Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012
We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal stru...
Uloženo v:
| Vydáno v: | Atmospheric chemistry and physics Ročník 15; číslo 19; s. 10925 - 10938 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
01.10.2015
Copernicus Publications |
| Témata: | |
| ISSN: | 1680-7324, 1680-7316, 1680-7324 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north–south movement of jet wind latitude, (2) a north–south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east–west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between −0.76 and −0.93 over 1980–2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg−1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1–2 ppbv deg−1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry. |
|---|---|
| AbstractList | We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28-32 and 40-45 degree N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north-south movement of jet wind latitude, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east-west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4 degree W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1-2 ppbv deg-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry. We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north–south movement of jet wind latitude, (2) a north–south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east–west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between −0.76 and −0.93 over 1980–2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg−1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1–2 ppbv deg−1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry. We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980–2012 in summer (June–August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28–32 and 40–45∘ N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north–south movement of jet wind latitude, (2) a north–south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east–west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980–2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ∼ 85.4∘ W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ∼ 1 ppbv deg-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1–2 ppbv deg-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry. We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28-32 and 40-45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north-south movement of jet wind latitude, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east-west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1-2 ppbv deg-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry. We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States during 1980-2012 in summer (June-August, JJA). Zonally averaged, the relative standard deviation (SD) of daily MDA8 JJA ozone shows a bimodal structure, with peaks at 28-32 and 40-45° N, and we show that those regions are most influenced by the variability in daily weather. We apply empirical orthogonal functions (EOFs) to understand the causes of this structure. The first three leading EOF patterns explain 53 % of the total variance in detrended surface ozone, displaying (1) a widespread response of ozone in the eastern United States associated with north-south movement of jet wind latitude, (2) a north-south pattern linked to the Bermuda High system when its west boundary is located along the east coast, and (3) an east-west pattern characteristic of a westward extension of the Bermuda High and an enhanced Great Plains low level jet (GPLLJ). The northern peak of ozone relative SD can be explained by polar jet activity, while the southern peak appears related to variability in the Bermuda High and GPLLJ. We define a new metric polar jet frequency as the total number of days the jet traverses the Midwest and northeast each summer. In the Midwest and northeast, we find that the correlation coefficient r between detrended mean JJA MDA8 ozone and the polar jet frequency ranges between -0.76 and -0.93 over 1980-2012 depending on the time period selected, suggesting that polar jet frequency could provide a simple metric to predict ozone variability in future climate regimes. In the southeast, the influence of the Bermuda High on mean JJA MDA8 ozone depends on the location of its west edge. For those summers when the average position of the west edge is located west of ~ 85.4° W, a westward shift in the Bermuda High west edge increases ozone in the southeast by ~ 1 ppbv deg.sup.-1 in longitude. For all summers, a northward shift in the Bermuda High west edge increases ozone over the entire eastern United States by 1-2 ppbv deg.sup.-1 in latitude. None of the synoptic patterns identified in this study show a significant trend from 1980 to 2012, confirming that the observed ozone decrease over the eastern United States during this time period is mainly caused by emission controls. Our work underscores the impact of synoptic patterns on ozone variability and suggests that a combination of changing local and synoptic meteorology together with trends in background ozone will determine the influence of climate change on US ozone air quality in future decades. The observed relationships of US surface ozone and synoptic circulations in this study can also be used to validate models of atmospheric chemistry. |
| Audience | Academic |
| Author | Shen, L. Tai, A. P. K. Mickley, L. J. |
| Author_xml | – sequence: 1 givenname: L. surname: Shen fullname: Shen, L. – sequence: 2 givenname: L. J. surname: Mickley fullname: Mickley, L. J. – sequence: 3 givenname: A. P. K. orcidid: 0000-0001-5189-6263 surname: Tai fullname: Tai, A. P. K. |
| BookMark | eNqNkl1rFDEUhgepYFv9Ad4FvNGLqTkz-bwsxY-FgmDtdchkTtYss5M1yZbWX2-2K9ItUiUXCcnzvicneU-aoznO2DSvgZ5x0Oy9dZsWeAtUd7ztKPBnzTEIRVvZd-zowfpFc5LzitKOU2DHzbSY_bTF2SGJnuS7OW5KcGRjS8E0ZxJnkrfJ2935z1qS3NgU7BCmUO5IvMFEynckaPMOJ9dzKDiSq2ILZuJTXBPQipISSb1T97J57u2U8dXv-bS5_vjh28Xn9vLLp8XF-WXrBNDSjg7VIB3vkQNgj4p6HNXAGBul8NCLXvHRaz30SK0fhk6Ckj0fRq-QOuH602ax9x2jXZlNCmub7ky0wdxvxLQ0NtU2JzQ9BYVSW6UAGe1x4LyuuJCqG_wwYvV6u_fapPhji7mYdcgOp8nOGLfZgAatJeUg_o1K0UGnWSf_A-2kUKK2XNE3j9BV3Ka5vp_pGDDBGZf9U1T1AqFrgw-8lrb2HmYfS7JuV9qcMwWcacGhUmd_oeoYcR1cDYEPdf9A8O5AUJmCt2VptzmbxdXXQxb2rEsx54T-z_8ANbsomxplA9zcR9nsolw18pHGhRqxUMskG6YnlL8A6Dz1jw |
| CitedBy_id | crossref_primary_10_1029_2021EA001694 crossref_primary_10_1016_j_jes_2024_05_047 crossref_primary_10_1016_j_scitotenv_2024_171687 crossref_primary_10_1016_j_jes_2020_11_030 crossref_primary_10_1016_j_chemosphere_2020_128966 crossref_primary_10_1016_j_atmosenv_2017_08_050 crossref_primary_10_1016_j_jes_2024_07_015 crossref_primary_10_5194_acp_19_14477_2019 crossref_primary_10_1016_j_atmosenv_2022_119126 crossref_primary_10_1029_2017JD028172 crossref_primary_10_1016_j_atmosenv_2019_117127 crossref_primary_10_5194_acp_16_15265_2016 crossref_primary_10_1016_j_scitotenv_2020_139559 crossref_primary_10_1175_JAMC_D_18_0045_1 crossref_primary_10_5194_acp_17_4355_2017 crossref_primary_10_5194_acp_20_203_2020 crossref_primary_10_5194_acp_22_6471_2022 crossref_primary_10_1038_s41598_019_53103_7 crossref_primary_10_5194_acp_18_2615_2018 crossref_primary_10_1002_2016GL071791 crossref_primary_10_1080_13683500_2022_2106826 crossref_primary_10_3390_atmos10090501 crossref_primary_10_1016_j_scitotenv_2022_155107 crossref_primary_10_1016_j_atmosenv_2017_09_024 crossref_primary_10_1007_s40726_019_00115_6 crossref_primary_10_1175_JAMC_D_18_0263_1 crossref_primary_10_1016_j_atmosres_2023_106978 crossref_primary_10_1029_2020GL090714 crossref_primary_10_5194_acp_21_11013_2021 crossref_primary_10_5194_acp_23_9745_2023 crossref_primary_10_1016_j_envsoft_2025_106502 crossref_primary_10_1016_j_scitotenv_2018_12_039 crossref_primary_10_5194_acp_22_10551_2022 crossref_primary_10_5194_acp_17_3111_2017 crossref_primary_10_1016_j_jenvman_2021_112368 crossref_primary_10_1029_2019JD030572 crossref_primary_10_1002_2016JD025663 crossref_primary_10_1002_2017GL073044 crossref_primary_10_1016_j_atmosenv_2024_120919 crossref_primary_10_1038_s41370_018_0091_4 crossref_primary_10_1002_2017GL076150 crossref_primary_10_1016_j_atmosenv_2021_118704 crossref_primary_10_1029_2021JD035920 crossref_primary_10_1016_j_atmosenv_2017_09_038 crossref_primary_10_1038_s41598_022_26615_y crossref_primary_10_3390_rs12030565 crossref_primary_10_1016_j_scitotenv_2024_170132 crossref_primary_10_1029_2020JD033165 crossref_primary_10_5194_acp_23_15629_2023 crossref_primary_10_3390_app9020357 crossref_primary_10_1016_j_atmosenv_2020_117808 crossref_primary_10_3390_atmos9050159 crossref_primary_10_1016_j_jes_2020_09_038 crossref_primary_10_5194_acp_19_12917_2019 crossref_primary_10_1016_j_atmosenv_2018_08_032 crossref_primary_10_5194_acp_18_1185_2018 crossref_primary_10_1002_2016GL068432 crossref_primary_10_1002_2017GL075905 crossref_primary_10_1088_1748_9326_11_12_124004 crossref_primary_10_1073_pnas_1614453114 crossref_primary_10_1088_1748_9326_ab4861 crossref_primary_10_1016_j_jes_2020_02_019 crossref_primary_10_1029_2021GL092816 crossref_primary_10_1088_1748_9326_aad2e2 crossref_primary_10_1088_1748_9326_ace72e crossref_primary_10_1016_j_scs_2024_105207 crossref_primary_10_1007_s00376_019_8216_9 crossref_primary_10_1016_j_jes_2022_06_033 crossref_primary_10_1134_S1024856020060184 crossref_primary_10_1073_pnas_1610708114 crossref_primary_10_1016_j_atmosres_2024_107660 crossref_primary_10_1007_s40726_019_00118_3 crossref_primary_10_1029_2021JD035597 crossref_primary_10_1016_j_atmosenv_2019_04_045 crossref_primary_10_1073_pnas_1602563113 crossref_primary_10_1007_s11869_022_01232_w crossref_primary_10_3390_atmos12121557 crossref_primary_10_1016_j_atmosenv_2018_07_042 crossref_primary_10_1016_j_uclim_2016_08_002 crossref_primary_10_1007_s00382_019_04954_3 crossref_primary_10_1002_2016GL068060 crossref_primary_10_1029_2020JD032735 crossref_primary_10_1016_j_atmosenv_2021_118841 crossref_primary_10_3389_fenvs_2022_1007942 |
| Cites_doi | 10.1029/2012JD018261 10.1016/j.atmosenv.2011.11.021 10.1029/2009GL037308 10.1175/2007JCLI1586.1 10.1029/2008GL033614 10.1029/2008JD010816 10.1175/2010JCLI3829.1 10.1016/j.atmosenv.2010.04.031 10.1016/0960-1686(93)90035-W 10.5194/acp-12-3131-2012 10.1007/978-0-387-21706-2 10.1016/j.atmosenv.2008.09.051 10.1029/JD094iD06p08511 10.1002/2013JD021435 10.1029/2007JD008917 10.1007/s00382-011-1214-y 10.1016/j.atmosenv.2008.11.036 10.1029/2006GL027749 10.5194/acp-8-7075-2008 10.1029/2001JD000982 10.1175/JCLI-D-12-00168.1 10.1029/2002JD003151 10.1016/1352-2310(95)00146-P 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1002/grl.50411 10.1016/j.atmosenv.2007.04.061 10.5194/acp-12-12197-2012 10.1016/j.atmosenv.2013.04.045 10.1289/ehp.1104851 10.1016/j.atmosenv.2004.02.033 10.1002/jgrd.50136 10.1029/2010JD014300 10.1038/ngeo1590 10.1029/2006JD008170 10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2 10.1029/2004GL021216 10.5194/acp-12-7797-2012 10.5194/acp-13-565-2013 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2015 Copernicus GmbH Copyright Copernicus GmbH 2015 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2015 Copernicus GmbH – notice: Copyright Copernicus GmbH 2015 – notice: 2015. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7ST 7TV 7U6 7U5 DOA |
| DOI | 10.5194/acp-15-10925-2015 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts Pollution Abstracts Sustainability Science Abstracts Solid State and Superconductivity Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Pollution Abstracts Environment Abstracts Sustainability Science Abstracts Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Publicly Available Content Database Aerospace Database Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1680-7324 |
| EndPage | 10938 |
| ExternalDocumentID | oai_doaj_org_article_3018e79a881e403eb5581e56782bfbde 3834487751 A481549651 10_5194_acp_15_10925_2015 |
| GeographicLocations | Canada Bermuda Eastern states Great Plains United States--US North America ANW, Atlantic, Bermuda USA, Great Plains USA |
| GeographicLocations_xml | – name: Canada – name: Bermuda – name: Eastern states – name: North America – name: United States--US – name: Great Plains – name: USA, Great Plains – name: USA – name: ANW, Atlantic, Bermuda |
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS PUEGO 7ST 7TV 7U6 7U5 |
| ID | FETCH-LOGICAL-c610t-dce8b7c53e511e3e80fed8b444d76f136385df99b3e0afbb2718735bdf8e0c6c3 |
| IEDL.DBID | RKB |
| ISICitedReferencesCount | 93 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000362971000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1680-7324 1680-7316 |
| IngestDate | Fri Oct 03 12:52:01 EDT 2025 Tue Oct 07 09:55:36 EDT 2025 Thu Oct 02 05:15:02 EDT 2025 Tue Oct 07 09:51:03 EDT 2025 Sat Aug 23 13:30:08 EDT 2025 Sun Jul 13 05:27:25 EDT 2025 Sat Nov 29 13:00:16 EST 2025 Sun Nov 23 08:41:40 EST 2025 Wed Nov 26 08:54:15 EST 2025 Tue Nov 18 22:18:35 EST 2025 Sat Nov 29 03:43:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | https://creativecommons.org/licenses/by/3.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c610t-dce8b7c53e511e3e80fed8b444d76f136385df99b3e0afbb2718735bdf8e0c6c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5189-6263 |
| OpenAccessLink | https://doaj.org/article/3018e79a881e403eb5581e56782bfbde |
| PQID | 1721698814 |
| PQPubID | 105744 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3018e79a881e403eb5581e56782bfbde proquest_miscellaneous_1919970516 proquest_miscellaneous_1762129427 proquest_miscellaneous_1727686444 proquest_journals_2414654573 proquest_journals_1721698814 gale_infotracmisc_A481549651 gale_infotracacademiconefile_A481549651 gale_incontextgauss_ISR_A481549651 crossref_primary_10_5194_acp_15_10925_2015 crossref_citationtrail_10_5194_acp_15_10925_2015 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-10-01 |
| PublicationDateYYYYMMDD | 2015-10-01 |
| PublicationDate_xml | – month: 10 year: 2015 text: 2015-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric chemistry and physics |
| PublicationYear | 2015 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref8 doi: 10.1029/2012JD018261 – ident: ref30 doi: 10.1016/j.atmosenv.2011.11.021 – ident: ref5 doi: 10.1029/2009GL037308 – ident: ref39 doi: 10.1175/2007JCLI1586.1 – ident: ref1 doi: 10.1029/2008GL033614 – ident: ref12 doi: 10.1029/2008JD010816 – ident: ref23 doi: 10.1175/2010JCLI3829.1 – ident: ref6 doi: 10.1016/j.atmosenv.2010.04.031 – ident: ref9 doi: 10.1016/0960-1686(93)90035-W – ident: ref33 doi: 10.5194/acp-12-3131-2012 – ident: ref35 doi: 10.1007/978-0-387-21706-2 – ident: ref16 doi: 10.1016/j.atmosenv.2008.09.051 – ident: ref25 doi: 10.1029/JD094iD06p08511 – ident: ref29 doi: 10.1002/2013JD021435 – ident: ref40 doi: 10.1029/2007JD008917 – ident: ref21 doi: 10.1007/s00382-011-1214-y – ident: ref32 – ident: ref37 doi: 10.1016/j.atmosenv.2008.11.036 – ident: ref18 doi: 10.1029/2006GL027749 – ident: ref20 doi: 10.5194/acp-8-7075-2008 – ident: ref10 doi: 10.1029/2001JD000982 – ident: ref41 doi: 10.1175/JCLI-D-12-00168.1 – ident: ref11 doi: 10.1029/2002JD003151 – ident: ref36 doi: 10.1016/1352-2310(95)00146-P – ident: ref17 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: ref2 doi: 10.1002/grl.50411 – ident: ref4 – ident: ref7 doi: 10.1016/j.atmosenv.2007.04.061 – ident: ref31 doi: 10.5194/acp-12-12197-2012 – ident: ref38 doi: 10.1016/j.atmosenv.2013.04.045 – ident: ref3 doi: 10.1289/ehp.1104851 – ident: ref14 doi: 10.1016/j.atmosenv.2004.02.033 – ident: ref28 – ident: ref22 doi: 10.1002/jgrd.50136 – ident: ref19 doi: 10.1029/2010JD014300 – ident: ref24 doi: 10.1038/ngeo1590 – ident: ref13 doi: 10.1029/2006JD008170 – ident: ref26 doi: 10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2 – ident: ref27 doi: 10.1029/2004GL021216 – ident: ref15 doi: 10.5194/acp-12-7797-2012 – ident: ref34 doi: 10.5194/acp-13-565-2013 |
| SSID | ssj0025014 |
| Score | 2.4772308 |
| Snippet | We investigate the effect of synoptic-scale weather patterns on observed maximum daily 8-hour average (MDA8) surface ozone over the eastern United States... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 10925 |
| SubjectTerms | Air pollution Air quality Atmospheric chemistry Atmospheric models Bermuda Climate change Climate change influences Climate variability Climatology Correlation coefficient Correlation coefficients Daily weather Emissions Emissions control Empirical orthogonal functions Frequency ranges Future climates Global temperature changes Latitude Low-level jets Meteorology Northeast Orthogonal functions Outdoor air quality Ozone Ozone decrease Studies Summer Synoptic meteorology Trends Variability Weather Weather effects Weather patterns |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SfPBF1CquVolFFISl2U2ySR5rsbRQi_gBfQubLykcu8ftXaH-9c5k944e6Pni2-1ldslmJpPfbCa_IeQtKDUJrmSpmDMlrNcwpUTgZSubGJpU60bkg8IX6vJSX12ZL3dKfWFO2EgPPA7cERigjsq0WldRMB6dlPBLgo-tXXIhovcF1LMOpqZQC3fLMNRqNCuxNtO4nwloRRy1fl5WyL5pagk2gvVw76xImbj_b-45rzmnj8jDCSzS47GTj8m92D0hxWfAuf0ifw6n7-jJ7BpAZ77aJ7Pzdc0R2ic63HY9eARP55lEsxto39FhtUgttv_qu0hvIFQembpvKSZzUsCDFMv5gDgd8Sgd8SjFgyi0MprRZU_hjeqn5Mfpp-8nZ-VUT6H0AJKWZfBRO-Ulj4CyIo-apRi0E0IE1aSKw1SUIRnjeGRtcq6GdUtx6ULSkfnG82dkr4O-PSfUN0jCw1QQtRMsGIcbqIa1tYjG-CALwtZjav1ENo41L2YWgg5UgwU12ErarAaLaijIh80t85FpY5fwR1TURhBJsvMfYDp2Mh37L9MpyCGq2SINRod5Nj_b1TDY829f7TFy2CCVflWQ95NQ6uENfDsdW4BxQOasLcmDLUmYp367eW1NdvITg8UAvDHQQfHHZoBXyHcnFS_Im00zPhhT47rYr_IjIGQEWCt2yTQAUYyo1Q4ZgzlH4KObF_9jcF-SB6ioMe_xgOwtF6v4itz3N8vrYfE6z9bfV_o-ZQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELeg44EXvhFhAxmEQEKK5iR2Yj-hbdrEJKimAdLerPhrmlQlJWknbX89d4lbqAR94a2pL5GTs-9-Z59_R8g7UGrgRSXSihmVgr-GKcVdkdai9K4MuSz5cFD4SzWdyosLdRYX3PqYVrmyiYOhdq3FNfJ98DRI_SWq4tP8Z4pVo3B3NZbQuEt2kKmMT8jO4fH07HwdcuGuGYZcpWQp1mga9zUBtfD92s7TDFk4VS5grGBd3D8800Dg_y8zPfiek4f_2-tH5EFEnfRgHCaPyR3fPCHJVwDMbTesq9P39Gh2Beh1uHpKZqer4iW0DbS_aVowLZbOBzbOpqdtQ_tlF2psv20bT68h5h4pv28oZoVSAJYU6wKBOB2BLR2BLcUTLTRTktFFS-GT5M_Ij5Pj70ef01iYIbWAthaps16ayorCA1zzhZcseCcN59xVZcgKmNPCBaVM4VkdjMnBAVaFMC5Iz2xpi-dk0kDfXhBqS2TzYZXjueHMKYM7sYrVOfdKWScSwlZK0TaylmPxjJmG6AX1qEGPOhN60KNGPSbk4_qW-UjZsU34EDW9FkS27eGPtrvUcfJqMILSV6qWMvOcFd4IAb8E-PncBON8Qt7iONHIp9Fgws5lvex7ffrtXB8gGQ5y8mcJ-RCFQgtvYOt4_gG-A1JwbUjubUjChLebzauxpqPB6TVG8qWCDvK_Nv8ehwl5s27GB2OOXePb5fAIiD0BH_NtMiVgHcXzaouMwuQlMPbly-1d2SX3UQVjauQemSy6pX9F7tnrxVXfvY5T-Rd4qU38 priority: 102 providerName: ProQuest |
| Title | Influence of synoptic patterns on surface ozone variability over the eastern United States from 1980 to 2012 |
| URI | https://www.proquest.com/docview/1721698814 https://www.proquest.com/docview/2414654573 https://www.proquest.com/docview/1727686444 https://www.proquest.com/docview/1762129427 https://www.proquest.com/docview/1919970516 https://doaj.org/article/3018e79a881e403eb5581e56782bfbde |
| Volume | 15 |
| WOSCitedRecordID | wos000362971000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: RKB dateStart: 20010101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: P5Z dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PATMY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PCBAR dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: PIMPY dateStart: 20100415 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBej28Ne9j3mrSvaGBsMTGVbsqXHtLQssATTddDtRVhfoxDsECeF9q_vne2EBrbsYXuxHetsFJ10-p11-h0hH0CpgWeFiAtmVAzzNQwp7rK4Erl3eUhlzruNwl-L6VReXKjyTqovjAnr6YH7hjuEDih9oSopE89Z5o0QcCXAxqYmGOdx3zqMavTTMYfb4Grhahm6WrlkMeZm6tczAa3ww8rO4wTZN1UqoI9gPtw7M1JH3P8n89zNOaeP_6G2T8ijAWjSUf_IU3LP189INAGM3Cy6T-n0Iz2eXQJg7X49J7PxOl8JbQJtr-sGrIml846As25pU9N2tQgVlt80tadX4Gb3LN_XFANBKWBJiqmAQJz2WJb2WJbiJhaaKMnosqHQGukL8v305Pz4SzzkYogtAKxl7KyXprAi84DQfOYlC95Jwzl3RR6SDIaxcEEpk3lWBWNSmPOKTBgXpGc2t9lLsldD3V4RanMk8GGF46nhzCmDi6-KVSn3SlknIsLW-tB2ICrHfBkzDQ4LqlCDCnUidKdCjSqMyOfNI_OepWOX8BHqbSOIBNvdDVCkHhSp_6bIiLzHLqKRQqPGGJ1f1apt9fjbmR4h_w3S8CcR-TQIhQb-ga2GLQ_QDsi6tSW5vyUJY9xuF697oh5sTKvRec8VVJD_thigGXLliSKLyLtNMb4Yw-pq36y6V4C7CZCY75LJAd4onhY7ZBTGK4F9z1__j8Z9Qx6iovqYyX2yt1ys_FvywF4tL9vFAbl_dDItzw66zydwLMVPuFeOzic_8DyelHBGa3ALGCxXbQ |
| linkProvider | Copernicus Gesellschaft |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFLZKiwSXsospBQyCIiGNOos9Yx84tIWoUZOIpYjezHiZqlI0EzJJUfhR_EbemyUQCXLrgVsSv1ge-_Nbxs_vI-QFLGrO4pT7aaClD_YathSzsZ_xxNkkj0TC6ovCg3Q0Emdn8v0G-dndhcG0yk4n1oralgbfke-DpcHSXzztmKpP3OI7xGfVm_5bWMyXUdR7d3p07LcUAr4Bv2DmW-OETg2PHTgWLnYiyJ0VmjFm0yQPY0Aft7mUOnZBlmsdgapOY65tLlxgEhNDv3uTbz6yVOFpbkvZcY1siUTGsK-2DnvDD1-WIR6e0mGIl4jAR06o5hwVvCS2n5mJH2LVTxlxwCby8P5hCWvCgH-ZhdrW9W79b7N0m2y3XjU9aLbBHbLhirvEG0JAUE7rcwO6R4_GF-Cd19_ukXG_I2ehZU6rRVGC6jR0UlcbLSpaFrSaT_MM23-UhaOXGezUOpF4QTHrlYLjTJH3CMRp47jTxnGneGOHhlIEdFZSWILoPvl8JfPxgGwWMLaHhJoEqxUFqWWRZoGVGk-aZZBFzElpLPdI0IFAmbYqO5KDjBVEZ4gbBbhRIVc1bhTixiOvl3-ZNCVJ1gkfIrKWglhNvP6hnJ6rVjkpUPLCpTITInQsiJ3mHD5x8GMinWvrPPIccamwXkiBCUnn2byqVP_TR3WAxX6QcyD0yKtWKC_hCUzW3u-AecASYyuSuyuSoNDManOHbdUq1Erhm4pEwgDZX5t_494jz5bN2DHmEBaunNddQGwN_j9bJ5OALydZlK6RkZicBcYs2Vk_lKfkxvHpcKAG_dHJI3ITl6NJA90lm7Pp3D0m183l7KKaPmnVCCVfr3qb_gLqPK0R |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFCEuvBGGAgviISFZWdtre_eAUJoSEbVEUQGpt8XeR1UpskOcFIWfxq9jxo9AJcitB25xdrxae795eWZnCHkBm-p4lMZ-ynLpg74GluIm8rM4sSZxoUh4fVD4KJ1MxMmJnO6Qn91ZGEyr7GRiLahNqfEbeR80DZb-itOo79q0iOnB6N38m48dpDDS2rXTaCByaNffwX2r3o4PYK9fhuHo_efhB7_tMOBrMBuWvtFW5KmOIwt2h42sYM4akXPOTZq4IAJwxsZJmUeWZS7PQ5DkaRTnxgnLdKIjmPcK2RVJysIe2Z0O9wfHG3cPI3bo7iWC-dgfqompgsXE-5me-wFWAJVhDDjFnrx_aMW6ecC_VESt90Y3_-c3dovcaK1tOmjY4zbZscUd4n0ER6Fc1PEE-ooOZ2dgtddXd8ls3DVtoaWj1booQaRqOq-rkBYVLQtarRYuw_EfZWHpeQYcXCcYrylmw1IwqCn2QwJy2hj0tDHoKZ7koYEUjC5LCtsR3iNfLuXh75NeAWt7QKhOsIoRSw0Pc86MzDECLVkWciulNrFHWAcIpdtq7dg0ZKbAa0MMKcCQCmJVY0ghhjzyZnPLvClVso14H1G2IcQq4_Uf5eJUtUJLgfAXNpWZEIHlLLJ5HMOvGOybMHe5sR55jhhVWEekQHydZquqUuNPx2qARYCwF0HgkdctkSvhCXTWnvuA94Clxy5Q7l2gBEGnLw53OFetoK0UfsFIJCyQ_3X4Nw945NlmGCfG3MLClqt6CvC5wS_g22gSsPEkD9MtNBKTtkDJJQ-3L-UpuQaMqI7Gk8NH5DruRpMdukd6y8XKPiZX9fnyrFo8aSUKJV8vmyV_AYxwtZ8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+synoptic+patterns+on+surface+ozone+variability+over+the+eastern+United+States+from+1980+to+2012&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=L.+Shen&rft.au=L.+J.+Mickley&rft.au=A.+P.+K.+Tai&rft.date=2015-10-01&rft.pub=Copernicus+Publications&rft.issn=1680-7316&rft.eissn=1680-7324&rft.volume=15&rft.issue=19&rft.spage=10925&rft.epage=10938&rft_id=info:doi/10.5194%2Facp-15-10925-2015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3018e79a881e403eb5581e56782bfbde |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |