repgenHMM: a dynamic programming tool to infer the rules of immune receptor generation from sequence data

Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics Ročník 32; číslo 13; s. 1943 - 1951
Hlavní autori: Elhanati, Yuval, Marcou, Quentin, Mora, Thierry, Walczak, Aleksandra M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press (OUP) 01.07.2016
Oxford University Press
Predmet:
ISSN:1367-4803, 1367-4811, 1367-4811, 1460-2059
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Contact:  elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr
AbstractList Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Contact: elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr
Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Contact:  elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr
Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence.Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires.Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads.
Abstract Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events—choices of gene templates, base pair deletions and insertions—described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. Results: We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum–Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be ≈1023 for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Availability and implementation: Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads. Contact: elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr
The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence. We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be [Formula: see text] for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires. Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloads elhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr.
The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence.MOTIVATIONThe diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development. Rearrangement scenarios are composed of random events-choices of gene templates, base pair deletions and insertions-described by probability distributions. Not all scenarios are equally likely, and the same receptor sequence may be obtained in several different ways. Quantifying the distribution of these rearrangements is an essential baseline for studying the immune system diversity. Inferring the properties of the distributions from receptor sequences is a computationally hard problem, requiring enumerating every possible scenario for every sampled receptor sequence.We present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be [Formula: see text] for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires.RESULTSWe present a Hidden Markov model, which accounts for all plausible scenarios that can generate the receptor sequences. We developed and implemented a method based on the Baum-Welch algorithm that can efficiently infer the parameters for the different events of the rearrangement process. We tested our software tool on sequence data for both the alpha and beta chains of the T cell receptor. To test the validity of our algorithm, we also generated synthetic sequences produced by a known model, and confirmed that its parameters could be accurately inferred back from the sequences. The inferred model can be used to generate synthetic sequences, to calculate the probability of generation of any receptor sequence, as well as the theoretical diversity of the repertoire. We estimate this diversity to be [Formula: see text] for human T cells. The model gives a baseline to investigate the selection and dynamics of immune repertoires.Source code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloadsAVAILABILITY AND IMPLEMENTATIONSource code and sample sequence files are available at https://bitbucket.org/yuvalel/repgenhmm/downloadselhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr.CONTACTelhanati@lpt.ens.fr or tmora@lps.ens.fr or awalczak@lpt.ens.fr.
Author Walczak, Aleksandra M.
Mora, Thierry
Marcou, Quentin
Elhanati, Yuval
Author_xml – sequence: 1
  givenname: Yuval
  surname: Elhanati
  fullname: Elhanati, Yuval
– sequence: 2
  givenname: Quentin
  surname: Marcou
  fullname: Marcou, Quentin
– sequence: 3
  givenname: Thierry
  surname: Mora
  fullname: Mora, Thierry
– sequence: 4
  givenname: Aleksandra M.
  surname: Walczak
  fullname: Walczak, Aleksandra M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27153709$$D View this record in MEDLINE/PubMed
https://hal.science/hal-05290172$$DView record in HAL
BookMark eNqNUktv1DAQtlARfcBPAPkIh6VjJ3ZikCpVFWWRtuICZ8txJrtGib3YTlH_Pd5uW9EegIuf32M-zRyTAx88EvKawXsGqjrtXHB-CHEy2dl02uVfjPFn5IhVslnULWMHD2eoDslxSj8AQICQL8ghb5ioGlBHxEXcrtEvr64-UEP7G28mZ-k2hnU00-T8muYQxrLQ4oaR5g3SOI-YaBiom6bZlzta3OYQaRHCWOoJng4xTDThzxm9RdqbbF6S54MZE76620_I98tP3y6Wi9XXz18uzlcLKxnkheiwlRKVrava9oZLgR3IvlfW1AO2gwDOqq5hFpQAY1hJglhZNti6rlXVVyfkbK-7nbsJe4s-RzPqbXSTiTc6GKcf_3i30etwrWvFgXFeBN7tBTZPaMvzld69geAKWMOvWcG-vTOLoWRNWU8uWRxH4zHMSbOWCyFrkOI_oNDKRkgF_4Y2SgmhJOxU3_yZ9qHe-w4XwMc9wMaQUsRBW5dve1TCu1Ez0Lt50o_nSe_nqbDFE_a9wd95vwHgVNfo
CitedBy_id crossref_primary_10_1073_pnas_1700241114
crossref_primary_10_1093_bib_bbw138
crossref_primary_10_4049_jimmunol_1800091
crossref_primary_10_3389_fimmu_2018_02913
crossref_primary_10_3389_fimmu_2021_777788
crossref_primary_10_1074_jbc_REV120_010181
crossref_primary_10_1109_TITS_2021_3082944
crossref_primary_10_1016_j_it_2017_05_003
crossref_primary_10_1016_j_physrep_2020_01_001
crossref_primary_10_1038_s41598_023_43048_3
crossref_primary_10_1038_s41467_018_02832_w
crossref_primary_10_1039_C9ME00071B
crossref_primary_10_3389_fimmu_2018_00462
crossref_primary_10_1016_j_coisb_2018_09_005
crossref_primary_10_1371_journal_pcbi_1005572
crossref_primary_10_1371_journal_pcbi_1006874
crossref_primary_10_3389_fimmu_2018_00224
crossref_primary_10_1186_s12859_017_1544_9
crossref_primary_10_1111_imm_12857
crossref_primary_10_1111_imr_12664
crossref_primary_10_1111_imr_12665
crossref_primary_10_1111_imr_12670
crossref_primary_10_1007_s00281_021_00840_5
crossref_primary_10_1038_s41588_020_0640_3
Cites_doi 10.1073/pnas.1319389111
10.4049/jimmunol.160.5.2360
10.3109/08830189609061755
10.1038/nmeth.2960
10.1186/1471-2105-9-S12-S20
10.1186/s12859-015-0589-x
10.1098/rstb.2014.0240
10.1182/blood-2009-04-217604
10.1016/j.imbio.2012.04.003
10.1111/j.1365-2567.2006.02431.x
10.1038/nmeth.3364
10.1038/nbt.2782
10.1093/bioinformatics/btm147
10.1073/pnas.1212755109
10.4049/jimmunol.166.2.892
10.4049/jimmunol.172.11.6790
10.1098/rstb.2014.0243
10.4049/jimmunol.1003898
10.1017/CBO9780511790492
10.1073/pnas.1417683112
10.1093/bioinformatics/btt004
10.1093/nar/gkn316
10.3389/fimmu.2013.00466
10.15252/embj.201489643
10.4049/jimmunol.1400119
10.4049/jimmunol.166.4.2597
10.1093/nar/gki010
10.1093/bioinformatics/btq056
10.1016/S0092-8674(04)00039-X
10.4049/jimmunol.164.4.1971
10.1371/journal.pone.0118192
10.1093/nar/gkt382
10.4049/jimmunol.177.6.3857
10.1038/nri2941
10.1146/annurev-genet-110410-132552
10.1016/j.coi.2013.09.017
10.1002/eji.201242517
10.1073/pnas.0608248104
10.4049/jimmunol.175.8.5170
ContentType Journal Article
Copyright The Author 2016. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License
The Author 2016. Published by Oxford University Press. 2016
Copyright_xml – notice: The Author 2016. Published by Oxford University Press.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: The Author 2016. Published by Oxford University Press. 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7T5
7TM
8FD
FR3
H94
P64
7SC
JQ2
L7M
L~C
L~D
1XC
5PM
DOI 10.1093/bioinformatics/btw112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
Biotechnology Research Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1367-4811
1460-2059
EndPage 1951
ExternalDocumentID PMC4920122
oai:HAL:hal-05290172v1
27153709
10_1093_bioinformatics_btw112
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
-~X
.2P
.DC
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TLC
TOX
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
7QO
7T5
7TM
8FD
ABJNI
FR3
H94
P64
ROZ
TN5
WH7
7SC
JQ2
L7M
L~C
L~D
1XC
5PM
ID FETCH-LOGICAL-c610t-5be866e9c434cda265eb06dd9ca4fe8f50213b71c0950aa1715ee3c1fc44493d3
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379761500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Tue Sep 30 16:25:49 EDT 2025
Tue Oct 14 20:49:09 EDT 2025
Thu Oct 02 06:16:49 EDT 2025
Tue Oct 07 09:47:42 EDT 2025
Fri Jul 11 09:12:55 EDT 2025
Wed Feb 19 02:40:58 EST 2025
Sat Nov 29 05:34:04 EST 2025
Tue Nov 18 21:17:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License http://creativecommons.org/licenses/by-nc/4.0
The Author 2016. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c610t-5be866e9c434cda265eb06dd9ca4fe8f50213b71c0950aa1715ee3c1fc44493d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: Inanc Birol
ORCID 0000-0001-7074-2761
0000-0002-2686-5702
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4920122
PMID 27153709
PQID 1799559605
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4920122
hal_primary_oai_HAL_hal_05290172v1
proquest_miscellaneous_1825564065
proquest_miscellaneous_1808675690
proquest_miscellaneous_1799559605
pubmed_primary_27153709
crossref_citationtrail_10_1093_bioinformatics_btw112
crossref_primary_10_1093_bioinformatics_btw112
PublicationCentury 2000
PublicationDate 2016-07-01
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2016
Publisher Oxford University Press (OUP)
Oxford University Press
Publisher_xml – name: Oxford University Press (OUP)
– name: Oxford University Press
References Bolotin (2023020112335656500_btw112-B2) 2012; 42
Bishop (2023020112335656500_btw112-B1) 2006
Volpe (2023020112335656500_btw112-B40) 2006; 22
Gapin (2023020112335656500_btw112-B13) 2014; 192
Venturi (2023020112335656500_btw112-B39) 2011; 186
Bonissone (2023020112335656500_btw112-B4) 2015
Warmflash (2023020112335656500_btw112-B42) 2006; 177
Cowell (2023020112335656500_btw112-B6) 2000; 164
Brochet (2023020112335656500_btw112-B5) 2008; 36
Robins (2023020112335656500_btw112-B30) 2009; 114
Georgiou (2023020112335656500_btw112-B14) 2014; 32
Munshaw (2023020112335656500_btw112-B23) 2010; 26
Elhanati (2023020112335656500_btw112-B9) 2015; 370
Frost (2023020112335656500_btw112-B10) 2015; 370
Huang (2023020112335656500_btw112-B19) 2001; 166
Zvyagin (2023020112335656500_btw112-B44) 2014; 111
Gouge (2023020112335656500_btw112-B16) 2015; 34
Ye (2023020112335656500_btw112-B43) 2013; 41
Giudicelli (2023020112335656500_btw112-B15) 2005; 33
Ralph (2023020112335656500_btw112-B28) 2015
Oprea (2023020112335656500_btw112-B26) 2001; 166
Shugay (2023020112335656500_btw112-B35) 2014; 11
Robins (2023020112335656500_btw112-B29) 2013; 25
Gaëta (2023020112335656500_btw112-B12) 2007; 23
Ohm-Laursen (2023020112335656500_btw112-B25) 2006; 119
Bolotin (2023020112335656500_btw112-B3) 2015; 12
Greenaway (2023020112335656500_btw112-B17) 2013; 218
Komori (2023020112335656500_btw112-B21) 1996; 13
Thomas (2023020112335656500_btw112-B38) 2013; 29
Gadala-Maria (2023020112335656500_btw112-B11) 2015; 112
Jung (2023020112335656500_btw112-B20) 2004; 116
Schatz (2023020112335656500_btw112-B32) 2011; 11
Schatz (2023020112335656500_btw112-B33) 2011; 45
Hawwari (2023020112335656500_btw112-B18) 2007; 104
Durbin (2023020112335656500_btw112-B8) 1998
Paciello (2023020112335656500_btw112-B27) 2015; 10
Wang (2023020112335656500_btw112-B41) 2008; 9
Souto-Carneiro (2023020112335656500_btw112-B36) 2004; 172
Murugan (2023020112335656500_btw112-B24) 2012; 109
Russ (2023020112335656500_btw112-B31) 2015; 16
Shugay (2023020112335656500_btw112-B34) 2013; 4
Lefranc (2023020112335656500_btw112-B22) 2001
Spencer (2023020112335656500_btw112-B37) 2005; 175
Dunn-Walters (2023020112335656500_btw112-B7) 1998; 160
26001675 - BMC Bioinformatics. 2015 May 23;16:170
25799103 - PLoS One. 2015 Mar 23;10(3):e0118192
23303508 - Bioinformatics. 2013 Mar 1;29(5):542-50
8884428 - Int Rev Immunol. 1996;13(4):317-25
25675496 - Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E862-70
24711416 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5980-5
16357034 - Bioinformatics. 2006 Feb 15;22(4):438-44
16210621 - J Immunol. 2005 Oct 15;175(8):5170-7
11145665 - J Immunol. 2001 Jan 15;166(2):892-9
22988065 - Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16161-6
19706884 - Blood. 2009 Nov 5;114(19):4099-107
15608191 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D256-61
17463026 - Bioinformatics. 2007 Jul 1;23(13):1580-7
21394103 - Nat Rev Immunol. 2011 Apr;11(4):251-63
24441474 - Nat Biotechnol. 2014 Feb;32(2):158-68
24795465 - J Immunol. 2014 May 15;192(10):4475-80
24793455 - Nat Methods. 2014 Jun;11(6):653-5
23671333 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W34-40
24400005 - Front Immunol. 2013 Dec 25;4:466
21854230 - Annu Rev Genet. 2011;45:167-202
17210914 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):903-7
22647874 - Immunobiology. 2013 Feb;218(2):213-24
19091020 - BMC Bioinformatics. 2008 Dec 12;9 Suppl 12:S20
21383244 - J Immunol. 2011 Apr 1;186(7):4285-94
25762590 - EMBO J. 2015 Apr 15;34(8):1126-42
11160321 - J Immunol. 2001 Feb 15;166(4):2597-601
20147303 - Bioinformatics. 2010 Apr 1;26(7):867-72
25924071 - Nat Methods. 2015 May;12(5):380-1
17005006 - Immunology. 2006 Oct;119(2):265-77
18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8
26194754 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null
9498777 - J Immunol. 1998 Mar 1;160(5):2360-4
22806588 - Eur J Immunol. 2012 Nov;42(11):3073-83
14744439 - Cell. 2004 Jan 23;116(2):299-311
26751373 - PLoS Comput Biol. 2016 Jan 11;12(1):e1004409
10657647 - J Immunol. 2000 Feb 15;164(4):1971-6
24140071 - Curr Opin Immunol. 2013 Oct;25(5):646-52
16951348 - J Immunol. 2006 Sep 15;177(6):3857-64
15153497 - J Immunol. 2004 Jun 1;172(11):6790-802
26194757 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null
References_xml – volume: 111
  start-page: 5980
  year: 2014
  ident: 2023020112335656500_btw112-B44
  article-title: Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1319389111
– volume: 160
  start-page: 2360
  year: 1998
  ident: 2023020112335656500_btw112-B7
  article-title: Base-specific sequences that bias somatic hypermutation deduced by analysis of out-of-frame human IgVH genes
  publication-title: J. Immunol. (Baltimore, MD.: 1950)
  doi: 10.4049/jimmunol.160.5.2360
– volume: 13
  start-page: 317
  year: 1996
  ident: 2023020112335656500_btw112-B21
  article-title: Repertoires of antigen receptors in Tdt congenitally deficient mice
  publication-title: Int. Rev. Immunol
  doi: 10.3109/08830189609061755
– volume: 11
  start-page: 653
  year: 2014
  ident: 2023020112335656500_btw112-B35
  article-title: Towards error-free profiling of immune repertoires
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2960
– volume: 9
  start-page: S20.
  year: 2008
  ident: 2023020112335656500_btw112-B41
  article-title: Ab-origin: an enhanced tool to identify the sourcing gene segments in germline for rearranged antibodies
  publication-title: BMC Bioinf
  doi: 10.1186/1471-2105-9-S12-S20
– volume: 16
  start-page: 1
  year: 2015
  ident: 2023020112335656500_btw112-B31
  article-title: HTJoinSolver: Human immunoglobulin VDJ partitioning using approximate dynamic programming constrained by conserved motifs
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-015-0589-x
– volume: 370
  start-page: 20140240.
  year: 2015
  ident: 2023020112335656500_btw112-B10
  article-title: Assigning and visualizing germline genes in antibody repertoires
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci
  doi: 10.1098/rstb.2014.0240
– volume-title: The T Cell Receptor FactsBook
  year: 2001
  ident: 2023020112335656500_btw112-B22
– volume: 114
  start-page: 4099
  year: 2009
  ident: 2023020112335656500_btw112-B30
  article-title: Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells
  publication-title: Blood
  doi: 10.1182/blood-2009-04-217604
– volume: 218
  start-page: 213
  year: 2013
  ident: 2023020112335656500_btw112-B17
  article-title: NKT and MAIT invariant TCRα sequences can be produced efficiently by VJ gene recombination
  publication-title: Immunobiology
  doi: 10.1016/j.imbio.2012.04.003
– volume: 119
  start-page: 265
  year: 2006
  ident: 2023020112335656500_btw112-B25
  article-title: No evidence for the use of DIR, D-D fusions, chromosome 15 open reading frames or VHreplacement in the peripheral repertoire was found on application of an improved algorithm, JointML, to 6329 human immunoglobulin H rearrangements
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2006.02431.x
– volume: 12
  start-page: 380
  year: 2015
  ident: 2023020112335656500_btw112-B3
  article-title: MiXCR: software for comprehensive adaptive immunity profiling
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3364
– volume: 32
  start-page: 158
  year: 2014
  ident: 2023020112335656500_btw112-B14
  article-title: The promise and challenge of high-throughput sequencing of the antibody repertoire
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.2782
– volume: 23
  start-page: 1580
  year: 2007
  ident: 2023020112335656500_btw112-B12
  article-title: iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm147
– volume: 109
  start-page: 16161
  year: 2012
  ident: 2023020112335656500_btw112-B24
  article-title: Statistical inference of the generation probability of T-cell receptors from sequence repertoires
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1212755109
– volume: 166
  start-page: 892
  year: 2001
  ident: 2023020112335656500_btw112-B26
  article-title: The targeting of somatic hypermutation closely resembles that of meiotic mutation
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.166.2.892
– volume: 172
  start-page: 6790
  year: 2004
  ident: 2023020112335656500_btw112-B36
  article-title: Characterization of the human Ig heavy chain antigen binding complementarity determining region 3 using a newly developed software algorithm, JOINSOLVER
  publication-title: J. Immunol. (Baltimore, MD.: 1950)
  doi: 10.4049/jimmunol.172.11.6790
– volume: 370
  start-page: 20140243.
  year: 2015
  ident: 2023020112335656500_btw112-B9
  article-title: Inferring processes underlying B-cell repertoire diversity
  publication-title: Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci
  doi: 10.1098/rstb.2014.0243
– start-page: e1004409
  volume-title: PLoS computational biology
  year: 2015
  ident: 2023020112335656500_btw112-B28
  article-title: Consistency of VDJ rearrangement and substitution parameters enables accurate B cell receptor sequence annotation
– volume: 186
  start-page: 4285
  year: 2011
  ident: 2023020112335656500_btw112-B39
  article-title: A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing
  publication-title: J. Immunol. (Baltimore, MD.: 1950)
  doi: 10.4049/jimmunol.1003898
– volume-title: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
  year: 1998
  ident: 2023020112335656500_btw112-B8
  doi: 10.1017/CBO9780511790492
– volume: 112
  start-page: E862
  year: 2015
  ident: 2023020112335656500_btw112-B11
  article-title: Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.1417683112
– volume: 29
  start-page: 542
  year: 2013
  ident: 2023020112335656500_btw112-B38
  article-title: Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btt004
– volume: 36
  start-page: 503
  year: 2008
  ident: 2023020112335656500_btw112-B5
  article-title: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn316
– volume: 4
  start-page: 466.
  year: 2013
  ident: 2023020112335656500_btw112-B34
  article-title: Huge overlap of individual TCR beta repertoires
  publication-title: Front. Immunol
  doi: 10.3389/fimmu.2013.00466
– volume: 34
  start-page: 1126
  year: 2015
  ident: 2023020112335656500_btw112-B16
  article-title: Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair
  publication-title: EMBO J
  doi: 10.15252/embj.201489643
– volume: 192
  start-page: 4475
  year: 2014
  ident: 2023020112335656500_btw112-B13
  article-title: Check MAIT
  publication-title: J. Immunol. (Baltimore, MD.: 1950)
  doi: 10.4049/jimmunol.1400119
– volume: 166
  start-page: 2597
  year: 2001
  ident: 2023020112335656500_btw112-B19
  article-title: Ordered and coordinated rearrangement of the TCR locus: role of secondary rearrangement in thymic selection
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.166.4.2597
– volume: 33
  start-page: D256
  year: 2005
  ident: 2023020112335656500_btw112-B15
  article-title: IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki010
– volume: 26
  start-page: 867
  year: 2010
  ident: 2023020112335656500_btw112-B23
  article-title: SoDA2: a Hidden Markov Model approach for identification of immunoglobulin rearrangements
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq056
– volume: 116
  start-page: 299
  year: 2004
  ident: 2023020112335656500_btw112-B20
  article-title: Unraveling V(D)J recombination; insights into gene regulation
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00039-X
– volume: 164
  start-page: 1971
  year: 2000
  ident: 2023020112335656500_btw112-B6
  article-title: The nucleotide-replacement spectrum under somatic hypermutation exhibits microsequence dependence that is strand-symmetric and distinct from that under germline mutation
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.164.4.1971
– volume: 10
  start-page: e0118192.
  year: 2015
  ident: 2023020112335656500_btw112-B27
  article-title: VDJSeq-Solver: in silico V(D)J recombination detection tool
  publication-title: Plos One
  doi: 10.1371/journal.pone.0118192
– volume: 41
  start-page: 1
  year: 2013
  ident: 2023020112335656500_btw112-B43
  article-title: IgBLAST: an immunoglobulin variable domain sequence analysis tool
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt382
– volume: 22
  start-page: 438
  year: 2006
  ident: 2023020112335656500_btw112-B40
  article-title: SoDA: implementation of a 3D alignment algorithm for inference of antigen receptor recombinations
  publication-title: Bioinformatics (Oxford, England)
– volume: 177
  start-page: 3857
  year: 2006
  ident: 2023020112335656500_btw112-B42
  article-title: A model for TCR gene segment use
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.177.6.3857
– volume: 11
  start-page: 251
  year: 2011
  ident: 2023020112335656500_btw112-B32
  article-title: Recombination centres and the orchestration of V(D)J recombination
  publication-title: Nat. Rev. Immunol
  doi: 10.1038/nri2941
– volume: 45
  start-page: 167
  year: 2011
  ident: 2023020112335656500_btw112-B33
  article-title: V(D)J recombination: mechanisms of initiation
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev-genet-110410-132552
– volume: 25
  start-page: 646
  year: 2013
  ident: 2023020112335656500_btw112-B29
  article-title: Immunosequencing: applications of immune repertoire deep sequencing
  publication-title: Curr. Opin. Immunol
  doi: 10.1016/j.coi.2013.09.017
– volume: 42
  start-page: 3073
  year: 2012
  ident: 2023020112335656500_btw112-B2
  article-title: Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms
  publication-title: Eur. J. Immunol
  doi: 10.1002/eji.201242517
– start-page: 44
  volume-title: Research in Computational Molecular Biology SE - 7, volume 9029 of Lecture Notes in Computer Science
  year: 2015
  ident: 2023020112335656500_btw112-B4
– volume: 104
  start-page: 903
  year: 2007
  ident: 2023020112335656500_btw112-B18
  article-title: Role for rearranged variable gene segments in directing secondary T cell receptor alpha recombination
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.0608248104
– volume: 175
  start-page: 5170
  year: 2005
  ident: 2023020112335656500_btw112-B37
  article-title: Hypermutation at A-T base pairs: the a nucleotide replacement spectrum is affected by adjacent nucleotides and there is no reverse complementarity of sequences flanking mutated A and T nucleotides
  publication-title: J. Immunol
  doi: 10.4049/jimmunol.175.8.5170
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 2023020112335656500_btw112-B1
– reference: 24795465 - J Immunol. 2014 May 15;192(10):4475-80
– reference: 24793455 - Nat Methods. 2014 Jun;11(6):653-5
– reference: 20147303 - Bioinformatics. 2010 Apr 1;26(7):867-72
– reference: 15153497 - J Immunol. 2004 Jun 1;172(11):6790-802
– reference: 26751373 - PLoS Comput Biol. 2016 Jan 11;12(1):e1004409
– reference: 11145665 - J Immunol. 2001 Jan 15;166(2):892-9
– reference: 25924071 - Nat Methods. 2015 May;12(5):380-1
– reference: 23671333 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W34-40
– reference: 21854230 - Annu Rev Genet. 2011;45:167-202
– reference: 22988065 - Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16161-6
– reference: 26194754 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null
– reference: 24711416 - Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):5980-5
– reference: 16357034 - Bioinformatics. 2006 Feb 15;22(4):438-44
– reference: 21383244 - J Immunol. 2011 Apr 1;186(7):4285-94
– reference: 23303508 - Bioinformatics. 2013 Mar 1;29(5):542-50
– reference: 25675496 - Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):E862-70
– reference: 21394103 - Nat Rev Immunol. 2011 Apr;11(4):251-63
– reference: 17210914 - Proc Natl Acad Sci U S A. 2007 Jan 16;104(3):903-7
– reference: 22806588 - Eur J Immunol. 2012 Nov;42(11):3073-83
– reference: 24441474 - Nat Biotechnol. 2014 Feb;32(2):158-68
– reference: 24400005 - Front Immunol. 2013 Dec 25;4:466
– reference: 16951348 - J Immunol. 2006 Sep 15;177(6):3857-64
– reference: 10657647 - J Immunol. 2000 Feb 15;164(4):1971-6
– reference: 25799103 - PLoS One. 2015 Mar 23;10(3):e0118192
– reference: 19091020 - BMC Bioinformatics. 2008 Dec 12;9 Suppl 12:S20
– reference: 18503082 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W503-8
– reference: 19706884 - Blood. 2009 Nov 5;114(19):4099-107
– reference: 14744439 - Cell. 2004 Jan 23;116(2):299-311
– reference: 26194757 - Philos Trans R Soc Lond B Biol Sci. 2015 Sep 5;370(1676):null
– reference: 25762590 - EMBO J. 2015 Apr 15;34(8):1126-42
– reference: 11160321 - J Immunol. 2001 Feb 15;166(4):2597-601
– reference: 26001675 - BMC Bioinformatics. 2015 May 23;16:170
– reference: 8884428 - Int Rev Immunol. 1996;13(4):317-25
– reference: 22647874 - Immunobiology. 2013 Feb;218(2):213-24
– reference: 15608191 - Nucleic Acids Res. 2005 Jan 1;33(Database issue):D256-61
– reference: 17005006 - Immunology. 2006 Oct;119(2):265-77
– reference: 24140071 - Curr Opin Immunol. 2013 Oct;25(5):646-52
– reference: 16210621 - J Immunol. 2005 Oct 15;175(8):5170-7
– reference: 9498777 - J Immunol. 1998 Mar 1;160(5):2360-4
– reference: 17463026 - Bioinformatics. 2007 Jul 1;23(13):1580-7
SSID ssj0005056
ssj0051444
Score 2.37732
Snippet Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development....
The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell development....
Abstract Motivation: The diversity of the immune repertoire is initially generated by random rearrangements of the receptor gene during early T and B cell...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1943
SubjectTerms Adaptive immunology
Algorithms
Bioinformatics
Computer programs
Computer Science
Deletion
Dynamic tests
Gene Rearrangement, T-Lymphocyte
Genes
Humans
Immune systems
Immunology
Life Sciences
Mathematical models
Original Papers
Probability
Receptors
Receptors, Antigen, T-Cell - genetics
Sequence Alignment
Software
V(D)J Recombination
Title repgenHMM: a dynamic programming tool to infer the rules of immune receptor generation from sequence data
URI https://www.ncbi.nlm.nih.gov/pubmed/27153709
https://www.proquest.com/docview/1799559605
https://www.proquest.com/docview/1808675690
https://www.proquest.com/docview/1825564065
https://hal.science/hal-05290172
https://pubmed.ncbi.nlm.nih.gov/PMC4920122
Volume 32
WOSCitedRecordID wos000379761500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1367-4811
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbaBSQuiOdSHiuDuKGweTmJua3Qoh7YBaQi9RY5jqtW202qtCmFH8TvZCa2k4YVCxy4RJWTOGnmy3hif_MNIa9ClmRMhKh87EknVD5zMpdJJ_NElrl5HLu-LjYRn58n0yn_NBj8sLkw22VcFMlux1f_1dTQBsbG1Nl_MHfbKTTAbzA6bMHssP0rw1dqBfvGZ2c6jznXJectEeuySY9C4U0IOpGJZUiG9dKoz2K-CJZSQbpLWWGFZWVA0mSiWOr1a5PU1q0IL0ojwtoIP6OK6c4S502lkL1Zh9PlXOA8ZDMC1FvRsRPBGmWNzZ9rJDK12D0rm4pIWGhUVdX-QoD8Li5Mrs7FGi5TCTPFayYzvKglvsJYpB1wgDrsiXHAxkN3M6C1TV01_tbjWuTpykCgRbKy3l_Hhs1XT9O295Cwumyg4Mfg_WOXdyNjy1e0u4bkhh8zjt5z8nHaUYkgirTZYTw47l_1WF8TVadNL70QaDhHAu7Vr5tfSbp7Uc_kLrljPlfoiYbZPTJQxX1ySxcw_faALFqwvaWCGqjRPahRhBpsaAM1ClCjDdRoOaMaatRCjXZQowg1aqFGEWoPyZf3p5N3Y8cU73AkROQbh2UqiSLFZRiEMhd-xFTmRnnOpQhnKpkxcAJBFnsSYnxXCA-ejVKB9GYyDEMe5MEjclCUhXpMKAsgpmW5y3NfQHSfCU8JXyVhEnmZhL5GJLTPM5VG2R4LrCxTzbAI0r5FUm2REXnTnrbS0i5_OuElGKs9FoXZxycfUmzD9XKcTdl6I_LC2jIFT43Lb6JQZb1OG-1FxiOXXXNM4ibwCR9x97pjUDYQAnHo51BjpL0nC7ERiXvo6d10f0-xmDeq8iH3cZn9yW_7fEpud6_sM3KwqWr1nNyU281iXR2RYTxNjpr34icEgu-1
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=repgenHMM%3A+a+dynamic+programming+tool+to+infer+the+rules+of+immune+receptor+generation+from+sequence+data&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Elhanati%2C+Yuval&rft.au=Marcou%2C+Quentin&rft.au=Mora%2C+Thierry&rft.au=Walczak%2C+Aleksandra+M&rft.date=2016-07-01&rft.eissn=1367-4811&rft.volume=32&rft.issue=13&rft.spage=1943&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtw112&rft_id=info%3Apmid%2F27153709&rft.externalDocID=27153709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon