SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS
We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wou...
Gespeichert in:
| Veröffentlicht in: | Journal of applied econometrics (Chichester, England) Jg. 29; H. 7; S. 1073 - 1098 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Chichester
Blackwell Publishing Ltd
01.11.2014
Wiley (Variant) Wiley-Blackwell Wiley Periodicals Inc |
| Schlagworte: | |
| ISSN: | 0883-7252, 1099-1255 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. |
|---|---|
| AbstractList | We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. Copyright © 2014 John Wiley & Sons, Ltd. We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis-Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. Copyright © 2014 John Wiley & Sons, Ltd. Copyright John Wiley & Sons. Reproduced with Permission. An electronic version of this article is available online at http://www.interscience.wiley.com SUMMARYWe develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. Copyright © 2014 John Wiley & Sons, Ltd. |
| Author | Herbst, Edward Schorfheide, Frank |
| Author_xml | – sequence: 1 givenname: Edward surname: Herbst fullname: Herbst, Edward email: edward.p.herbst@frb.gov organization: Board of Governors of the Federal Reserve System, DC, Washington, USA – sequence: 2 givenname: Frank surname: Schorfheide fullname: Schorfheide, Frank organization: Department of Economics, University of Pennsylvania, Philadelphia, PA, USA |
| BackLink | http://www.econis.eu/PPNSET?PPN=820441511$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften |
| BookMark | eNp10F1P2zAUBmBrAmnlQ-IPTIvEzW5SzrETO7kMJZSOkAIp2qXluK6ULiTMTgX8-6UKK9IEV744z3n96hyQvaZtDCEnCGMEoGdrZcaUxeILGSHEsY80DPfICKKI-YKG9Cs5cG4NABxAjMhZkd49pPlilmTezTxfpN4kuc_mXpHc3GazfOpdzu-9i2Ka9tOLNCuOyP5K1c4cv72H5OEyXUyu_Gw-nU2SzNccQfgBV4JRhaVhiiKsaKhLs9RGL5GFGGOIIgLKemR4VApTBgJYGZd6qZmBFbBD8mPIfbLtn41xnXysnDZ1rRrTbpxEHnAe939s6el_dN1ubNO32yoQAYsx6NX3QRndNpWTT7Z6VPZVRhSCoO-DvRgPQtvWOWtWUled6qq26ayqaokgtxeW_YXl9sLvHXcL_0I_oP5An6vavH7q5M8kffPfBr92XWt3nnIOMSC851WuMy-7ubK_JRdMhPJXPpXXlOXneF3IK_YXFhScHg |
| CODEN | JAECET |
| CitedBy_id | crossref_primary_10_1093_ectj_utaa029 crossref_primary_10_1016_j_euroecorev_2017_12_008 crossref_primary_10_1002_jae_2965 crossref_primary_10_2139_ssrn_3790939 crossref_primary_10_1016_j_euroecorev_2019_07_012 crossref_primary_10_1016_j_jeconom_2021_07_013 crossref_primary_10_3982_QE980 crossref_primary_10_1080_07350015_2020_1803079 crossref_primary_10_61186_jmbr_17_60_189 crossref_primary_10_3982_QE305 crossref_primary_10_1016_j_econmod_2024_106976 crossref_primary_10_1016_j_jedc_2015_04_007 crossref_primary_10_1016_j_jeconom_2022_06_004 crossref_primary_10_2139_ssrn_3025409 crossref_primary_10_1016_j_red_2023_08_007 crossref_primary_10_1002_jae_3107 crossref_primary_10_1515_snde_2019_0091 crossref_primary_10_1016_j_euroecorev_2021_103982 crossref_primary_10_3758_s13428_025_02642_1 crossref_primary_10_1016_j_econmod_2023_106381 crossref_primary_10_1515_snde_2022_0103 crossref_primary_10_1002_jae_2606 crossref_primary_10_1016_j_chroma_2022_463703 crossref_primary_10_1016_j_red_2020_03_001 crossref_primary_10_1016_j_jeconom_2016_02_007 crossref_primary_10_1016_j_jeconom_2022_11_004 crossref_primary_10_1111_jmcb_12688 crossref_primary_10_1016_j_econmod_2019_10_029 crossref_primary_10_1016_j_jedc_2016_11_002 crossref_primary_10_3390_econometrics4010012 crossref_primary_10_1002_amp2_10165 crossref_primary_10_1002_jae_2582 crossref_primary_10_1257_mac_20200058 crossref_primary_10_1111_obes_12217 crossref_primary_10_1016_j_jeconom_2018_11_003 crossref_primary_10_1016_j_jeconom_2014_11_003 crossref_primary_10_1016_j_jeconom_2018_11_002 crossref_primary_10_1257_aer_20111196 crossref_primary_10_1257_aer_20201875 crossref_primary_10_1016_j_jeconom_2019_10_008 crossref_primary_10_1007_s10614_024_10632_2 crossref_primary_10_1111_jere_12217 crossref_primary_10_3390_e26080695 crossref_primary_10_1080_13504851_2021_1959512 crossref_primary_10_1080_07474938_2022_2140982 crossref_primary_10_1016_j_red_2020_09_006 crossref_primary_10_1016_j_euroecorev_2024_104874 crossref_primary_10_1257_aer_20160576 crossref_primary_10_1016_j_eiar_2025_108142 crossref_primary_10_1111_jmcb_12908 crossref_primary_10_1016_j_euroecorev_2020_103615 crossref_primary_10_1016_j_econmod_2022_105859 crossref_primary_10_1086_738335 |
| Cites_doi | 10.1007/0-387-28982-8 10.1016/j.jmoneco.2005.08.008 10.1257/aer.97.3.586 10.1016/0304-3932(88)90030-X 10.1016/S0304-3932(00)00052-0 10.1257/aer.99.4.1097 10.1016/j.jeconom.2009.08.003 10.2307/1913710 10.3150/10-BEJ335 10.2139/ssrn.2251635 10.3982/ECTA8050 10.2139/ssrn.2094342 10.1016/j.jmoneco.2008.09.006 10.1214/009053604000000698 10.1016/j.jeconom.2008.10.002 10.3386/w15774 10.1016/S0304-4076(00)00019-1 10.1093/biomet/89.3.539 10.2307/2938258 10.1002/jae.582 10.1080/07474938.2011.607333 10.1080/07474939908800428 10.1016/j.csda.2009.11.019 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 John Wiley & Sons, Ltd. Copyright Wiley Periodicals Inc. Nov-Dec 2014 |
| Copyright_xml | – notice: Copyright © 2014 John Wiley & Sons, Ltd. – notice: Copyright Wiley Periodicals Inc. Nov-Dec 2014 |
| DBID | BSCLL AAYXX CITATION OQ6 8BJ FQK JBE JQ2 |
| DOI | 10.1002/jae.2397 |
| DatabaseName | Istex CrossRef ECONIS International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Computer Science Collection |
| DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISSN | 1099-1255 |
| EndPage | 1098 |
| ExternalDocumentID | 3538887071 820441511 10_1002_jae_2397 JAE2397 26609010 ark_67375_WNG_K23NB1KS_H |
| Genre | article Feature |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 29J 2AX 31~ 33P 3R3 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5GY 5VS 66C 702 7PT 7WY 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FL 8R4 8R5 8UM 8VB 930 A04 AABNI AAESR AAHQN AAMMB AAMNL AANHP AAONW AAOUF AASGY AAXLS AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABEML ABIJN ABJCF ABJNI ABKVW ABLJU ABPFR ABPQH ABPVW ABSOO ABUWG ABXSQ ABYYQ ACAHQ ACBKW ACBWZ ACCZN ACGFS ACHJO ACHQT ACIWK ACPOU ACRPL ACSCC ACUBG ACXJH ACXQS ACYXJ ADBBV ADEMA ADEOM ADGDI ADIZJ ADKYN ADMGS ADMHG ADNMO ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AEUPB AEUYR AEYWJ AFAIT AFBPY AFFHD AFFNX AFFPM AFGKR AFKFF AFKRA AFTQD AFWVQ AFXHP AFZJQ AGHNM AGKTX AGQPQ AGXDD AHAJD AHBTC AIDQK AIDYY AIQQE AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB APTMU ARAPS ASMEE ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BEZIV BFHJK BGLVJ BMXJE BNVMJ BPHCQ BQESF BROTX BRXPI BSCLL BY8 CBXGM CCKSF CCPQU CS3 CYVLN D-C D-D DCZOG DJZPD DPXWK DR2 DRFUL DRSSH DU5 DWQXO EBS EJD F00 F01 FEDTE FRNLG FVMVE G-S G.N G50 GNP GODZA GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_RESEARCH GUPYA HBH HCIFZ HF~ HGD HGLYW HHY HVGLF HZ~ IPSME IX1 J0M JAAYA JAS JBC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPC JPL JPPEU JST K1G K60 K6V K6~ K7- KQQ L6V LATKE LAW LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M0C M55 M7S MEWTI MK4 MRFUL MRSSH MSFUL MSSSH MVM MXFUL MXSSH N04 N06 N9A NF~ NNB O66 O9- OIG P2P P2W P2Y P4C P62 PALCI PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS Q.N Q11 Q2X QB0 QRW QWB R.K RIWAO RJQFR RNS ROL RX1 SA0 SAMSI SUPJJ TN5 UB1 V2E W8V W99 WBKPD WEBCB WIB WIH WII WOHZO WQZ WSUWO WXSBR XG1 XPP XV2 Y6R ZL0 ZY4 ZZTAW ~IA ~WP AARRQ 3V. AAHHS AAYOK ABTAH ABYAD ACCFJ ACTWD ADZOD AEEZP AEQDE AEUQT AFPWT AFYRF AIFKG AIWBW AJBDE EBU GROUPED_ABI_INFORM_COMPLETE JSODD RWI WRC WWB AAYXX CITATION O8X OQ6 8BJ FQK JBE JQ2 |
| ID | FETCH-LOGICAL-c6107-46a732a1be3a210f25cbedcecd1351915178023a73e68b7eb4703b9bcdc3e0f03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 51 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346655000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0883-7252 |
| IngestDate | Thu Oct 02 12:03:53 EDT 2025 Mon Nov 10 03:32:45 EST 2025 Sat Mar 08 16:05:34 EST 2025 Sat Nov 29 06:12:13 EST 2025 Tue Nov 18 22:00:43 EST 2025 Wed Jan 22 16:32:33 EST 2025 Thu Jul 03 22:44:22 EDT 2025 Tue Nov 11 03:32:28 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6107-46a732a1be3a210f25cbedcecd1351915178023a73e68b7eb4703b9bcdc3e0f03 |
| Notes | ArticleID:JAE2397 istex:DE9B276C0A94C607F9CC70E0572D30EAEC0A1BD4 ark:/67375/WNG-K23NB1KS-H SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1640743914 |
| PQPubID | 37372 |
| PageCount | 26 |
| ParticipantIDs | proquest_miscellaneous_1646697320 proquest_journals_1640743914 econis_primary_820441511 crossref_citationtrail_10_1002_jae_2397 crossref_primary_10_1002_jae_2397 wiley_primary_10_1002_jae_2397_JAE2397 jstor_primary_26609010 istex_primary_ark_67375_WNG_K23NB1KS_H |
| PublicationCentury | 2000 |
| PublicationDate | November/December 2014 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: November/December 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Journal of applied econometrics (Chichester, England) |
| PublicationTitleAlternate | J. Appl. Econ |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley (Variant) Wiley-Blackwell Wiley Periodicals Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley (Variant) – name: Wiley-Blackwell – name: Wiley Periodicals Inc |
| References | Liu JS.2008. Monte Carlo Strategies in Scientific Computing. Springer: Berlin. Strid I. 2010. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach. Computational Statistics and Data Analysis 54(11): 2814-2835. Rabanal P, Rubio-Ramírez JF. 2005. Comparing New Keynesian models of the business cycle: a Bayesian approach. Journal of Monetary Economics 52(6): 1151-1166. Geweke J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57(6): 1317-1399. Chib S, Ramamurthy S. 2010. Tailored randomized block MCMC methods with application to DSGE models. Journal of Econometrics 155(1): 19-38. Creal D, Koopman SJ, Shephard N. 2009. Testing the assumptions behind importance sampling. Journal of Econometrics 149:2-11. Amdahl G. 1967. Validity of the single processor approach to achieving large-scale computing capabilities. AFIPS Conference Proceedings 30: 483-485. Del Moral P, Doucet A, Jasra A. 2012. On adaptive resampling strategies for sequential Monte Carlo methods. Bernoulli 18(1): 252-278. Chopin N. 2002. A sequential particle filter for static models. Biometrika 89(3): 539-551. Jaimovich N, Rebelo S. 2009. Can news about the future drive the business cycle. American Economic Review 9(4): 1097-1118. Schorfheide F. 2000. Loss function-based evaluation of DSGE models. Journal of Applied Econometrics 15:645-670. Cappé O, Moulines E, Ryden T. 2005. Inference in Hidden Markov Models. Springer: Berlin. DeJong DN, Ingram BF, Whiteman CH. 2000. A Bayesian approach to dynamic macroeconomics. Journal of Econometrics 98(2): 203-223. Schmitt-Grohé S, Uribe M. 2012. Whats news in business cycles? Econometrica 80(6): 2733-2764. Chopin N. 2004. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics 32(6): 2385-2411. Phillips PCB. 1991. Optimal inference in cointegrated systems. Econometrica 59(2): 283-306. King RG, Plosser CI, Rebelo S. 1988. Production, growth, and business cycles. I. The basic neoclassical model. Journal of Monetary Economics 21(2-3): 195-232. Geweke J. 1999. Using simulation methods for Bayesian econometric models: inference, development, and communication. Econometric Reviews 18(1): 1-126. Del Negro M, Schorfheide F. 2008. Forming priors for DSGE models (and how it affects the assessment of nominal rigidities). Journal of Monetary Economics 55(7): 1191-1208. Greenwood J, Hercowitz Z, Huffman G. 1988. Investment, capacity utilization and the real business cycle. American Economic Review 78(3): 402-417. Creal D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews 31(3): 245-296. Otrok C. 2001. On measuring the welfare costs of business cycles. Journal of Monetary Economics 47(1): 61-92. Smets F, Wouters R. 2007. Shocks and frictions in US business cycles: a Bayesian DSGE approach. American Economic Review 97:586-608. 2010; 54 2012; 80 1991; 59 2012 2011 2010 2008 2007 1988; 78 2005 2012; 18 2008; 55 2007; 97 2001; 47 2012; 31 2004; 32 2000; 15 1999; 18 2002; 89 2000; 98 1967; 30 1988; 21 2010; 155 2005; 52 2009; 9 1989; 57 2009; 149 e_1_2_9_30_1 Greenwood J (e_1_2_9_17_1) 1988; 78 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 Amdahl G (e_1_2_9_2_1) 1967; 30 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 Liu JS (e_1_2_9_23_1) 2008 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
| References_xml | – reference: Greenwood J, Hercowitz Z, Huffman G. 1988. Investment, capacity utilization and the real business cycle. American Economic Review 78(3): 402-417. – reference: Phillips PCB. 1991. Optimal inference in cointegrated systems. Econometrica 59(2): 283-306. – reference: Schmitt-Grohé S, Uribe M. 2012. Whats news in business cycles? Econometrica 80(6): 2733-2764. – reference: Geweke J. 1999. Using simulation methods for Bayesian econometric models: inference, development, and communication. Econometric Reviews 18(1): 1-126. – reference: Rabanal P, Rubio-Ramírez JF. 2005. Comparing New Keynesian models of the business cycle: a Bayesian approach. Journal of Monetary Economics 52(6): 1151-1166. – reference: Creal D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews 31(3): 245-296. – reference: King RG, Plosser CI, Rebelo S. 1988. Production, growth, and business cycles. I. The basic neoclassical model. Journal of Monetary Economics 21(2-3): 195-232. – reference: Del Moral P, Doucet A, Jasra A. 2012. On adaptive resampling strategies for sequential Monte Carlo methods. Bernoulli 18(1): 252-278. – reference: Otrok C. 2001. On measuring the welfare costs of business cycles. Journal of Monetary Economics 47(1): 61-92. – reference: Cappé O, Moulines E, Ryden T. 2005. Inference in Hidden Markov Models. Springer: Berlin. – reference: Chopin N. 2004. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics 32(6): 2385-2411. – reference: Del Negro M, Schorfheide F. 2008. Forming priors for DSGE models (and how it affects the assessment of nominal rigidities). Journal of Monetary Economics 55(7): 1191-1208. – reference: Strid I. 2010. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach. Computational Statistics and Data Analysis 54(11): 2814-2835. – reference: Chopin N. 2002. A sequential particle filter for static models. Biometrika 89(3): 539-551. – reference: Liu JS.2008. Monte Carlo Strategies in Scientific Computing. Springer: Berlin. – reference: Amdahl G. 1967. Validity of the single processor approach to achieving large-scale computing capabilities. AFIPS Conference Proceedings 30: 483-485. – reference: Schorfheide F. 2000. Loss function-based evaluation of DSGE models. Journal of Applied Econometrics 15:645-670. – reference: Smets F, Wouters R. 2007. Shocks and frictions in US business cycles: a Bayesian DSGE approach. American Economic Review 97:586-608. – reference: Jaimovich N, Rebelo S. 2009. Can news about the future drive the business cycle. American Economic Review 9(4): 1097-1118. – reference: DeJong DN, Ingram BF, Whiteman CH. 2000. A Bayesian approach to dynamic macroeconomics. Journal of Econometrics 98(2): 203-223. – reference: Geweke J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57(6): 1317-1399. – reference: Chib S, Ramamurthy S. 2010. Tailored randomized block MCMC methods with application to DSGE models. Journal of Econometrics 155(1): 19-38. – reference: Creal D, Koopman SJ, Shephard N. 2009. Testing the assumptions behind importance sampling. Journal of Econometrics 149:2-11. – year: 2011 – volume: 18 start-page: 1 issue: 1 year: 1999 end-page: 126 article-title: Using simulation methods for Bayesian econometric models: inference, development, and communication publication-title: Econometric Reviews – volume: 52 start-page: 1151 issue: 6 year: 2005 end-page: 1166 article-title: Comparing New Keynesian models of the business cycle: a Bayesian approach publication-title: Journal of Monetary Economics – year: 2005 – volume: 15 start-page: 645 year: 2000 end-page: 670 article-title: Loss function‐based evaluation of DSGE models publication-title: Journal of Applied Econometrics – volume: 31 start-page: 245 issue: 3 year: 2012 end-page: 296 article-title: A survey of sequential Monte Carlo methods for economics and finance publication-title: Econometric Reviews – year: 2007 – volume: 55 start-page: 1191 issue: 7 year: 2008 end-page: 1208 article-title: Forming priors for DSGE models (and how it affects the assessment of nominal rigidities) publication-title: Journal of Monetary Economics – volume: 149 start-page: 2 year: 2009 end-page: 11 article-title: Testing the assumptions behind importance sampling publication-title: Journal of Econometrics – volume: 155 start-page: 19 issue: 1 year: 2010 end-page: 38 article-title: Tailored randomized block MCMC methods with application to DSGE models publication-title: Journal of Econometrics – volume: 89 start-page: 539 issue: 3 year: 2002 end-page: 551 article-title: A sequential particle filter for static models publication-title: Biometrika – year: 2010 – volume: 9 start-page: 1097 issue: 4 year: 2009 end-page: 1118 article-title: Can news about the future drive the business cycle publication-title: American Economic Review – volume: 30 start-page: 483 year: 1967 end-page: 485 article-title: Validity of the single processor approach to achieving large‐scale computing capabilities publication-title: AFIPS Conference Proceedings – year: 2012 – volume: 98 start-page: 203 issue: 2 year: 2000 end-page: 223 article-title: A Bayesian approach to dynamic macroeconomics publication-title: Journal of Econometrics – volume: 78 start-page: 402 issue: 3 year: 1988 end-page: 417 article-title: Investment, capacity utilization and the real business cycle publication-title: American Economic Review – volume: 47 start-page: 61 issue: 1 year: 2001 end-page: 92 article-title: On measuring the welfare costs of business cycles publication-title: Journal of Monetary Economics – year: 2008 – volume: 80 start-page: 2733 issue: 6 year: 2012 end-page: 2764 article-title: Whats news in business cycles? publication-title: Econometrica – volume: 59 start-page: 283 issue: 2 year: 1991 end-page: 306 article-title: Optimal inference in cointegrated systems publication-title: Econometrica – volume: 21 start-page: 195 issue: 2–3 year: 1988 end-page: 232 article-title: Production, growth, and business cycles. I. The basic neoclassical model publication-title: Journal of Monetary Economics – volume: 54 start-page: 2814 issue: 11 year: 2010 end-page: 2835 article-title: Efficient parallelisation of Metropolis–Hastings algorithms using a prefetching approach publication-title: Computational Statistics and Data Analysis – volume: 32 start-page: 2385 issue: 6 year: 2004 end-page: 2411 article-title: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference publication-title: Annals of Statistics – volume: 18 start-page: 252 issue: 1 year: 2012 end-page: 278 article-title: On adaptive resampling strategies for sequential Monte Carlo methods publication-title: Bernoulli – volume: 57 start-page: 1317 issue: 6 year: 1989 end-page: 1399 article-title: Bayesian inference in econometric models using Monte Carlo integration publication-title: Econometrica – volume: 97 start-page: 586 year: 2007 end-page: 608 article-title: Shocks and frictions in US business cycles: a Bayesian DSGE approach publication-title: American Economic Review – ident: e_1_2_9_3_1 doi: 10.1007/0-387-28982-8 – ident: e_1_2_9_26_1 doi: 10.1016/j.jmoneco.2005.08.008 – ident: e_1_2_9_29_1 doi: 10.1257/aer.97.3.586 – ident: e_1_2_9_21_1 doi: 10.1016/0304-3932(88)90030-X – ident: e_1_2_9_24_1 doi: 10.1016/S0304-3932(00)00052-0 – volume: 30 start-page: 483 year: 1967 ident: e_1_2_9_2_1 article-title: Validity of the single processor approach to achieving large‐scale computing capabilities publication-title: AFIPS Conference Proceedings – ident: e_1_2_9_20_1 doi: 10.1257/aer.99.4.1097 – ident: e_1_2_9_4_1 doi: 10.1016/j.jeconom.2009.08.003 – ident: e_1_2_9_7_1 – ident: e_1_2_9_15_1 doi: 10.2307/1913710 – ident: e_1_2_9_12_1 doi: 10.3150/10-BEJ335 – ident: e_1_2_9_14_1 doi: 10.2139/ssrn.2251635 – ident: e_1_2_9_27_1 doi: 10.3982/ECTA8050 – volume-title: Monte Carlo Strategies in Scientific Computing year: 2008 ident: e_1_2_9_23_1 – ident: e_1_2_9_19_1 doi: 10.2139/ssrn.2094342 – ident: e_1_2_9_13_1 doi: 10.1016/j.jmoneco.2008.09.006 – ident: e_1_2_9_6_1 doi: 10.1214/009053604000000698 – ident: e_1_2_9_9_1 doi: 10.1016/j.jeconom.2008.10.002 – volume: 78 start-page: 402 issue: 3 year: 1988 ident: e_1_2_9_17_1 article-title: Investment, capacity utilization and the real business cycle publication-title: American Economic Review – ident: e_1_2_9_10_1 doi: 10.3386/w15774 – ident: e_1_2_9_11_1 doi: 10.1016/S0304-4076(00)00019-1 – ident: e_1_2_9_18_1 – ident: e_1_2_9_22_1 – ident: e_1_2_9_5_1 doi: 10.1093/biomet/89.3.539 – ident: e_1_2_9_25_1 doi: 10.2307/2938258 – ident: e_1_2_9_28_1 doi: 10.1002/jae.582 – ident: e_1_2_9_8_1 doi: 10.1080/07474938.2011.607333 – ident: e_1_2_9_16_1 doi: 10.1080/07474939908800428 – ident: e_1_2_9_30_1 doi: 10.1016/j.csda.2009.11.019 |
| SSID | ssj0006007 |
| Score | 2.4408374 |
| Snippet | We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle... SUMMARYWe develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle... |
| SourceID | proquest econis crossref wiley jstor istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1073 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian method Dynamisches Gleichgewicht Economic models Economic shock Function words General economic equilibrium Inference Markov analysis Markovian processes Monte Carlo simulation Random walk theory Sampling Schätztheorie Stichprobenerhebung Stochastic models Stochastic processes Studies Theorie Working hours |
| Title | SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS |
| URI | https://api.istex.fr/ark:/67375/WNG-K23NB1KS-H/fulltext.pdf https://www.jstor.org/stable/26609010 https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjae.2397 http://www.econis.eu/PPNSET?PPN=820441511 https://www.proquest.com/docview/1640743914 https://www.proquest.com/docview/1646697320 |
| Volume | 29 |
| WOSCitedRecordID | wos000346655000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-1255 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006007 issn: 0883-7252 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61gFQu0BciQFGQKnpKN87L2WNgswslTSnZVblZduJItGhBG0D8fGbyKkhFQuopB0-ixOOZ-Sae-QzwmbbWwrAsrFDTNiNGOGvosoBOc9e-ZKXH_bpROOFpGp6fD0_bqkrqhWn4IfofbmQZtb8mA5eqGvwlDf0t9VcHo-lrWKaeKlzRy6Oz8Szp_TAxrzcY0rW44zsd9aztDLp7nwSjFcpALypEqTTB912B4hPo-RjA1hFovP4_7_4W1lrcaUbNQnkHr_T8Pbzp2pKrDzDI4p-zOJ0eR4mJfnYam4fRWfLDzKLvp8lxOjExXTRH2STG0VGcZB9hNo6nh0dWe5qClSNE4pYXSO46kintSszzSsfPFZWA5kV9SB9Gfk5kcCikg1BxrTx0Bmqo8iJ3tV3a7gYsza_mehNMX2EiEsow8ILSK4tCMcQpQWkXLiu4lJ4BX7ppFXlLNU4nXlyKhiTZETgBgibAgL1e8rqh1_iHzGajmV4CUQulgYwZsF_rqh-Riz9UqcZ98SudiBPHTQ_YSSaODNioldkLIi6xqTLFgJ1Ou6K13kow2t2klmT8kr1-GO2ONlPkXF_d1jJBQFRH-Ij9WtfPfoD4FsV03Xqp4DasIi7zmpbHHVi6WdzqT7CS391cVIvddp0_ANiW9rQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xgsRe2MaGCGMjSIg9hcb5cqo9ZTRtWUMGpNV4s5zEkdhQi9oy7c_fXb42pCEh8ZQHX6L4zvb9zvb9DuCIjtZ8v8gNX9ExI3o4o2czj6q5K1eywuFumSgc8Tj2r697F2vwucmFqfgh2g03mhnlek0TnDaku39ZQ39IdWKhO30B6w6OIrMD6_2rwTRqF2KiXq9ApG1wy7Ua7lnT6jbvPvBGGxSC3iwRppKGfzc3FB9gz38RbOmCBq-e9fOvYatGnnpQDZU3sKZm27DZJCYv30I3CS-nYTw5CyIdV9pJqJ8GV9E3PQnOL6KzeKhjwKj3k2GIrf0wSt7BdBBOTkdGXU_ByBAkccPxJLctyVJlS4z0CsvNUroEmuVlmT70_Zzo4FBIeX7KVergcpD20izPbGUWpr0Dndl8pnZBd1MMRXzpe45XOEWepwyRileYuc1yLqWjwadGryKrycap5sWtqGiSLYEKEKQADQ5bybuKYOM_MruVaVoJxC0UCDKmwXFprLZFLn7SXTXuiu_xUIwtO_7CxokYabBTWrMVRGRi0t0UDfYb84p6_i4Fo_NNSkrGnhy2zTjz6DhFztT8vpTxPCI7wk8cl8Z-tAPiaxDSc--pggewOZqcRwKtO34PLxGlOVUC5D50Vot79QE2sl-rm-XiYz3o_wCatvqb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RgEovtLQgDJQaqaInN16_1hEnQ5wAcd0UJyq31dpeS7RVQAkgfj4zfhUkKiH15MOOLXtnd-Ybz843AJ8pteb7RW74itKM6OGMns086uauXMkKh7tloXDE49i_uOiNl-CwqYWp-CHaH260M0p7TRtcXedF9y9r6C-pvlroTl_BsuMizO_Acv98MI1aQ0zU6xWItA1uuVbDPWta3ebeJ95ohULQywXCVJrh--aE4hPs-RjBli5o8Pa_Xv4drNXIUw-qpbIOS2r2HlabwuTFB-gm4Y9pGE9Og0hHSzsJ9ePgPPquJ8G3cXQaD3UMGPV-MgxxtB9GyQZMB-Hk-MSo-ykYGYIkbjie5LYlWapsiZFeYblZSodAs7xs04e-nxMdHAopz0-5Sh00B2kvzfLMVmZh2pvQmV3N1BboboqhiC99z_EKp8jzlCFS8Qozt1nOpXQ0-NLMq8hqsnHqefFHVDTJlsAJEDQBGuy3ktcVwcYzMluValoJxC0UCDKmwUGprHZEzn_TWTXuip_xUIwsOz5io0ScaLBZarMVRGRi0tkUDXYb9Yp6_y4Eo_wmFSXjl-y3w7jzKJ0iZ-rqtpTxPCI7wkcclMr-5weIsyCk6_ZLBT_B63F_IFC5ox14gyDNqeofd6FzM79VH2Elu7u5XMz36jX_AEV9-h8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SEQUENTIAL+MONTE+CARLO+SAMPLING+FOR+DSGE+MODELS&rft.jtitle=Journal+of+applied+econometrics+%28Chichester%2C+England%29&rft.au=Herbst%2C+Edward&rft.au=Schorfheide%2C+Frank&rft.date=2014-11-01&rft.issn=0883-7252&rft.eissn=1099-1255&rft.volume=29&rft.issue=7&rft.spage=1073&rft.epage=1098&rft_id=info:doi/10.1002%2Fjae.2397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jae_2397 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7252&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7252&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7252&client=summon |