Network communication models improve the behavioral and functional predictive utility of the human structural connectome

The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-functio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Network neuroscience (Cambridge, Mass.) Ročník 4; číslo 4; s. 980 - 1006
Hlavní autori: Seguin, Caio, Tian, Ye, Zalesky, Andrew
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.11.2020
MIT Press Journals, The
The MIT Press
Predmet:
ISSN:2472-1751, 2472-1751
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome. Brain network communication models aim to describe the patterns of large-scale neural signaling that facilitate functional interactions between brain regions. While information can be directly communicated between anatomically connected regions, signaling between disconnected areas must occur via a sequence of intermediate regions. We investigated a number of candidate models of connectome communication and found that they improved structure-function coupling and the extent to which structural connectomes can predict interindividual variation in behavior. Comparing the behavioral and functional predictive utility of different models provided initial insight into which conceptualizations of network communication may more faithfully recapitulate biological neural signaling. Our results suggest network communication models as a promising avenue to unite our understanding of brain structure, brain function, and human behavior.
AbstractList The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome. Brain network communication models aim to describe the patterns of large-scale neural signaling that facilitate functional interactions between brain regions. While information can be directly communicated between anatomically connected regions, signaling between disconnected areas must occur via a sequence of intermediate regions. We investigated a number of candidate models of connectome communication and found that they improved structure-function coupling and the extent to which structural connectomes can predict interindividual variation in behavior. Comparing the behavioral and functional predictive utility of different models provided initial insight into which conceptualizations of network communication may more faithfully recapitulate biological neural signaling. Our results suggest network communication models as a promising avenue to unite our understanding of brain structure, brain function, and human behavior.
The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome.Author Summary: Brain network communication models aim to describe the patterns of large-scale neural signaling that facilitate functional interactions between brain regions. While information can be directly communicated between anatomically connected regions, signaling between disconnected areas must occur via a sequence of intermediate regions. We investigated a number of candidate models of connectome communication and found that they improved structure-function coupling and the extent to which structural connectomes can predict interindividual variation in behavior. Comparing the behavioral and functional predictive utility of different models provided initial insight into which conceptualizations of network communication may more faithfully recapitulate biological neural signaling. Our results suggest network communication models as a promising avenue to unite our understanding of brain structure, brain function, and human behavior.
The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35-65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome.The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35-65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome.
The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome. Brain network communication models aim to describe the patterns of large-scale neural signaling that facilitate functional interactions between brain regions. While information can be directly communicated between anatomically connected regions, signaling between disconnected areas must occur via a sequence of intermediate regions. We investigated a number of candidate models of connectome communication and found that they improved structure-function coupling and the extent to which structural connectomes can predict interindividual variation in behavior. Comparing the behavioral and functional predictive utility of different models provided initial insight into which conceptualizations of network communication may more faithfully recapitulate biological neural signaling. Our results suggest network communication models as a promising avenue to unite our understanding of brain structure, brain function, and human behavior.
AbstractThe connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome.
The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic communication in structural connectomes would improve prediction of interindividual variation in behavior as well as increase structure-function coupling strength. Connectomes were mapped for 889 healthy adults participating in the Human Connectome Project. To account for polysynaptic signaling, connectomes were transformed into communication matrices for each of 15 different network communication models. Communication matrices were (a) used to perform predictions of five data-driven behavioral dimensions and (b) correlated to resting-state functional connectivity (FC). While FC was the most accurate predictor of behavior, communication models, in particular communicability and navigation, improved the performance of structural connectomes. Communication also strengthened structure-function coupling, with the navigation and shortest paths models leading to 35–65% increases in association strength with FC. We combined behavioral and functional results into a single ranking that provides insight into which communication models may more faithfully recapitulate underlying neural signaling patterns. Comparing results across multiple connectome mapping pipelines suggested that modeling polysynaptic communication is particularly beneficial in sparse high-resolution connectomes. We conclude that network communication models can augment the functional and behavioral predictive utility of the human structural connectome. Author Summary Brain network communication models aim to describe the patterns of large-scale neural signaling that facilitate functional interactions between brain regions. While information can be directly communicated between anatomically connected regions, signaling between disconnected areas must occur via a sequence of intermediate regions. We investigated a number of candidate models of connectome communication and found that they improved structure-function coupling and the extent to which structural connectomes can predict interindividual variation in behavior. Comparing the behavioral and functional predictive utility of different models provided initial insight into which conceptualizations of network communication may more faithfully recapitulate biological neural signaling. Our results suggest network communication models as a promising avenue to unite our understanding of brain structure, brain function, and human behavior.
Author Zalesky, Andrew
Seguin, Caio
Tian, Ye
Author_xml – sequence: 1
  givenname: Caio
  surname: Seguin
  fullname: Seguin, Caio
  email: caioseguin@gmail.com
  organization: Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
– sequence: 2
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  organization: Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia
– sequence: 3
  givenname: Andrew
  surname: Zalesky
  fullname: Zalesky, Andrew
  organization: Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
BookMark eNp1kktv1DAUhSNUREvpjh8QiQ0LBmzHj3gDQlWBShVsYG3Zzk3HQ2wHxxlofz2eh9BMRVf2tb9zdK59n1cnIQaoqpcYvcWYk3cBclBaIYQ5flKdESrIAguGTw72p9XFNK0QQgQTjGj7rDptGiyZpOys-vMV8u-YftY2ej8HZ3V2MdQ-djBMtfNjimuo8xJqA0u9djHpodahq_s52A1ayjFB50pRwDm7weW7OvZbzXL2OtRTTrPN80ZpYwhgc_Twonra62GCi_16Xv34dPX98svi5tvn68uPNwvLMcoLbKjkjPagMTWCGcOFpJq3WmAjAVgP0FFLOcjOkr7VWpJOmM5iABCkaZvz6nrn20W9UmNyXqc7FbVT24OYbpVO2dkBFGl6MAQkGGQoYlzL1krMBe9p0wksi9f7ndc4Gw-dhZBLU0emxzfBLdVtXCvBGUMUF4PXe4MUf80wZeXdZGEYdIA4T4rQ0jRCvBEFffUAXcU5lecuVCsR5YhhVqg3O8qmOE0J-n9hMFKbCVGHE1Jw8gC3Lm9_vMR1w2OifWjvDkI8gn74D7pB1tRR1RRIEEXKJBaxQq26d-Oxw198nebq
CitedBy_id crossref_primary_10_1007_s00429_023_02613_2
crossref_primary_10_1016_j_neuroimage_2022_119323
crossref_primary_10_1016_j_neuroimage_2023_120276
crossref_primary_10_1162_netn_a_00246
crossref_primary_10_1162_netn_a_00400
crossref_primary_10_3902_jnns_32_108
crossref_primary_10_1016_j_nicl_2025_103764
crossref_primary_10_1038_s41583_023_00718_5
crossref_primary_10_1162_netn_a_00360
crossref_primary_10_7554_eLife_101780
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1093_cercor_bhac214
crossref_primary_10_1038_s41596_024_01023_w
crossref_primary_10_1093_scan_nsac020
crossref_primary_10_1162_netn_a_00318
crossref_primary_10_1016_j_neuroimage_2020_117609
crossref_primary_10_1016_j_neubiorev_2023_105193
crossref_primary_10_1162_netn_a_00236
crossref_primary_10_5498_wjp_v15_i5_102706
crossref_primary_10_1162_netn_a_00277
crossref_primary_10_1016_j_neuroimage_2021_118648
crossref_primary_10_1038_s42003_022_03466_x
crossref_primary_10_3389_fnins_2024_1411797
crossref_primary_10_1155_2021_7520862
crossref_primary_10_1016_j_biopsych_2023_11_013
crossref_primary_10_1016_j_cortex_2023_10_022
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1016_j_neuron_2023_01_027
crossref_primary_10_1109_TCSS_2024_3400029
crossref_primary_10_1016_j_neuroimage_2022_119387
crossref_primary_10_1016_j_neuroimage_2022_118970
crossref_primary_10_5334_ijic_8654
crossref_primary_10_1002_hbm_26543
crossref_primary_10_1016_j_cortex_2023_04_001
crossref_primary_10_1111_psyp_70130
crossref_primary_10_7554_eLife_101780_3
crossref_primary_10_1038_s42256_021_00376_1
crossref_primary_10_1162_netn_a_00342
crossref_primary_10_1371_journal_pbio_3002489
crossref_primary_10_1007_s10548_023_00954_z
crossref_primary_10_1016_j_jpsychires_2025_03_057
crossref_primary_10_1016_j_media_2025_103761
crossref_primary_10_1162_netn_a_00261
crossref_primary_10_1002_hbm_70019
crossref_primary_10_1016_j_neuroimage_2021_118611
crossref_primary_10_1371_journal_pone_0331085
crossref_primary_10_3389_fnhum_2024_1477049
crossref_primary_10_1038_s41592_025_02704_4
crossref_primary_10_1007_s13760_023_02170_9
crossref_primary_10_1016_j_neuroimage_2021_118252
crossref_primary_10_3389_fnins_2022_1044372
crossref_primary_10_1016_j_neuroimage_2024_120563
crossref_primary_10_1007_s00429_021_02241_8
crossref_primary_10_1038_s41467_024_44900_4
crossref_primary_10_1162_netn_e_00167
crossref_primary_10_1016_j_neuroimage_2022_119299
crossref_primary_10_1016_j_neuroimage_2022_119455
crossref_primary_10_1016_j_neuroimage_2023_120266
crossref_primary_10_1109_TMI_2024_3351907
crossref_primary_10_1371_journal_pbio_3002314
crossref_primary_10_1016_j_biopsych_2021_03_016
crossref_primary_10_1016_j_dcn_2023_101314
crossref_primary_10_1038_s41467_023_43971_z
crossref_primary_10_1016_j_neuroimage_2024_120914
crossref_primary_10_1038_s41467_022_29770_y
crossref_primary_10_1016_j_neuroimage_2022_119250
Cites_doi 10.1103/PhysRevE.77.036111
10.1016/j.tics.2018.09.007
10.1038/nrn3214
10.1098/rsif.2008.0484
10.1007/s00429-009-0208-6
10.1073/pnas.1315529111
10.1002/hbm.24713
10.1162/jocn_a_00810
10.1162/netn_a_00049
10.1016/j.neuroimage.2006.01.021
10.1152/jn.00338.2011
10.1038/s41380-019-0481-6
10.1016/j.neuroimage.2019.04.016
10.1016/j.neuron.2011.12.040
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2004.03.027
10.1016/j.neuroimage.2019.05.064
10.1002/hbm.23717
10.1073/pnas.1903403116
10.18637/jss.v033.i01
10.1038/s41598-017-03073-5
10.1016/j.tics.2020.01.008
10.1016/j.neuroimage.2010.06.041
10.1177/1073858406293182
10.1523/JNEUROSCI.3539-11.2011
10.1038/nn.4502
10.1038/s41583-018-0071-7
10.1371/journal.pbio.0060159
10.1038/s41467-019-12201-w
10.1016/j.conb.2016.05.003
10.1103/PhysRevE.72.046117
10.1002/hbm.24866
10.1002/hbm.24942
10.1002/mrm.27471
10.1016/S1385-7258(53)50012-5
10.1093/cercor/bhr388
10.1371/journal.pone.0058070
10.1111/j.2517-6161.1996.tb02080.x
10.1016/j.neuroimage.2019.02.039
10.1038/nphys1130
10.1038/s41562-018-0420-6
10.1002/ima.22005
10.1371/journal.pcbi.0020095
10.1038/nrn.2017.149
10.1146/annurev-psych-122414-033634
10.1073/pnas.1801351115
10.1146/annurev.neuro.25.112701.142846
10.1093/cercor/bhw089
10.1103/PhysRevLett.87.198701
10.1016/j.neuroimage.2013.04.127
10.1371/journal.pcbi.1006833
10.1371/journal.pcbi.0010042
10.1016/j.neuroimage.2013.05.039
10.1126/science.1089662
10.1371/journal.pcbi.1003530
10.1109/TNSE.2018.2878487
10.1016/j.neuroimage.2019.116276
10.1016/j.neuroimage.2019.116443
10.1016/j.neuroimage.2015.02.001
10.1007/s00429-018-1760-8
10.1038/s41467-019-10317-7
10.1038/nn.4497
10.1073/pnas.0701519104
10.1162/netn_a_00105
10.1038/s41551-019-0404-5
10.1016/j.neuroimage.2013.05.033
10.1038/nrn2575
10.1038/s41467-017-01285-x
10.1371/journal.pcbi.1007584
10.1016/j.neuron.2015.05.035
10.1073/pnas.1111738109
10.1016/j.neuroimage.2019.116007
10.1016/j.neuroimage.2013.05.057
10.1523/JNEUROSCI.1443-09.2009
10.1038/nn.4406
10.1038/nn.4125
10.1016/j.neuroimage.2013.05.041
10.1371/journal.pcbi.1003982
10.1126/science.1238411
10.1016/j.neuroimage.2013.12.039
10.1371/journal.pone.0115503
10.1038/nature18933
10.1073/pnas.1420315112
10.1093/cercor/bhy101
10.1002/nbm.3752
10.1109/72.761722
10.1016/j.neuroimage.2016.06.035
10.1162/netn_a_00153
10.1103/PhysRevE.67.041908
10.1073/pnas.1814785115
10.1016/j.neuroimage.2015.09.009
ContentType Journal Article
Copyright 2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Massachusetts Institute of Technology.
2020 Massachusetts Institute of Technology 2020 Massachusetts Institute of Technology
Copyright_xml – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Massachusetts Institute of Technology.
– notice: 2020 Massachusetts Institute of Technology 2020 Massachusetts Institute of Technology
DBID AAYXX
CITATION
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
LK8
M7P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.1162/netn_a_00161
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Biological Sciences
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2472-1751
EndPage 1006
ExternalDocumentID oai_doaj_org_article_23feb2e9eb0b4056a98c91676f43d719
PMC7655041
10_1162_netn_a_00161
netn_a_00161.pdf
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 1136649
GroupedDBID 53G
AAFWJ
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
GROUPED_DOAJ
HYE
MCG
OK1
RMI
RPM
AAYXX
AFFHD
AFKRA
ARAPS
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EJD
HCIFZ
JMNJE
K7-
M7P
MINIK
M~E
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c610t-1b49654fea14b75bb6794a68a71b9ee5feed4c46e9dc2f8aa92d7bdc1eee72383
IEDL.DBID DOA
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587709300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2472-1751
IngestDate Fri Oct 03 12:44:42 EDT 2025
Tue Nov 04 01:57:37 EST 2025
Sun Aug 24 04:11:37 EDT 2025
Wed Nov 05 08:52:31 EST 2025
Sat Nov 29 05:10:43 EST 2025
Tue Nov 18 21:13:06 EST 2025
Sun Jul 17 10:31:08 EDT 2022
Tue Mar 01 17:17:37 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/legalcode.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c610t-1b49654fea14b75bb6794a68a71b9ee5feed4c46e9dc2f8aa92d7bdc1eee72383
Notes November, 2020
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Handling Editor: Andrea Avena-Koenigsberger
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/23feb2e9eb0b4056a98c91676f43d719
PMID 33195945
PQID 2890460515
PQPubID 6535871
PageCount 27
ParticipantIDs crossref_primary_10_1162_netn_a_00161
proquest_journals_2890460515
doaj_primary_oai_doaj_org_article_23feb2e9eb0b4056a98c91676f43d719
crossref_citationtrail_10_1162_netn_a_00161
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7655041
proquest_miscellaneous_2461000637
mit_journals_10_1162_netn_a_00161
mit_journals_netnv4i4_301672_2021_11_08_zip_netn_a_00161
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: Cambridge
– name: One Rogers Street, Cambridge, MA 02142-1209USAjournals-info@mit.edu
PublicationTitle Network neuroscience (Cambridge, Mass.)
PublicationYear 2020
Publisher MIT Press
MIT Press Journals, The
The MIT Press
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
– name: The MIT Press
References bib72
bib73
bib70
bib71
bib36
Fornito A. (bib28) 2016
bib37
bib34
bib78
bib35
bib79
bib32
bib76
bib33
bib77
Amico E. (bib4) 2019
bib30
bib74
bib31
bib75
Tian Y. (bib81) 2020
bib29
bib27
bib83
bib40
bib84
bib82
bib80
bib47
bib48
bib45
bib89
bib46
bib43
bib87
bib44
bib88
bib41
bib85
bib42
bib86
bib9
bib8
bib5
bib6
bib3
bib38
bib39
bib1
bib2
bib50
bib94
bib51
bib95
bib92
Avena-Koenigsberger A. (bib7) 2016
bib93
bib90
bib91
bib14
bib58
bib15
bib59
bib12
bib56
bib13
bib57
bib10
bib54
bib11
bib55
bib52
bib96
bib53
bib49
bib61
bib60
bib25
bib69
bib26
bib23
bib67
bib24
bib68
bib21
bib65
bib22
bib66
bib63
bib20
bib64
bib18
bib19
bib16
bib17
References_xml – ident: bib27
  doi: 10.1103/PhysRevE.77.036111
– ident: bib79
  doi: 10.1016/j.tics.2018.09.007
– ident: bib19
  doi: 10.1038/nrn3214
– ident: bib22
  doi: 10.1098/rsif.2008.0484
– ident: bib23
  doi: 10.1007/s00429-009-0208-6
– ident: bib35
  doi: 10.1073/pnas.1315529111
– ident: bib42
  doi: 10.1002/hbm.24713
– ident: bib48
  doi: 10.1162/jocn_a_00810
– ident: bib5
  doi: 10.1162/netn_a_00049
– ident: bib25
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: bib93
  doi: 10.1152/jn.00338.2011
– ident: bib78
  doi: 10.1038/s41380-019-0481-6
– ident: bib45
  doi: 10.1016/j.neuroimage.2019.04.016
– ident: bib63
  doi: 10.1016/j.neuron.2011.12.040
– ident: bib66
  doi: 10.1016/j.neuroimage.2009.10.003
– ident: bib38
  doi: 10.1016/j.neuroimage.2004.03.027
– ident: bib57
  doi: 10.1016/j.neuroimage.2019.05.064
– ident: bib61
  doi: 10.1002/hbm.23717
– ident: bib90
  doi: 10.1073/pnas.1903403116
– ident: bib29
  doi: 10.18637/jss.v033.i01
– ident: bib24
  doi: 10.1038/s41598-017-03073-5
– ident: bib80
  doi: 10.1016/j.tics.2020.01.008
– ident: bib94
  doi: 10.1016/j.neuroimage.2010.06.041
– ident: bib11
  doi: 10.1177/1073858406293182
– ident: bib85
  doi: 10.1523/JNEUROSCI.3539-11.2011
– ident: bib12
  doi: 10.1038/nn.4502
– ident: bib26
  doi: 10.1038/s41583-018-0071-7
– ident: bib36
  doi: 10.1371/journal.pbio.0060159
– ident: bib69
  doi: 10.1038/s41467-019-12201-w
– ident: bib56
  doi: 10.1016/j.conb.2016.05.003
– ident: bib65
  doi: 10.1103/PhysRevE.72.046117
– ident: bib49
  doi: 10.1002/hbm.24866
– ident: bib58
  doi: 10.1002/hbm.24942
– ident: bib68
  doi: 10.1002/mrm.27471
– ident: bib87
  doi: 10.1016/S1385-7258(53)50012-5
– ident: bib2
  doi: 10.1093/cercor/bhr388
– ident: bib34
  doi: 10.1371/journal.pone.0058070
– ident: bib82
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: bib20
  doi: 10.1016/j.neuroimage.2019.02.039
– ident: bib15
  doi: 10.1038/nphys1130
– year: 2019
  ident: bib4
  publication-title: arXiv:1911.02601
– ident: bib13
  doi: 10.1038/s41562-018-0420-6
– ident: bib84
  doi: 10.1002/ima.22005
– ident: bib41
  doi: 10.1371/journal.pcbi.0020095
– ident: bib8
  doi: 10.1038/nrn.2017.149
– ident: bib76
  doi: 10.1146/annurev-psych-122414-033634
– ident: bib70
  doi: 10.1073/pnas.1801351115
– ident: bib30
  doi: 10.1146/annurev.neuro.25.112701.142846
– ident: bib52
  doi: 10.1093/cercor/bhw089
– ident: bib43
  doi: 10.1103/PhysRevLett.87.198701
– ident: bib33
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: bib9
  doi: 10.1371/journal.pcbi.1006833
– ident: bib77
  doi: 10.1371/journal.pcbi.0010042
– ident: bib71
  doi: 10.1016/j.neuroimage.2013.05.039
– ident: bib44
  doi: 10.1126/science.1089662
– ident: bib50
  doi: 10.1371/journal.pcbi.1003530
– ident: bib83
  doi: 10.1109/TNSE.2018.2878487
– ident: bib37
  doi: 10.1016/j.neuroimage.2019.116276
– ident: bib17
  doi: 10.1016/j.neuroimage.2019.116443
– ident: bib51
  doi: 10.1016/j.neuroimage.2015.02.001
– ident: bib73
  doi: 10.1007/s00429-018-1760-8
– ident: bib46
  doi: 10.1038/s41467-019-10317-7
– ident: bib16
  doi: 10.1038/nn.4497
– ident: bib39
  doi: 10.1073/pnas.0701519104
– ident: bib92
  doi: 10.1162/netn_a_00105
– ident: bib14
  doi: 10.1038/s41551-019-0404-5
– ident: bib10
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: bib18
  doi: 10.1038/nrn2575
– ident: bib47
  doi: 10.1038/s41467-017-01285-x
– ident: bib3
  doi: 10.1371/journal.pcbi.1007584
– ident: bib54
  doi: 10.1016/j.neuron.2015.05.035
– ident: bib91
  doi: 10.1073/pnas.1111738109
– ident: bib31
  doi: 10.1016/j.neuroimage.2019.116007
– ident: bib74
  doi: 10.1016/j.neuroimage.2013.05.057
– start-page: 1
  year: 2016
  ident: bib7
  publication-title: Brain Structure and Function
– ident: bib86
  doi: 10.1523/JNEUROSCI.1443-09.2009
– ident: bib21
  doi: 10.1038/nn.4406
– ident: bib72
  doi: 10.1038/nn.4125
– ident: bib88
  doi: 10.1016/j.neuroimage.2013.05.041
– ident: bib55
  doi: 10.1371/journal.pcbi.1003982
– ident: bib59
  doi: 10.1126/science.1238411
– ident: bib1
  doi: 10.1016/j.neuroimage.2013.12.039
– ident: bib6
  doi: 10.1371/journal.pone.0115503
– year: 2020
  ident: bib81
  publication-title: bioRxiv: 2020.01.13.903542
– volume-title: Fundamentals of brain network analysis
  year: 2016
  ident: bib28
– ident: bib32
  doi: 10.1038/nature18933
– ident: bib67
  doi: 10.1073/pnas.1420315112
– ident: bib53
  doi: 10.1093/cercor/bhy101
– ident: bib75
  doi: 10.1002/nbm.3752
– ident: bib40
  doi: 10.1109/72.761722
– ident: bib95
  doi: 10.1016/j.neuroimage.2016.06.035
– ident: bib89
  doi: 10.1162/netn_a_00153
– ident: bib96
  doi: 10.1103/PhysRevE.67.041908
– ident: bib60
  doi: 10.1073/pnas.1814785115
– ident: bib64
  doi: 10.1016/j.neuroimage.2015.09.009
SSID ssj0002121048
Score 2.448203
Snippet The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic...
The connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for polysynaptic...
AbstractThe connectome provides the structural substrate facilitating communication between brain regions. We aimed to establish whether accounting for...
SourceID doaj
pubmedcentral
proquest
crossref
mit
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 980
SubjectTerms Behavior
Behavioral prediction
Brain
Brain network communication models
Communication
Connectomics
Coupling
Functional anatomy
Human behavior
Navigation
Network neuroscience
Neural networks
Neural signaling
Structure-function coupling
Structure-function relationships
Substrates
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixQxEA66evDiAxVHV4mgJ2l2kk4n6ZOouAjC4EFhbyFJV7TB7R5nxmXx129VuufRwnrx2qmQNPlSValKvmLsFTG4RJtigWurKVpF1QCNKpSJ0mtDDF02F5swi4U9O6u_jAG39XitcqsTs6Ju-kgx8hNKiFEOT1Rvl78KqhpF2dWxhMZNdktIKQjnn02xi7FIYsdSdnvfXcsTPO53zrvs6EwsUSbsR_ty3m4mvub0puSB6Tm997-Tvs_ujk4nfzeg5AG7Ad1DdrkYboDzePhGhOfSOGve5mADcPQP-f4pP_ddw8kUDhFEvlxRnoc0JkcAk0fP-5T75Np_fGCnJWYPHAU1etz05_CIfTv9-PXDp2Ksw1BEdK42hQhEKq8SeKGCqULQuIm9tt6IUANUCe2sikpD3USZrPe1bExoogAAqmlWPmZHXd_BE8bnNiRfBa81VComGZRUSSsLpUkh1mLG3mzXxMWRpJxqZfx0-bCipTtcwRl7vZNeDuQc18i9p-XdyRCldv7Qr767cYc6WSYIEmoI84BerPa1xQlpo5MqGyPqGXuJ4HDjFl9fM5CdyFDbhWqVK-m1h3QSIYm93Ny6P-3yr67HWwjt--_xg6PvmlEBUFbHd9D_RhlizCdP08yYmaB18r_Tlq79kanEjcYTqhJP_z34M3ZHUpghP8E8ZkeIHXjObseLTbtevch77gp-7ztS
  priority: 102
  providerName: ProQuest
Title Network communication models improve the behavioral and functional predictive utility of the human structural connectome
URI https://direct.mit.edu/netn/article/doi/10.1162/netn_a_00161
https://www.proquest.com/docview/2890460515
https://www.proquest.com/docview/2461000637
https://pubmed.ncbi.nlm.nih.gov/PMC7655041
https://doaj.org/article/23feb2e9eb0b4056a98c91676f43d719
Volume 4
WOSCitedRecordID wos000587709300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: M7P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: K7-
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content database
  customDbUrl:
  eissn: 2472-1751
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002121048
  issn: 2472-1751
  databaseCode: PIMPY
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RixMxEA56-uCLKCpWzxJBn2S5bjabZB89uUMRyyIK9Skk2QkueNtyrYf4653Jbnu7wuGLL31oJqTNTDLfJJNvGHtFDC7BxJChbhWdVlE1QC0zqYNwShNDl0nFJvRyaVarqh6V-qKcsJ4euJ-4E1FEDP6gAr_wCC6Uq0xASKNVlEWjE-GnQNQzCqZoDxbEiyXNPtNdiRMM9DvrbII4Ex-UqPrRs1y0uwnKnOZIjpzO-QN2f0CL_G3_Kx-yW9A9Yr-Wfeo2D-PHHTzVtNnyNp0SAEdgx6_f4HPXNZx8WH_0xzeXdEFDWx1HyyMoztcx9UlF-3hPK0uUHDgKbsVht76Ax-zr-dmXd--zoYBCFhAV7bLcExu8jOBy6XXpvcLV55RxOvcVQBnRQcogFVRNENE4V4lG-ybkAEDFyIon7Khbd_CU8YXx0ZXeKQWlDFF4KWRU0kCho0eFzNib_ZTaMLCLU5GLHzZFGUrYsQJm7PVBetOzatwgd0raOcgQF3b6Ai3EDhZi_2UhM_YSdWuHtbm9YSAzkaG2K9lKW9AzDWEFWhT2sgtjf7ebv7oe743muj9d39KNc17i6IdmXLl0HeM6WP9EGaK6J4ioZ0xPjG3yf6ctXfs9cYBrhaGlzJ_9jwl6zu4JOkVILyyP2RFaGLxgd8PVrt1eztltvTJzduf0bFl_nqdlhp8fdTanPNkaW-oPn-pvfwCu3jNV
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYILDwFioYCR6AlF3TiO7RwQ4lW1aln1UKTejO3YJRJNlt1QHj-K38iMs9ndIJVbD1zX4_VmMy-Px99HyHNEcHEquATercBqFbIBSp5w6ZgREhG6VCSbkJOJOjkpjjbI7_4uDLZV9j4xOuqycVgj38EDMTzDS_NX068Jskbh6WpPodGpxYH_-R22bPOX--_g_W4ztvv--O1esmAVSBykCm2SWoRI58GblFuZWytAJY1QRqa28D4PEDW448IXpWNBGVOwUtrSpd57ZOjK4HuvkKuQRjAVWwWPljUdhmhcXPX99YLt1L6ttdExsRpEvkgQAPHsrGoHue2wM3Mt1O3e-t_-pNvk5iKppq87K7hDNnx9l_yYdB3u1K3fgaGR-mdOq1hM8RTyX7qCKqCmLimG-q5CSqczPMfCiEDBQHHHQpsQ50RuQ9qh7yJyCawCEcu1zZm_Rz5eysPeJ5t1U_sHhI6VDSa3RgifcxeY5YwHwZXPZLCuSEfkRa8D2i1A2JEL5IuOmzHB9LrGjMj2UnragY9cIPcG1Wkpg5Dh8YNmdqoXHkizLHjLfOHt2EKWLkyh4AcJKQLPSpkWI_IMlFEvXNj8goXUQAbHznnFdYa3WZhmYAIwS4-V_lVN_5q61avsav5KX2H15TA4ODy1MrVvvoEMMgJgJi1HRA6sY_C8w5G6-hyh0qWAHThPH_578afk-t7xh0N9uD85eERuMCypxOumW2QT9Mg_JtfceVvNZ0-ivVPy6bJt5w9GRJvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+communication+models+improve+the+behavioral+and+functional+predictive+utility+of+the+human+structural+connectome&rft.jtitle=Network+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Seguin%2C+Caio&rft.au=Tian%2C+Ye&rft.au=Zalesky%2C+Andrew&rft.date=2020-11-01&rft.pub=MIT+Press&rft.eissn=2472-1751&rft.volume=4&rft.issue=4&rft.spage=980&rft.epage=1006&rft_id=info:doi/10.1162%2Fnetn_a_00161&rft.externalDBID=n%2Fa&rft.externalDocID=netn_a_00161.pdf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-1751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-1751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-1751&client=summon