Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012

We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal stru...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Atmospheric chemistry and physics Ročník 15; číslo 19; s. 10925 - 10938
Hlavní autoři: Shen, L., Mickley, L. J., Tai, A. P. K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Katlenburg-Lindau Copernicus GmbH 01.10.2015
Copernicus Publications
Témata:
ISSN:1680-7324, 1680-7316, 1680-7324
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north–south movement of jet wind latitude, (2) a north–south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east–west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between −0.76 and −0.93 over 1980–2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg−1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1–2 ppbv deg−1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry.
AbstractList We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28-32 and 40-45 degree N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north-south movement of jet wind latitude, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east-west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4 degree W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1-2 ppbv deg-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry.
We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north–south movement of jet wind latitude, (2) a north–south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east–west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between −0.76 and −0.93 over 1980–2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg−1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1–2 ppbv deg−1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry.
We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45∘ N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north–south movement of jet wind latitude, (2) a north–south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east–west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980–2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ∼ 85.4∘ W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ∼ 1 ppbv deg-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1–2 ppbv deg-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry.
We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28-32 and 40-45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north-south movement of jet wind latitude, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east-west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1-2 ppbv deg-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry.
We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28-32 and 40-45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north-south movement of jet wind latitude, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east-west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg.sup.-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1-2 ppbv deg.sup.-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry.
Audience Academic
Author Shen, L.
Tai, A. P. K.
Mickley, L. J.
Author_xml – sequence: 1
  givenname: L.
  surname: Shen
  fullname: Shen, L.
– sequence: 2
  givenname: L. J.
  surname: Mickley
  fullname: Mickley, L. J.
– sequence: 3
  givenname: A. P. K.
  orcidid: 0000-0001-5189-6263
  surname: Tai
  fullname: Tai, A. P. K.
BookMark eNqNkl1rFDEUhgepYFv9Ad4FvNGLqTkz-bwsxY-FgmDtdchkTtYss5M1yZbWX2-2K9ItUiUXCcnzvicneU-aoznO2DSvgZ5x0Oy9dZsWeAtUd7ztKPBnzTEIRVvZd-zowfpFc5LzitKOU2DHzbSY_bTF2SGJnuS7OW5KcGRjS8E0ZxJnkrfJ2935z1qS3NgU7BCmUO5IvMFEynckaPMOJ9dzKDiSq2ILZuJTXBPQipISSb1T97J57u2U8dXv-bS5_vjh28Xn9vLLp8XF-WXrBNDSjg7VIB3vkQNgj4p6HNXAGBul8NCLXvHRaz30SK0fhk6Ckj0fRq-QOuH602ax9x2jXZlNCmub7ky0wdxvxLQ0NtU2JzQ9BYVSW6UAGe1x4LyuuJCqG_wwYvV6u_fapPhji7mYdcgOp8nOGLfZgAatJeUg_o1K0UGnWSf_A-2kUKK2XNE3j9BV3Ka5vp_pGDDBGZf9U1T1AqFrgw-8lrb2HmYfS7JuV9qcMwWcacGhUmd_oeoYcR1cDYEPdf9A8O5AUJmCt2VptzmbxdXXQxb2rEsx54T-z_8ANbsomxplA9zcR9nsolw18pHGhRqxUMskG6YnlL8A6Dz1jw
CitedBy_id crossref_primary_10_1029_2021EA001694
crossref_primary_10_1016_j_jes_2024_05_047
crossref_primary_10_1016_j_scitotenv_2024_171687
crossref_primary_10_1016_j_jes_2020_11_030
crossref_primary_10_1016_j_chemosphere_2020_128966
crossref_primary_10_1016_j_atmosenv_2017_08_050
crossref_primary_10_1016_j_jes_2024_07_015
crossref_primary_10_5194_acp_19_14477_2019
crossref_primary_10_1016_j_atmosenv_2022_119126
crossref_primary_10_1029_2017JD028172
crossref_primary_10_1016_j_atmosenv_2019_117127
crossref_primary_10_5194_acp_16_15265_2016
crossref_primary_10_1016_j_scitotenv_2020_139559
crossref_primary_10_1175_JAMC_D_18_0045_1
crossref_primary_10_5194_acp_17_4355_2017
crossref_primary_10_5194_acp_20_203_2020
crossref_primary_10_5194_acp_22_6471_2022
crossref_primary_10_1038_s41598_019_53103_7
crossref_primary_10_5194_acp_18_2615_2018
crossref_primary_10_1002_2016GL071791
crossref_primary_10_1080_13683500_2022_2106826
crossref_primary_10_3390_atmos10090501
crossref_primary_10_1016_j_scitotenv_2022_155107
crossref_primary_10_1016_j_atmosenv_2017_09_024
crossref_primary_10_1007_s40726_019_00115_6
crossref_primary_10_1175_JAMC_D_18_0263_1
crossref_primary_10_1016_j_atmosres_2023_106978
crossref_primary_10_1029_2020GL090714
crossref_primary_10_5194_acp_21_11013_2021
crossref_primary_10_5194_acp_23_9745_2023
crossref_primary_10_1016_j_envsoft_2025_106502
crossref_primary_10_1016_j_scitotenv_2018_12_039
crossref_primary_10_5194_acp_22_10551_2022
crossref_primary_10_5194_acp_17_3111_2017
crossref_primary_10_1016_j_jenvman_2021_112368
crossref_primary_10_1029_2019JD030572
crossref_primary_10_1002_2016JD025663
crossref_primary_10_1002_2017GL073044
crossref_primary_10_1016_j_atmosenv_2024_120919
crossref_primary_10_1038_s41370_018_0091_4
crossref_primary_10_1002_2017GL076150
crossref_primary_10_1016_j_atmosenv_2021_118704
crossref_primary_10_1029_2021JD035920
crossref_primary_10_1016_j_atmosenv_2017_09_038
crossref_primary_10_1038_s41598_022_26615_y
crossref_primary_10_3390_rs12030565
crossref_primary_10_1016_j_scitotenv_2024_170132
crossref_primary_10_1029_2020JD033165
crossref_primary_10_5194_acp_23_15629_2023
crossref_primary_10_3390_app9020357
crossref_primary_10_1016_j_atmosenv_2020_117808
crossref_primary_10_3390_atmos9050159
crossref_primary_10_1016_j_jes_2020_09_038
crossref_primary_10_5194_acp_19_12917_2019
crossref_primary_10_1016_j_atmosenv_2018_08_032
crossref_primary_10_5194_acp_18_1185_2018
crossref_primary_10_1002_2016GL068432
crossref_primary_10_1002_2017GL075905
crossref_primary_10_1088_1748_9326_11_12_124004
crossref_primary_10_1073_pnas_1614453114
crossref_primary_10_1088_1748_9326_ab4861
crossref_primary_10_1016_j_jes_2020_02_019
crossref_primary_10_1029_2021GL092816
crossref_primary_10_1088_1748_9326_aad2e2
crossref_primary_10_1088_1748_9326_ace72e
crossref_primary_10_1016_j_scs_2024_105207
crossref_primary_10_1007_s00376_019_8216_9
crossref_primary_10_1016_j_jes_2022_06_033
crossref_primary_10_1134_S1024856020060184
crossref_primary_10_1073_pnas_1610708114
crossref_primary_10_1016_j_atmosres_2024_107660
crossref_primary_10_1007_s40726_019_00118_3
crossref_primary_10_1029_2021JD035597
crossref_primary_10_1016_j_atmosenv_2019_04_045
crossref_primary_10_1073_pnas_1602563113
crossref_primary_10_1007_s11869_022_01232_w
crossref_primary_10_3390_atmos12121557
crossref_primary_10_1016_j_atmosenv_2018_07_042
crossref_primary_10_1016_j_uclim_2016_08_002
crossref_primary_10_1007_s00382_019_04954_3
crossref_primary_10_1002_2016GL068060
crossref_primary_10_1029_2020JD032735
crossref_primary_10_1016_j_atmosenv_2021_118841
crossref_primary_10_3389_fenvs_2022_1007942
Cites_doi 10.1029/2012JD018261
10.1016/j.atmosenv.2011.11.021
10.1029/2009GL037308
10.1175/2007JCLI1586.1
10.1029/2008GL033614
10.1029/2008JD010816
10.1175/2010JCLI3829.1
10.1016/j.atmosenv.2010.04.031
10.1016/0960-1686(93)90035-W
10.5194/acp-12-3131-2012
10.1007/978-0-387-21706-2
10.1016/j.atmosenv.2008.09.051
10.1029/JD094iD06p08511
10.1002/2013JD021435
10.1029/2007JD008917
10.1007/s00382-011-1214-y
10.1016/j.atmosenv.2008.11.036
10.1029/2006GL027749
10.5194/acp-8-7075-2008
10.1029/2001JD000982
10.1175/JCLI-D-12-00168.1
10.1029/2002JD003151
10.1016/1352-2310(95)00146-P
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1002/grl.50411
10.1016/j.atmosenv.2007.04.061
10.5194/acp-12-12197-2012
10.1016/j.atmosenv.2013.04.045
10.1289/ehp.1104851
10.1016/j.atmosenv.2004.02.033
10.1002/jgrd.50136
10.1029/2010JD014300
10.1038/ngeo1590
10.1029/2006JD008170
10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2
10.1029/2004GL021216
10.5194/acp-12-7797-2012
10.5194/acp-13-565-2013
ContentType Journal Article
Copyright COPYRIGHT 2015 Copernicus GmbH
Copyright Copernicus GmbH 2015
2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2015 Copernicus GmbH
– notice: Copyright Copernicus GmbH 2015
– notice: 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7ST
7TV
7U6
7U5
DOA
DOI 10.5194/acp-15-10925-2015
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
Pollution Abstracts
Sustainability Science Abstracts
Solid State and Superconductivity Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Pollution Abstracts
Environment Abstracts
Sustainability Science Abstracts
Solid State and Superconductivity Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Meteorological & Geoastrophysical Abstracts
Publicly Available Content Database
Aerospace Database
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 10938
ExternalDocumentID oai_doaj_org_article_3018e79a881e403eb5581e56782bfbde
3834487751
A481549651
10_5194_acp_15_10925_2015
GeographicLocations Canada
Bermuda
Eastern states
Great Plains
United States--US
North America
ANW, Atlantic, Bermuda
USA, Great Plains
USA
GeographicLocations_xml – name: Canada
– name: Bermuda
– name: Eastern states
– name: North America
– name: United States--US
– name: Great Plains
– name: USA, Great Plains
– name: USA
– name: ANW, Atlantic, Bermuda
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
PUEGO
7ST
7TV
7U6
7U5
ID FETCH-LOGICAL-c610t-dce8b7c53e511e3e80fed8b444d76f136385df99b3e0afbb2718735bdf8e0c6c3
IEDL.DBID RKB
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362971000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1680-7324
1680-7316
IngestDate Fri Oct 03 12:52:01 EDT 2025
Tue Oct 07 09:55:36 EDT 2025
Thu Oct 02 05:15:02 EDT 2025
Tue Oct 07 09:51:03 EDT 2025
Sat Aug 23 13:30:08 EDT 2025
Sun Jul 13 05:27:25 EDT 2025
Sat Nov 29 13:00:16 EST 2025
Sun Nov 23 08:41:40 EST 2025
Wed Nov 26 08:54:15 EST 2025
Tue Nov 18 22:18:35 EST 2025
Sat Nov 29 03:43:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-dce8b7c53e511e3e80fed8b444d76f136385df99b3e0afbb2718735bdf8e0c6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5189-6263
OpenAccessLink https://doaj.org/article/3018e79a881e403eb5581e56782bfbde
PQID 1721698814
PQPubID 105744
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_3018e79a881e403eb5581e56782bfbde
proquest_miscellaneous_1919970516
proquest_miscellaneous_1762129427
proquest_miscellaneous_1727686444
proquest_journals_2414654573
proquest_journals_1721698814
gale_infotracmisc_A481549651
gale_infotracacademiconefile_A481549651
gale_incontextgauss_ISR_A481549651
crossref_primary_10_5194_acp_15_10925_2015
crossref_citationtrail_10_5194_acp_15_10925_2015
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2015
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref8
  doi: 10.1029/2012JD018261
– ident: ref30
  doi: 10.1016/j.atmosenv.2011.11.021
– ident: ref5
  doi: 10.1029/2009GL037308
– ident: ref39
  doi: 10.1175/2007JCLI1586.1
– ident: ref1
  doi: 10.1029/2008GL033614
– ident: ref12
  doi: 10.1029/2008JD010816
– ident: ref23
  doi: 10.1175/2010JCLI3829.1
– ident: ref6
  doi: 10.1016/j.atmosenv.2010.04.031
– ident: ref9
  doi: 10.1016/0960-1686(93)90035-W
– ident: ref33
  doi: 10.5194/acp-12-3131-2012
– ident: ref35
  doi: 10.1007/978-0-387-21706-2
– ident: ref16
  doi: 10.1016/j.atmosenv.2008.09.051
– ident: ref25
  doi: 10.1029/JD094iD06p08511
– ident: ref29
  doi: 10.1002/2013JD021435
– ident: ref40
  doi: 10.1029/2007JD008917
– ident: ref21
  doi: 10.1007/s00382-011-1214-y
– ident: ref32
– ident: ref37
  doi: 10.1016/j.atmosenv.2008.11.036
– ident: ref18
  doi: 10.1029/2006GL027749
– ident: ref20
  doi: 10.5194/acp-8-7075-2008
– ident: ref10
  doi: 10.1029/2001JD000982
– ident: ref41
  doi: 10.1175/JCLI-D-12-00168.1
– ident: ref11
  doi: 10.1029/2002JD003151
– ident: ref36
  doi: 10.1016/1352-2310(95)00146-P
– ident: ref17
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: ref2
  doi: 10.1002/grl.50411
– ident: ref4
– ident: ref7
  doi: 10.1016/j.atmosenv.2007.04.061
– ident: ref31
  doi: 10.5194/acp-12-12197-2012
– ident: ref38
  doi: 10.1016/j.atmosenv.2013.04.045
– ident: ref3
  doi: 10.1289/ehp.1104851
– ident: ref14
  doi: 10.1016/j.atmosenv.2004.02.033
– ident: ref28
– ident: ref22
  doi: 10.1002/jgrd.50136
– ident: ref19
  doi: 10.1029/2010JD014300
– ident: ref24
  doi: 10.1038/ngeo1590
– ident: ref13
  doi: 10.1029/2006JD008170
– ident: ref26
  doi: 10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2
– ident: ref27
  doi: 10.1029/2004GL021216
– ident: ref15
  doi: 10.5194/acp-12-7797-2012
– ident: ref34
  doi: 10.5194/acp-13-565-2013
SSID ssj0025014
Score 2.4772308
Snippet We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 10925
SubjectTerms Air pollution
Air quality
Atmospheric chemistry
Atmospheric models
Bermuda
Climate change
Climate change influences
Climate variability
Climatology
Correlation coefficient
Correlation coefficients
Daily weather
Emissions
Emissions control
Empirical orthogonal functions
Frequency ranges
Future climates
Global temperature changes
Latitude
Low-level jets
Meteorology
Northeast
Orthogonal functions
Outdoor air quality
Ozone
Ozone decrease
Studies
Summer
Synoptic meteorology
Trends
Variability
Weather
Weather effects
Weather patterns
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SfPBF1CquVolFFISl2U2ySR5rsbRQi_gBfQubLykcu8ftXaH-9c5k944e6Pni2-1ldslmJpPfbCa_IeQtKDUJrmSpmDMlrNcwpUTgZSubGJpU60bkg8IX6vJSX12ZL3dKfWFO2EgPPA7cERigjsq0WldRMB6dlPBLgo-tXXIhovcF1LMOpqZQC3fLMNRqNCuxNtO4nwloRRy1fl5WyL5pagk2gvVw76xImbj_b-45rzmnj8jDCSzS47GTj8m92D0hxWfAuf0ifw6n7-jJ7BpAZ77aJ7Pzdc0R2ic63HY9eARP55lEsxto39FhtUgttv_qu0hvIFQembpvKSZzUsCDFMv5gDgd8Sgd8SjFgyi0MprRZU_hjeqn5Mfpp-8nZ-VUT6H0AJKWZfBRO-Ulj4CyIo-apRi0E0IE1aSKw1SUIRnjeGRtcq6GdUtx6ULSkfnG82dkr4O-PSfUN0jCw1QQtRMsGIcbqIa1tYjG-CALwtZjav1ENo41L2YWgg5UgwU12ErarAaLaijIh80t85FpY5fwR1TURhBJsvMfYDp2Mh37L9MpyCGq2SINRod5Nj_b1TDY829f7TFy2CCVflWQ95NQ6uENfDsdW4BxQOasLcmDLUmYp367eW1NdvITg8UAvDHQQfHHZoBXyHcnFS_Im00zPhhT47rYr_IjIGQEWCt2yTQAUYyo1Q4ZgzlH4KObF_9jcF-SB6ioMe_xgOwtF6v4itz3N8vrYfE6z9bfV_o-ZQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg44EXvhFhAxmEQEKK5iR2Yj-hbdrEJKimAdLerPhrmlQlJWknbX89d4lbqAR94a2pL5GTs-9-Z59_R8g7UGrgRSXSihmVgr-GKcVdkdai9K4MuSz5cFD4SzWdyosLdRYX3PqYVrmyiYOhdq3FNfJ98DRI_SWq4tP8Z4pVo3B3NZbQuEt2kKmMT8jO4fH07HwdcuGuGYZcpWQp1mga9zUBtfD92s7TDFk4VS5grGBd3D8800Dg_y8zPfiek4f_2-tH5EFEnfRgHCaPyR3fPCHJVwDMbTesq9P39Gh2Beh1uHpKZqer4iW0DbS_aVowLZbOBzbOpqdtQ_tlF2psv20bT68h5h4pv28oZoVSAJYU6wKBOB2BLR2BLcUTLTRTktFFS-GT5M_Ij5Pj70ef01iYIbWAthaps16ayorCA1zzhZcseCcN59xVZcgKmNPCBaVM4VkdjMnBAVaFMC5Iz2xpi-dk0kDfXhBqS2TzYZXjueHMKYM7sYrVOfdKWScSwlZK0TaylmPxjJmG6AX1qEGPOhN60KNGPSbk4_qW-UjZsU34EDW9FkS27eGPtrvUcfJqMILSV6qWMvOcFd4IAb8E-PncBON8Qt7iONHIp9Fgws5lvex7ffrtXB8gGQ5y8mcJ-RCFQgtvYOt4_gG-A1JwbUjubUjChLebzauxpqPB6TVG8qWCDvK_Nv8ehwl5s27GB2OOXePb5fAIiD0BH_NtMiVgHcXzaouMwuQlMPbly-1d2SX3UQVjauQemSy6pX9F7tnrxVXfvY5T-Rd4qU38
  priority: 102
  providerName: ProQuest
Title Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012
URI https://www.proquest.com/docview/1721698814
https://www.proquest.com/docview/2414654573
https://www.proquest.com/docview/1727686444
https://www.proquest.com/docview/1762129427
https://www.proquest.com/docview/1919970516
https://doaj.org/article/3018e79a881e403eb5581e56782bfbde
Volume 15
WOSCitedRecordID wos000362971000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: RKB
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: P5Z
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PATMY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PCBAR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: PIMPY
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBej28Ne9j3mrSvaGBsMTGVbsqXHtLQssATTddDtRVhfoxDsECeF9q_vne2EBrbsYXuxHetsFJ10-p11-h0hH0CpgWeFiAtmVAzzNQwp7rK4Erl3eUhlzruNwl-L6VReXKjyTqovjAnr6YH7hjuEDih9oSopE89Z5o0QcCXAxqYmGOdx3zqMavTTMYfb4Grhahm6WrlkMeZm6tczAa3ww8rO4wTZN1UqoI9gPtw7M1JH3P8n89zNOaeP_6G2T8ijAWjSUf_IU3LP189INAGM3Cy6T-n0Iz2eXQJg7X49J7PxOl8JbQJtr-sGrIml846As25pU9N2tQgVlt80tadX4Gb3LN_XFANBKWBJiqmAQJz2WJb2WJbiJhaaKMnosqHQGukL8v305Pz4SzzkYogtAKxl7KyXprAi84DQfOYlC95Jwzl3RR6SDIaxcEEpk3lWBWNSmPOKTBgXpGc2t9lLsldD3V4RanMk8GGF46nhzCmDi6-KVSn3SlknIsLW-tB2ICrHfBkzDQ4LqlCDCnUidKdCjSqMyOfNI_OepWOX8BHqbSOIBNvdDVCkHhSp_6bIiLzHLqKRQqPGGJ1f1apt9fjbmR4h_w3S8CcR-TQIhQb-ga2GLQ_QDsi6tSW5vyUJY9xuF697oh5sTKvRec8VVJD_thigGXLliSKLyLtNMb4Yw-pq36y6V4C7CZCY75LJAd4onhY7ZBTGK4F9z1__j8Z9Qx6iovqYyX2yt1ys_FvywF4tL9vFAbl_dDItzw66zydwLMVPuFeOzic_8DyelHBGa3ALGCxXbQ
linkProvider Copernicus Gesellschaft
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKiwSXsospBQyCIiGNOos9Yx84tIWoUZOIpYjezHiZqlI0EzJJUfhR_EbemyUQCXLrgVsSv1ge-_Nbxs_vI-QFLGrO4pT7aaClD_YathSzsZ_xxNkkj0TC6ovCg3Q0Emdn8v0G-dndhcG0yk4n1oralgbfke-DpcHSXzztmKpP3OI7xGfVm_5bWMyXUdR7d3p07LcUAr4Bv2DmW-OETg2PHTgWLnYiyJ0VmjFm0yQPY0Aft7mUOnZBlmsdgapOY65tLlxgEhNDv3uTbz6yVOFpbkvZcY1siUTGsK-2DnvDD1-WIR6e0mGIl4jAR06o5hwVvCS2n5mJH2LVTxlxwCby8P5hCWvCgH-ZhdrW9W79b7N0m2y3XjU9aLbBHbLhirvEG0JAUE7rcwO6R4_GF-Cd19_ukXG_I2ehZU6rRVGC6jR0UlcbLSpaFrSaT_MM23-UhaOXGezUOpF4QTHrlYLjTJH3CMRp47jTxnGneGOHhlIEdFZSWILoPvl8JfPxgGwWMLaHhJoEqxUFqWWRZoGVGk-aZZBFzElpLPdI0IFAmbYqO5KDjBVEZ4gbBbhRIVc1bhTixiOvl3-ZNCVJ1gkfIrKWglhNvP6hnJ6rVjkpUPLCpTITInQsiJ3mHD5x8GMinWvrPPIccamwXkiBCUnn2byqVP_TR3WAxX6QcyD0yKtWKC_hCUzW3u-AecASYyuSuyuSoNDManOHbdUq1Erhm4pEwgDZX5t_494jz5bN2DHmEBaunNddQGwN_j9bJ5OALydZlK6RkZicBcYs2Vk_lKfkxvHpcKAG_dHJI3ITl6NJA90lm7Pp3D0m183l7KKaPmnVCCVfr3qb_gLqPK0R
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCEuvBGGAgviISFZWdtre_eAUJoSEbVEUQGpt8XeR1UpskOcFIWfxq9jxo9AJcitB25xdrxae795eWZnCHkBm-p4lMZ-ynLpg74GluIm8rM4sSZxoUh4fVD4KJ1MxMmJnO6Qn91ZGEyr7GRiLahNqfEbeR80DZb-itOo79q0iOnB6N38m48dpDDS2rXTaCByaNffwX2r3o4PYK9fhuHo_efhB7_tMOBrMBuWvtFW5KmOIwt2h42sYM4akXPOTZq4IAJwxsZJmUeWZS7PQ5DkaRTnxgnLdKIjmPcK2RVJysIe2Z0O9wfHG3cPI3bo7iWC-dgfqompgsXE-5me-wFWAJVhDDjFnrx_aMW6ecC_VESt90Y3_-c3dovcaK1tOmjY4zbZscUd4n0ER6Fc1PEE-ooOZ2dgtddXd8ls3DVtoaWj1booQaRqOq-rkBYVLQtarRYuw_EfZWHpeQYcXCcYrylmw1IwqCn2QwJy2hj0tDHoKZ7koYEUjC5LCtsR3iNfLuXh75NeAWt7QKhOsIoRSw0Pc86MzDECLVkWciulNrFHWAcIpdtq7dg0ZKbAa0MMKcCQCmJVY0ghhjzyZnPLvClVso14H1G2IcQq4_Uf5eJUtUJLgfAXNpWZEIHlLLJ5HMOvGOybMHe5sR55jhhVWEekQHydZquqUuNPx2qARYCwF0HgkdctkSvhCXTWnvuA94Clxy5Q7l2gBEGnLw53OFetoK0UfsFIJCyQ_3X4Nw945NlmGCfG3MLClqt6CvC5wS_g22gSsPEkD9MtNBKTtkDJJQ-3L-UpuQaMqI7Gk8NH5DruRpMdukd6y8XKPiZX9fnyrFo8aSUKJV8vmyV_AYxwtZ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+synoptic+patterns+on+surface+ozone+variability+over+the+eastern+United+States+from+1980+to+2012&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=L.+Shen&rft.au=L.+J.+Mickley&rft.au=A.+P.+K.+Tai&rft.date=2015-10-01&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=15&rft.issue=19&rft.spage=10925&rft.epage=10938&rft_id=info:doi/10.5194%2Facp-15-10925-2015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3018e79a881e403eb5581e56782bfbde
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon