SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS

We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied econometrics (Chichester, England) Jg. 29; H. 7; S. 1073 - 1098
Hauptverfasser: Herbst, Edward, Schorfheide, Frank
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Blackwell Publishing Ltd 01.11.2014
Wiley (Variant)
Wiley-Blackwell
Wiley Periodicals Inc
Schlagworte:
ISSN:0883-7252, 1099-1255
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing.
AbstractList We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing.
We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. Copyright © 2014 John Wiley & Sons, Ltd.
We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis-Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. Copyright © 2014 John Wiley & Sons, Ltd. Copyright John Wiley & Sons. Reproduced with Permission. An electronic version of this article is available online at http://www.interscience.wiley.com
SUMMARYWe develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle approximation to the posterior is built iteratively through tempering the likelihood. Using two empirical illustrations consisting of the Smets and Wouters model and a larger news shock model we show that the SMC algorithm is better suited for multimodal and irregular posterior distributions than the widely used random walk Metropolis–Hastings algorithm. We find that a more diffuse prior for the Smets and Wouters model improves its marginal data density and that a slight modification of the prior for the news shock model leads to drastic changes in the posterior inference about the importance of news shocks for fluctuations in hours worked. Unlike standard Markov chain Monte Carlo (MCMC) techniques; the SMC algorithm is well suited for parallel computing. Copyright © 2014 John Wiley & Sons, Ltd.
Author Herbst, Edward
Schorfheide, Frank
Author_xml – sequence: 1
  givenname: Edward
  surname: Herbst
  fullname: Herbst, Edward
  email: edward.p.herbst@frb.gov
  organization: Board of Governors of the Federal Reserve System, DC, Washington, USA
– sequence: 2
  givenname: Frank
  surname: Schorfheide
  fullname: Schorfheide, Frank
  organization: Department of Economics, University of Pennsylvania, Philadelphia, PA, USA
BackLink http://www.econis.eu/PPNSET?PPN=820441511$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
BookMark eNp10F1P2zAUBmBrAmnlQ-IPTIvEzW5SzrETO7kMJZSOkAIp2qXluK6ULiTMTgX8-6UKK9IEV744z3n96hyQvaZtDCEnCGMEoGdrZcaUxeILGSHEsY80DPfICKKI-YKG9Cs5cG4NABxAjMhZkd49pPlilmTezTxfpN4kuc_mXpHc3GazfOpdzu-9i2Ka9tOLNCuOyP5K1c4cv72H5OEyXUyu_Gw-nU2SzNccQfgBV4JRhaVhiiKsaKhLs9RGL5GFGGOIIgLKemR4VApTBgJYGZd6qZmBFbBD8mPIfbLtn41xnXysnDZ1rRrTbpxEHnAe939s6el_dN1ubNO32yoQAYsx6NX3QRndNpWTT7Z6VPZVRhSCoO-DvRgPQtvWOWtWUled6qq26ayqaokgtxeW_YXl9sLvHXcL_0I_oP5An6vavH7q5M8kffPfBr92XWt3nnIOMSC851WuMy-7ubK_JRdMhPJXPpXXlOXneF3IK_YXFhScHg
CODEN JAECET
CitedBy_id crossref_primary_10_1093_ectj_utaa029
crossref_primary_10_1016_j_euroecorev_2017_12_008
crossref_primary_10_1002_jae_2965
crossref_primary_10_2139_ssrn_3790939
crossref_primary_10_1016_j_euroecorev_2019_07_012
crossref_primary_10_1016_j_jeconom_2021_07_013
crossref_primary_10_3982_QE980
crossref_primary_10_1080_07350015_2020_1803079
crossref_primary_10_61186_jmbr_17_60_189
crossref_primary_10_3982_QE305
crossref_primary_10_1016_j_econmod_2024_106976
crossref_primary_10_1016_j_jedc_2015_04_007
crossref_primary_10_1016_j_jeconom_2022_06_004
crossref_primary_10_2139_ssrn_3025409
crossref_primary_10_1016_j_red_2023_08_007
crossref_primary_10_1002_jae_3107
crossref_primary_10_1515_snde_2019_0091
crossref_primary_10_1016_j_euroecorev_2021_103982
crossref_primary_10_3758_s13428_025_02642_1
crossref_primary_10_1016_j_econmod_2023_106381
crossref_primary_10_1515_snde_2022_0103
crossref_primary_10_1002_jae_2606
crossref_primary_10_1016_j_chroma_2022_463703
crossref_primary_10_1016_j_red_2020_03_001
crossref_primary_10_1016_j_jeconom_2016_02_007
crossref_primary_10_1016_j_jeconom_2022_11_004
crossref_primary_10_1111_jmcb_12688
crossref_primary_10_1016_j_econmod_2019_10_029
crossref_primary_10_1016_j_jedc_2016_11_002
crossref_primary_10_3390_econometrics4010012
crossref_primary_10_1002_amp2_10165
crossref_primary_10_1002_jae_2582
crossref_primary_10_1257_mac_20200058
crossref_primary_10_1111_obes_12217
crossref_primary_10_1016_j_jeconom_2018_11_003
crossref_primary_10_1016_j_jeconom_2014_11_003
crossref_primary_10_1016_j_jeconom_2018_11_002
crossref_primary_10_1257_aer_20111196
crossref_primary_10_1257_aer_20201875
crossref_primary_10_1016_j_jeconom_2019_10_008
crossref_primary_10_1007_s10614_024_10632_2
crossref_primary_10_1111_jere_12217
crossref_primary_10_3390_e26080695
crossref_primary_10_1080_13504851_2021_1959512
crossref_primary_10_1080_07474938_2022_2140982
crossref_primary_10_1016_j_red_2020_09_006
crossref_primary_10_1016_j_euroecorev_2024_104874
crossref_primary_10_1257_aer_20160576
crossref_primary_10_1016_j_eiar_2025_108142
crossref_primary_10_1111_jmcb_12908
crossref_primary_10_1016_j_euroecorev_2020_103615
crossref_primary_10_1016_j_econmod_2022_105859
crossref_primary_10_1086_738335
Cites_doi 10.1007/0-387-28982-8
10.1016/j.jmoneco.2005.08.008
10.1257/aer.97.3.586
10.1016/0304-3932(88)90030-X
10.1016/S0304-3932(00)00052-0
10.1257/aer.99.4.1097
10.1016/j.jeconom.2009.08.003
10.2307/1913710
10.3150/10-BEJ335
10.2139/ssrn.2251635
10.3982/ECTA8050
10.2139/ssrn.2094342
10.1016/j.jmoneco.2008.09.006
10.1214/009053604000000698
10.1016/j.jeconom.2008.10.002
10.3386/w15774
10.1016/S0304-4076(00)00019-1
10.1093/biomet/89.3.539
10.2307/2938258
10.1002/jae.582
10.1080/07474938.2011.607333
10.1080/07474939908800428
10.1016/j.csda.2009.11.019
ContentType Journal Article
Copyright Copyright © 2014 John Wiley & Sons, Ltd.
Copyright Wiley Periodicals Inc. Nov-Dec 2014
Copyright_xml – notice: Copyright © 2014 John Wiley & Sons, Ltd.
– notice: Copyright Wiley Periodicals Inc. Nov-Dec 2014
DBID BSCLL
AAYXX
CITATION
OQ6
8BJ
FQK
JBE
JQ2
DOI 10.1002/jae.2397
DatabaseName Istex
CrossRef
ECONIS
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1099-1255
EndPage 1098
ExternalDocumentID 3538887071
820441511
10_1002_jae_2397
JAE2397
26609010
ark_67375_WNG_K23NB1KS_H
Genre article
Feature
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
29J
2AX
31~
33P
3R3
3WU
4.4
41~
4ZD
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5GY
5VS
66C
702
7PT
7WY
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FL
8R4
8R5
8UM
8VB
930
A04
AABNI
AAESR
AAHQN
AAMMB
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXLS
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEML
ABIJN
ABJCF
ABJNI
ABKVW
ABLJU
ABPFR
ABPQH
ABPVW
ABSOO
ABUWG
ABXSQ
ABYYQ
ACAHQ
ACBKW
ACBWZ
ACCZN
ACGFS
ACHJO
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACUBG
ACXJH
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADGDI
ADIZJ
ADKYN
ADMGS
ADMHG
ADNMO
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEUPB
AEUYR
AEYWJ
AFAIT
AFBPY
AFFHD
AFFNX
AFFPM
AFGKR
AFKFF
AFKRA
AFTQD
AFWVQ
AFXHP
AFZJQ
AGHNM
AGKTX
AGQPQ
AGXDD
AHAJD
AHBTC
AIDQK
AIDYY
AIQQE
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
APTMU
ARAPS
ASMEE
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BMXJE
BNVMJ
BPHCQ
BQESF
BROTX
BRXPI
BSCLL
BY8
CBXGM
CCKSF
CCPQU
CS3
CYVLN
D-C
D-D
DCZOG
DJZPD
DPXWK
DR2
DRFUL
DRSSH
DU5
DWQXO
EBS
EJD
F00
F01
FEDTE
FRNLG
FVMVE
G-S
G.N
G50
GNP
GODZA
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HBH
HCIFZ
HF~
HGD
HGLYW
HHY
HVGLF
HZ~
IPSME
IX1
J0M
JAAYA
JAS
JBC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPC
JPL
JPPEU
JST
K1G
K60
K6V
K6~
K7-
KQQ
L6V
LATKE
LAW
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0C
M55
M7S
MEWTI
MK4
MRFUL
MRSSH
MSFUL
MSSSH
MVM
MXFUL
MXSSH
N04
N06
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2Y
P4C
P62
PALCI
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
Q.N
Q11
Q2X
QB0
QRW
QWB
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SA0
SAMSI
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WEBCB
WIB
WIH
WII
WOHZO
WQZ
WSUWO
WXSBR
XG1
XPP
XV2
Y6R
ZL0
ZY4
ZZTAW
~IA
~WP
AARRQ
3V.
AAHHS
AAYOK
ABTAH
ABYAD
ACCFJ
ACTWD
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AFYRF
AIFKG
AIWBW
AJBDE
EBU
GROUPED_ABI_INFORM_COMPLETE
JSODD
RWI
WRC
WWB
AAYXX
CITATION
O8X
OQ6
8BJ
FQK
JBE
JQ2
ID FETCH-LOGICAL-c6107-46a732a1be3a210f25cbedcecd1351915178023a73e68b7eb4703b9bcdc3e0f03
IEDL.DBID DRFUL
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346655000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0883-7252
IngestDate Thu Oct 02 12:03:53 EDT 2025
Mon Nov 10 03:32:45 EST 2025
Sat Mar 08 16:05:34 EST 2025
Sat Nov 29 06:12:13 EST 2025
Tue Nov 18 22:00:43 EST 2025
Wed Jan 22 16:32:33 EST 2025
Thu Jul 03 22:44:22 EDT 2025
Tue Nov 11 03:32:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6107-46a732a1be3a210f25cbedcecd1351915178023a73e68b7eb4703b9bcdc3e0f03
Notes ArticleID:JAE2397
istex:DE9B276C0A94C607F9CC70E0572D30EAEC0A1BD4
ark:/67375/WNG-K23NB1KS-H
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1640743914
PQPubID 37372
PageCount 26
ParticipantIDs proquest_miscellaneous_1646697320
proquest_journals_1640743914
econis_primary_820441511
crossref_citationtrail_10_1002_jae_2397
crossref_primary_10_1002_jae_2397
wiley_primary_10_1002_jae_2397_JAE2397
jstor_primary_26609010
istex_primary_ark_67375_WNG_K23NB1KS_H
PublicationCentury 2000
PublicationDate November/December 2014
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: November/December 2014
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of applied econometrics (Chichester, England)
PublicationTitleAlternate J. Appl. Econ
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley (Variant)
Wiley-Blackwell
Wiley Periodicals Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley (Variant)
– name: Wiley-Blackwell
– name: Wiley Periodicals Inc
References Liu JS.2008. Monte Carlo Strategies in Scientific Computing. Springer: Berlin.
Strid I. 2010. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach. Computational Statistics and Data Analysis 54(11): 2814-2835.
Rabanal P, Rubio-Ramírez JF. 2005. Comparing New Keynesian models of the business cycle: a Bayesian approach. Journal of Monetary Economics 52(6): 1151-1166.
Geweke J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57(6): 1317-1399.
Chib S, Ramamurthy S. 2010. Tailored randomized block MCMC methods with application to DSGE models. Journal of Econometrics 155(1): 19-38.
Creal D, Koopman SJ, Shephard N. 2009. Testing the assumptions behind importance sampling. Journal of Econometrics 149:2-11.
Amdahl G. 1967. Validity of the single processor approach to achieving large-scale computing capabilities. AFIPS Conference Proceedings 30: 483-485.
Del Moral P, Doucet A, Jasra A. 2012. On adaptive resampling strategies for sequential Monte Carlo methods. Bernoulli 18(1): 252-278.
Chopin N. 2002. A sequential particle filter for static models. Biometrika 89(3): 539-551.
Jaimovich N, Rebelo S. 2009. Can news about the future drive the business cycle. American Economic Review 9(4): 1097-1118.
Schorfheide F. 2000. Loss function-based evaluation of DSGE models. Journal of Applied Econometrics 15:645-670.
Cappé O, Moulines E, Ryden T. 2005. Inference in Hidden Markov Models. Springer: Berlin.
DeJong DN, Ingram BF, Whiteman CH. 2000. A Bayesian approach to dynamic macroeconomics. Journal of Econometrics 98(2): 203-223.
Schmitt-Grohé S, Uribe M. 2012. Whats news in business cycles? Econometrica 80(6): 2733-2764.
Chopin N. 2004. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics 32(6): 2385-2411.
Phillips PCB. 1991. Optimal inference in cointegrated systems. Econometrica 59(2): 283-306.
King RG, Plosser CI, Rebelo S. 1988. Production, growth, and business cycles. I. The basic neoclassical model. Journal of Monetary Economics 21(2-3): 195-232.
Geweke J. 1999. Using simulation methods for Bayesian econometric models: inference, development, and communication. Econometric Reviews 18(1): 1-126.
Del Negro M, Schorfheide F. 2008. Forming priors for DSGE models (and how it affects the assessment of nominal rigidities). Journal of Monetary Economics 55(7): 1191-1208.
Greenwood J, Hercowitz Z, Huffman G. 1988. Investment, capacity utilization and the real business cycle. American Economic Review 78(3): 402-417.
Creal D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews 31(3): 245-296.
Otrok C. 2001. On measuring the welfare costs of business cycles. Journal of Monetary Economics 47(1): 61-92.
Smets F, Wouters R. 2007. Shocks and frictions in US business cycles: a Bayesian DSGE approach. American Economic Review 97:586-608.
2010; 54
2012; 80
1991; 59
2012
2011
2010
2008
2007
1988; 78
2005
2012; 18
2008; 55
2007; 97
2001; 47
2012; 31
2004; 32
2000; 15
1999; 18
2002; 89
2000; 98
1967; 30
1988; 21
2010; 155
2005; 52
2009; 9
1989; 57
2009; 149
e_1_2_9_30_1
Greenwood J (e_1_2_9_17_1) 1988; 78
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
Amdahl G (e_1_2_9_2_1) 1967; 30
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
Liu JS (e_1_2_9_23_1) 2008
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Greenwood J, Hercowitz Z, Huffman G. 1988. Investment, capacity utilization and the real business cycle. American Economic Review 78(3): 402-417.
– reference: Phillips PCB. 1991. Optimal inference in cointegrated systems. Econometrica 59(2): 283-306.
– reference: Schmitt-Grohé S, Uribe M. 2012. Whats news in business cycles? Econometrica 80(6): 2733-2764.
– reference: Geweke J. 1999. Using simulation methods for Bayesian econometric models: inference, development, and communication. Econometric Reviews 18(1): 1-126.
– reference: Rabanal P, Rubio-Ramírez JF. 2005. Comparing New Keynesian models of the business cycle: a Bayesian approach. Journal of Monetary Economics 52(6): 1151-1166.
– reference: Creal D. 2012. A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews 31(3): 245-296.
– reference: King RG, Plosser CI, Rebelo S. 1988. Production, growth, and business cycles. I. The basic neoclassical model. Journal of Monetary Economics 21(2-3): 195-232.
– reference: Del Moral P, Doucet A, Jasra A. 2012. On adaptive resampling strategies for sequential Monte Carlo methods. Bernoulli 18(1): 252-278.
– reference: Otrok C. 2001. On measuring the welfare costs of business cycles. Journal of Monetary Economics 47(1): 61-92.
– reference: Cappé O, Moulines E, Ryden T. 2005. Inference in Hidden Markov Models. Springer: Berlin.
– reference: Chopin N. 2004. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics 32(6): 2385-2411.
– reference: Del Negro M, Schorfheide F. 2008. Forming priors for DSGE models (and how it affects the assessment of nominal rigidities). Journal of Monetary Economics 55(7): 1191-1208.
– reference: Strid I. 2010. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach. Computational Statistics and Data Analysis 54(11): 2814-2835.
– reference: Chopin N. 2002. A sequential particle filter for static models. Biometrika 89(3): 539-551.
– reference: Liu JS.2008. Monte Carlo Strategies in Scientific Computing. Springer: Berlin.
– reference: Amdahl G. 1967. Validity of the single processor approach to achieving large-scale computing capabilities. AFIPS Conference Proceedings 30: 483-485.
– reference: Schorfheide F. 2000. Loss function-based evaluation of DSGE models. Journal of Applied Econometrics 15:645-670.
– reference: Smets F, Wouters R. 2007. Shocks and frictions in US business cycles: a Bayesian DSGE approach. American Economic Review 97:586-608.
– reference: Jaimovich N, Rebelo S. 2009. Can news about the future drive the business cycle. American Economic Review 9(4): 1097-1118.
– reference: DeJong DN, Ingram BF, Whiteman CH. 2000. A Bayesian approach to dynamic macroeconomics. Journal of Econometrics 98(2): 203-223.
– reference: Geweke J. 1989. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57(6): 1317-1399.
– reference: Chib S, Ramamurthy S. 2010. Tailored randomized block MCMC methods with application to DSGE models. Journal of Econometrics 155(1): 19-38.
– reference: Creal D, Koopman SJ, Shephard N. 2009. Testing the assumptions behind importance sampling. Journal of Econometrics 149:2-11.
– year: 2011
– volume: 18
  start-page: 1
  issue: 1
  year: 1999
  end-page: 126
  article-title: Using simulation methods for Bayesian econometric models: inference, development, and communication
  publication-title: Econometric Reviews
– volume: 52
  start-page: 1151
  issue: 6
  year: 2005
  end-page: 1166
  article-title: Comparing New Keynesian models of the business cycle: a Bayesian approach
  publication-title: Journal of Monetary Economics
– year: 2005
– volume: 15
  start-page: 645
  year: 2000
  end-page: 670
  article-title: Loss function‐based evaluation of DSGE models
  publication-title: Journal of Applied Econometrics
– volume: 31
  start-page: 245
  issue: 3
  year: 2012
  end-page: 296
  article-title: A survey of sequential Monte Carlo methods for economics and finance
  publication-title: Econometric Reviews
– year: 2007
– volume: 55
  start-page: 1191
  issue: 7
  year: 2008
  end-page: 1208
  article-title: Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)
  publication-title: Journal of Monetary Economics
– volume: 149
  start-page: 2
  year: 2009
  end-page: 11
  article-title: Testing the assumptions behind importance sampling
  publication-title: Journal of Econometrics
– volume: 155
  start-page: 19
  issue: 1
  year: 2010
  end-page: 38
  article-title: Tailored randomized block MCMC methods with application to DSGE models
  publication-title: Journal of Econometrics
– volume: 89
  start-page: 539
  issue: 3
  year: 2002
  end-page: 551
  article-title: A sequential particle filter for static models
  publication-title: Biometrika
– year: 2010
– volume: 9
  start-page: 1097
  issue: 4
  year: 2009
  end-page: 1118
  article-title: Can news about the future drive the business cycle
  publication-title: American Economic Review
– volume: 30
  start-page: 483
  year: 1967
  end-page: 485
  article-title: Validity of the single processor approach to achieving large‐scale computing capabilities
  publication-title: AFIPS Conference Proceedings
– year: 2012
– volume: 98
  start-page: 203
  issue: 2
  year: 2000
  end-page: 223
  article-title: A Bayesian approach to dynamic macroeconomics
  publication-title: Journal of Econometrics
– volume: 78
  start-page: 402
  issue: 3
  year: 1988
  end-page: 417
  article-title: Investment, capacity utilization and the real business cycle
  publication-title: American Economic Review
– volume: 47
  start-page: 61
  issue: 1
  year: 2001
  end-page: 92
  article-title: On measuring the welfare costs of business cycles
  publication-title: Journal of Monetary Economics
– year: 2008
– volume: 80
  start-page: 2733
  issue: 6
  year: 2012
  end-page: 2764
  article-title: Whats news in business cycles?
  publication-title: Econometrica
– volume: 59
  start-page: 283
  issue: 2
  year: 1991
  end-page: 306
  article-title: Optimal inference in cointegrated systems
  publication-title: Econometrica
– volume: 21
  start-page: 195
  issue: 2–3
  year: 1988
  end-page: 232
  article-title: Production, growth, and business cycles. I. The basic neoclassical model
  publication-title: Journal of Monetary Economics
– volume: 54
  start-page: 2814
  issue: 11
  year: 2010
  end-page: 2835
  article-title: Efficient parallelisation of Metropolis–Hastings algorithms using a prefetching approach
  publication-title: Computational Statistics and Data Analysis
– volume: 32
  start-page: 2385
  issue: 6
  year: 2004
  end-page: 2411
  article-title: Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference
  publication-title: Annals of Statistics
– volume: 18
  start-page: 252
  issue: 1
  year: 2012
  end-page: 278
  article-title: On adaptive resampling strategies for sequential Monte Carlo methods
  publication-title: Bernoulli
– volume: 57
  start-page: 1317
  issue: 6
  year: 1989
  end-page: 1399
  article-title: Bayesian inference in econometric models using Monte Carlo integration
  publication-title: Econometrica
– volume: 97
  start-page: 586
  year: 2007
  end-page: 608
  article-title: Shocks and frictions in US business cycles: a Bayesian DSGE approach
  publication-title: American Economic Review
– ident: e_1_2_9_3_1
  doi: 10.1007/0-387-28982-8
– ident: e_1_2_9_26_1
  doi: 10.1016/j.jmoneco.2005.08.008
– ident: e_1_2_9_29_1
  doi: 10.1257/aer.97.3.586
– ident: e_1_2_9_21_1
  doi: 10.1016/0304-3932(88)90030-X
– ident: e_1_2_9_24_1
  doi: 10.1016/S0304-3932(00)00052-0
– volume: 30
  start-page: 483
  year: 1967
  ident: e_1_2_9_2_1
  article-title: Validity of the single processor approach to achieving large‐scale computing capabilities
  publication-title: AFIPS Conference Proceedings
– ident: e_1_2_9_20_1
  doi: 10.1257/aer.99.4.1097
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jeconom.2009.08.003
– ident: e_1_2_9_7_1
– ident: e_1_2_9_15_1
  doi: 10.2307/1913710
– ident: e_1_2_9_12_1
  doi: 10.3150/10-BEJ335
– ident: e_1_2_9_14_1
  doi: 10.2139/ssrn.2251635
– ident: e_1_2_9_27_1
  doi: 10.3982/ECTA8050
– volume-title: Monte Carlo Strategies in Scientific Computing
  year: 2008
  ident: e_1_2_9_23_1
– ident: e_1_2_9_19_1
  doi: 10.2139/ssrn.2094342
– ident: e_1_2_9_13_1
  doi: 10.1016/j.jmoneco.2008.09.006
– ident: e_1_2_9_6_1
  doi: 10.1214/009053604000000698
– ident: e_1_2_9_9_1
  doi: 10.1016/j.jeconom.2008.10.002
– volume: 78
  start-page: 402
  issue: 3
  year: 1988
  ident: e_1_2_9_17_1
  article-title: Investment, capacity utilization and the real business cycle
  publication-title: American Economic Review
– ident: e_1_2_9_10_1
  doi: 10.3386/w15774
– ident: e_1_2_9_11_1
  doi: 10.1016/S0304-4076(00)00019-1
– ident: e_1_2_9_18_1
– ident: e_1_2_9_22_1
– ident: e_1_2_9_5_1
  doi: 10.1093/biomet/89.3.539
– ident: e_1_2_9_25_1
  doi: 10.2307/2938258
– ident: e_1_2_9_28_1
  doi: 10.1002/jae.582
– ident: e_1_2_9_8_1
  doi: 10.1080/07474938.2011.607333
– ident: e_1_2_9_16_1
  doi: 10.1080/07474939908800428
– ident: e_1_2_9_30_1
  doi: 10.1016/j.csda.2009.11.019
SSID ssj0006007
Score 2.4408374
Snippet We develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle...
SUMMARYWe develop a sequential Monte Carlo (SMC) algorithm for estimating Bayesian dynamic stochastic general equilibrium (DSGE) models; wherein a particle...
SourceID proquest
econis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1073
SubjectTerms Algorithms
Bayesian analysis
Bayesian method
Dynamisches Gleichgewicht
Economic models
Economic shock
Function words
General economic equilibrium
Inference
Markov analysis
Markovian processes
Monte Carlo simulation
Random walk theory
Sampling
Schätztheorie
Stichprobenerhebung
Stochastic models
Stochastic processes
Studies
Theorie
Working hours
Title SEQUENTIAL MONTE CARLO SAMPLING FOR DSGE MODELS
URI https://api.istex.fr/ark:/67375/WNG-K23NB1KS-H/fulltext.pdf
https://www.jstor.org/stable/26609010
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjae.2397
http://www.econis.eu/PPNSET?PPN=820441511
https://www.proquest.com/docview/1640743914
https://www.proquest.com/docview/1646697320
Volume 29
WOSCitedRecordID wos000346655000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1255
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006007
  issn: 0883-7252
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB61gFQu0BciQFGQKnpKN87L2WNgswslTSnZVblZduJItGhBG0D8fGbyKkhFQuopB0-ixOOZ-Sae-QzwmbbWwrAsrFDTNiNGOGvosoBOc9e-ZKXH_bpROOFpGp6fD0_bqkrqhWn4IfofbmQZtb8mA5eqGvwlDf0t9VcHo-lrWKaeKlzRy6Oz8Szp_TAxrzcY0rW44zsd9aztDLp7nwSjFcpALypEqTTB912B4hPo-RjA1hFovP4_7_4W1lrcaUbNQnkHr_T8Pbzp2pKrDzDI4p-zOJ0eR4mJfnYam4fRWfLDzKLvp8lxOjExXTRH2STG0VGcZB9hNo6nh0dWe5qClSNE4pYXSO46kintSszzSsfPFZWA5kV9SB9Gfk5kcCikg1BxrTx0Bmqo8iJ3tV3a7gYsza_mehNMX2EiEsow8ILSK4tCMcQpQWkXLiu4lJ4BX7ppFXlLNU4nXlyKhiTZETgBgibAgL1e8rqh1_iHzGajmV4CUQulgYwZsF_rqh-Riz9UqcZ98SudiBPHTQ_YSSaODNioldkLIi6xqTLFgJ1Ou6K13kow2t2klmT8kr1-GO2ONlPkXF_d1jJBQFRH-Ij9WtfPfoD4FsV03Xqp4DasIi7zmpbHHVi6WdzqT7CS391cVIvddp0_ANiW9rQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xgsRe2MaGCGMjSIg9hcb5cqo9ZTRtWUMGpNV4s5zEkdhQi9oy7c_fXb42pCEh8ZQHX6L4zvb9zvb9DuCIjtZ8v8gNX9ExI3o4o2czj6q5K1eywuFumSgc8Tj2r697F2vwucmFqfgh2g03mhnlek0TnDaku39ZQ39IdWKhO30B6w6OIrMD6_2rwTRqF2KiXq9ApG1wy7Ua7lnT6jbvPvBGGxSC3iwRppKGfzc3FB9gz38RbOmCBq-e9fOvYatGnnpQDZU3sKZm27DZJCYv30I3CS-nYTw5CyIdV9pJqJ8GV9E3PQnOL6KzeKhjwKj3k2GIrf0wSt7BdBBOTkdGXU_ByBAkccPxJLctyVJlS4z0CsvNUroEmuVlmT70_Zzo4FBIeX7KVergcpD20izPbGUWpr0Dndl8pnZBd1MMRXzpe45XOEWepwyRileYuc1yLqWjwadGryKrycap5sWtqGiSLYEKEKQADQ5bybuKYOM_MruVaVoJxC0UCDKmwXFprLZFLn7SXTXuiu_xUIwtO_7CxokYabBTWrMVRGRi0t0UDfYb84p6_i4Fo_NNSkrGnhy2zTjz6DhFztT8vpTxPCI7wk8cl8Z-tAPiaxDSc--pggewOZqcRwKtO34PLxGlOVUC5D50Vot79QE2sl-rm-XiYz3o_wCatvqb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7RgEovtLQgDJQaqaInN16_1hEnQ5wAcd0UJyq31dpeS7RVQAkgfj4zfhUkKiH15MOOLXtnd-Ybz843AJ8pteb7RW74itKM6OGMns086uauXMkKh7tloXDE49i_uOiNl-CwqYWp-CHaH260M0p7TRtcXedF9y9r6C-pvlroTl_BsuMizO_Acv98MI1aQ0zU6xWItA1uuVbDPWta3ebeJ95ohULQywXCVJrh--aE4hPs-RjBli5o8Pa_Xv4drNXIUw-qpbIOS2r2HlabwuTFB-gm4Y9pGE9Og0hHSzsJ9ePgPPquJ8G3cXQaD3UMGPV-MgxxtB9GyQZMB-Hk-MSo-ykYGYIkbjie5LYlWapsiZFeYblZSodAs7xs04e-nxMdHAopz0-5Sh00B2kvzfLMVmZh2pvQmV3N1BboboqhiC99z_EKp8jzlCFS8Qozt1nOpXQ0-NLMq8hqsnHqefFHVDTJlsAJEDQBGuy3ktcVwcYzMluValoJxC0UCDKmwUGprHZEzn_TWTXuip_xUIwsOz5io0ScaLBZarMVRGRi0tkUDXYb9Yp6_y4Eo_wmFSXjl-y3w7jzKJ0iZ-rqtpTxPCI7wkcclMr-5weIsyCk6_ZLBT_B63F_IFC5ox14gyDNqeofd6FzM79VH2Elu7u5XMz36jX_AEV9-h8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SEQUENTIAL+MONTE+CARLO+SAMPLING+FOR+DSGE+MODELS&rft.jtitle=Journal+of+applied+econometrics+%28Chichester%2C+England%29&rft.au=Herbst%2C+Edward&rft.au=Schorfheide%2C+Frank&rft.date=2014-11-01&rft.issn=0883-7252&rft.eissn=1099-1255&rft.volume=29&rft.issue=7&rft.spage=1073&rft.epage=1098&rft_id=info:doi/10.1002%2Fjae.2397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jae_2397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0883-7252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0883-7252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0883-7252&client=summon