3uT57tOXQZumIdAJhieBqkolK3Q0FTe0amqwEqxMi8JUosIATceZ5kyZqChZUqkyNJEwTEVS80KnQrB1GNRY0g3wGUtChUN3qpOQFwVX6I-koZJGGIOvZR486Poq1y2HOaXSOMi7WIZaMbet6MHdXvbIMXecKnXfdnkvoprPhHWTIn83fZG_HbMP2Xiym-94sG51oheMOc4VOD56sNEpSd7a_zynxccYXU-Gn3ynv42WS8sxqjaHx1aGEiVjiHOGDDmAXIZcenDd6d3JBwjKJSCxBLmkkb0AMYcv36n3P1kGcc5llknhwUOrkWe0Tz5-9Xrbnt38F-FbsIaepXCYug0YfGmOzW04p7-imjabsCpn6WZrrX8AuwZE8g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BCmI88KcwCAwIAiGBFJTUdpw8UqBsoi1o6ka3F8tJHJiYsillCHjiI_AZ-STc2WnWimkS4qWKmksc23f2nf3z7wAeR6lmWZLFAW1JBRxDnSCNTS_gumRG5mFSuKwlQzkeJ9Np-r7B5tBZGMcP0S64kWXY8ZoMnBakF6yczqc_j-go53nocNQjVPDOq63B9nCBdTd0dOEE8OLRtOEnJSjPydNLM1KHGvfbHJx4mtv5N3py0au109Lg6n9W6BpcafxR_4VToOtwzlRduOgyVH7vwuVRS-s668IquaaO2fkG7DaM1fs_TOFbXOIBAZB8mimpt3___GV_ZqgFuvZr89FBbitfV4V_5Bb5sWgCtR9WWEv83xGk3ITtwevJy42gSdQQ5DEGKIEuCy1LdDU1N7RvarASrEiyzJSixBAt76U5Z9pEWcHiUhehiYRhOpI5z_JECLYGKxWWdBt8xuJQ4-Cd5HHIs4xr9EiSUEsjjMHXMg-ezjtL5Q2LOSXTOFDzaIZaUdlW9OBRK3vkuDtOlXpi-7wV0fVnQrtJoT6M36idPttL-4OJ2vJgzSpFK9jjOFvgCOnB-lxLVDMCzBRtP_bQ-WT4yQ_b22i7tCGjK3N4bGUoVTIGOWfIkAvIZcilB7ec4p18gKBsAhJLkEsq2QoQd_jynWr_k-UQ51ymqRQePLMqeUb7qP7mu5G9uvMvwg_g0sZkNFTDzfHbu7CKfqZwCLt1WPlSH5t7cCH_iipb32-M9g9jREf6
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9BC2g88KcwFhgQBELapKCkduLkkTICE12Zpo2VvVhO4sC0KatShoAnPgKfkU_CnZ1mrZgmIV6iKLnEsX1n38U__w7gWZAolsVZ5NGSlMcx1PGSSPc9rkqmRe7Hhc1aMhSjUTweJ9sNNof2wlh-iPaHG1mGGa_JwPWkKOesnPanvwhoK-dl6HLKItOB7sZOujecY931LV04Abx4MG74SQnKc_b0wozUpcb9NgMnnud2_o2enPdqzbSU3vzPCt2CG40_6r60CnQbLumqB1dthsrvPbi-1dK6TnuwRK6pZXa-Ax8bxurDH7pwDS7xmABILs2U1Nu_f_4yhylqgardWn-ykNvKVVXhTuxPfiyaQO0nFdYSr1uClLuwl77effXWaxI1eHmEAYqnykKJEl1NxTWtm2qsBCviLNNlWGKIlveTnDOlg6xgUakKXwehZioQOc_yOAzZMnQqLGkFXMYiX-HgHeeRz7OMK_RIYl8JHWqNr2UOrM06S-YNizkl0ziWs2iGWlGaVnTgaSs7sdwd50o9N33eiqj6iNBuIpT7ozfyw4AdJIN0V-44sGyUohXsc5wtcIR0YHWmJbIZAaaSlh_76Hwy_OQn7W20XVqQUZU-OTUylCoZg5wLZMgF5MLnwoF7VvHOPiCkbAICSxALKtkKEHf44p3q8LPhEOdcJIkIHVg3KnlB-8jB5vstc3b_X4Qfw7XtjVQON0fvHsASupmhBditQudLfaofwpX8K2ps_aix2T-ITUd1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+multilevel+function-on-scalar+regression+and+principal+component+analysis&rft.jtitle=Biometrics&rft.au=Goldsmith%2C+Jeff&rft.au=Zipunnikov%2C+Vadim&rft.au=Schrack%2C+Jennifer&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=71&rft.issue=2&rft.spage=344&rft.epage=353&rft_id=info:doi/10.1111%2Fbiom.12278&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_VB3Z9BFT_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon