repgenHMM: a dynamic programming tool to infer the rules of immune receptor generation from sequence data
Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability...
Uložené v:
| Vydané v: | Bioinformatics Ročník 32; číslo 13; s. 1943 - 1951 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press (OUP)
01.07.2016
Oxford University Press |
| Predmet: | |
| ISSN: | 1367-4803, 1367-4811, 1367-4811, 1460-2059 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence.
Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires.
Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads.
Contact: elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr |
|---|---|
| AbstractList | Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Contact:
elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Contact: elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence.Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires.Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Abstract Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Contact: elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be [Formula: see text] for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr. The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence.MOTIVATIONThe diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence.We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be [Formula: see text] for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires.RESULTSWe present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be [Formula: see text] for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires.Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloadsAVAILABILITY AND IMPLEMENTATIONSource code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloadselhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr.CONTACTelhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr. |
| Author | Walczak, Aleksandra M. Mora, Thierry Marcou, Quentin Elhanati, Yuval |
| Author_xml | – sequence: 1 givenname: Yuval surname: Elhanati fullname: Elhanati, Yuval – sequence: 2 givenname: Quentin surname: Marcou fullname: Marcou, Quentin – sequence: 3 givenname: Thierry surname: Mora fullname: Mora, Thierry – sequence: 4 givenname: Aleksandra M. surname: Walczak fullname: Walczak, Aleksandra M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27153709$$D View this record in MEDLINE/PubMed https://hal.science/hal-05290172$$DView record in HAL |
| BookMark | eNqNUktv1DAQtlARfcBPAPkIh6VjJ3ZikCpVFWWRtuICZ8txJrtGib3YTlH_Pd5uW9EegIuf32M-zRyTAx88EvKawXsGqjrtXHB-CHEy2dl02uVfjPFn5IhVslnULWMHD2eoDslxSj8AQICQL8ghb5ioGlBHxEXcrtEvr64-UEP7G28mZ-k2hnU00-T8muYQxrLQ4oaR5g3SOI-YaBiom6bZlzta3OYQaRHCWOoJng4xTDThzxm9RdqbbF6S54MZE76620_I98tP3y6Wi9XXz18uzlcLKxnkheiwlRKVrava9oZLgR3IvlfW1AO2gwDOqq5hFpQAY1hJglhZNti6rlXVVyfkbK-7nbsJe4s-RzPqbXSTiTc6GKcf_3i30etwrWvFgXFeBN7tBTZPaMvzld69geAKWMOvWcG-vTOLoWRNWU8uWRxH4zHMSbOWCyFrkOI_oNDKRkgF_4Y2SgmhJOxU3_yZ9qHe-w4XwMc9wMaQUsRBW5dve1TCu1Ez0Lt50o_nSe_nqbDFE_a9wd95vwHgVNfo |
| CitedBy_id | crossref_primary_10_1073_pnas_1700241114 crossref_primary_10_1093_bib_bbw138 crossref_primary_10_4049_jimmunol_1800091 crossref_primary_10_3389_fimmu_2018_02913 crossref_primary_10_3389_fimmu_2021_777788 crossref_primary_10_1074_jbc_REV120_010181 crossref_primary_10_1109_TITS_2021_3082944 crossref_primary_10_1016_j_it_2017_05_003 crossref_primary_10_1016_j_physrep_2020_01_001 crossref_primary_10_1038_s41598_023_43048_3 crossref_primary_10_1038_s41467_018_02832_w crossref_primary_10_1039_C9ME00071B crossref_primary_10_3389_fimmu_2018_00462 crossref_primary_10_1016_j_coisb_2018_09_005 crossref_primary_10_1371_journal_pcbi_1005572 crossref_primary_10_1371_journal_pcbi_1006874 crossref_primary_10_3389_fimmu_2018_00224 crossref_primary_10_1186_s12859_017_1544_9 crossref_primary_10_1111_imm_12857 crossref_primary_10_1111_imr_12664 crossref_primary_10_1111_imr_12665 crossref_primary_10_1111_imr_12670 crossref_primary_10_1007_s00281_021_00840_5 crossref_primary_10_1038_s41588_020_0640_3 |
| Cites_doi | 10.1073/pnas.1319389111 10.4049/jimmunol.160.5.2360 10.3109/08830189609061755 10.1038/nmeth.2960 10.1186/1471-2105-9-S12-S20 10.1186/s12859-015-0589-x 10.1098/rstb.2014.0240 10.1182/blood-2009-04-217604 10.1016/j.imbio.2012.04.003 10.1111/j.1365-2567.2006.02431.x 10.1038/nmeth.3364 10.1038/nbt.2782 10.1093/bioinformatics/btm147 10.1073/pnas.1212755109 10.4049/jimmunol.166.2.892 10.4049/jimmunol.172.11.6790 10.1098/rstb.2014.0243 10.4049/jimmunol.1003898 10.1017/CBO9780511790492 10.1073/pnas.1417683112 10.1093/bioinformatics/btt004 10.1093/nar/gkn316 10.3389/fimmu.2013.00466 10.15252/embj.201489643 10.4049/jimmunol.1400119 10.4049/jimmunol.166.4.2597 10.1093/nar/gki010 10.1093/bioinformatics/btq056 10.1016/S0092-8674(04)00039-X 10.4049/jimmunol.164.4.1971 10.1371/journal.pone.0118192 10.1093/nar/gkt382 10.4049/jimmunol.177.6.3857 10.1038/nri2941 10.1146/annurev-genet-110410-132552 10.1016/j.coi.2013.09.017 10.1002/eji.201242517 10.1073/pnas.0608248104 10.4049/jimmunol.175.8.5170 |
| ContentType | Journal Article |
| Copyright | The Author 2016. Published by Oxford University Press. Distributed under a Creative Commons Attribution 4.0 International License The Author 2016. Published by Oxford University Press. 2016 |
| Copyright_xml | – notice: The Author 2016. Published by Oxford University Press. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author 2016. Published by Oxford University Press. 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7T5 7TM 8FD FR3 H94 P64 7SC JQ2 L7M L~C L~D 1XC 5PM |
| DOI | 10.1093/bioinformatics/btw112 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Immunology Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 1367-4811 1460-2059 |
| EndPage | 1951 |
| ExternalDocumentID | PMC4920122 oai:HAL:hal-05290172v1 27153709 10_1093_bioinformatics_btw112 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -E4 -~X .2P .DC .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5WA 70D AAIJN AAIMJ AAJKP AAJQQ AAKPC AAMDB AAMVS AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- NVLIB O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RNS ROL ROX RPM RUSNO RW1 RXO SV3 TEORI TJP TLC TOX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF M49 NPM 7X8 7QO 7T5 7TM 8FD ABJNI FR3 H94 P64 ROZ TN5 WH7 7SC JQ2 L7M L~C L~D 1XC 5PM |
| ID | FETCH-LOGICAL-c610t-5be866e9c434cda265eb06dd9ca4fe8f50213b71c0950aa1715ee3c1fc44493d3 |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379761500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1367-4803 1367-4811 |
| IngestDate | Tue Sep 30 16:25:49 EDT 2025 Tue Oct 14 20:49:09 EDT 2025 Thu Oct 02 06:16:49 EDT 2025 Tue Oct 07 09:47:42 EDT 2025 Fri Jul 11 09:12:55 EDT 2025 Wed Feb 19 02:40:58 EST 2025 Sat Nov 29 05:34:04 EST 2025 Tue Nov 18 21:17:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc/4.0 The Author 2016. Published by Oxford University Press. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c610t-5be866e9c434cda265eb06dd9ca4fe8f50213b71c0950aa1715ee3c1fc44493d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Associate Editor: Inanc Birol |
| ORCID | 0000-0001-7074-2761 0000-0002-2686-5702 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4920122 |
| PMID | 27153709 |
| PQID | 1799559605 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4920122 hal_primary_oai_HAL_hal_05290172v1 proquest_miscellaneous_1825564065 proquest_miscellaneous_1808675690 proquest_miscellaneous_1799559605 pubmed_primary_27153709 crossref_citationtrail_10_1093_bioinformatics_btw112 crossref_primary_10_1093_bioinformatics_btw112 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-01 |
| PublicationDateYYYYMMDD | 2016-07-01 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioinformatics |
| PublicationTitleAlternate | Bioinformatics |
| PublicationYear | 2016 |
| Publisher | Oxford University Press (OUP) Oxford University Press |
| Publisher_xml | – name: Oxford University Press (OUP) – name: Oxford University Press |
| References | Bolotin (2023020112335656500_btw112-B2) 2012; 42 Bishop (2023020112335656500_btw112-B1) 2006 Volpe (2023020112335656500_btw112-B40) 2006; 22 Gapin (2023020112335656500_btw112-B13) 2014; 192 Venturi (2023020112335656500_btw112-B39) 2011; 186 Bonissone (2023020112335656500_btw112-B4) 2015 Warmflash (2023020112335656500_btw112-B42) 2006; 177 Cowell (2023020112335656500_btw112-B6) 2000; 164 Brochet (2023020112335656500_btw112-B5) 2008; 36 Robins (2023020112335656500_btw112-B30) 2009; 114 Georgiou (2023020112335656500_btw112-B14) 2014; 32 Munshaw (2023020112335656500_btw112-B23) 2010; 26 Elhanati (2023020112335656500_btw112-B9) 2015; 370 Frost (2023020112335656500_btw112-B10) 2015; 370 Huang (2023020112335656500_btw112-B19) 2001; 166 Zvyagin (2023020112335656500_btw112-B44) 2014; 111 Gouge (2023020112335656500_btw112-B16) 2015; 34 Ye (2023020112335656500_btw112-B43) 2013; 41 Giudicelli (2023020112335656500_btw112-B15) 2005; 33 Ralph (2023020112335656500_btw112-B28) 2015 Oprea (2023020112335656500_btw112-B26) 2001; 166 Shugay (2023020112335656500_btw112-B35) 2014; 11 Robins (2023020112335656500_btw112-B29) 2013; 25 Gaëta (2023020112335656500_btw112-B12) 2007; 23 Ohm-Laursen (2023020112335656500_btw112-B25) 2006; 119 Bolotin (2023020112335656500_btw112-B3) 2015; 12 Greenaway (2023020112335656500_btw112-B17) 2013; 218 Komori (2023020112335656500_btw112-B21) 1996; 13 Thomas (2023020112335656500_btw112-B38) 2013; 29 Gadala-Maria (2023020112335656500_btw112-B11) 2015; 112 Jung (2023020112335656500_btw112-B20) 2004; 116 Schatz (2023020112335656500_btw112-B32) 2011; 11 Schatz (2023020112335656500_btw112-B33) 2011; 45 Hawwari (2023020112335656500_btw112-B18) 2007; 104 Durbin (2023020112335656500_btw112-B8) 1998 Paciello (2023020112335656500_btw112-B27) 2015; 10 Wang (2023020112335656500_btw112-B41) 2008; 9 Souto-Carneiro (2023020112335656500_btw112-B36) 2004; 172 Murugan (2023020112335656500_btw112-B24) 2012; 109 Russ (2023020112335656500_btw112-B31) 2015; 16 Shugay (2023020112335656500_btw112-B34) 2013; 4 Lefranc (2023020112335656500_btw112-B22) 2001 Spencer (2023020112335656500_btw112-B37) 2005; 175 Dunn-Walters (2023020112335656500_btw112-B7) 1998; 160 26001675 - BMC Bioinformatics. 2015 May 23;16:170 25799103 - PLoS One. 2015 Mar 23;10(3):e0118192 23303508 - Bioinformatics. 2013 Mar 1;29(5):542-50 8884428 - Int Rev Immunol. 1996;13(4):317-25 25675496 - Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E862-70 24711416 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5980-5 16357034 - Bioinformatics. 2006 Feb 15;22(4):438-44 16210621 - J Immunol. 2005 Oct 15;175(8):5170-7 11145665 - J Immunol. 2001 Jan 15;166(2):892-9 22988065 - Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16161-6 19706884 - Blood. 2009 Nov 5;114(19):4099-107 15608191 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D256-61 17463026 - Bioinformatics. 2007 Jul 1;23(13):1580-7 21394103 - Nat Rev Immunol. 2011 Apr;11(4):251-63 24441474 - Nat Biotechnol. 2014 Feb;32(2):158-68 24795465 - J Immunol. 2014 May 15;192(10):4475-80 24793455 - Nat Methods. 2014 Jun;11(6):653-5 23671333 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W34-40 24400005 - Front Immunol. 2013 Dec 25;4:466 21854230 - Annu Rev Genet. 2011;45:167-202 17210914 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):903-7 22647874 - Immunobiology. 2013 Feb;218(2):213-24 19091020 - BMC Bioinformatics. 2008 Dec 12;9 Suppl 12:S20 21383244 - J Immunol. 2011 Apr 1;186(7):4285-94 25762590 - EMBO J. 2015 Apr 15;34(8):1126-42 11160321 - J Immunol. 2001 Feb 15;166(4):2597-601 20147303 - Bioinformatics. 2010 Apr 1;26(7):867-72 25924071 - Nat Methods. 2015 May;12(5):380-1 17005006 - Immunology. 2006 Oct;119(2):265-77 18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8 26194754 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null 9498777 - J Immunol. 1998 Mar 1;160(5):2360-4 22806588 - Eur J Immunol. 2012 Nov;42(11):3073-83 14744439 - Cell. 2004 Jan 23;116(2):299-311 26751373 - PLoS Comput Biol. 2016 Jan 11;12(1):e1004409 10657647 - J Immunol. 2000 Feb 15;164(4):1971-6 24140071 - Curr Opin Immunol. 2013 Oct;25(5):646-52 16951348 - J Immunol. 2006 Sep 15;177(6):3857-64 15153497 - J Immunol. 2004 Jun 1;172(11):6790-802 26194757 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null |
| References_xml | – volume: 111 start-page: 5980 year: 2014 ident: 2023020112335656500_btw112-B44 article-title: Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1319389111 – volume: 160 start-page: 2360 year: 1998 ident: 2023020112335656500_btw112-B7 article-title: Base-specific sequences that bias somatic hypermutation deduced by analysis of out-of-frame human IgVH genes publication-title: J. Immunol. (Baltimore, MD.: 1950) doi: 10.4049/jimmunol.160.5.2360 – volume: 13 start-page: 317 year: 1996 ident: 2023020112335656500_btw112-B21 article-title: Repertoires of antigen receptors in Tdt congenitally deficient mice publication-title: Int. Rev. Immunol doi: 10.3109/08830189609061755 – volume: 11 start-page: 653 year: 2014 ident: 2023020112335656500_btw112-B35 article-title: Towards error-free profiling of immune repertoires publication-title: Nat. Methods doi: 10.1038/nmeth.2960 – volume: 9 start-page: S20. year: 2008 ident: 2023020112335656500_btw112-B41 article-title: Ab-origin: an enhanced tool to identify the sourcing gene segments in germline for rearranged antibodies publication-title: BMC Bioinf doi: 10.1186/1471-2105-9-S12-S20 – volume: 16 start-page: 1 year: 2015 ident: 2023020112335656500_btw112-B31 article-title: HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs publication-title: BMC Bioinf doi: 10.1186/s12859-015-0589-x – volume: 370 start-page: 20140240. year: 2015 ident: 2023020112335656500_btw112-B10 article-title: Assigning and visualizing germline genes in antibody repertoires publication-title: Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci doi: 10.1098/rstb.2014.0240 – volume-title: The T Cell Receptor FactsBook year: 2001 ident: 2023020112335656500_btw112-B22 – volume: 114 start-page: 4099 year: 2009 ident: 2023020112335656500_btw112-B30 article-title: Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells publication-title: Blood doi: 10.1182/blood-2009-04-217604 – volume: 218 start-page: 213 year: 2013 ident: 2023020112335656500_btw112-B17 article-title: NKT and MAIT invariant TCRα sequences can be produced efficiently by VJ gene recombination publication-title: Immunobiology doi: 10.1016/j.imbio.2012.04.003 – volume: 119 start-page: 265 year: 2006 ident: 2023020112335656500_btw112-B25 article-title: No evidence for the use of DIR, D-D fusions, chromosome 15 open reading frames or VHreplacement in the peripheral repertoire was found on application of an improved algorithm, JointML, to 6329 human immunoglobulin H rearrangements publication-title: Immunology doi: 10.1111/j.1365-2567.2006.02431.x – volume: 12 start-page: 380 year: 2015 ident: 2023020112335656500_btw112-B3 article-title: MiXCR: software for comprehensive adaptive immunity profiling publication-title: Nat. Methods doi: 10.1038/nmeth.3364 – volume: 32 start-page: 158 year: 2014 ident: 2023020112335656500_btw112-B14 article-title: The promise and challenge of high-throughput sequencing of the antibody repertoire publication-title: Nat. Biotechnol doi: 10.1038/nbt.2782 – volume: 23 start-page: 1580 year: 2007 ident: 2023020112335656500_btw112-B12 article-title: iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm147 – volume: 109 start-page: 16161 year: 2012 ident: 2023020112335656500_btw112-B24 article-title: Statistical inference of the generation probability of T-cell receptors from sequence repertoires publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1212755109 – volume: 166 start-page: 892 year: 2001 ident: 2023020112335656500_btw112-B26 article-title: The targeting of somatic hypermutation closely resembles that of meiotic mutation publication-title: J. Immunol doi: 10.4049/jimmunol.166.2.892 – volume: 172 start-page: 6790 year: 2004 ident: 2023020112335656500_btw112-B36 article-title: Characterization of the human Ig heavy chain antigen binding complementarity determining region 3 using a newly developed software algorithm, JOINSOLVER publication-title: J. Immunol. (Baltimore, MD.: 1950) doi: 10.4049/jimmunol.172.11.6790 – volume: 370 start-page: 20140243. year: 2015 ident: 2023020112335656500_btw112-B9 article-title: Inferring processes underlying B-cell repertoire diversity publication-title: Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci doi: 10.1098/rstb.2014.0243 – start-page: e1004409 volume-title: PLoS computational biology year: 2015 ident: 2023020112335656500_btw112-B28 article-title: Consistency of VDJ rearrangement and substitution parameters enables accurate B cell receptor sequence annotation – volume: 186 start-page: 4285 year: 2011 ident: 2023020112335656500_btw112-B39 article-title: A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing publication-title: J. Immunol. (Baltimore, MD.: 1950) doi: 10.4049/jimmunol.1003898 – volume-title: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids year: 1998 ident: 2023020112335656500_btw112-B8 doi: 10.1017/CBO9780511790492 – volume: 112 start-page: E862 year: 2015 ident: 2023020112335656500_btw112-B11 article-title: Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.1417683112 – volume: 29 start-page: 542 year: 2013 ident: 2023020112335656500_btw112-B38 article-title: Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btt004 – volume: 36 start-page: 503 year: 2008 ident: 2023020112335656500_btw112-B5 article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn316 – volume: 4 start-page: 466. year: 2013 ident: 2023020112335656500_btw112-B34 article-title: Huge overlap of individual TCR beta repertoires publication-title: Front. Immunol doi: 10.3389/fimmu.2013.00466 – volume: 34 start-page: 1126 year: 2015 ident: 2023020112335656500_btw112-B16 article-title: Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair publication-title: EMBO J doi: 10.15252/embj.201489643 – volume: 192 start-page: 4475 year: 2014 ident: 2023020112335656500_btw112-B13 article-title: Check MAIT publication-title: J. Immunol. (Baltimore, MD.: 1950) doi: 10.4049/jimmunol.1400119 – volume: 166 start-page: 2597 year: 2001 ident: 2023020112335656500_btw112-B19 article-title: Ordered and coordinated rearrangement of the TCR locus: role of secondary rearrangement in thymic selection publication-title: J. Immunol doi: 10.4049/jimmunol.166.4.2597 – volume: 33 start-page: D256 year: 2005 ident: 2023020112335656500_btw112-B15 article-title: IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes publication-title: Nucleic Acids Res doi: 10.1093/nar/gki010 – volume: 26 start-page: 867 year: 2010 ident: 2023020112335656500_btw112-B23 article-title: SoDA2: a Hidden Markov Model approach for identification of immunoglobulin rearrangements publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq056 – volume: 116 start-page: 299 year: 2004 ident: 2023020112335656500_btw112-B20 article-title: Unraveling V(D)J recombination; insights into gene regulation publication-title: Cell doi: 10.1016/S0092-8674(04)00039-X – volume: 164 start-page: 1971 year: 2000 ident: 2023020112335656500_btw112-B6 article-title: The nucleotide-replacement spectrum under somatic hypermutation exhibits microsequence dependence that is strand-symmetric and distinct from that under germline mutation publication-title: J. Immunol doi: 10.4049/jimmunol.164.4.1971 – volume: 10 start-page: e0118192. year: 2015 ident: 2023020112335656500_btw112-B27 article-title: VDJSeq-Solver: in silico V(D)J recombination detection tool publication-title: Plos One doi: 10.1371/journal.pone.0118192 – volume: 41 start-page: 1 year: 2013 ident: 2023020112335656500_btw112-B43 article-title: IgBLAST: an immunoglobulin variable domain sequence analysis tool publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt382 – volume: 22 start-page: 438 year: 2006 ident: 2023020112335656500_btw112-B40 article-title: SoDA: implementation of a 3D alignment algorithm for inference of antigen receptor recombinations publication-title: Bioinformatics (Oxford, England) – volume: 177 start-page: 3857 year: 2006 ident: 2023020112335656500_btw112-B42 article-title: A model for TCR gene segment use publication-title: J. Immunol doi: 10.4049/jimmunol.177.6.3857 – volume: 11 start-page: 251 year: 2011 ident: 2023020112335656500_btw112-B32 article-title: Recombination centres and the orchestration of V(D)J recombination publication-title: Nat. Rev. Immunol doi: 10.1038/nri2941 – volume: 45 start-page: 167 year: 2011 ident: 2023020112335656500_btw112-B33 article-title: V(D)J recombination: mechanisms of initiation publication-title: Annu. Rev. Genet doi: 10.1146/annurev-genet-110410-132552 – volume: 25 start-page: 646 year: 2013 ident: 2023020112335656500_btw112-B29 article-title: Immunosequencing: applications of immune repertoire deep sequencing publication-title: Curr. Opin. Immunol doi: 10.1016/j.coi.2013.09.017 – volume: 42 start-page: 3073 year: 2012 ident: 2023020112335656500_btw112-B2 article-title: Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms publication-title: Eur. J. Immunol doi: 10.1002/eji.201242517 – start-page: 44 volume-title: Research in Computational Molecular Biology SE - 7, volume 9029 of Lecture Notes in Computer Science year: 2015 ident: 2023020112335656500_btw112-B4 – volume: 104 start-page: 903 year: 2007 ident: 2023020112335656500_btw112-B18 article-title: Role for rearranged variable gene segments in directing secondary T cell receptor alpha recombination publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.0608248104 – volume: 175 start-page: 5170 year: 2005 ident: 2023020112335656500_btw112-B37 article-title: Hypermutation at A-T base pairs: the a nucleotide replacement spectrum is affected by adjacent nucleotides and there is no reverse complementarity of sequences flanking mutated A and T nucleotides publication-title: J. Immunol doi: 10.4049/jimmunol.175.8.5170 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 2023020112335656500_btw112-B1 – reference: 24795465 - J Immunol. 2014 May 15;192(10):4475-80 – reference: 24793455 - Nat Methods. 2014 Jun;11(6):653-5 – reference: 20147303 - Bioinformatics. 2010 Apr 1;26(7):867-72 – reference: 15153497 - J Immunol. 2004 Jun 1;172(11):6790-802 – reference: 26751373 - PLoS Comput Biol. 2016 Jan 11;12(1):e1004409 – reference: 11145665 - J Immunol. 2001 Jan 15;166(2):892-9 – reference: 25924071 - Nat Methods. 2015 May;12(5):380-1 – reference: 23671333 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W34-40 – reference: 21854230 - Annu Rev Genet. 2011;45:167-202 – reference: 22988065 - Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16161-6 – reference: 26194754 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null – reference: 24711416 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5980-5 – reference: 16357034 - Bioinformatics. 2006 Feb 15;22(4):438-44 – reference: 21383244 - J Immunol. 2011 Apr 1;186(7):4285-94 – reference: 23303508 - Bioinformatics. 2013 Mar 1;29(5):542-50 – reference: 25675496 - Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E862-70 – reference: 21394103 - Nat Rev Immunol. 2011 Apr;11(4):251-63 – reference: 17210914 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):903-7 – reference: 22806588 - Eur J Immunol. 2012 Nov;42(11):3073-83 – reference: 24441474 - Nat Biotechnol. 2014 Feb;32(2):158-68 – reference: 24400005 - Front Immunol. 2013 Dec 25;4:466 – reference: 16951348 - J Immunol. 2006 Sep 15;177(6):3857-64 – reference: 10657647 - J Immunol. 2000 Feb 15;164(4):1971-6 – reference: 25799103 - PLoS One. 2015 Mar 23;10(3):e0118192 – reference: 19091020 - BMC Bioinformatics. 2008 Dec 12;9 Suppl 12:S20 – reference: 18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8 – reference: 19706884 - Blood. 2009 Nov 5;114(19):4099-107 – reference: 14744439 - Cell. 2004 Jan 23;116(2):299-311 – reference: 26194757 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null – reference: 25762590 - EMBO J. 2015 Apr 15;34(8):1126-42 – reference: 11160321 - J Immunol. 2001 Feb 15;166(4):2597-601 – reference: 26001675 - BMC Bioinformatics. 2015 May 23;16:170 – reference: 8884428 - Int Rev Immunol. 1996;13(4):317-25 – reference: 22647874 - Immunobiology. 2013 Feb;218(2):213-24 – reference: 15608191 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D256-61 – reference: 17005006 - Immunology. 2006 Oct;119(2):265-77 – reference: 24140071 - Curr Opin Immunol. 2013 Oct;25(5):646-52 – reference: 16210621 - J Immunol. 2005 Oct 15;175(8):5170-7 – reference: 9498777 - J Immunol. 1998 Mar 1;160(5):2360-4 – reference: 17463026 - Bioinformatics. 2007 Jul 1;23(13):1580-7 |
| SSID | ssj0005056 ssj0051444 |
| Score | 2.37732 |
| Snippet | Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development.... The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development.... Abstract Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell... |
| SourceID | pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1943 |
| SubjectTerms | Adaptive immunology Algorithms Bioinformatics Computer programs Computer Science Deletion Dynamic tests Gene Rearrangement, T-Lymphocyte Genes Humans Immune systems Immunology Life Sciences Mathematical models Original Papers Probability Receptors Receptors, Antigen, T-Cell - genetics Sequence Alignment Software V(D)J Recombination |
| Title | repgenHMM: a dynamic programming tool to infer the rules of immune receptor generation from sequence data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27153709 https://www.proquest.com/docview/1799559605 https://www.proquest.com/docview/1808675690 https://www.proquest.com/docview/1825564065 https://hal.science/hal-05290172 https://pubmed.ncbi.nlm.nih.gov/PMC4920122 |
| Volume | 32 |
| WOSCitedRecordID | wos000379761500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1367-4811 dateEnd: 20220930 omitProxy: false ssIdentifier: ssj0005056 issn: 1367-4803 databaseCode: TOX dateStart: 19850101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbaBSQuiOdSHiuDuKGweTmJua3Qoh7YBaQi9RY5jqtW202qtCmFH8TvZCa2k4YVCxy4RJWTOGnmy3hif_MNIa9ClmRMhKh87EknVD5zMpdJJ_NElrl5HLu-LjYRn58n0yn_NBj8sLkw22VcFMlux1f_1dTQBsbG1Nl_MHfbKTTAbzA6bMHssP0rw1dqBfvGZ2c6jznXJectEeuySY9C4U0IOpGJZUiG9dKoz2K-CJZSQbpLWWGFZWVA0mSiWOr1a5PU1q0IL0ojwtoIP6OK6c4S502lkL1Zh9PlXOA8ZDMC1FvRsRPBGmWNzZ9rJDK12D0rm4pIWGhUVdX-QoD8Li5Mrs7FGi5TCTPFayYzvKglvsJYpB1wgDrsiXHAxkN3M6C1TV01_tbjWuTpykCgRbKy3l_Hhs1XT9O295Cwumyg4Mfg_WOXdyNjy1e0u4bkhh8zjt5z8nHaUYkgirTZYTw47l_1WF8TVadNL70QaDhHAu7Vr5tfSbp7Uc_kLrljPlfoiYbZPTJQxX1ySxcw_faALFqwvaWCGqjRPahRhBpsaAM1ClCjDdRoOaMaatRCjXZQowg1aqFGEWoPyZf3p5N3Y8cU73AkROQbh2UqiSLFZRiEMhd-xFTmRnnOpQhnKpkxcAJBFnsSYnxXCA-ejVKB9GYyDEMe5MEjclCUhXpMKAsgpmW5y3NfQHSfCU8JXyVhEnmZhL5GJLTPM5VG2R4LrCxTzbAI0r5FUm2REXnTnrbS0i5_OuElGKs9FoXZxycfUmzD9XKcTdl6I_LC2jIFT43Lb6JQZb1OG-1FxiOXXXNM4ibwCR9x97pjUDYQAnHo51BjpL0nC7ERiXvo6d10f0-xmDeq8iH3cZn9yW_7fEpud6_sM3KwqWr1nNyU281iXR2RYTxNjpr34icEgu-1 |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=repgenHMM%3A+a+dynamic+programming+tool+to+infer+the+rules+of+immune+receptor+generation+from+sequence+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Elhanati%2C+Yuval&rft.au=Marcou%2C+Quentin&rft.au=Mora%2C+Thierry&rft.au=Walczak%2C+Aleksandra+M&rft.date=2016-07-01&rft.eissn=1367-4811&rft.volume=32&rft.issue=13&rft.spage=1943&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtw112&rft_id=info%3Apmid%2F27153709&rft.externalDocID=27153709 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |