Microbial consumption of zero-valence sulfur in marine benthic habitats

Summary Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We ide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental microbiology Ročník 16; číslo 11; s. 3416 - 3430
Hlavní autoři: Pjevac, Petra, Kamyshny Jr, Alexey, Dyksma, Stefan, Mußmann, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.11.2014
Wiley Subscription Services, Inc
Témata:
ISSN:1462-2912, 1462-2920, 1462-2920
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep‐sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface.
AbstractList Summary Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface.
Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface.Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface.
Zero‐valence sulfur (S⁰) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S⁰, but those consuming S⁰in the environment are largely unknown. We identified possible key players in S⁰turnover on native or introduced S⁰in benthic coastal and deep‐sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S⁰disproportionation and S⁰respiration under anoxic conditions. Sulfate production from S⁰particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S⁰. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S⁰, in particular S₈, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S⁰at the seafloor surface.
Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S°, but those consuming S° in the environment are largely unknown. We identified possible key players in S° turnover on native or introduced S° in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S° disproportionation and S° respiration under anoxic conditions. Sulfate production from S° particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S°. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S₈), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S°, in particular S8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S° at the seafloor surface.
Summary Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep‐sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface.
Zero‐valence sulfur ( S 0 ) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S 0 , but those consuming S 0 in the environment are largely unknown. We identified possible key players in S 0 turnover on native or introduced S 0 in benthic coastal and deep‐sea habitats using the 16 S ribosomal RNA approach, ( in situ ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial S ulfurimonas/ S ulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial D esulfobulbaceae and D esulfuromonadales were also frequently detected, indicating S 0 disproportionation and S 0 respiration under anoxic conditions. Sulfate production from S 0 particles colonized in situ with S ulfurimonas/ S ulfurovum suggested that this group oxidized S 0 . We also show that the type strain S ulfurimonas denitrificans is able to access cyclooctasulfur ( S 8 ), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S 0 , in particular S 8 , likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of S ulfurimonas / S ulfurovum group for conversion of free S 0 at the seafloor surface.
Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and in oxygen minimum zones. Diverse microorganisms can utilize S0, but those consuming S0 in the environment are largely unknown. We identified possible key players in S0 turnover on native or introduced S0 in benthic coastal and deep-sea habitats using the 16S ribosomal RNA approach, (in situ) growth experiments and activity measurements. In all habitats, the epsilonproteobacterial Sulfurimonas/Sulfurovum group accounted for a substantial fraction of the microbial community. Deltaproteobacterial Desulfobulbaceae and Desulfuromonadales were also frequently detected, indicating S0 disproportionation and S0 respiration under anoxic conditions. Sulfate production from S0 particles colonized in situ with Sulfurimonas/Sulfurovum suggested that this group oxidized S0. We also show that the type strain Sulfurimonas denitrificans is able to access cyclooctasulfur (S8), a metabolic feature not yet demonstrated for sulfur oxidizers. The ability to oxidize S0, in particular S8, likely facilitates niche partitioning among sulfur oxidizers in habitats with intense microbial sulfur cycling such as sulfidic sediment surfaces. Our results underscore the previously overlooked but central role of Sulfurimonas/Sulfurovum group for conversion of free S0 at the seafloor surface.
Author Dyksma, Stefan
Kamyshny Jr, Alexey
Mußmann, Marc
Pjevac, Petra
Author_xml – sequence: 1
  givenname: Petra
  surname: Pjevac
  fullname: Pjevac, Petra
  organization: Max Planck Institute for Marine Microbiology, Bremen, Germany
– sequence: 2
  givenname: Alexey
  surname: Kamyshny Jr
  fullname: Kamyshny Jr, Alexey
  organization: Department of Geological and Environmental Sciences, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
– sequence: 3
  givenname: Stefan
  surname: Dyksma
  fullname: Dyksma, Stefan
  organization: Max Planck Institute for Marine Microbiology, Bremen, Germany
– sequence: 4
  givenname: Marc
  surname: Mußmann
  fullname: Mußmann, Marc
  email: mmussman@mpi-bremen.de
  organization: Max Planck Institute for Marine Microbiology, Bremen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24467476$$D View this record in MEDLINE/PubMed
BookMark eNqNkktv1DAUhS1URF-s2aFIbLoJ9XX8miVUZSjqlE1blpbj3KguGWewE6D8epzOY1EJFUt-xP7OtXKOD8le6AMS8gboe8jtFLhkJZux_Mk40BfkYLezt1sD2yeHKd1TCqpS9BXZZ5xLxZU8IPOFd7Gvve0K14c0LleD70PRt8UfjH3503YYHBZp7NoxFj4USxt9wKLGMNx5V9zZ2g92SMfkZWu7hK838xG5-XR-ffa5vPw6vzj7cFk6CUBLFLxCqCm63GcS28bqWQNWN05xW6GjUFvJZq6qhZICwTEtWuRtPmtkHo_IybruKvY_RkyDWfrksOtswH5MBhQVXHAQ6nlUaiW11KD_A2Vaa6B8qvruCXrfjzHkf36kAEQlIVNvN9RYL7Exq-izcQ9ma3wGxBrI7qcUsTVu8jF7P0TrOwPUTAGbKUIzxWkeA8660ye6bel_KzY3_fIdPjyHm_PFxVZXrnU-Dfh7p7Pxu5H5GQnz7WpubrkU7MvVwnys_gJkkML4
CitedBy_id crossref_primary_10_1016_j_cej_2016_11_074
crossref_primary_10_1134_S0026261719050138
crossref_primary_10_7717_peerj_1913
crossref_primary_10_3390_w11122566
crossref_primary_10_1016_j_micres_2020_126453
crossref_primary_10_1038_s41598_017_10231_2
crossref_primary_10_1016_j_ecohyd_2024_01_001
crossref_primary_10_1038_s41396_019_0508_7
crossref_primary_10_1007_s00248_022_01979_w
crossref_primary_10_1186_s40168_017_0311_5
crossref_primary_10_3389_fmicb_2021_581124
crossref_primary_10_1111_1462_2920_13676
crossref_primary_10_3390_antiox12030627
crossref_primary_10_1111_1462_2920_14894
crossref_primary_10_1111_1462_2920_14452
crossref_primary_10_1177_1934578X211040605
crossref_primary_10_1111_gbi_12396
crossref_primary_10_1128_AEM_01250_18
crossref_primary_10_1016_j_gca_2016_11_036
crossref_primary_10_1016_j_marenvres_2023_105980
crossref_primary_10_1111_gbi_70013
crossref_primary_10_3389_fmicb_2015_00901
crossref_primary_10_1080_09593330_2018_1441333
crossref_primary_10_1038_s41396_021_01014_9
crossref_primary_10_1016_j_aquaculture_2019_03_051
crossref_primary_10_3389_fmicb_2016_00075
crossref_primary_10_1111_1462_2920_14343
crossref_primary_10_1016_j_cej_2017_03_018
crossref_primary_10_1111_1462_2920_13890
crossref_primary_10_1016_j_jbc_2024_107760
crossref_primary_10_1111_1758_2229_12538
crossref_primary_10_1089_ees_2018_0283
crossref_primary_10_1016_j_marpolbul_2015_08_040
crossref_primary_10_1002_lno_11759
crossref_primary_10_1016_j_syapm_2022_126359
crossref_primary_10_1111_1462_2920_13783
crossref_primary_10_1111_1462_2920_14275
crossref_primary_10_1111_gbi_12574
crossref_primary_10_1128_msystems_00954_22
crossref_primary_10_1128_AEM_03517_16
crossref_primary_10_5194_bg_12_2847_2015
crossref_primary_10_1128_mSystems_00673_19
crossref_primary_10_1371_journal_pone_0258124
crossref_primary_10_3389_fmicb_2022_992034
crossref_primary_10_5194_bg_17_3299_2020
crossref_primary_10_1016_j_scitotenv_2020_142173
crossref_primary_10_1093_jambio_lxaf043
crossref_primary_10_1111_1462_2920_14514
crossref_primary_10_1016_j_marpolbul_2018_06_042
crossref_primary_10_1186_s40168_025_02153_3
crossref_primary_10_1038_ismej_2016_43
crossref_primary_10_1007_s10661_020_08507_8
Cites_doi 10.1111/j.1574-6941.1996.tb00202.x
10.1111/j.1462-2920.2010.02155.x
10.1099/ijs.0.02682-0
10.1111/j.1574-6941.2007.00373.x
10.1128/AEM.59.3.734-742.1993
10.1111/j.1472-4669.2011.00281.x
10.1016/S0016-7037(01)00745-1
10.4319/lo.2008.53.4.1521
10.1128/AEM.65.9.3982-3989.1999
10.1128/AEM.00466-07
10.1007/BF02529967
10.1128/AEM.68.6.3094-3101.2002
10.1371/journal.pone.0016018
10.1099/ijs.0.046938-0
10.1023/B:JOBB.0000019600.36757.8c
10.1111/j.1462-2920.2012.02880.x
10.1016/0009-2541(71)90008-8
10.1007/s10236-009-0179-4
10.1128/AEM.01751-07
10.1093/nar/gks1219
10.1038/nature07588
10.1023/A:1003980226194
10.1099/ijs.0.048827-0
10.1016/j.gca.2010.11.008
10.1128/AEM.69.9.5503-5511.2003
10.1099/ijs.0.03042-0
10.1093/bioinformatics/bts252
10.1128/AEM.66.2.820-824.2000
10.1016/j.femsec.2004.06.015
10.1111/j.1574-6968.1992.tb05419.x
10.1007/0-387-30742-7_22
10.4319/lo.2005.50.1.0113
10.1007/0-387-30742-7_31
10.1099/ijs.0.64255-0
10.1080/17415990802105770
10.1038/ismej.2012.66
10.2307/1352949
10.1128/AEM.59.1.101-108.1993
10.5670/oceanog.2007.55
10.1007/b12110
10.1016/S0016-7037(03)00089-9
10.1038/360454a0
10.1111/j.1574-6941.2010.00848.x
10.1890/06-0219
10.1111/j.1462-2920.2010.02380.x
10.1007/0-387-30742-7_21
10.1029/2011GL049725
10.1007/0-387-30747-8_13
10.1111/j.1462-2920.2005.00708.x
10.1016/j.marchem.2010.03.001
10.1128/AEM.68.1.316-325.2002
10.1016/0272-7714(82)90062-2
10.1016/j.dsr.2011.02.009
10.1128/AEM.69.5.2765-2772.2003
10.1073/pnas.1111262109
10.1038/ismej.2008.25
10.1128/AEM.65.5.2253-2255.1999
10.1130/0-8137-2379-5.97
10.1128/AEM.00647-10
10.3389/fmicb.2011.00276
10.1038/nrmicro1414
10.1016/j.gca.2012.11.025
10.1016/S1385-1101(96)90786-8
10.1128/AEM.00715-06
10.1016/j.syapm.2005.12.006
10.1099/ijs.0.034397-0
10.1099/mic.0.2006/003954-0
10.3389/fmicb.2011.00192
10.1016/j.gca.2011.03.033
10.1128/AEM.64.7.2691-2696.1998
10.1128/AEM.69.5.2448-2462.2003
10.1111/j.1574-6941.1997.tb00439.x
10.1046/j.1462-2920.2003.00495.x
10.1111/j.1462-2920.2005.00856.x
ContentType Journal Article
Copyright 2014 Society for Applied Microbiology and John Wiley & Sons Ltd
2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Copyright © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd
Copyright_xml – notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: Copyright © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
DOI 10.1111/1462-2920.12410
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
MEDLINE

CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 3430
ExternalDocumentID 3508596051
24467476
10_1111_1462_2920_12410
EMI12410
ark_67375_WNG_V4652JNM_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Marie Curie Outgoing International Fellowship
  funderid: POIF‐GA‐2008‐219586
– fundername: Max Planck Society
– fundername: Cluster of Excellence MARUM
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
WRC
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c6110-e543e1b0ecb0e96efda89d1a8dc74a3ec01ba629c3b5765e1c285fe4fa3ed6fa3
IEDL.DBID DRFUL
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345631900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1462-2912
1462-2920
IngestDate Fri Jul 11 18:25:05 EDT 2025
Tue Oct 07 09:32:24 EDT 2025
Thu Jul 10 18:38:38 EDT 2025
Sun Jul 13 05:04:06 EDT 2025
Thu Apr 03 07:04:39 EDT 2025
Sat Nov 29 06:59:20 EST 2025
Tue Nov 18 22:13:43 EST 2025
Wed Jan 22 16:39:45 EST 2025
Sun Sep 21 06:17:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6110-e543e1b0ecb0e96efda89d1a8dc74a3ec01ba629c3b5765e1c285fe4fa3ed6fa3
Notes Cluster of Excellence MARUM
ArticleID:EMI12410
istex:C3DA0F5F9F8C5D1DB0829171CF96AC8BF4F6639D
ark:/67375/WNG-V4652JNM-B
Max Planck Society
Marie Curie Outgoing International Fellowship - No. POIF-GA-2008-219586
Fig. S1. (A) S0 precipitations in a sulfidic pool during low tide at the Janssand tidal flat (German Wadden Sea), (B) volcanogenic S0 boulder and (C) S0 outcrop at the North Su Volcano rising in the back-arc spreading centre Manus Basin (Bismarck Sea, Papua New Guinea), and (D) S0-precipitating microbial mat covering hydrothermal sediments in the Guaymas Basin (Gulf of California, Mexico).Fig. S2. Phylogenetic reconstruction of Epsilonproteobacteria-related 16S rRNA gene sequences using maximum likelihood (RAxML). Sequences were retrieved from particle-colonization experiments (Janssand 2010), from the S0-precipitating mat and from oxygen- and nitrate-respiring S0-enrichment cultures (Guaymas Basin). Representative OTUs (97% SI cut-off) were selected for presentation, n = number of sequences per OTU. Scale bar indicates 10% estimated sequence changes.Fig. S3. Phylogenetic reconstruction of Deltaproteobacteria-related 16S rRNA gene sequences using maximum likelihood (RAxML). Sequences were retrieved from particle-colonization experiments (Janssand 2010), from the S0-precipitating mat and from S0-respiring enrichment culture (Guaymas Basin). Sequences from S0-disproportionating cultures from Janssand tidal sediment and from Guaymas Basin sediments were provided by Kai Finster. Representative OTUs (97% SI cut-off) were selected for presentation, n = number of sequences per OTU. Scale bar indicates 10% estimated sequence changes.Fig. S4. (A) Epifluorescence images of DAPI-stained cells (in blue) in (a) S0-, (b) pyrite- and (c) glass-grown biofilms from the oxic sediment layer in Janssand tidal sediment (October 2010). Scale bar refers to 5 μm. (B) Epifluorescence images of (a) Epsilonproteobacteria (probe Epsy549) in a S0 biofilm from the oxic sediment layer, Janssand 2010, (b) Epsilonproteobacteria (Epsy914) accounting for up to 22% of DAPI in a S0-rich tidal pool (Janssand, May 2011), (c) Epsilonproteobacteria (probe mix Epsy549/Epsy914) in a volcanogenic S0 boulder (Manus Basin) and (d) Epsilonproteobacteria (probe mix Epsy549/Epsy914) and Arcobacter (inset, Arc94) in a S0-precipitating mat (Guaymas Basin). In green, CARD-FISH signal (Alexa 488); in blue, DAPI stain. Scale bar refers to 10 μm.Fig. S5. Epifluorescence images of Epsilonproteobacteria (probe Epsy549) in (A) oxygen- and (B) nitrate-respiring S0-enrichment cultures from the S0-precipitating microbial mat (Guaymas Basin). In green, CARD-FISH signal (Alexa 488); in blue, DAPI stain.Fig. S6. Sulfate production in (●) oxygen- and (◆) nitrate-respiring S0-enrichment cultures from the S0-precipitating microbial mat (Guaymas Basin).Fig. S7. Bathymetric map (Ocean Data View, ODV) of sampling locations in (A) tidal flats of the German Wadden Sea; (B) the Manus Basin back-arc spreading centre, Bismarck Sea, Papua New Guinea; (C) the Guaymas Basin, Gulf of California, Mexico. Map was constructed with help of Ocean Data View (Schlitzer, R., Ocean Data View, http://odv.awi.de, 2012.)Fig. S8. Detailed bathymetric map of the North Su sampling area (Manus Basin, Papua New Guinea). Volcanogenic S0 (yellow stars) and bottom water sample I (blue circle), active venting sites (gray circles). Scale bar indicates distance in meters. Figure adapted from Bach and colleagues (2011).Table S1. Semiquantitative relative abundance of Epsilonproteobacteria, Gammaproteobacteria and Deltaproteobacteria in biofilms grown on introduced S0, pyrite and glass particles in the Janssand tidal flat colonization experiment in October 2010, as determined by CARD-FISH. Legend: ++ abundant, + present, - absent. Table S2. Total cell counts (TCC, DAPI) and relative abundance (%) of selected populations determined by CARD-FISH in Janssand (JS, 2010; 2011) and Königshafen (KH, 2011) tidal sediments. Table S3. Sulfate (SO42-) production by S0-grown biofilms incubated in Königshafen tidal sediments (October 2011). Sulfate concentrations were calculated from IC measurements based on a Na2SO4 standard curve. Table S4. Details of sampling sites and dates, incubation periods and deposition/retrieval method. Table S5. Horseradish peroxidase-labelled oligonucleotide probes used for CARD-FISH. Table S6. Statistics of the 454-pyrotag data obtained from the NGS pipeline (SILVAngs) of the SILVA rRNA gene database project (Quast et al., 2013). Table S7. Sediment porosity, density and total extractable S0 (μmol g−1) used to calculate total S0 concentration in different sediment layers (Janssand, May 2011). Appendix S1. Supplementary methods.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24467476
PQID 1628115361
PQPubID 1066360
PageCount 15
ParticipantIDs proquest_miscellaneous_1705454157
proquest_miscellaneous_1687686818
proquest_miscellaneous_1628881047
proquest_journals_1628115361
pubmed_primary_24467476
crossref_citationtrail_10_1111_1462_2920_12410
crossref_primary_10_1111_1462_2920_12410
wiley_primary_10_1111_1462_2920_12410_EMI12410
istex_primary_ark_67375_WNG_V4652JNM_B
PublicationCentury 2000
PublicationDate November 2014
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November 2014
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D., and Peduzzi, R. (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 66: 820-824.
Llobet-Brossa, E., Rosselló-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696.
Lenk, S., Arnds, J., Zerjakte, K., Musat, N., Amann, R., and Mußman, M. (2011) Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol 13: 758-774.
Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: im-proved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.
Webster, G., Rinna, J., Roussel, E.G., Fry, J.C., Weightman, A.J., and Parks, R.J. (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72: 179-197.
Yamamoto, M., and Takai, K. (2011) Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2: 192. doi: 10.3389/fmicb.2011.00192
Lavik, G., Stührman, T., Brüchert, V., Van der Plas, A., Mohrholz, V., Lam, P., et al. (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457: 581-584.
Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediments. Ocean Dyn 59: 317-332.
Inagaki, F., Takai, K., Kobayashi, H., Nealson, K.H., and Horikoshi, K. (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53: 1801-1805.
Labrenz, M., Grote, J., Mammitzsch, K., Boschker, H.T.S., Laue, M., Jost, G., et al. (2013) Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic Baltic Sea redoxcline, and an emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 63: 4141-4148.
Janssen, P.H., and Morgan, H.W. (1992) Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96: 213-217.
Reeves, E.P., Seewald, J.S., Saccocia, P., Walsh, E., Bach, W., Craddock, P., et al. (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods vent fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75: 1088-1123.
Middelburg, J. (2011) Chemoautotrophy in the ocean. Geophys Res Lett 38: L24604.
Edwards, K.J., McCollom, T.M., Konishi, H., and Buseck, P.R. (2003) Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim Cosmochim Acta 67: 2843-2856.
Omoregie, E.O., Mastalerz, V., de Lange, G., Straub, K.L., Kappler, A., Røy, H., et al. (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74: 3198-3215.
Lichtschlag, A., Kamyshny, A., Jr, Ferdelman, T.G., and de Beer, D. (2013) Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea). Geochim Cosmochim Acta 105: 130-145.
Thamdrup, B., Finster, K., Hansen, J.W., and Bak, F. (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59: 101-108.
Neira, C., and Rackemann, M. (1996) Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: effects on the meiobenthos. J Sea Res 36: 153-170.
Ivanov, M.V. (1971) Bacterial processes in the oxidation and leaching of sulfide-sulfur ores of volcanic origin. Chem Geo 7: 185-211.
Ishii, K., Mußmann, M., MacGregor, B.J., and Amann, R. (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50: 203-212.
Gundersen, J.K., Jørgensen, B.B., Larsen, E., and Jannasch, H.W. (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360: 454-455.
Jones, D.S., Tobler, D.J., Schaperdoth, I., Mainiero, M., and Macalady, J.L. (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76: 5902-5910.
Kletzin, A., Urich, T., Müller, F., Bandeiras, T.M., and Gomes, C.M. (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36: 77-91.
Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101.
Kristensen, E. (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1-24.
Schwedt, A., Kreutzmann, A.-C., Polerecky, L., and Schulz-Vogt, H.N. (2011) Sulfur respiration in a marine chemolithoautotrophic Beggiatoa strain. Front Microbiol 2: 276. doi: 10.3389/fmicb.2011.00276
Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462.
Grote, J., Labrenz, M., Pfeiffer, B., Jost, G., and Jurgens, M. (2007) Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic sea. Appl Environ Microbiol 73: 7155-7161.
Franz, B., Lichtenberg, H., Hormes, J., Modrow, H., Dahl, C., and Prange, A. (2007) Utilization of solid 'elemental' sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge XANES spectroscopy study. Microbiol Sgm 153: 1268-1274.
Roden, E.E., and Lovley, D.R. (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59: 734-742.
Sievert, S.M., Kiene, R.P., and Schulz-Vogt, H.N. (2007) The sulfur cycle. Oceanography 20: 117-123.
Schippers, A., and Jørgensen, B.B. (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66: 85-92.
Steudel, R., and Eckert, B. (2003) Solid sulfur allotropes. Top Curr Chem 230: 1-79.
Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., and Sogin, M.L. (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69: 2765-2772.
de Beer, D., Wenzhöfer, F., Ferdelman, T.G., Boehme, S.E., Huettel, M., van Beusekom, J.E.E., et al. (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr 50: 113-127.
Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011a) A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75: 3581-3599.
Canfield, D.E., and Thamdrup, B. (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol Ecol 19: 95-103.
Inagaki, F., Takai, K., Nealson, K.H., and Horikoshi, K. (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54: 1477-1482.
Mußmann, M., Ishii, K., Rabus, R., and Amann, R. (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418.
Røy, H., Lee, J.S., Jansen, S., and de Beer, D. (2008) Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr 53: 1521-1530.
Yamamoto, M., Nakagawa, S., Shimamura, S., Takai, K., and Horikoshi, K. (2010) Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environ Microbiol 12: 1144-1153.
Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., and Mariani, S. (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72: 5596-5609.
López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J., and Moreira, D. (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5: 961-976.
Wirsen, C.O., Sievert, S., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A., Taylor, L., et al. (2002) Characterization of an autotrophic sulfide oxidizing marine Arcobacter spp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316-325.
Finster, K. (2008) Microbial disproportionation of inorganic sulfur compounds. J Sulfur Chem 29: 281-292.
Bruckner, C.G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., and Jürgens, K. (2012) Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients. Environ Microbiol 15: 1505-1513.
Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829.
Slobodkin, A.I., Reysenbach, A.-L., Slobodkina, G.B., Kolganova, T.V., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A. (2012) Dissulfuribacter thermophilus gen. nov., sp. nov., a novel extremely thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltapro
2010; 12
1982; 15
2006; 72
1992; 360
2011; 62
2013; 63
2011a; 75
2011; 13
2007; 73
2008; 74
2012; 15
1996; 36
2008; 2
2003; 53
2003; 230
1992; 96
2004; 32
1971; 7
2011b; 58
2008; 29
2004; 36
2006; 29
2003; 5
2012; 28
2007; 62
1995; 164
2007; 20
2009; 59
2012; 63
2010; 72
2010; 76
2011; 2
1996; 19
2006; 56
2011
2013; 105
2000; 66
1997; 24
2013; 41
2010; 121
2011; 75
2006
1999; 65
1993
2006; 4
2004
2008; 53
2011; 38
2011; 6
2001; 24
1998; 64
2012; 109
2009; 457
2011; 9
2004; 54
1993; 59
2004; 50
2000; 426
2002; 68
2007; 153
2002; 66
2003; 69
2005; 7
2005; 50
2012; 6
2003; 67
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_71_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_79_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
Bak E. (e_1_2_6_3_1) 1993
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – reference: Edwards, K.J., McCollom, T.M., Konishi, H., and Buseck, P.R. (2003) Seafloor bioalteration of sulfide minerals: results from in situ incubation studies. Geochim Cosmochim Acta 67: 2843-2856.
– reference: Purdy, K.J., Nedwell, D.B., Embley, T.M., and Takii, S. (1997) Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol Ecol 24: 221-234.
– reference: Schippers, A., and Jørgensen, B.B. (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66: 85-92.
– reference: Canfield, D.E., and Thamdrup, B. (1996) Fate of elemental sulfur in an intertidal sediment. FEMS Microbiol Ecol 19: 95-103.
– reference: Lavik, G., Stührman, T., Brüchert, V., Van der Plas, A., Mohrholz, V., Lam, P., et al. (2009) Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature 457: 581-584.
– reference: Thamdrup, B., Finster, K., Hansen, J.W., and Bak, F. (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59: 101-108.
– reference: Muyzer, G., Teske, A., Wirsen, C.O., and Jannasch, H.W. (1995) Phylogenetic-relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164: 165-172.
– reference: Inagaki, F., Takai, K., Nealson, K.H., and Horikoshi, K. (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54: 1477-1482.
– reference: Ishii, K., Mußmann, M., MacGregor, B.J., and Amann, R. (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiol Ecol 50: 203-212.
– reference: Omoregie, E.O., Mastalerz, V., de Lange, G., Straub, K.L., Kappler, A., Røy, H., et al. (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl Environ Microbiol 74: 3198-3215.
– reference: Dhillon, A., Teske, A., Dillon, J., Stahl, D.A., and Sogin, M.L. (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69: 2765-2772.
– reference: Takai, K., Suzuki, M., Nakagawa, S., Miyazaki, M., Suzuki, Y., Inagaki, F., and Horikoshi, K. (2006) Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56: 1725-1733.
– reference: Pernthaler, A., Pernthaler, J., and Amann, R. (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68: 3094-3101.
– reference: Holmkvist, L., Kamyshny, A., Jr, Vogt, C., Vamvakopoulos, K., Ferdelman, T.G., and Jørgensen, B.B. (2011b) Sulfate reduction below the sulfate-methane transition in Black Sea sediments. Deep Sea Res Part I Oceanogr Res Pap 58: 493-504.
– reference: Jones, D.S., Tobler, D.J., Schaperdoth, I., Mainiero, M., and Macalady, J.L. (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76: 5902-5910.
– reference: Jansen, S., Walpersdorf, E., Werner, U., Billerbeck, M., Böttcher, M., and de Beer, D. (2009) Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediments. Ocean Dyn 59: 317-332.
– reference: Roden, E.E., and Lovley, D.R. (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59: 734-742.
– reference: Webster, G., Rinna, J., Roussel, E.G., Fry, J.C., Weightman, A.J., and Parks, R.J. (2010) Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable-isotope probing. FEMS Microbiol Ecol 72: 179-197.
– reference: Schwedt, A., Kreutzmann, A.-C., Polerecky, L., and Schulz-Vogt, H.N. (2011) Sulfur respiration in a marine chemolithoautotrophic Beggiatoa strain. Front Microbiol 2: 276. doi: 10.3389/fmicb.2011.00276
– reference: Kletzin, A., Urich, T., Müller, F., Bandeiras, T.M., and Gomes, C.M. (2004) Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36: 77-91.
– reference: Middelburg, J. (2011) Chemoautotrophy in the ocean. Geophys Res Lett 38: L24604.
– reference: Grote, J., Schott, T., Bruckner, C.G., Glöckner, F.O., Jost, G., Teeling, H., et al. (2012) Genome and physiology of a model epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proc Natl Acad Sci USA 109: 506-510.
– reference: Franz, B., Lichtenberg, H., Hormes, J., Modrow, H., Dahl, C., and Prange, A. (2007) Utilization of solid 'elemental' sulfur by the phototrophic purple sulfur bacterium Allochromatium vinosum: a sulfur K-edge XANES spectroscopy study. Microbiol Sgm 153: 1268-1274.
– reference: Røy, H., Lee, J.S., Jansen, S., and de Beer, D. (2008) Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr 53: 1521-1530.
– reference: Steudel, R., and Eckert, B. (2003) Solid sulfur allotropes. Top Curr Chem 230: 1-79.
– reference: Sievert, S.M., Kiene, R.P., and Schulz-Vogt, H.N. (2007) The sulfur cycle. Oceanography 20: 117-123.
– reference: Macalady, J.L., Lyon, E.H., Koffman, B., Albertson, L.K., Meyer, K., Galdenzi, S., and Mariani, S. (2006) Dominant microbial populations in limestone-corroding stream biofilms, Frasassi cave system, Italy. Appl Environ Microbiol 72: 5596-5609.
– reference: Engel, A.S., Lee, N., Porter, M.L., Stern, L.A., Bennett, P.C., and Wagner, M. (2003) Filamentous Epsilonproteobacteria dominate microbial mats from sulfidic cave springs. Appl Environ Microbiol 69: 5503-5511.
– reference: Slobodkin, A.I., Reysenbach, A.-L., Slobodkina, G.B., Kolganova, T.V., Kostrikina, N.A., and Bonch-Osmolovskaya, E.A. (2012) Dissulfuribacter thermophilus gen. nov., sp. nov., a novel extremely thermophilic, autotrophic, sulfur-disproportionating, deeply branching deltaproteobacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 63: 1967-1971.
– reference: Kristensen, E. (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1-24.
– reference: Troelsen, H., and Jørgensen, B.B. (1982) Seasonal dynamics of elemental sulfur in two coastal sediments. Estuar Coast Shelf Sci 15: 255-266.
– reference: Bowman, J.P., McCammon, S.A., Gibson, J.A.E., Robertson, L., and Nichols, P.D. (2003) Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments. Appl Environ Microbiol 69: 2448-2462.
– reference: Gundersen, J.K., Jørgensen, B.B., Larsen, E., and Jannasch, H.W. (1992) Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360: 454-455.
– reference: Ivanov, M.V. (1971) Bacterial processes in the oxidation and leaching of sulfide-sulfur ores of volcanic origin. Chem Geo 7: 185-211.
– reference: Taylor, C.D., Wirsen, C.O., and Gaill, F. (1999) Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microbiol 65: 2253-2255.
– reference: Grote, J., Labrenz, M., Pfeiffer, B., Jost, G., and Jurgens, M. (2007) Quantitative distributions of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the central Baltic sea. Appl Environ Microbiol 73: 7155-7161.
– reference: Slobodkin, A.I., Reysenbach, A.-L., Slobodkina, G.B., Baslerov, R.V., Kostrikina, N.A., Wagner, I.D., and Bonch-Osmolovskaya, E.A. (2011) Thermosulfurimonas dismutans gen. nov., sp. nov., a novel extremely thermophilic sulfur-disproportionating bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 62: 2565-2571.
– reference: Janssen, P.H., and Morgan, H.W. (1992) Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96: 213-217.
– reference: Nakagawa, S., Takai, K., Inagaki, F., Hirayama, H., Nunoura, T., Horikoshi, K., and Sako, Y. (2005) Distribution, phylogenetic diversity and physiological characteristics of epsilon-roteobacteria in a deep-sea hydrothermal field. Environ Microbiol 7: 1619-1632.
– reference: Pruesse, E., Peplies, J., and Glöckner, F.O. (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829.
– reference: Ravenschlag, K., Sahm, K., Pernthaler, J., and Amann, R. (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65: 3982-3989.
– reference: Yamamoto, M., Nakagawa, S., Shimamura, S., Takai, K., and Horikoshi, K. (2010) Molecular characterization of inorganic sulfur-compound metabolism in the deep-sea epsilonproteobacterium Sulfurovum sp. NBC37-1. Environ Microbiol 12: 1144-1153.
– reference: Wirsen, C.O., Sievert, S., Cavanaugh, C.M., Molyneaux, S.J., Ahmad, A., Taylor, L., et al. (2002) Characterization of an autotrophic sulfide oxidizing marine Arcobacter spp. that produces filamentous sulfur. Appl Environ Microbiol 68: 316-325.
– reference: Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, et al. (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371.
– reference: Tonolla, M., Demarta, A., Peduzzi, S., Hahn, D., and Peduzzi, R. (2000) In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol 66: 820-824.
– reference: Lenk, S., Moraru, C., Hahnke, S., Arnds, J., Richter, M., Kube, M., et al. (2012) Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes. ISME J 6: 2178-2187.
– reference: Neira, C., and Rackemann, M. (1996) Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: effects on the meiobenthos. J Sea Res 36: 153-170.
– reference: Hügler, M., Petersen, J.M., Dubilier, N., Imhoff, J.F., and Sievert, S.M. (2011) Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata. PLoS ONE 6: e16018.
– reference: Macalady, J.L., Dattagupta, S., Schaperdoth, I., Jones, D.S., Druschel, G.K., and Eastman, D. (2008) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME J 2: 590-601.
– reference: Lichtschlag, A., Kamyshny, A., Jr, Ferdelman, T.G., and de Beer, D. (2013) Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea). Geochim Cosmochim Acta 105: 130-145.
– reference: Llobet-Brossa, E., Rosselló-Mora, R., and Amann, R. (1998) Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64: 2691-2696.
– reference: Inagaki, F., Takai, K., Kobayashi, H., Nealson, K.H., and Horikoshi, K. (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53: 1801-1805.
– reference: Yamamoto, M., and Takai, K. (2011) Sulfur metabolisms in epsilon- and gamma-Proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2: 192. doi: 10.3389/fmicb.2011.00192
– reference: de Beer, D., Wenzhöfer, F., Ferdelman, T.G., Boehme, S.E., Huettel, M., van Beusekom, J.E.E., et al. (2005) Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr 50: 113-127.
– reference: Musat, N., Werner, U., Knittel, K., Kolb, S., Dodenhof, T., van Beusekom, J.E.E., et al. (2006) Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Romo Basin, Wadden Sea. Syst Appl Microbiol 29: 333-348.
– reference: Finster, K. (2008) Microbial disproportionation of inorganic sulfur compounds. J Sulfur Chem 29: 281-292.
– reference: Reeves, E.P., Seewald, J.S., Saccocia, P., Walsh, E., Bach, W., Craddock, P., et al. (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods vent fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75: 1088-1123.
– reference: Bruckner, C.G., Mammitzsch, K., Jost, G., Wendt, J., Labrenz, M., and Jürgens, K. (2012) Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients. Environ Microbiol 15: 1505-1513.
– reference: Lenk, S., Arnds, J., Zerjakte, K., Musat, N., Amann, R., and Mußman, M. (2011) Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol 13: 758-774.
– reference: Jensen, S.I., Kühl, M., and Prieme, A. (2007) Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiol Ecol 62: 108-117.
– reference: Grünke, S., Felden, J., Lichtschlag, A., Girnth, A.-C., de Beer, D., Wenzhöfer, F., and Boetius, A. (2011) Niche differentiation among mat-forming, sulfide-oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea). Geobiology 9: 330-348.
– reference: Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013) The SILVA ribosomal RNA gene database project: im-proved data processing and web-based tools. Nucleic Acids Res 41: D590-D596.
– reference: Labrenz, M., Grote, J., Mammitzsch, K., Boschker, H.T.S., Laue, M., Jost, G., et al. (2013) Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic Baltic Sea redoxcline, and an emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 63: 4141-4148.
– reference: Kamyshny, A., and Ferdelman, T.G. (2010) Dynamics of zero-valent sulfur species including polysulfides at seep sites on intertidal sand flats (Wadden Sea, North Sea). Mar Chem 121: 17-26.
– reference: Panutrakul, S., Monteney, F., and Baeyens, W. (2001) Seasonal variations in sediment sulfur cycling in the Ballastplaat Mudflat, Belgium. Estuaries 24: 257-265.
– reference: López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J., and Moreira, D. (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5: 961-976.
– reference: Mußmann, M., Ishii, K., Rabus, R., and Amann, R. (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7: 405-418.
– reference: Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, K. (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4: 458-468.
– reference: Holmkvist, L., Ferdelman, T.G., and Jørgensen, B.B. (2011a) A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta 75: 3581-3599.
– year: 2011
– volume: 69
  start-page: 2765
  year: 2003
  end-page: 2772
  article-title: Molecular characterization of sulfate‐reducing bacteria in the Guaymas Basin
  publication-title: Appl Environ Microbiol
– volume: 68
  start-page: 3094
  year: 2002
  end-page: 3101
  article-title: Fluorescence hybridization and catalyzed reporter deposition for the identification of marine bacteria
  publication-title: Appl Environ Microbiol
– volume: 36
  start-page: 153
  year: 1996
  end-page: 170
  article-title: Black spots produced by buried macroalgae in intertidal sandy sediments of the Wadden Sea: effects on the meiobenthos
  publication-title: J Sea Res
– volume: 66
  start-page: 820
  year: 2000
  end-page: 824
  article-title: analysis of sulfate‐reducing bacteria related to in the chemocline of meromictic Lake Cadagno (Switzerland)
  publication-title: Appl Environ Microbiol
– volume: 2
  start-page: 276
  year: 2011
  article-title: Sulfur respiration in a marine chemolithoautotrophic strain
  publication-title: Front Microbiol
– volume: 54
  start-page: 1477
  year: 2004
  end-page: 1482
  article-title: gen. nov., sp. nov., a novel sulfur‐oxidizing chemolithoautotroph within the epsilon‐proteobacteria isolated from Okinawa Trough hydrothermal sediments
  publication-title: Int J Syst Evol Microbiol
– volume: 67
  start-page: 2843
  year: 2003
  end-page: 2856
  article-title: Seafloor bioalteration of sulfide minerals: results from in situ incubation studies
  publication-title: Geochim Cosmochim Acta
– start-page: 635
  year: 2006
  end-page: 658
– volume: 32
  start-page: 1363
  year: 2004
  end-page: 1371
  article-title: ARB: a software environment for sequence data
  publication-title: Nucleic Acids Res
– volume: 164
  start-page: 165
  year: 1995
  end-page: 172
  article-title: Phylogenetic‐relationships of species and their identification in deep‐sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments
  publication-title: Arch Microbiol
– volume: 29
  start-page: 333
  year: 2006
  end-page: 348
  article-title: Microbial community structure of sandy intertidal sediments in the North Sea, Sylt‐Romo Basin, Wadden Sea
  publication-title: Syst Appl Microbiol
– volume: 62
  start-page: 2565
  year: 2011
  end-page: 2571
  article-title: gen. nov., sp. nov., a novel extremely thermophilic sulfur‐disproportionating bacterium from a deep‐sea hydrothermal vent
  publication-title: Int J Syst Evol Microbiol
– volume: 56
  start-page: 1725
  year: 2006
  end-page: 1733
  article-title: sp. nov., a novel mesophilic, hydrogen‐ and sulfur‐oxidizing chemolithoautotroph within the isolated from a deep‐sea hydrothermal vent polychaete nest, reclassification of as comb. nov. and emended description of the genus
  publication-title: Int J Syst Evol Microbiol
– volume: 2
  start-page: 192
  year: 2011
  article-title: Sulfur metabolisms in epsilon‐ and gamma‐ in deep‐sea hydrothermal fields
  publication-title: Front Microbiol
– volume: 41
  start-page: D590
  year: 2013
  end-page: D596
  article-title: The SILVA ribosomal RNA gene database project: im‐proved data processing and web‐based tools
  publication-title: Nucleic Acids Res
– start-page: 985
  year: 2006
  end-page: 1011
– volume: 65
  start-page: 2253
  year: 1999
  end-page: 2255
  article-title: Rapid microbial production of filamentous sulfur mats at hydrothermal vents
  publication-title: Appl Environ Microbiol
– volume: 50
  start-page: 113
  year: 2005
  end-page: 127
  article-title: Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt‐Rømø Basin, Wadden Sea
  publication-title: Limnol Oceanogr
– volume: 53
  start-page: 1801
  year: 2003
  end-page: 1805
  article-title: gen. nov., sp. nov., a novel sulfur‐oxidizing epsilon‐proteobacterium isolated from hydrothermal sediments in the Mid‐Okinawa Trough
  publication-title: Int J Syst Evol Microbiol
– volume: 360
  start-page: 454
  year: 1992
  end-page: 455
  article-title: Mats of giant sulphur bacteria on deep‐sea sediments due to fluctuating hydrothermal flow
  publication-title: Nature
– volume: 19
  start-page: 95
  year: 1996
  end-page: 103
  article-title: Fate of elemental sulfur in an intertidal sediment
  publication-title: FEMS Microbiol Ecol
– volume: 75
  start-page: 3581
  year: 2011a
  end-page: 3599
  article-title: A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)
  publication-title: Geochim Cosmochim Acta
– volume: 7
  start-page: 185
  year: 1971
  end-page: 211
  article-title: Bacterial processes in the oxidation and leaching of sulfide‐sulfur ores of volcanic origin
  publication-title: Chem Geo
– volume: 59
  start-page: 317
  year: 2009
  end-page: 332
  article-title: Functioning of intertidal flats inferred from temporal and spatial dynamics of O , H S and pH in their surface sediments
  publication-title: Ocean Dyn
– volume: 6
  start-page: 2178
  year: 2012
  end-page: 2187
  article-title: clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes
  publication-title: ISME J
– volume: 75
  start-page: 1088
  year: 2011
  end-page: 1123
  article-title: Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods vent fields, Manus Basin, Papua New Guinea
  publication-title: Geochim Cosmochim Acta
– start-page: 75
  year: 1993
  end-page: 78
– volume: 76
  start-page: 5902
  year: 2010
  end-page: 5910
  article-title: Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy
  publication-title: Appl Environ Microbiol
– volume: 15
  start-page: 255
  year: 1982
  end-page: 266
  article-title: Seasonal dynamics of elemental sulfur in two coastal sediments
  publication-title: Estuar Coast Shelf Sci
– volume: 74
  start-page: 3198
  year: 2008
  end-page: 3215
  article-title: Biogeochemistry and community composition of iron‐ and sulfur‐precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean)
  publication-title: Appl Environ Microbiol
– volume: 426
  start-page: 1
  year: 2000
  end-page: 24
  article-title: Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals
  publication-title: Hydrobiologia
– volume: 68
  start-page: 316
  year: 2002
  end-page: 325
  article-title: Characterization of an autotrophic sulfide oxidizing marine that produces filamentous sulfur
  publication-title: Appl Environ Microbiol
– volume: 72
  start-page: 179
  year: 2010
  end-page: 197
  article-title: Prokaryotic functional diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, revealed by stable‐isotope probing
  publication-title: FEMS Microbiol Ecol
– volume: 109
  start-page: 506
  year: 2012
  end-page: 510
  article-title: Genome and physiology of a model epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones
  publication-title: Proc Natl Acad Sci USA
– volume: 13
  start-page: 758
  year: 2011
  end-page: 774
  article-title: Novel groups of catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment
  publication-title: Environ Microbiol
– volume: 58
  start-page: 493
  year: 2011b
  end-page: 504
  article-title: Sulfate reduction below the sulfate‐methane transition in Black Sea sediments
  publication-title: Deep Sea Res Part I Oceanogr Res Pap
– volume: 62
  start-page: 108
  year: 2007
  end-page: 117
  article-title: Different bacterial communities associated with the roots and bulk sediment of the seagrass
  publication-title: FEMS Microbiol Ecol
– volume: 72
  start-page: 5596
  year: 2006
  end-page: 5609
  article-title: Dominant microbial populations in limestone‐corroding stream biofilms, Frasassi cave system, Italy
  publication-title: Appl Environ Microbiol
– start-page: 97
  year: 2004
  end-page: 116
– volume: 20
  start-page: 117
  year: 2007
  end-page: 123
  article-title: The sulfur cycle
  publication-title: Oceanography
– volume: 24
  start-page: 257
  year: 2001
  end-page: 265
  article-title: Seasonal variations in sediment sulfur cycling in the Ballastplaat Mudflat, Belgium
  publication-title: Estuaries
– volume: 12
  start-page: 1144
  year: 2010
  end-page: 1153
  article-title: Molecular characterization of inorganic sulfur‐compound metabolism in the deep‐sea epsilonproteobacterium sp. NBC37‐1
  publication-title: Environ Microbiol
– volume: 121
  start-page: 17
  year: 2010
  end-page: 26
  article-title: Dynamics of zero‐valent sulfur species including polysulfides at seep sites on intertidal sand flats (Wadden Sea, North Sea)
  publication-title: Mar Chem
– volume: 63
  start-page: 1967
  year: 2012
  end-page: 1971
  article-title: gen. nov., sp. nov., a novel extremely thermophilic, autotrophic, sulfur‐disproportionating, deeply branching deltaproteobacterium from a deep‐sea hydrothermal vent
  publication-title: Int J Syst Evol Microbiol
– volume: 4
  start-page: 458
  year: 2006
  end-page: 468
  article-title: The versatile epsilon‐proteobacteria: key players in sulphidic habitats
  publication-title: Nat Rev Microbiol
– volume: 69
  start-page: 2448
  year: 2003
  end-page: 2462
  article-title: Prokaryotic metabolic activity and community structure in Antarctic continental shelf sediments
  publication-title: Appl Environ Microbiol
– volume: 457
  start-page: 581
  year: 2009
  end-page: 584
  article-title: Detoxification of sulphidic African shelf waters by blooming chemolithotrophs
  publication-title: Nature
– volume: 5
  start-page: 961
  year: 2003
  end-page: 976
  article-title: Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid‐Atlantic Ridge
  publication-title: Environ Microbiol
– volume: 7
  start-page: 1619
  year: 2005
  end-page: 1632
  article-title: Distribution, phylogenetic diversity and physiological characteristics of epsilon‐roteobacteria in a deep‐sea hydrothermal field
  publication-title: Environ Microbiol
– volume: 64
  start-page: 2691
  year: 1998
  end-page: 2696
  article-title: Microbial community composition of Wadden Sea sediments as revealed by fluorescence hybridization
  publication-title: Appl Environ Microbiol
– volume: 28
  start-page: 1823
  year: 2012
  end-page: 1829
  article-title: SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes
  publication-title: Bioinformatics
– volume: 230
  start-page: 1
  year: 2003
  end-page: 79
  article-title: Solid sulfur allotropes
  publication-title: Top Curr Chem
– volume: 7
  start-page: 405
  year: 2005
  end-page: 418
  article-title: Diversity and vertical distribution of cultured and uncultured in an intertidal mud flat of the Wadden Sea
  publication-title: Environ Microbiol
– volume: 53
  start-page: 1521
  year: 2008
  end-page: 1530
  article-title: Tide‐driven deep pore‐water flow in intertidal sand flats
  publication-title: Limnol Oceanogr
– volume: 24
  start-page: 221
  year: 1997
  end-page: 234
  article-title: Use of 16S rRNA‐targeted oligonucleotide probes to investigate the occurrence and selection of sulfate reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary
  publication-title: FEMS Microbiol Ecol
– volume: 15
  start-page: 1505
  year: 2012
  end-page: 1513
  article-title: Chemolithoautotrophic denitrification of epsilonproteobacteria in marine pelagic redox gradients
  publication-title: Environ Microbiol
– start-page: 359
  year: 2006
  end-page: 378
– volume: 59
  start-page: 734
  year: 1993
  end-page: 742
  article-title: Dissimilatory Fe(III) reduction by the marine microorganism
  publication-title: Appl Environ Microbiol
– volume: 105
  start-page: 130
  year: 2013
  end-page: 145
  article-title: Intermediate sulfur oxidation state compounds in the euxinic surface sediments of the Dvurechenskii mud volcano (Black Sea)
  publication-title: Geochim Cosmochim Acta
– volume: 50
  start-page: 203
  year: 2004
  end-page: 212
  article-title: An improved fluorescence hybridization protocol for the identification of bacteria and archaea in marine sediments
  publication-title: FEMS Microbiol Ecol
– volume: 6
  start-page: e16018
  year: 2011
  article-title: Pathways of carbon and energy metabolism of the epibiotic community associated with the deep‐sea hydrothermal vent shrimp
  publication-title: PLoS ONE
– volume: 153
  start-page: 1268
  year: 2007
  end-page: 1274
  article-title: Utilization of solid ‘elemental’ sulfur by the phototrophic purple sulfur bacterium : a sulfur K‐edge XANES spectroscopy study
  publication-title: Microbiol Sgm
– start-page: 659
  year: 2006
  end-page: 768
– volume: 96
  start-page: 213
  year: 1992
  end-page: 217
  article-title: Heterotrophic sulfur reduction by sp. strain FjSS3.B1
  publication-title: FEMS Microbiol Lett
– volume: 73
  start-page: 7155
  year: 2007
  end-page: 7161
  article-title: Quantitative distributions of and a subgroup in pelagic redoxclines of the central Baltic sea
  publication-title: Appl Environ Microbiol
– volume: 38
  start-page: L24604
  year: 2011
  article-title: Chemoautotrophy in the ocean
  publication-title: Geophys Res Lett
– volume: 29
  start-page: 281
  year: 2008
  end-page: 292
  article-title: Microbial disproportionation of inorganic sulfur compounds
  publication-title: J Sulfur Chem
– volume: 63
  start-page: 4141
  year: 2013
  end-page: 4148
  article-title: sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic Baltic Sea redoxcline, and an emended description of the genus
  publication-title: Int J Syst Evol Microbiol
– year: 2006
– volume: 9
  start-page: 330
  year: 2011
  end-page: 348
  article-title: Niche differentiation among mat‐forming, sulfide‐oxidizing bacteria at cold seeps of the Nile Deep Sea Fan (Eastern Mediterranean Sea)
  publication-title: Geobiology
– volume: 69
  start-page: 5503
  year: 2003
  end-page: 5511
  article-title: Filamentous dominate microbial mats from sulfidic cave springs
  publication-title: Appl Environ Microbiol
– volume: 36
  start-page: 77
  year: 2004
  end-page: 91
  article-title: Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea
  publication-title: J Bioenerg Biomembr
– volume: 2
  start-page: 590
  year: 2008
  end-page: 601
  article-title: Niche differentiation among sulfur‐oxidizing bacterial populations in cave waters
  publication-title: ISME J
– volume: 65
  start-page: 3982
  year: 1999
  end-page: 3989
  article-title: High bacterial diversity in permanently cold marine sediments
  publication-title: Appl Environ Microbiol
– volume: 66
  start-page: 85
  year: 2002
  end-page: 92
  article-title: Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments
  publication-title: Geochim Cosmochim Acta
– volume: 59
  start-page: 101
  year: 1993
  end-page: 108
  article-title: Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese
  publication-title: Appl Environ Microbiol
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1574-6941.1996.tb00202.x
– ident: e_1_2_6_78_1
  doi: 10.1111/j.1462-2920.2010.02155.x
– ident: e_1_2_6_21_1
  doi: 10.1099/ijs.0.02682-0
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1574-6941.2007.00373.x
– ident: e_1_2_6_61_1
  doi: 10.1128/AEM.59.3.734-742.1993
– ident: e_1_2_6_16_1
  doi: 10.1111/j.1472-4669.2011.00281.x
– ident: e_1_2_6_63_1
  doi: 10.1016/S0016-7037(01)00745-1
– ident: e_1_2_6_62_1
  doi: 10.4319/lo.2008.53.4.1521
– ident: e_1_2_6_58_1
  doi: 10.1128/AEM.65.9.3982-3989.1999
– ident: e_1_2_6_14_1
  doi: 10.1128/AEM.00466-07
– ident: e_1_2_6_47_1
  doi: 10.1007/BF02529967
– ident: e_1_2_6_53_1
  doi: 10.1128/AEM.68.6.3094-3101.2002
– ident: e_1_2_6_20_1
  doi: 10.1371/journal.pone.0016018
– ident: e_1_2_6_67_1
  doi: 10.1099/ijs.0.046938-0
– ident: e_1_2_6_30_1
  doi: 10.1023/B:JOBB.0000019600.36757.8c
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1462-2920.2012.02880.x
– ident: e_1_2_6_24_1
  doi: 10.1016/0009-2541(71)90008-8
– ident: e_1_2_6_25_1
  doi: 10.1007/s10236-009-0179-4
– ident: e_1_2_6_50_1
  doi: 10.1128/AEM.01751-07
– ident: e_1_2_6_56_1
  doi: 10.1093/nar/gks1219
– ident: e_1_2_6_33_1
  doi: 10.1038/nature07588
– ident: e_1_2_6_31_1
  doi: 10.1023/A:1003980226194
– ident: e_1_2_6_32_1
  doi: 10.1099/ijs.0.048827-0
– ident: e_1_2_6_59_1
  doi: 10.1016/j.gca.2010.11.008
– ident: e_1_2_6_11_1
  doi: 10.1128/AEM.69.9.5503-5511.2003
– ident: e_1_2_6_22_1
  doi: 10.1099/ijs.0.03042-0
– ident: e_1_2_6_54_1
  doi: 10.1093/bioinformatics/bts252
– ident: e_1_2_6_73_1
  doi: 10.1128/AEM.66.2.820-824.2000
– ident: e_1_2_6_23_1
  doi: 10.1016/j.femsec.2004.06.015
– ident: e_1_2_6_72_1
– ident: e_1_2_6_26_1
  doi: 10.1111/j.1574-6968.1992.tb05419.x
– ident: e_1_2_6_57_1
  doi: 10.1007/0-387-30742-7_22
– ident: e_1_2_6_4_1
  doi: 10.4319/lo.2005.50.1.0113
– ident: e_1_2_6_60_1
  doi: 10.1007/0-387-30742-7_31
– ident: e_1_2_6_69_1
  doi: 10.1099/ijs.0.64255-0
– ident: e_1_2_6_12_1
  doi: 10.1080/17415990802105770
– ident: e_1_2_6_36_1
  doi: 10.1038/ismej.2012.66
– ident: e_1_2_6_52_1
  doi: 10.2307/1352949
– ident: e_1_2_6_71_1
  doi: 10.1128/AEM.59.1.101-108.1993
– start-page: 75
  volume-title: Trends in Microbial Ecology
  year: 1993
  ident: e_1_2_6_3_1
– ident: e_1_2_6_65_1
  doi: 10.5670/oceanog.2007.55
– ident: e_1_2_6_68_1
  doi: 10.1007/b12110
– ident: e_1_2_6_10_1
  doi: 10.1016/S0016-7037(03)00089-9
– ident: e_1_2_6_17_1
  doi: 10.1038/360454a0
– ident: e_1_2_6_75_1
  doi: 10.1111/j.1574-6941.2010.00848.x
– ident: e_1_2_6_41_1
  doi: 10.1890/06-0219
– ident: e_1_2_6_34_1
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1462-2920.2010.02380.x
– ident: e_1_2_6_40_1
  doi: 10.1007/0-387-30742-7_21
– ident: e_1_2_6_44_1
  doi: 10.1029/2011GL049725
– ident: e_1_2_6_51_1
  doi: 10.1007/0-387-30747-8_13
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1462-2920.2005.00708.x
– ident: e_1_2_6_29_1
  doi: 10.1016/j.marchem.2010.03.001
– ident: e_1_2_6_76_1
  doi: 10.1128/AEM.68.1.316-325.2002
– ident: e_1_2_6_74_1
  doi: 10.1016/0272-7714(82)90062-2
– ident: e_1_2_6_19_1
  doi: 10.1016/j.dsr.2011.02.009
– ident: e_1_2_6_9_1
  doi: 10.1128/AEM.69.5.2765-2772.2003
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.1111262109
– ident: e_1_2_6_43_1
  doi: 10.1038/ismej.2008.25
– ident: e_1_2_6_70_1
  doi: 10.1128/AEM.65.5.2253-2255.1999
– ident: e_1_2_6_79_1
  doi: 10.1130/0-8137-2379-5.97
– ident: e_1_2_6_28_1
  doi: 10.1128/AEM.00647-10
– ident: e_1_2_6_64_1
  doi: 10.3389/fmicb.2011.00276
– ident: e_1_2_6_7_1
  doi: 10.1038/nrmicro1414
– ident: e_1_2_6_37_1
  doi: 10.1016/j.gca.2012.11.025
– ident: e_1_2_6_49_1
  doi: 10.1016/S1385-1101(96)90786-8
– ident: e_1_2_6_42_1
  doi: 10.1128/AEM.00715-06
– ident: e_1_2_6_46_1
  doi: 10.1016/j.syapm.2005.12.006
– ident: e_1_2_6_2_1
– ident: e_1_2_6_66_1
  doi: 10.1099/ijs.0.034397-0
– ident: e_1_2_6_13_1
  doi: 10.1099/mic.0.2006/003954-0
– ident: e_1_2_6_77_1
  doi: 10.3389/fmicb.2011.00192
– ident: e_1_2_6_18_1
  doi: 10.1016/j.gca.2011.03.033
– ident: e_1_2_6_38_1
  doi: 10.1128/AEM.64.7.2691-2696.1998
– ident: e_1_2_6_5_1
  doi: 10.1128/AEM.69.5.2448-2462.2003
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1574-6941.1997.tb00439.x
– ident: e_1_2_6_39_1
  doi: 10.1046/j.1462-2920.2003.00495.x
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1462-2920.2005.00856.x
SSID ssj0017370
Score 2.3755505
Snippet Summary Zero‐valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal...
Zero‐valence sulfur ( S 0 ) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents...
Zero-valence sulfur (S°) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and...
Summary Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal...
Zero-valence sulfur (S0) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and...
Zero‐valence sulfur (S⁰) is a central intermediate in the marine sulfur cycle and forms conspicuous accumulations at sediment surfaces, hydrothermal vents and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3416
SubjectTerms anaerobic conditions
Anoxic conditions
Biofilms
Consumption
Deep sea
Deep water habitats
Deltaproteobacteria - genetics
Deltaproteobacteria - isolation & purification
Deltaproteobacteria - metabolism
Desulfobulbaceae
Ecosystem
Epsilonproteobacteria - genetics
Epsilonproteobacteria - isolation & purification
Epsilonproteobacteria - metabolism
Geologic Sediments - chemistry
habitats
Hydrothermal Vents
Marine
microbial communities
Microorganisms
Ocean floor
Oceans
oxidants
oxygen
ribosomal RNA
RNA, Ribosomal, 16S - genetics
Seawater - microbiology
sediments
Sulfates - metabolism
Sulfur
Sulfur - analysis
Sulfur - metabolism
Sulfur cycle
Title Microbial consumption of zero-valence sulfur in marine benthic habitats
URI https://api.istex.fr/ark:/67375/WNG-V4652JNM-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.12410
https://www.ncbi.nlm.nih.gov/pubmed/24467476
https://www.proquest.com/docview/1628115361
https://www.proquest.com/docview/1628881047
https://www.proquest.com/docview/1687686818
https://www.proquest.com/docview/1705454157
Volume 16
WOSCitedRecordID wos000345631900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1462-2920
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017370
  issn: 1462-2912
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB21CUi9QKFAA221SAj14ir2etfrIx8NH6IRqijktlqv1yIidSq7QS0nfgK_kV_CzNqxaAVFSD0kiuRny56d2Xkb77wBeMJJpRxdJchDmQZx7HhgEBiQNEmeG5UbaX2ziWQ8VpNJ-r7dTUi1MI0-RPeHG0WGn68pwE1W_xbkGOJRQL2W9jBFUZFVP0LvFT3ovzwcHb3rXiUk3HeMa-Fh1Or70HaeS5e4kJr6ZOWzP_HOizTW56HR7Wt4gnW41ZJQ9qzxmjuw4sq7cLNpS3m-AW8Opl6eCSHWV2j6aYXNC_bNVfOf33-gd9KEwOrFrFhUbFqyY0NVhCzDFPZ5ahmpfyOLre_B0Wj_w4vXQdtyIbASiUDgRMxdmA2dxU8qXYHDleYhjplNYsOdHYaZkVFqeYYLFeFCGylRuLjAY7nE7_vQK-el2wSmEC-NS6i2K7YyU0JwBKbFkNsiF-kA9pbW1rbVI6e2GDO9XJeQfTTZR3v7DGC3O-GkkeL4O_SpH74OZ6ovtIMtEfrT-JX-GEsRvR0f6OcD2FqOr26Dt9ahjBQSZS7DATzuDmPY0bsUU7r5osEoRToXV2Ew1SiJlOgKTIKcWSCLwus8aPyru2lkXhJXexIt5d3oX0-tMXL9j4f_e8IjWEMiGDc1llvQO60Wbhtu2K-n07ragdVkonbauPoFMtMdEQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hBgQX3oVAgUVCiIur2Pvw-lgeoYXEB9RCb6v1ei0iioOcBkFP_Qn9jfwSZtaO1SIoQuLgyJI_W_HszM63tucbgCecVMrRVaIyVlkkhOeRRWBE0iRlaXVplQvNJtI81_v72elamFYfon_gRpER5msKcHogfSrKMcaTiJotbWKOoiqrgUBnQi8fvHw33pv07xJSHlrGdfA46QR-6HueXy5xJjcNyMzffkc8z_LYkIjG1_7HLVyHqx0NZVut39yAC76-CZfaxpTfb8HOdBYEmhDiQo1mmFjYvGJHvpn_OD5B_6QpgS2WB9WyYbOafbZUR8gKTGIfZ46R_jfy2MVt2Bu_2n2xHXVNFyKnkApEXgru42LkHW6Z8hUOWFbGOGouFZZ7N4oLq5LM8QKXKtLHLtGy8qLCY6XC33VYq-e1vwtMI15Zn1J1l3Cq0FJyBGbViLuqlNkQNlfmNq5TJKfGGAdmtTIh-xiyjwn2GcKz_oQvrRjHn6FPw_j1ONt8om_YUmk-5K_Ne6Fk8iafmudD2FgNsOnCd2FilWikylzFQ3jcH8bAo7cptvbzZYvRmpQuzsNgstEKSdE5mBRZs0Qehde50zpY_6eReylc7ym0VPCjv921wdgNO_f-9YRHcHl7dzoxk5387X24grRQtBWXG7B22Cz9A7jovh7OFs3DLrx-ApkiIBk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB2hBFAvfFMCBRYJIS6uYu-H10egBAqthRCF3lbr9VpEbZ3KaRD01J_Ab-SXMLN2rBZBERIHR5b8bNmzMztvY88bgMecVMrRVaIyVlkkhOeRRWBE0iRlaXVplQvNJtI817u72elamFYfov_DjSIjzNcU4P6wrE5FOcZ4ElGzpXXMUVRlNRTUSmYAw433k52t_l1CykPLuA4eJ53AD33P88slzuSmIZn56--I51keGxLR5Or_eIRrcKWjoexZ6zfX4YKvb8CltjHlt5uwuT0NAk0IcaFGM0wsbFaxY9_Mfpx8R_-kKYHNF_vVomHTmh1YqiNkBSaxz1PHSP8beez8FuxMXn548Trqmi5ETiEViLwU3MfF2DvcMuUrHLCsjHHUXCos924cF1YlmeMFLlWkj12iZeVFhcdKhb-3YVDPan8HmEa8sj6l6i7hVKGl5AjMqjF3VSmzEawvzW1cp0hOjTH2zXJlQvYxZB8T7DOCp_0Jh60Yx5-hT8L49Tjb7NE3bKk0n_JX5qNQMnmTb5vnI1hbDrDpwnduYpVopMpcxSN41B_GwKO3Kbb2s0WL0ZqULs7DYLLRCknROZgUWbNEHoXXWW0drL9p5F4K13sKLRX86G9PbTB2w87dfz3hIVx-tzExW5v523uwgqxQtAWXazA4ahb-Plx0X46m8-ZBF10_AfHtH5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+consumption+of+zero-valence+sulfur+in+marine+benthic+habitats&rft.jtitle=Environmental+microbiology&rft.au=Pjevac%2C+Petra&rft.au=Kamyshny+Jr%2C+Alexey&rft.au=Dyksma%2C+Stefan&rft.au=Mu%C3%9Fmann%2C+Marc&rft.date=2014-11-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=16&rft.issue=11&rft.spage=3416&rft.epage=3430&rft_id=info:doi/10.1111%2F1462-2920.12410&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_V4652JNM_B
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon