Microbial consumption of zero-valence sulfur in marine benthic habitats
Summary Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We ide...
Uloženo v:
| Vydáno v: | Environmental microbiology Ročník 16; číslo 11; s. 3416 - 3430 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Blackwell Publishing Ltd
01.11.2014
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 1462-2912, 1462-2920, 1462-2920 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep‐sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface. |
|---|---|
| AbstractList | Summary Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface. Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface.Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface. Zero‐valence sulfur (S⁰) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S⁰, but those consuming S⁰in the environment are largely unknown. We identified possible key players in S⁰turnover on native or introduced S⁰in benthic coastal and deep‐sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S⁰disproportionation and S⁰respiration under anoxic conditions. Sulfate production from S⁰particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S⁰. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S⁰, in particular S₈, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S⁰at the seafloor surface. Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface. Summary Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep‐sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface. Zero‐valence sulfur ( S 0 ) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S 0 , but those consuming S 0 in the environment are largely unknown. We identified possible key players in S 0 turnover on native or introduced S 0 in benthic coastal and deep‐sea habitats using the 16 S ribosomal RNA approach, ( in situ ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial S ulfurimonas/ S ulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial D esulfobulbaceae and D esulfuromonadales were also frequently detected, indicating S 0 disproportionation and S 0 respiration under anoxic conditions. Sulfate production from S 0 particles colonized in situ with S ulfurimonas/ S ulfurovum suggested that this group oxidized S 0 . We also show that the type strain S ulfurimonas denitrificans is able to access cyclooctasulfur ( S 8 ), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S 0 , in particular S 8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of S ulfurimonas / S ulfurovum group for conversion of free S 0 at the seafloor surface. Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface. |
| Author | Dyksma, Stefan Kamyshny Jr, Alexey Mußmann, Marc Pjevac, Petra |
| Author_xml | – sequence: 1 givenname: Petra surname: Pjevac fullname: Pjevac, Petra organization: Max Planck Institute for Marine Microbiology, Bremen, Germany – sequence: 2 givenname: Alexey surname: Kamyshny Jr fullname: Kamyshny Jr, Alexey organization: Department of Geological and Environmental Sciences, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel – sequence: 3 givenname: Stefan surname: Dyksma fullname: Dyksma, Stefan organization: Max Planck Institute for Marine Microbiology, Bremen, Germany – sequence: 4 givenname: Marc surname: Mußmann fullname: Mußmann, Marc email: mmussman@mpi-bremen.de organization: Max Planck Institute for Marine Microbiology, Bremen, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24467476$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktv1DAUhS1URF-s2aFIbLoJ9XX8miVUZSjqlE1blpbj3KguGWewE6D8epzOY1EJFUt-xP7OtXKOD8le6AMS8gboe8jtFLhkJZux_Mk40BfkYLezt1sD2yeHKd1TCqpS9BXZZ5xLxZU8IPOFd7Gvve0K14c0LleD70PRt8UfjH3503YYHBZp7NoxFj4USxt9wKLGMNx5V9zZ2g92SMfkZWu7hK838xG5-XR-ffa5vPw6vzj7cFk6CUBLFLxCqCm63GcS28bqWQNWN05xW6GjUFvJZq6qhZICwTEtWuRtPmtkHo_IybruKvY_RkyDWfrksOtswH5MBhQVXHAQ6nlUaiW11KD_A2Vaa6B8qvruCXrfjzHkf36kAEQlIVNvN9RYL7Exq-izcQ9ma3wGxBrI7qcUsTVu8jF7P0TrOwPUTAGbKUIzxWkeA8660ye6bel_KzY3_fIdPjyHm_PFxVZXrnU-Dfh7p7Pxu5H5GQnz7WpubrkU7MvVwnys_gJkkML4 |
| CitedBy_id | crossref_primary_10_1016_j_cej_2016_11_074 crossref_primary_10_1134_S0026261719050138 crossref_primary_10_7717_peerj_1913 crossref_primary_10_3390_w11122566 crossref_primary_10_1016_j_micres_2020_126453 crossref_primary_10_1038_s41598_017_10231_2 crossref_primary_10_1016_j_ecohyd_2024_01_001 crossref_primary_10_1038_s41396_019_0508_7 crossref_primary_10_1007_s00248_022_01979_w crossref_primary_10_1186_s40168_017_0311_5 crossref_primary_10_3389_fmicb_2021_581124 crossref_primary_10_1111_1462_2920_13676 crossref_primary_10_3390_antiox12030627 crossref_primary_10_1111_1462_2920_14894 crossref_primary_10_1111_1462_2920_14452 crossref_primary_10_1177_1934578X211040605 crossref_primary_10_1111_gbi_12396 crossref_primary_10_1128_AEM_01250_18 crossref_primary_10_1016_j_gca_2016_11_036 crossref_primary_10_1016_j_marenvres_2023_105980 crossref_primary_10_1111_gbi_70013 crossref_primary_10_3389_fmicb_2015_00901 crossref_primary_10_1080_09593330_2018_1441333 crossref_primary_10_1038_s41396_021_01014_9 crossref_primary_10_1016_j_aquaculture_2019_03_051 crossref_primary_10_3389_fmicb_2016_00075 crossref_primary_10_1111_1462_2920_14343 crossref_primary_10_1016_j_cej_2017_03_018 crossref_primary_10_1111_1462_2920_13890 crossref_primary_10_1016_j_jbc_2024_107760 crossref_primary_10_1111_1758_2229_12538 crossref_primary_10_1089_ees_2018_0283 crossref_primary_10_1016_j_marpolbul_2015_08_040 crossref_primary_10_1002_lno_11759 crossref_primary_10_1016_j_syapm_2022_126359 crossref_primary_10_1111_1462_2920_13783 crossref_primary_10_1111_1462_2920_14275 crossref_primary_10_1111_gbi_12574 crossref_primary_10_1128_msystems_00954_22 crossref_primary_10_1128_AEM_03517_16 crossref_primary_10_5194_bg_12_2847_2015 crossref_primary_10_1128_mSystems_00673_19 crossref_primary_10_1371_journal_pone_0258124 crossref_primary_10_3389_fmicb_2022_992034 crossref_primary_10_5194_bg_17_3299_2020 crossref_primary_10_1016_j_scitotenv_2020_142173 crossref_primary_10_1093_jambio_lxaf043 crossref_primary_10_1111_1462_2920_14514 crossref_primary_10_1016_j_marpolbul_2018_06_042 crossref_primary_10_1186_s40168_025_02153_3 crossref_primary_10_1038_ismej_2016_43 crossref_primary_10_1007_s10661_020_08507_8 |
| Cites_doi | 10.1111/j.1574-6941.1996.tb00202.x 10.1111/j.1462-2920.2010.02155.x 10.1099/ijs.0.02682-0 10.1111/j.1574-6941.2007.00373.x 10.1128/AEM.59.3.734-742.1993 10.1111/j.1472-4669.2011.00281.x 10.1016/S0016-7037(01)00745-1 10.4319/lo.2008.53.4.1521 10.1128/AEM.65.9.3982-3989.1999 10.1128/AEM.00466-07 10.1007/BF02529967 10.1128/AEM.68.6.3094-3101.2002 10.1371/journal.pone.0016018 10.1099/ijs.0.046938-0 10.1023/B:JOBB.0000019600.36757.8c 10.1111/j.1462-2920.2012.02880.x 10.1016/0009-2541(71)90008-8 10.1007/s10236-009-0179-4 10.1128/AEM.01751-07 10.1093/nar/gks1219 10.1038/nature07588 10.1023/A:1003980226194 10.1099/ijs.0.048827-0 10.1016/j.gca.2010.11.008 10.1128/AEM.69.9.5503-5511.2003 10.1099/ijs.0.03042-0 10.1093/bioinformatics/bts252 10.1128/AEM.66.2.820-824.2000 10.1016/j.femsec.2004.06.015 10.1111/j.1574-6968.1992.tb05419.x 10.1007/0-387-30742-7_22 10.4319/lo.2005.50.1.0113 10.1007/0-387-30742-7_31 10.1099/ijs.0.64255-0 10.1080/17415990802105770 10.1038/ismej.2012.66 10.2307/1352949 10.1128/AEM.59.1.101-108.1993 10.5670/oceanog.2007.55 10.1007/b12110 10.1016/S0016-7037(03)00089-9 10.1038/360454a0 10.1111/j.1574-6941.2010.00848.x 10.1890/06-0219 10.1111/j.1462-2920.2010.02380.x 10.1007/0-387-30742-7_21 10.1029/2011GL049725 10.1007/0-387-30747-8_13 10.1111/j.1462-2920.2005.00708.x 10.1016/j.marchem.2010.03.001 10.1128/AEM.68.1.316-325.2002 10.1016/0272-7714(82)90062-2 10.1016/j.dsr.2011.02.009 10.1128/AEM.69.5.2765-2772.2003 10.1073/pnas.1111262109 10.1038/ismej.2008.25 10.1128/AEM.65.5.2253-2255.1999 10.1130/0-8137-2379-5.97 10.1128/AEM.00647-10 10.3389/fmicb.2011.00276 10.1038/nrmicro1414 10.1016/j.gca.2012.11.025 10.1016/S1385-1101(96)90786-8 10.1128/AEM.00715-06 10.1016/j.syapm.2005.12.006 10.1099/ijs.0.034397-0 10.1099/mic.0.2006/003954-0 10.3389/fmicb.2011.00192 10.1016/j.gca.2011.03.033 10.1128/AEM.64.7.2691-2696.1998 10.1128/AEM.69.5.2448-2462.2003 10.1111/j.1574-6941.1997.tb00439.x 10.1046/j.1462-2920.2003.00495.x 10.1111/j.1462-2920.2005.00856.x |
| ContentType | Journal Article |
| Copyright | 2014 Society for Applied Microbiology and John Wiley & Sons Ltd 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Copyright © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd |
| Copyright_xml | – notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: Copyright © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
| DOI | 10.1111/1462-2920.12410 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic AGRICOLA MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1462-2920 |
| EndPage | 3430 |
| ExternalDocumentID | 3508596051 24467476 10_1111_1462_2920_12410 EMI12410 ark_67375_WNG_V4652JNM_B |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Marie Curie Outgoing International Fellowship funderid: POIF‐GA‐2008‐219586 – fundername: Max Planck Society – fundername: Cluster of Excellence MARUM |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ESX WRC AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c6110-e543e1b0ecb0e96efda89d1a8dc74a3ec01ba629c3b5765e1c285fe4fa3ed6fa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345631900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1462-2912 1462-2920 |
| IngestDate | Fri Jul 11 18:25:05 EDT 2025 Tue Oct 07 09:32:24 EDT 2025 Thu Jul 10 18:38:38 EDT 2025 Sun Jul 13 05:04:06 EDT 2025 Thu Apr 03 07:04:39 EDT 2025 Sat Nov 29 06:59:20 EST 2025 Tue Nov 18 22:13:43 EST 2025 Wed Jan 22 16:39:45 EST 2025 Sun Sep 21 06:17:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6110-e543e1b0ecb0e96efda89d1a8dc74a3ec01ba629c3b5765e1c285fe4fa3ed6fa3 |
| Notes | Cluster of Excellence MARUM ArticleID:EMI12410 istex:C3DA0F5F9F8C5D1DB0829171CF96AC8BF4F6639D ark:/67375/WNG-V4652JNM-B Max Planck Society Marie Curie Outgoing International Fellowship - No. POIF-GA-2008-219586 Fig. S1. (A) S0 precipitations in a sulfidic pool during low tide at the Janssand tidal flat (German Wadden Sea), (B) volcanogenic S0 boulder and (C) S0 outcrop at the North Su Volcano rising in the back-arc spreading centre Manus Basin (Bismarck Sea, Papua New Guinea), and (D) S0-precipitating microbial mat covering hydrothermal sediments in the Guaymas Basin (Gulf of California, Mexico).Fig. S2. Phylogenetic reconstruction of Epsilonproteobacteria-related 16S rRNA gene sequences using maximum likelihood (RAxML). Sequences were retrieved from particle-colonization experiments (Janssand 2010), from the S0-precipitating mat and from oxygen- and nitrate-respiring S0-enrichment cultures (Guaymas Basin). Representative OTUs (97% SI cut-off) were selected for presentation, n = number of sequences per OTU. Scale bar indicates 10% estimated sequence changes.Fig. S3. Phylogenetic reconstruction of Deltaproteobacteria-related 16S rRNA gene sequences using maximum likelihood (RAxML). Sequences were retrieved from particle-colonization experiments (Janssand 2010), from the S0-precipitating mat and from S0-respiring enrichment culture (Guaymas Basin). Sequences from S0-disproportionating cultures from Janssand tidal sediment and from Guaymas Basin sediments were provided by Kai Finster. Representative OTUs (97% SI cut-off) were selected for presentation, n = number of sequences per OTU. Scale bar indicates 10% estimated sequence changes.Fig. S4. (A) Epifluorescence images of DAPI-stained cells (in blue) in (a) S0-, (b) pyrite- and (c) glass-grown biofilms from the oxic sediment layer in Janssand tidal sediment (October 2010). Scale bar refers to 5 μm. (B) Epifluorescence images of (a) Epsilonproteobacteria (probe Epsy549) in a S0 biofilm from the oxic sediment layer, Janssand 2010, (b) Epsilonproteobacteria (Epsy914) accounting for up to 22% of DAPI in a S0-rich tidal pool (Janssand, May 2011), (c) Epsilonproteobacteria (probe mix Epsy549/Epsy914) in a volcanogenic S0 boulder (Manus Basin) and (d) Epsilonproteobacteria (probe mix Epsy549/Epsy914) and Arcobacter (inset, Arc94) in a S0-precipitating mat (Guaymas Basin). In green, CARD-FISH signal (Alexa 488); in blue, DAPI stain. Scale bar refers to 10 μm.Fig. S5. Epifluorescence images of Epsilonproteobacteria (probe Epsy549) in (A) oxygen- and (B) nitrate-respiring S0-enrichment cultures from the S0-precipitating microbial mat (Guaymas Basin). In green, CARD-FISH signal (Alexa 488); in blue, DAPI stain.Fig. S6. Sulfate production in (●) oxygen- and (◆) nitrate-respiring S0-enrichment cultures from the S0-precipitating microbial mat (Guaymas Basin).Fig. S7. Bathymetric map (Ocean Data View, ODV) of sampling locations in (A) tidal flats of the German Wadden Sea; (B) the Manus Basin back-arc spreading centre, Bismarck Sea, Papua New Guinea; (C) the Guaymas Basin, Gulf of California, Mexico. Map was constructed with help of Ocean Data View (Schlitzer, R., Ocean Data View, http://odv.awi.de, 2012.)Fig. S8. Detailed bathymetric map of the North Su sampling area (Manus Basin, Papua New Guinea). Volcanogenic S0 (yellow stars) and bottom water sample I (blue circle), active venting sites (gray circles). Scale bar indicates distance in meters. Figure adapted from Bach and colleagues (2011).Table S1. Semiquantitative relative abundance of Epsilonproteobacteria, Gammaproteobacteria and Deltaproteobacteria in biofilms grown on introduced S0, pyrite and glass particles in the Janssand tidal flat colonization experiment in October 2010, as determined by CARD-FISH. Legend: ++ abundant, + present, - absent. Table S2. Total cell counts (TCC, DAPI) and relative abundance (%) of selected populations determined by CARD-FISH in Janssand (JS, 2010; 2011) and Königshafen (KH, 2011) tidal sediments. Table S3. Sulfate (SO42-) production by S0-grown biofilms incubated in Königshafen tidal sediments (October 2011). Sulfate concentrations were calculated from IC measurements based on a Na2SO4 standard curve. Table S4. Details of sampling sites and dates, incubation periods and deposition/retrieval method. Table S5. Horseradish peroxidase-labelled oligonucleotide probes used for CARD-FISH. Table S6. Statistics of the 454-pyrotag data obtained from the NGS pipeline (SILVAngs) of the SILVA rRNA gene database project (Quast et al., 2013). Table S7. Sediment porosity, density and total extractable S0 (μmol g−1) used to calculate total S0 concentration in different sediment layers (Janssand, May 2011). Appendix S1. Supplementary methods. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 24467476 |
| PQID | 1628115361 |
| PQPubID | 1066360 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1705454157 proquest_miscellaneous_1687686818 proquest_miscellaneous_1628881047 proquest_journals_1628115361 pubmed_primary_24467476 crossref_citationtrail_10_1111_1462_2920_12410 crossref_primary_10_1111_1462_2920_12410 wiley_primary_10_1111_1462_2920_12410_EMI12410 istex_primary_ark_67375_WNG_V4652JNM_B |
| PublicationCentury | 2000 |
| PublicationDate | November 2014 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: November 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Environmental microbiology |
| PublicationTitleAlternate | Environ Microbiol |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D., and Peduzzi, R. (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 66: 820-824. Llobet-Brossa, E., Rosselló-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696. Lenk, S., Arnds, J., Zerjakte, K., Musat, N., Amann, R., and Mußman, M. (2011) Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol 13: 758-774. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: im-proved data processing and web-based tools. Nucleic Acids Res 41: D590-D596. Webster, G., Rinna, J., Roussel, E.G., Fry, J.C., Weightman, A.J., and Parks, R.J. (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72: 179-197. Yamamoto, M., and Takai, K. (2011) Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2: 192. doi: 10.3389/fmicb.2011.00192 Lavik, G., Stührman, T., Brüchert, V., Van der Plas, A., Mohrholz, V., Lam, P., et al. (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457: 581-584. Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediments. Ocean Dyn 59: 317-332. Inagaki, F., Takai, K., Kobayashi, H., Nealson, K.H., and Horikoshi, K. (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53: 1801-1805. Labrenz, M., Grote, J., Mammitzsch, K., Boschker, H.T.S., Laue, M., Jost, G., et al. (2013) Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic Baltic Sea redoxcline, and an emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 63: 4141-4148. Janssen, P.H., and Morgan, H.W. (1992) Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96: 213-217. Reeves, E.P., Seewald, J.S., Saccocia, P., Walsh, E., Bach, W., Craddock, P., et al. (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods vent fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75: 1088-1123. Middelburg, J. (2011) Chemoautotrophy in the ocean. Geophys Res Lett 38: L24604. Edwards, K.J., McCollom, T.M., Konishi, H., and Buseck, P.R. (2003) Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim Cosmochim Acta 67: 2843-2856. Omoregie, E.O., Mastalerz, V., de Lange, G., Straub, K.L., Kappler, A., Røy, H., et al. (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74: 3198-3215. Lichtschlag, A., Kamyshny, A., Jr, Ferdelman, T.G., and de Beer, D. (2013) Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea). Geochim Cosmochim Acta 105: 130-145. Thamdrup, B., Finster, K., Hansen, J.W., and Bak, F. (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59: 101-108. Neira, C., and Rackemann, M. (1996) Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: effects on the meiobenthos. J Sea Res 36: 153-170. Ivanov, M.V. (1971) Bacterial processes in the oxidation and leaching of sulfide-sulfur ores of volcanic origin. Chem Geo 7: 185-211. Ishii, K., Mußmann, M., MacGregor, B.J., and Amann, R. (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50: 203-212. Gundersen, J.K., Jørgensen, B.B., Larsen, E., and Jannasch, H.W. (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360: 454-455. Jones, D.S., Tobler, D.J., Schaperdoth, I., Mainiero, M., and Macalady, J.L. (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76: 5902-5910. Kletzin, A., Urich, T., Müller, F., Bandeiras, T.M., and Gomes, C.M. (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36: 77-91. Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101. Kristensen, E. (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1-24. Schwedt, A., Kreutzmann, A.-C., Polerecky, L., and Schulz-Vogt, H.N. (2011) Sulfur respiration in a marine chemolithoautotrophic Beggiatoa strain. Front Microbiol 2: 276. doi: 10.3389/fmicb.2011.00276 Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462. Grote, J., Labrenz, M., Pfeiffer, B., Jost, G., and Jurgens, M. (2007) Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic sea. Appl Environ Microbiol 73: 7155-7161. Franz, B., Lichtenberg, H., Hormes, J., Modrow, H., Dahl, C., and Prange, A. (2007) Utilization of solid 'elemental' sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge XANES spectroscopy study. Microbiol Sgm 153: 1268-1274. Roden, E.E., and Lovley, D.R. (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59: 734-742. Sievert, S.M., Kiene, R.P., and Schulz-Vogt, H.N. (2007) The sulfur cycle. Oceanography 20: 117-123. Schippers, A., and Jørgensen, B.B. (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66: 85-92. Steudel, R., and Eckert, B. (2003) Solid sulfur allotropes. Top Curr Chem 230: 1-79. Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., and Sogin, M.L. (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69: 2765-2772. de Beer, D., Wenzhöfer, F., Ferdelman, T.G., Boehme, S.E., Huettel, M., van Beusekom, J.E.E., et al. (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr 50: 113-127. Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011a) A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75: 3581-3599. Canfield, D.E., and Thamdrup, B. (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol Ecol 19: 95-103. Inagaki, F., Takai, K., Nealson, K.H., and Horikoshi, K. (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54: 1477-1482. Mußmann, M., Ishii, K., Rabus, R., and Amann, R. (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418. Røy, H., Lee, J.S., Jansen, S., and de Beer, D. (2008) Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr 53: 1521-1530. Yamamoto, M., Nakagawa, S., Shimamura, S., Takai, K., and Horikoshi, K. (2010) Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environ Microbiol 12: 1144-1153. Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., and Mariani, S. (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72: 5596-5609. López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J., and Moreira, D. (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5: 961-976. Wirsen, C.O., Sievert, S., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A., Taylor, L., et al. (2002) Characterization of an autotrophic sulfide oxidizing marine Arcobacter spp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316-325. Finster, K. (2008) Microbial disproportionation of inorganic sulfur compounds. J Sulfur Chem 29: 281-292. Bruckner, C.G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., and Jürgens, K. (2012) Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients. Environ Microbiol 15: 1505-1513. Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. Slobodkin, A.I., Reysenbach, A.-L., Slobodkina, G.B., Kolganova, T.V., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A. (2012) Dissulfuribacter thermophilus gen. nov., sp. nov., a novel extremely thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltapro 2010; 12 1982; 15 2006; 72 1992; 360 2011; 62 2013; 63 2011a; 75 2011; 13 2007; 73 2008; 74 2012; 15 1996; 36 2008; 2 2003; 53 2003; 230 1992; 96 2004; 32 1971; 7 2011b; 58 2008; 29 2004; 36 2006; 29 2003; 5 2012; 28 2007; 62 1995; 164 2007; 20 2009; 59 2012; 63 2010; 72 2010; 76 2011; 2 1996; 19 2006; 56 2011 2013; 105 2000; 66 1997; 24 2013; 41 2010; 121 2011; 75 2006 1999; 65 1993 2006; 4 2004 2008; 53 2011; 38 2011; 6 2001; 24 1998; 64 2012; 109 2009; 457 2011; 9 2004; 54 1993; 59 2004; 50 2000; 426 2002; 68 2007; 153 2002; 66 2003; 69 2005; 7 2005; 50 2012; 6 2003; 67 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 Bak E. (e_1_2_6_3_1) 1993 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 |
| References_xml | – reference: Edwards, K.J., McCollom, T.M., Konishi, H., and Buseck, P.R. (2003) Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim Cosmochim Acta 67: 2843-2856. – reference: Purdy, K.J., Nedwell, D.B., Embley, T.M., and Takii, S. (1997) Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol Ecol 24: 221-234. – reference: Schippers, A., and Jørgensen, B.B. (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66: 85-92. – reference: Canfield, D.E., and Thamdrup, B. (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol Ecol 19: 95-103. – reference: Lavik, G., Stührman, T., Brüchert, V., Van der Plas, A., Mohrholz, V., Lam, P., et al. (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457: 581-584. – reference: Thamdrup, B., Finster, K., Hansen, J.W., and Bak, F. (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59: 101-108. – reference: Muyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W. (1995) Phylogenetic-relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165-172. – reference: Inagaki, F., Takai, K., Nealson, K.H., and Horikoshi, K. (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54: 1477-1482. – reference: Ishii, K., Mußmann, M., MacGregor, B.J., and Amann, R. (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50: 203-212. – reference: Omoregie, E.O., Mastalerz, V., de Lange, G., Straub, K.L., Kappler, A., Røy, H., et al. (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74: 3198-3215. – reference: Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., and Sogin, M.L. (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69: 2765-2772. – reference: Takai, K., Suzuki, M., Nakagawa, S., Miyazaki, M., Suzuki, Y., Inagaki, F., and Horikoshi, K. (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56: 1725-1733. – reference: Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101. – reference: Holmkvist, L., Kamyshny, A., Jr, Vogt, C., Vamvakopoulos, K., Ferdelman, T.G., and Jørgensen, B.B. (2011b) Sulfate reduction below the sulfate-methane transition in Black Sea sediments. Deep Sea Res Part I Oceanogr Res Pap 58: 493-504. – reference: Jones, D.S., Tobler, D.J., Schaperdoth, I., Mainiero, M., and Macalady, J.L. (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76: 5902-5910. – reference: Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediments. Ocean Dyn 59: 317-332. – reference: Roden, E.E., and Lovley, D.R. (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59: 734-742. – reference: Webster, G., Rinna, J., Roussel, E.G., Fry, J.C., Weightman, A.J., and Parks, R.J. (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72: 179-197. – reference: Schwedt, A., Kreutzmann, A.-C., Polerecky, L., and Schulz-Vogt, H.N. (2011) Sulfur respiration in a marine chemolithoautotrophic Beggiatoa strain. Front Microbiol 2: 276. doi: 10.3389/fmicb.2011.00276 – reference: Kletzin, A., Urich, T., Müller, F., Bandeiras, T.M., and Gomes, C.M. (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36: 77-91. – reference: Middelburg, J. (2011) Chemoautotrophy in the ocean. Geophys Res Lett 38: L24604. – reference: Grote, J., Schott, T., Bruckner, C.G., Glöckner, F.O., Jost, G., Teeling, H., et al. (2012) Genome and physiology of a model epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA 109: 506-510. – reference: Franz, B., Lichtenberg, H., Hormes, J., Modrow, H., Dahl, C., and Prange, A. (2007) Utilization of solid 'elemental' sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge XANES spectroscopy study. Microbiol Sgm 153: 1268-1274. – reference: Røy, H., Lee, J.S., Jansen, S., and de Beer, D. (2008) Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr 53: 1521-1530. – reference: Steudel, R., and Eckert, B. (2003) Solid sulfur allotropes. Top Curr Chem 230: 1-79. – reference: Sievert, S.M., Kiene, R.P., and Schulz-Vogt, H.N. (2007) The sulfur cycle. Oceanography 20: 117-123. – reference: Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., and Mariani, S. (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72: 5596-5609. – reference: Engel, A.S., Lee, N., Porter, M.L., Stern, L.A., Bennett, P.C., and Wagner, M. (2003) Filamentous Epsilonproteobacteria dominate microbial mats from sulfidic cave springs. Appl Environ Microbiol 69: 5503-5511. – reference: Slobodkin, A.I., Reysenbach, A.-L., Slobodkina, G.B., Kolganova, T.V., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A. (2012) Dissulfuribacter thermophilus gen. nov., sp. nov., a novel extremely thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 63: 1967-1971. – reference: Kristensen, E. (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1-24. – reference: Troelsen, H., and Jørgensen, B.B. (1982) Seasonal dynamics of elemental sulfur in two coastal sediments. Estuar Coast Shelf Sci 15: 255-266. – reference: Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462. – reference: Gundersen, J.K., Jørgensen, B.B., Larsen, E., and Jannasch, H.W. (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360: 454-455. – reference: Ivanov, M.V. (1971) Bacterial processes in the oxidation and leaching of sulfide-sulfur ores of volcanic origin. Chem Geo 7: 185-211. – reference: Taylor, C.D., Wirsen, C.O., and Gaill, F. (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microbiol 65: 2253-2255. – reference: Grote, J., Labrenz, M., Pfeiffer, B., Jost, G., and Jurgens, M. (2007) Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic sea. Appl Environ Microbiol 73: 7155-7161. – reference: Slobodkin, A.I., Reysenbach, A.-L., Slobodkina, G.B., Baslerov, R.V., Kostrikina, N.A., Wagner, I.D., and Bonch-Osmolovskaya, E.A. (2011) Thermosulfurimonas dismutans gen. nov., sp. nov., a novel extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62: 2565-2571. – reference: Janssen, P.H., and Morgan, H.W. (1992) Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96: 213-217. – reference: Nakagawa, S., Takai, K., Inagaki, F., Hirayama, H., Nunoura, T., Horikoshi, K., and Sako, Y. (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-roteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7: 1619-1632. – reference: Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. – reference: Ravenschlag, K., Sahm, K., Pernthaler, J., and Amann, R. (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65: 3982-3989. – reference: Yamamoto, M., Nakagawa, S., Shimamura, S., Takai, K., and Horikoshi, K. (2010) Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environ Microbiol 12: 1144-1153. – reference: Wirsen, C.O., Sievert, S., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A., Taylor, L., et al. (2002) Characterization of an autotrophic sulfide oxidizing marine Arcobacter spp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316-325. – reference: Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371. – reference: Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D., and Peduzzi, R. (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 66: 820-824. – reference: Lenk, S., Moraru, C., Hahnke, S., Arnds, J., Richter, M., Kube, M., et al. (2012) Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J 6: 2178-2187. – reference: Neira, C., and Rackemann, M. (1996) Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: effects on the meiobenthos. J Sea Res 36: 153-170. – reference: Hügler, M., Petersen, J.M., Dubilier, N., Imhoff, J.F., and Sievert, S.M. (2011) Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata. PLoS ONE 6: e16018. – reference: Macalady, J.L., Dattagupta, S., Schaperdoth, I., Jones, D.S., Druschel, G.K., and Eastman, D. (2008) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J 2: 590-601. – reference: Lichtschlag, A., Kamyshny, A., Jr, Ferdelman, T.G., and de Beer, D. (2013) Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea). Geochim Cosmochim Acta 105: 130-145. – reference: Llobet-Brossa, E., Rosselló-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696. – reference: Inagaki, F., Takai, K., Kobayashi, H., Nealson, K.H., and Horikoshi, K. (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53: 1801-1805. – reference: Yamamoto, M., and Takai, K. (2011) Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2: 192. doi: 10.3389/fmicb.2011.00192 – reference: de Beer, D., Wenzhöfer, F., Ferdelman, T.G., Boehme, S.E., Huettel, M., van Beusekom, J.E.E., et al. (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr 50: 113-127. – reference: Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van Beusekom, J.E.E., et al. (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29: 333-348. – reference: Finster, K. (2008) Microbial disproportionation of inorganic sulfur compounds. J Sulfur Chem 29: 281-292. – reference: Reeves, E.P., Seewald, J.S., Saccocia, P., Walsh, E., Bach, W., Craddock, P., et al. (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods vent fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75: 1088-1123. – reference: Bruckner, C.G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., and Jürgens, K. (2012) Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients. Environ Microbiol 15: 1505-1513. – reference: Lenk, S., Arnds, J., Zerjakte, K., Musat, N., Amann, R., and Mußman, M. (2011) Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol 13: 758-774. – reference: Jensen, S.I., Kühl, M., and Prieme, A. (2007) Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiol Ecol 62: 108-117. – reference: Grünke, S., Felden, J., Lichtschlag, A., Girnth, A.-C., de Beer, D., Wenzhöfer, F., and Boetius, A. (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9: 330-348. – reference: Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: im-proved data processing and web-based tools. Nucleic Acids Res 41: D590-D596. – reference: Labrenz, M., Grote, J., Mammitzsch, K., Boschker, H.T.S., Laue, M., Jost, G., et al. (2013) Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic Baltic Sea redoxcline, and an emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 63: 4141-4148. – reference: Kamyshny, A., and Ferdelman, T.G. (2010) Dynamics of zero-valent sulfur species including polysulfides at seep sites on intertidal sand flats (Wadden Sea, North Sea). Mar Chem 121: 17-26. – reference: Panutrakul, S., Monteney, F., and Baeyens, W. (2001) Seasonal variations in sediment sulfur cycling in the Ballastplaat Mudflat, Belgium. Estuaries 24: 257-265. – reference: López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J., and Moreira, D. (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5: 961-976. – reference: Mußmann, M., Ishii, K., Rabus, R., and Amann, R. (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418. – reference: Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K. (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4: 458-468. – reference: Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011a) A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75: 3581-3599. – year: 2011 – volume: 69 start-page: 2765 year: 2003 end-page: 2772 article-title: Molecular characterization of sulfate‐reducing bacteria in the Guaymas Basin publication-title: Appl Environ Microbiol – volume: 68 start-page: 3094 year: 2002 end-page: 3101 article-title: Fluorescence hybridization and catalyzed reporter deposition for the identification of marine bacteria publication-title: Appl Environ Microbiol – volume: 36 start-page: 153 year: 1996 end-page: 170 article-title: Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: effects on the meiobenthos publication-title: J Sea Res – volume: 66 start-page: 820 year: 2000 end-page: 824 article-title: analysis of sulfate‐reducing bacteria related to in the chemocline of meromictic Lake Cadagno (Switzerland) publication-title: Appl Environ Microbiol – volume: 2 start-page: 276 year: 2011 article-title: Sulfur respiration in a marine chemolithoautotrophic strain publication-title: Front Microbiol – volume: 54 start-page: 1477 year: 2004 end-page: 1482 article-title: gen. nov., sp. nov., a novel sulfur‐oxidizing chemolithoautotroph within the epsilon‐proteobacteria isolated from Okinawa Trough hydrothermal sediments publication-title: Int J Syst Evol Microbiol – volume: 67 start-page: 2843 year: 2003 end-page: 2856 article-title: Seafloor bioalteration of sulfide minerals: results from in situ incubation studies publication-title: Geochim Cosmochim Acta – start-page: 635 year: 2006 end-page: 658 – volume: 32 start-page: 1363 year: 2004 end-page: 1371 article-title: ARB: a software environment for sequence data publication-title: Nucleic Acids Res – volume: 164 start-page: 165 year: 1995 end-page: 172 article-title: Phylogenetic‐relationships of species and their identification in deep‐sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments publication-title: Arch Microbiol – volume: 29 start-page: 333 year: 2006 end-page: 348 article-title: Microbial community structure of sandy intertidal sediments in the North Sea, Sylt‐Romo Basin, Wadden Sea publication-title: Syst Appl Microbiol – volume: 62 start-page: 2565 year: 2011 end-page: 2571 article-title: gen. nov., sp. nov., a novel extremely thermophilic sulfur‐disproportionating bacterium from a deep‐sea hydrothermal vent publication-title: Int J Syst Evol Microbiol – volume: 56 start-page: 1725 year: 2006 end-page: 1733 article-title: sp. nov., a novel mesophilic, hydrogen‐ and sulfur‐oxidizing chemolithoautotroph within the isolated from a deep‐sea hydrothermal vent polychaete nest, reclassification of as comb. nov. and emended description of the genus publication-title: Int J Syst Evol Microbiol – volume: 2 start-page: 192 year: 2011 article-title: Sulfur metabolisms in epsilon‐ and gamma‐ in deep‐sea hydrothermal fields publication-title: Front Microbiol – volume: 41 start-page: D590 year: 2013 end-page: D596 article-title: The SILVA ribosomal RNA gene database project: im‐proved data processing and web‐based tools publication-title: Nucleic Acids Res – start-page: 985 year: 2006 end-page: 1011 – volume: 65 start-page: 2253 year: 1999 end-page: 2255 article-title: Rapid microbial production of filamentous sulfur mats at hydrothermal vents publication-title: Appl Environ Microbiol – volume: 50 start-page: 113 year: 2005 end-page: 127 article-title: Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt‐Rømø Basin, Wadden Sea publication-title: Limnol Oceanogr – volume: 53 start-page: 1801 year: 2003 end-page: 1805 article-title: gen. nov., sp. nov., a novel sulfur‐oxidizing epsilon‐proteobacterium isolated from hydrothermal sediments in the Mid‐Okinawa Trough publication-title: Int J Syst Evol Microbiol – volume: 360 start-page: 454 year: 1992 end-page: 455 article-title: Mats of giant sulphur bacteria on deep‐sea sediments due to fluctuating hydrothermal flow publication-title: Nature – volume: 19 start-page: 95 year: 1996 end-page: 103 article-title: Fate of elemental sulfur in an intertidal sediment publication-title: FEMS Microbiol Ecol – volume: 75 start-page: 3581 year: 2011a end-page: 3599 article-title: A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) publication-title: Geochim Cosmochim Acta – volume: 7 start-page: 185 year: 1971 end-page: 211 article-title: Bacterial processes in the oxidation and leaching of sulfide‐sulfur ores of volcanic origin publication-title: Chem Geo – volume: 59 start-page: 317 year: 2009 end-page: 332 article-title: Functioning of intertidal flats inferred from temporal and spatial dynamics of O , H S and pH in their surface sediments publication-title: Ocean Dyn – volume: 6 start-page: 2178 year: 2012 end-page: 2187 article-title: clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes publication-title: ISME J – volume: 75 start-page: 1088 year: 2011 end-page: 1123 article-title: Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods vent fields, Manus Basin, Papua New Guinea publication-title: Geochim Cosmochim Acta – start-page: 75 year: 1993 end-page: 78 – volume: 76 start-page: 5902 year: 2010 end-page: 5910 article-title: Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy publication-title: Appl Environ Microbiol – volume: 15 start-page: 255 year: 1982 end-page: 266 article-title: Seasonal dynamics of elemental sulfur in two coastal sediments publication-title: Estuar Coast Shelf Sci – volume: 74 start-page: 3198 year: 2008 end-page: 3215 article-title: Biogeochemistry and community composition of iron‐ and sulfur‐precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean) publication-title: Appl Environ Microbiol – volume: 426 start-page: 1 year: 2000 end-page: 24 article-title: Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals publication-title: Hydrobiologia – volume: 68 start-page: 316 year: 2002 end-page: 325 article-title: Characterization of an autotrophic sulfide oxidizing marine that produces filamentous sulfur publication-title: Appl Environ Microbiol – volume: 72 start-page: 179 year: 2010 end-page: 197 article-title: Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable‐isotope probing publication-title: FEMS Microbiol Ecol – volume: 109 start-page: 506 year: 2012 end-page: 510 article-title: Genome and physiology of a model epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones publication-title: Proc Natl Acad Sci USA – volume: 13 start-page: 758 year: 2011 end-page: 774 article-title: Novel groups of catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment publication-title: Environ Microbiol – volume: 58 start-page: 493 year: 2011b end-page: 504 article-title: Sulfate reduction below the sulfate‐methane transition in Black Sea sediments publication-title: Deep Sea Res Part I Oceanogr Res Pap – volume: 62 start-page: 108 year: 2007 end-page: 117 article-title: Different bacterial communities associated with the roots and bulk sediment of the seagrass publication-title: FEMS Microbiol Ecol – volume: 72 start-page: 5596 year: 2006 end-page: 5609 article-title: Dominant microbial populations in limestone‐corroding stream biofilms, Frasassi cave system, Italy publication-title: Appl Environ Microbiol – start-page: 97 year: 2004 end-page: 116 – volume: 20 start-page: 117 year: 2007 end-page: 123 article-title: The sulfur cycle publication-title: Oceanography – volume: 24 start-page: 257 year: 2001 end-page: 265 article-title: Seasonal variations in sediment sulfur cycling in the Ballastplaat Mudflat, Belgium publication-title: Estuaries – volume: 12 start-page: 1144 year: 2010 end-page: 1153 article-title: Molecular characterization of inorganic sulfur‐compound metabolism in the deep‐sea epsilonproteobacterium sp. NBC37‐1 publication-title: Environ Microbiol – volume: 121 start-page: 17 year: 2010 end-page: 26 article-title: Dynamics of zero‐valent sulfur species including polysulfides at seep sites on intertidal sand flats (Wadden Sea, North Sea) publication-title: Mar Chem – volume: 63 start-page: 1967 year: 2012 end-page: 1971 article-title: gen. nov., sp. nov., a novel extremely thermophilic, autotrophic, sulfur‐disproportionating, deeply branching deltaproteobacterium from a deep‐sea hydrothermal vent publication-title: Int J Syst Evol Microbiol – volume: 4 start-page: 458 year: 2006 end-page: 468 article-title: The versatile epsilon‐proteobacteria: key players in sulphidic habitats publication-title: Nat Rev Microbiol – volume: 69 start-page: 2448 year: 2003 end-page: 2462 article-title: Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments publication-title: Appl Environ Microbiol – volume: 457 start-page: 581 year: 2009 end-page: 584 article-title: Detoxification of sulphidic African shelf waters by blooming chemolithotrophs publication-title: Nature – volume: 5 start-page: 961 year: 2003 end-page: 976 article-title: Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid‐Atlantic Ridge publication-title: Environ Microbiol – volume: 7 start-page: 1619 year: 2005 end-page: 1632 article-title: Distribution, phylogenetic diversity and physiological characteristics of epsilon‐roteobacteria in a deep‐sea hydrothermal field publication-title: Environ Microbiol – volume: 64 start-page: 2691 year: 1998 end-page: 2696 article-title: Microbial community composition of Wadden Sea sediments as revealed by fluorescence hybridization publication-title: Appl Environ Microbiol – volume: 28 start-page: 1823 year: 2012 end-page: 1829 article-title: SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes publication-title: Bioinformatics – volume: 230 start-page: 1 year: 2003 end-page: 79 article-title: Solid sulfur allotropes publication-title: Top Curr Chem – volume: 7 start-page: 405 year: 2005 end-page: 418 article-title: Diversity and vertical distribution of cultured and uncultured in an intertidal mud flat of the Wadden Sea publication-title: Environ Microbiol – volume: 53 start-page: 1521 year: 2008 end-page: 1530 article-title: Tide‐driven deep pore‐water flow in intertidal sand flats publication-title: Limnol Oceanogr – volume: 24 start-page: 221 year: 1997 end-page: 234 article-title: Use of 16S rRNA‐targeted oligonucleotide probes to investigate the occurrence and selection of sulfate reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary publication-title: FEMS Microbiol Ecol – volume: 15 start-page: 1505 year: 2012 end-page: 1513 article-title: Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients publication-title: Environ Microbiol – start-page: 359 year: 2006 end-page: 378 – volume: 59 start-page: 734 year: 1993 end-page: 742 article-title: Dissimilatory Fe(III) reduction by the marine microorganism publication-title: Appl Environ Microbiol – volume: 105 start-page: 130 year: 2013 end-page: 145 article-title: Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea) publication-title: Geochim Cosmochim Acta – volume: 50 start-page: 203 year: 2004 end-page: 212 article-title: An improved fluorescence hybridization protocol for the identification of bacteria and archaea in marine sediments publication-title: FEMS Microbiol Ecol – volume: 6 start-page: e16018 year: 2011 article-title: Pathways of carbon and energy metabolism of the epibiotic community associated with the deep‐sea hydrothermal vent shrimp publication-title: PLoS ONE – volume: 153 start-page: 1268 year: 2007 end-page: 1274 article-title: Utilization of solid ‘elemental’ sulfur by the phototrophic purple sulfur bacterium : a sulfur K‐edge XANES spectroscopy study publication-title: Microbiol Sgm – start-page: 659 year: 2006 end-page: 768 – volume: 96 start-page: 213 year: 1992 end-page: 217 article-title: Heterotrophic sulfur reduction by sp. strain FjSS3.B1 publication-title: FEMS Microbiol Lett – volume: 73 start-page: 7155 year: 2007 end-page: 7161 article-title: Quantitative distributions of and a subgroup in pelagic redoxclines of the central Baltic sea publication-title: Appl Environ Microbiol – volume: 38 start-page: L24604 year: 2011 article-title: Chemoautotrophy in the ocean publication-title: Geophys Res Lett – volume: 29 start-page: 281 year: 2008 end-page: 292 article-title: Microbial disproportionation of inorganic sulfur compounds publication-title: J Sulfur Chem – volume: 63 start-page: 4141 year: 2013 end-page: 4148 article-title: sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic Baltic Sea redoxcline, and an emended description of the genus publication-title: Int J Syst Evol Microbiol – year: 2006 – volume: 9 start-page: 330 year: 2011 end-page: 348 article-title: Niche differentiation among mat‐forming, sulfide‐oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea) publication-title: Geobiology – volume: 69 start-page: 5503 year: 2003 end-page: 5511 article-title: Filamentous dominate microbial mats from sulfidic cave springs publication-title: Appl Environ Microbiol – volume: 36 start-page: 77 year: 2004 end-page: 91 article-title: Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea publication-title: J Bioenerg Biomembr – volume: 2 start-page: 590 year: 2008 end-page: 601 article-title: Niche differentiation among sulfur‐oxidizing bacterial populations in cave waters publication-title: ISME J – volume: 65 start-page: 3982 year: 1999 end-page: 3989 article-title: High bacterial diversity in permanently cold marine sediments publication-title: Appl Environ Microbiol – volume: 66 start-page: 85 year: 2002 end-page: 92 article-title: Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments publication-title: Geochim Cosmochim Acta – volume: 59 start-page: 101 year: 1993 end-page: 108 article-title: Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese publication-title: Appl Environ Microbiol – ident: e_1_2_6_8_1 doi: 10.1111/j.1574-6941.1996.tb00202.x – ident: e_1_2_6_78_1 doi: 10.1111/j.1462-2920.2010.02155.x – ident: e_1_2_6_21_1 doi: 10.1099/ijs.0.02682-0 – ident: e_1_2_6_27_1 doi: 10.1111/j.1574-6941.2007.00373.x – ident: e_1_2_6_61_1 doi: 10.1128/AEM.59.3.734-742.1993 – ident: e_1_2_6_16_1 doi: 10.1111/j.1472-4669.2011.00281.x – ident: e_1_2_6_63_1 doi: 10.1016/S0016-7037(01)00745-1 – ident: e_1_2_6_62_1 doi: 10.4319/lo.2008.53.4.1521 – ident: e_1_2_6_58_1 doi: 10.1128/AEM.65.9.3982-3989.1999 – ident: e_1_2_6_14_1 doi: 10.1128/AEM.00466-07 – ident: e_1_2_6_47_1 doi: 10.1007/BF02529967 – ident: e_1_2_6_53_1 doi: 10.1128/AEM.68.6.3094-3101.2002 – ident: e_1_2_6_20_1 doi: 10.1371/journal.pone.0016018 – ident: e_1_2_6_67_1 doi: 10.1099/ijs.0.046938-0 – ident: e_1_2_6_30_1 doi: 10.1023/B:JOBB.0000019600.36757.8c – ident: e_1_2_6_6_1 doi: 10.1111/j.1462-2920.2012.02880.x – ident: e_1_2_6_24_1 doi: 10.1016/0009-2541(71)90008-8 – ident: e_1_2_6_25_1 doi: 10.1007/s10236-009-0179-4 – ident: e_1_2_6_50_1 doi: 10.1128/AEM.01751-07 – ident: e_1_2_6_56_1 doi: 10.1093/nar/gks1219 – ident: e_1_2_6_33_1 doi: 10.1038/nature07588 – ident: e_1_2_6_31_1 doi: 10.1023/A:1003980226194 – ident: e_1_2_6_32_1 doi: 10.1099/ijs.0.048827-0 – ident: e_1_2_6_59_1 doi: 10.1016/j.gca.2010.11.008 – ident: e_1_2_6_11_1 doi: 10.1128/AEM.69.9.5503-5511.2003 – ident: e_1_2_6_22_1 doi: 10.1099/ijs.0.03042-0 – ident: e_1_2_6_54_1 doi: 10.1093/bioinformatics/bts252 – ident: e_1_2_6_73_1 doi: 10.1128/AEM.66.2.820-824.2000 – ident: e_1_2_6_23_1 doi: 10.1016/j.femsec.2004.06.015 – ident: e_1_2_6_72_1 – ident: e_1_2_6_26_1 doi: 10.1111/j.1574-6968.1992.tb05419.x – ident: e_1_2_6_57_1 doi: 10.1007/0-387-30742-7_22 – ident: e_1_2_6_4_1 doi: 10.4319/lo.2005.50.1.0113 – ident: e_1_2_6_60_1 doi: 10.1007/0-387-30742-7_31 – ident: e_1_2_6_69_1 doi: 10.1099/ijs.0.64255-0 – ident: e_1_2_6_12_1 doi: 10.1080/17415990802105770 – ident: e_1_2_6_36_1 doi: 10.1038/ismej.2012.66 – ident: e_1_2_6_52_1 doi: 10.2307/1352949 – ident: e_1_2_6_71_1 doi: 10.1128/AEM.59.1.101-108.1993 – start-page: 75 volume-title: Trends in Microbial Ecology year: 1993 ident: e_1_2_6_3_1 – ident: e_1_2_6_65_1 doi: 10.5670/oceanog.2007.55 – ident: e_1_2_6_68_1 doi: 10.1007/b12110 – ident: e_1_2_6_10_1 doi: 10.1016/S0016-7037(03)00089-9 – ident: e_1_2_6_17_1 doi: 10.1038/360454a0 – ident: e_1_2_6_75_1 doi: 10.1111/j.1574-6941.2010.00848.x – ident: e_1_2_6_41_1 doi: 10.1890/06-0219 – ident: e_1_2_6_34_1 – ident: e_1_2_6_35_1 doi: 10.1111/j.1462-2920.2010.02380.x – ident: e_1_2_6_40_1 doi: 10.1007/0-387-30742-7_21 – ident: e_1_2_6_44_1 doi: 10.1029/2011GL049725 – ident: e_1_2_6_51_1 doi: 10.1007/0-387-30747-8_13 – ident: e_1_2_6_45_1 doi: 10.1111/j.1462-2920.2005.00708.x – ident: e_1_2_6_29_1 doi: 10.1016/j.marchem.2010.03.001 – ident: e_1_2_6_76_1 doi: 10.1128/AEM.68.1.316-325.2002 – ident: e_1_2_6_74_1 doi: 10.1016/0272-7714(82)90062-2 – ident: e_1_2_6_19_1 doi: 10.1016/j.dsr.2011.02.009 – ident: e_1_2_6_9_1 doi: 10.1128/AEM.69.5.2765-2772.2003 – ident: e_1_2_6_15_1 doi: 10.1073/pnas.1111262109 – ident: e_1_2_6_43_1 doi: 10.1038/ismej.2008.25 – ident: e_1_2_6_70_1 doi: 10.1128/AEM.65.5.2253-2255.1999 – ident: e_1_2_6_79_1 doi: 10.1130/0-8137-2379-5.97 – ident: e_1_2_6_28_1 doi: 10.1128/AEM.00647-10 – ident: e_1_2_6_64_1 doi: 10.3389/fmicb.2011.00276 – ident: e_1_2_6_7_1 doi: 10.1038/nrmicro1414 – ident: e_1_2_6_37_1 doi: 10.1016/j.gca.2012.11.025 – ident: e_1_2_6_49_1 doi: 10.1016/S1385-1101(96)90786-8 – ident: e_1_2_6_42_1 doi: 10.1128/AEM.00715-06 – ident: e_1_2_6_46_1 doi: 10.1016/j.syapm.2005.12.006 – ident: e_1_2_6_2_1 – ident: e_1_2_6_66_1 doi: 10.1099/ijs.0.034397-0 – ident: e_1_2_6_13_1 doi: 10.1099/mic.0.2006/003954-0 – ident: e_1_2_6_77_1 doi: 10.3389/fmicb.2011.00192 – ident: e_1_2_6_18_1 doi: 10.1016/j.gca.2011.03.033 – ident: e_1_2_6_38_1 doi: 10.1128/AEM.64.7.2691-2696.1998 – ident: e_1_2_6_5_1 doi: 10.1128/AEM.69.5.2448-2462.2003 – ident: e_1_2_6_55_1 doi: 10.1111/j.1574-6941.1997.tb00439.x – ident: e_1_2_6_39_1 doi: 10.1046/j.1462-2920.2003.00495.x – ident: e_1_2_6_48_1 doi: 10.1111/j.1462-2920.2005.00856.x |
| SSID | ssj0017370 |
| Score | 2.3755505 |
| Snippet | Summary
Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal... Zero‐valence sulfur ( S 0 ) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents... Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and... Summary Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal... Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and... Zero‐valence sulfur (S⁰) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3416 |
| SubjectTerms | anaerobic conditions Anoxic conditions Biofilms Consumption Deep sea Deep water habitats Deltaproteobacteria - genetics Deltaproteobacteria - isolation & purification Deltaproteobacteria - metabolism Desulfobulbaceae Ecosystem Epsilonproteobacteria - genetics Epsilonproteobacteria - isolation & purification Epsilonproteobacteria - metabolism Geologic Sediments - chemistry habitats Hydrothermal Vents Marine microbial communities Microorganisms Ocean floor Oceans oxidants oxygen ribosomal RNA RNA, Ribosomal, 16S - genetics Seawater - microbiology sediments Sulfates - metabolism Sulfur Sulfur - analysis Sulfur - metabolism Sulfur cycle |
| Title | Microbial consumption of zero-valence sulfur in marine benthic habitats |
| URI | https://api.istex.fr/ark:/67375/WNG-V4652JNM-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12410 https://www.ncbi.nlm.nih.gov/pubmed/24467476 https://www.proquest.com/docview/1628115361 https://www.proquest.com/docview/1628881047 https://www.proquest.com/docview/1687686818 https://www.proquest.com/docview/1705454157 |
| Volume | 16 |
| WOSCitedRecordID | wos000345631900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1462-2920 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017370 issn: 1462-2912 databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB21CUi9QKFAA221SAj14ir2etfrIx8NH6IRqijktlqv1yIidSq7QS0nfgK_kV_CzNqxaAVFSD0kiuRny56d2Xkb77wBeMJJpRxdJchDmQZx7HhgEBiQNEmeG5UbaX2ziWQ8VpNJ-r7dTUi1MI0-RPeHG0WGn68pwE1W_xbkGOJRQL2W9jBFUZFVP0LvFT3ovzwcHb3rXiUk3HeMa-Fh1Or70HaeS5e4kJr6ZOWzP_HOizTW56HR7Wt4gnW41ZJQ9qzxmjuw4sq7cLNpS3m-AW8Opl6eCSHWV2j6aYXNC_bNVfOf33-gd9KEwOrFrFhUbFqyY0NVhCzDFPZ5ahmpfyOLre_B0Wj_w4vXQdtyIbASiUDgRMxdmA2dxU8qXYHDleYhjplNYsOdHYaZkVFqeYYLFeFCGylRuLjAY7nE7_vQK-el2wSmEC-NS6i2K7YyU0JwBKbFkNsiF-kA9pbW1rbVI6e2GDO9XJeQfTTZR3v7DGC3O-GkkeL4O_SpH74OZ6ovtIMtEfrT-JX-GEsRvR0f6OcD2FqOr26Dt9ahjBQSZS7DATzuDmPY0bsUU7r5osEoRToXV2Ew1SiJlOgKTIKcWSCLwus8aPyru2lkXhJXexIt5d3oX0-tMXL9j4f_e8IjWEMiGDc1llvQO60Wbhtu2K-n07ragdVkonbauPoFMtMdEQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hBgQX3oVAgUVCiIur2Pvw-lgeoYXEB9RCb6v1ei0iioOcBkFP_Qn9jfwSZtaO1SIoQuLgyJI_W_HszM63tucbgCecVMrRVaIyVlkkhOeRRWBE0iRlaXVplQvNJtI81_v72elamFYfon_gRpER5msKcHogfSrKMcaTiJotbWKOoiqrgUBnQi8fvHw33pv07xJSHlrGdfA46QR-6HueXy5xJjcNyMzffkc8z_LYkIjG1_7HLVyHqx0NZVut39yAC76-CZfaxpTfb8HOdBYEmhDiQo1mmFjYvGJHvpn_OD5B_6QpgS2WB9WyYbOafbZUR8gKTGIfZ46R_jfy2MVt2Bu_2n2xHXVNFyKnkApEXgru42LkHW6Z8hUOWFbGOGouFZZ7N4oLq5LM8QKXKtLHLtGy8qLCY6XC33VYq-e1vwtMI15Zn1J1l3Cq0FJyBGbViLuqlNkQNlfmNq5TJKfGGAdmtTIh-xiyjwn2GcKz_oQvrRjHn6FPw_j1ONt8om_YUmk-5K_Ne6Fk8iafmudD2FgNsOnCd2FilWikylzFQ3jcH8bAo7cptvbzZYvRmpQuzsNgstEKSdE5mBRZs0Qehde50zpY_6eReylc7ym0VPCjv921wdgNO_f-9YRHcHl7dzoxk5387X24grRQtBWXG7B22Cz9A7jovh7OFs3DLrx-ApkiIBk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB2hBFAvfFMCBRYJIS6uYu-H10egBAqthRCF3lbr9VpEbZ3KaRD01J_Ab-SXMLN2rBZBERIHR5b8bNmzMztvY88bgMecVMrRVaIyVlkkhOeRRWBE0iRlaXVplQvNJtI817u72elamFYfov_DjSIjzNcU4P6wrE5FOcZ4ElGzpXXMUVRlNRTUSmYAw433k52t_l1CykPLuA4eJ53AD33P88slzuSmIZn56--I51keGxLR5Or_eIRrcKWjoexZ6zfX4YKvb8CltjHlt5uwuT0NAk0IcaFGM0wsbFaxY9_Mfpx8R_-kKYHNF_vVomHTmh1YqiNkBSaxz1PHSP8beez8FuxMXn548Trqmi5ETiEViLwU3MfF2DvcMuUrHLCsjHHUXCos924cF1YlmeMFLlWkj12iZeVFhcdKhb-3YVDPan8HmEa8sj6l6i7hVKGl5AjMqjF3VSmzEawvzW1cp0hOjTH2zXJlQvYxZB8T7DOCp_0Jh60Yx5-hT8L49Tjb7NE3bKk0n_JX5qNQMnmTb5vnI1hbDrDpwnduYpVopMpcxSN41B_GwKO3Kbb2s0WL0ZqULs7DYLLRCknROZgUWbNEHoXXWW0drL9p5F4K13sKLRX86G9PbTB2w87dfz3hIVx-tzExW5v523uwgqxQtAWXazA4ahb-Plx0X46m8-ZBF10_AfHtH5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+consumption+of+zero-valence+sulfur+in+marine+benthic+habitats&rft.jtitle=Environmental+microbiology&rft.au=Pjevac%2C+Petra&rft.au=Kamyshny+Jr%2C+Alexey&rft.au=Dyksma%2C+Stefan&rft.au=Mu%C3%9Fmann%2C+Marc&rft.date=2014-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=16&rft.issue=11&rft.spage=3416&rft.epage=3430&rft_id=info:doi/10.1111%2F1462-2920.12410&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_V4652JNM_B |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |