Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels com...
Saved in:
| Published in: | The EMBO journal Vol. 32; no. 2; pp. 204 - 218 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
23.01.2013
Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
| Subjects: | |
| ISSN: | 0261-4189, 1460-2075, 1460-2075 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising
S. cerevisiae
FG domains. We now studied FG domains from 10
Xenopus
nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the
S. cerevisiae
Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability.
The phenylalanine‐glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O‐linked glycosylation. |
|---|---|
| AbstractList | Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability. The phenylalanine‐glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O‐linked glycosylation. Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. The phenylalanine-glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O-linked glycosylation. Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability.Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability. The phenylalanine‐glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O‐linked glycosylation. Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. |
| Author | Hülsmann, Bastian B Baldus, Marc Görlich, Dirk Frey, Steffen Gradmann, Sabine Urlaub, Henning Labokha, Aksana A |
| Author_xml | – sequence: 1 givenname: Aksana A surname: Labokha fullname: Labokha, Aksana A organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany – sequence: 2 givenname: Sabine surname: Gradmann fullname: Gradmann, Sabine organization: Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands – sequence: 3 givenname: Steffen surname: Frey fullname: Frey, Steffen organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany – sequence: 4 givenname: Bastian B surname: Hülsmann fullname: Hülsmann, Bastian B organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany – sequence: 5 givenname: Henning surname: Urlaub fullname: Urlaub, Henning organization: Bioanalytische Massenspektrometrie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany – sequence: 6 givenname: Marc surname: Baldus fullname: Baldus, Marc organization: Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands – sequence: 7 givenname: Dirk surname: Görlich fullname: Görlich, Dirk email: goerlich@mpibpc.mpg.de organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23202855$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktv1DAUhS1URKeFLUsUiU03mfqVxNkg0dIOoCmIl8rOcpzrqYckHuyk7fx7HNJWpVKFvLAsn-_c63u8h3Y61wFCLwmeE8zEIbSVW88pJnTOMH2CZoTnOKW4yHbQDNOcpJyIchfthbDGGGeiIM_QLmUUU5FlM3T-bRt6aFVvdaI61WyDDYkzSaW8t-BT43xru1VyukgutrV3K2hCYrxrk5_Quc0Qkm7QDSifbJyHRLt208A1hOfoqVFNgBc3-z76cXry_fh9uvy8-HD8dpnqnGCaGihrhgnXtcHASVnyWkBOSsIKA4XOha4p4aZSTJe0UiUzvKw45SYuLhRm--jN5LsZqhZqDV3vVSM33rbKb6VTVv5709kLuXKXkmUZY4WIBgc3Bt79HiD0srVBQ9OoDtwQJKEFExiXvIjS1w-kazf4OLRRJTKSlYyyqHp1v6O7Vm5nHgV8EmjvQvBgpLZ9DMCNDdpGEizHaOXfaOUYrYzRRmz-ALt1fhQoJuDKNrD9j1qenB19HA8TeTiRIULdCvy9hz5WK50IG3_T9V0t5X_JvGBFJs8_LeSXI3pG3n0Vcsn-AFDU12A |
| CODEN | EMJODG |
| CitedBy_id | crossref_primary_10_1038_s41557_022_00946_9 crossref_primary_10_1002_1873_3468_14739 crossref_primary_10_1016_j_bpj_2017_08_062 crossref_primary_10_1002_pro_4010 crossref_primary_10_1155_2017_1308692 crossref_primary_10_1016_j_jmb_2021_167220 crossref_primary_10_3390_v13112242 crossref_primary_10_1038_s41580_025_00881_w crossref_primary_10_1083_jcb_202105163 crossref_primary_10_1371_journal_pone_0143745 crossref_primary_10_1016_j_semcdb_2017_05_007 crossref_primary_10_1021_jacs_1c05550 crossref_primary_10_1016_j_bpj_2024_03_027 crossref_primary_10_1038_s41567_024_02438_8 crossref_primary_10_1111_febs_15205 crossref_primary_10_1002_pro_4093 crossref_primary_10_3389_fcell_2021_708702 crossref_primary_10_3390_ijms23052578 crossref_primary_10_1016_j_tibs_2015_11_001 crossref_primary_10_15252_embj_2022112987 crossref_primary_10_1093_nar_gkv705 crossref_primary_10_3390_ijms24108571 crossref_primary_10_1073_pnas_2502687122 crossref_primary_10_1534_g3_115_023002 crossref_primary_10_1016_j_bpj_2014_02_021 crossref_primary_10_1016_j_neuron_2018_07_039 crossref_primary_10_1038_mtm_2015_47 crossref_primary_10_1016_j_cell_2013_02_042 crossref_primary_10_1016_j_jmb_2016_01_002 crossref_primary_10_3390_biomedicines9101451 crossref_primary_10_1371_journal_pone_0081741 crossref_primary_10_1016_j_bpj_2017_08_058 crossref_primary_10_1093_bib_bbaa271 crossref_primary_10_1111_tra_12209 crossref_primary_10_1042_BST20240507 crossref_primary_10_15252_embj_201593517 crossref_primary_10_1021_jacs_8b08041 crossref_primary_10_1016_j_bpj_2013_11_013 crossref_primary_10_1093_jb_mvab072 crossref_primary_10_7554_eLife_14119 crossref_primary_10_1002_anie_202007283 crossref_primary_10_1038_emboj_2012_338 crossref_primary_10_1016_j_bpj_2013_09_006 crossref_primary_10_1016_j_tcsw_2020_100046 crossref_primary_10_1016_j_semcdb_2017_05_021 crossref_primary_10_1038_s41467_020_17145_0 crossref_primary_10_1038_s41594_023_00925_9 crossref_primary_10_1073_pnas_2015621118 crossref_primary_10_1042_BST20220494 crossref_primary_10_1128_mmbr_00048_22 crossref_primary_10_1038_s41467_024_48194_4 crossref_primary_10_1016_j_bpj_2019_02_028 crossref_primary_10_1016_j_devcel_2020_09_003 crossref_primary_10_1002_tcr_202000175 crossref_primary_10_1039_D4SC05063K crossref_primary_10_3390_v16111682 crossref_primary_10_1007_s10858_014_9822_6 crossref_primary_10_1111_tra_12150 crossref_primary_10_1007_s00216_021_03731_8 crossref_primary_10_1016_j_celrep_2023_112884 crossref_primary_10_1091_mbc_e13_12_0745 crossref_primary_10_3390_biom7040070 crossref_primary_10_1242_jcs_083246 crossref_primary_10_1002_ange_202007283 crossref_primary_10_1039_C9SC02356A crossref_primary_10_1002_adma_201500752 crossref_primary_10_1083_jcb_201501101 crossref_primary_10_1002_ange_201403694 crossref_primary_10_1007_s12195_016_0440_0 crossref_primary_10_1016_j_physrep_2021_03_003 crossref_primary_10_3390_cells11142189 crossref_primary_10_1007_s00412_023_00787_6 crossref_primary_10_1073_pnas_2104897118 crossref_primary_10_1016_j_ijbiomac_2021_01_218 crossref_primary_10_3390_cells4030452 crossref_primary_10_1002_anie_201403694 crossref_primary_10_1016_j_abb_2017_05_008 crossref_primary_10_1016_j_cub_2014_01_008 crossref_primary_10_1016_j_cell_2016_11_055 crossref_primary_10_1038_s41586_023_06969_7 crossref_primary_10_1089_ars_2017_7347 crossref_primary_10_1073_pnas_1522663113 crossref_primary_10_1038_s44318_024_00081_w crossref_primary_10_1242_jcs_113233 crossref_primary_10_15252_embj_2021109952 crossref_primary_10_1016_j_bbamcr_2021_119205 crossref_primary_10_1038_s41586_023_06966_w crossref_primary_10_1002_pro_2674 crossref_primary_10_1016_j_semcdb_2017_04_006 crossref_primary_10_1016_j_bbamcr_2014_08_003 crossref_primary_10_1038_s41467_019_12740_2 crossref_primary_10_3389_fphys_2020_00239 crossref_primary_10_1038_s41467_022_33697_9 crossref_primary_10_1083_jcb_202010141 crossref_primary_10_1261_rna_057612_116 crossref_primary_10_1016_j_eml_2018_04_006 crossref_primary_10_1038_s41467_022_28821_8 crossref_primary_10_1007_s12195_016_0443_x crossref_primary_10_1002_anie_202009139 crossref_primary_10_1039_C7ME00006E crossref_primary_10_1091_mbc_e13_05_0256 crossref_primary_10_1016_j_tibs_2015_08_010 crossref_primary_10_1042_BST20160171 crossref_primary_10_1242_dev_204585 crossref_primary_10_1038_s41467_021_24292_5 crossref_primary_10_3389_fncel_2021_664151 crossref_primary_10_1242_jcs_238121 crossref_primary_10_1016_j_cell_2016_01_034 crossref_primary_10_1016_j_mad_2014_01_003 crossref_primary_10_1038_s41467_023_36331_4 crossref_primary_10_1038_s41929_017_0002_4 crossref_primary_10_1038_s41557_022_01035_7 crossref_primary_10_1038_s41598_017_05959_w crossref_primary_10_4049_jimmunol_1502031 crossref_primary_10_1016_j_semcdb_2019_05_020 crossref_primary_10_1038_s41467_022_31098_6 crossref_primary_10_1038_s42003_024_07102_8 crossref_primary_10_7554_eLife_10027 crossref_primary_10_1016_j_cell_2016_05_004 crossref_primary_10_3390_v5102410 crossref_primary_10_1242_jcs_184184 crossref_primary_10_7554_eLife_04251 crossref_primary_10_1091_mbc_E22_01_0027 crossref_primary_10_1039_C6IB00153J crossref_primary_10_1042_BST20170139 crossref_primary_10_1021_jacs_1c04194 crossref_primary_10_1073_pnas_2212874120 crossref_primary_10_3390_ijms150814492 crossref_primary_10_1002_ange_202009139 crossref_primary_10_1016_j_neuron_2021_06_023 crossref_primary_10_1016_j_tcb_2023_08_005 crossref_primary_10_1038_s41467_019_12402_3 crossref_primary_10_3389_fcell_2023_1245939 crossref_primary_10_1039_C8CC01346B |
| Cites_doi | 10.1083/jcb.200411005 10.1083/jcb.128.5.721 10.1073/pnas.0910163107 10.1083/jcb.131.6.1699 10.1016/S0960-9822(99)80044-X 10.1016/j.cell.2007.01.044 10.1016/j.tcb.2003.10.007 10.1016/j.bpj.2011.08.025 10.1021/bm300412q 10.1083/jcb.104.2.189 10.1093/emboj/17.22.6587 10.1083/jcb.104.5.1157 10.1006/jmra.1996.0137 10.1006/jmbi.1996.0411 10.1038/81992 10.1091/mbc.6.11.1591 10.1016/S0006-3495(04)74262-9 10.1038/ncb1097 10.1126/science.1132516 10.1016/S0021-9258(18)48017-9 10.1016/S1097-2765(02)00589-0 10.1016/S0960-9822(95)00079-0 10.1083/jcb.137.5.989 10.1038/emboj.2009.200 10.1073/pnas.91.4.1519 10.1093/emboj/16.4.807 10.1091/mbc.E04-03-0165 10.1016/j.cplett.2008.05.058 10.1074/mcp.M200048-MCP200 10.1093/emboj/cdg113 10.1038/emboj.2011.287 10.1038/emboj.2009.199 10.1038/nsmb.1561 10.1073/pnas.041617698 10.1016/j.cell.2007.06.024 10.1128/jb.179.23.7219-7225.1997 10.1091/mbc.E05-07-0642 10.1091/mbc.E02-09-0582 10.1006/jmbi.2000.4193 10.1073/pnas.0403675101 10.1093/emboj/16.21.6535 10.1083/JCB.145.2.237 10.1093/emboj/20.6.1320 10.1007/s00018-003-3070-3 10.1074/mcp.M000035-MCP201 10.1002/j.1460-2075.1996.tb00943.x 10.1083/jcb.200108007 10.1177/16.11.673 10.1016/j.jmb.2003.08.050 10.1016/0092-8674(95)90181-7 10.1242/jcs.108.9.2963 10.1006/jmbi.1999.3166 10.4161/pri.20199 10.1016/0014-5793(95)00699-A 10.1023/A:1011278317489 10.1016/S0021-9258(19)42646-X 10.1083/jcb.200202088 10.1016/S0960-9822(99)80046-3 10.1074/jbc.273.52.35170 10.1074/jbc.275.15.10983 10.1002/j.1460-2075.1988.tb03331.x 10.1021/ja0530164 10.1074/jbc.M512585200 10.1038/nbt1037 10.1016/S0021-9258(19)39838-2 10.1074/jbc.M010420200 10.1128/MCB.24.6.2373-2384.2004 10.1016/j.cell.2012.07.019 10.1016/j.ymeth.2006.06.011 10.1128/MCB.00342-06 10.1038/nsmb.1931 10.1016/0092-8674(93)90047-T 10.1006/jmre.1999.1896 10.1083/jcb.130.2.265 10.1016/j.molcel.2004.10.032 10.1083/jcb.114.1.169 10.1016/j.str.2009.07.014 10.1016/j.devcel.2009.10.007 |
| ContentType | Journal Article |
| Copyright | European Molecular Biology Organization 2013 Copyright © 2013 European Molecular Biology Organization Copyright Nature Publishing Group Jan 23, 2013 Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization |
| Copyright_xml | – notice: European Molecular Biology Organization 2013 – notice: Copyright © 2013 European Molecular Biology Organization – notice: Copyright Nature Publishing Group Jan 23, 2013 – notice: Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization |
| DBID | BSCLL C6C 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI BKSAR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PCBAR PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/emboj.2012.302 |
| DatabaseName | Istex SpringerOpen Free (Free internet resource, activated by CARLI) Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library Animal Behavior Abstracts Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Biology |
| DocumentTitleAlternate | Systematic analysis of barrier-forming FG hydrogels |
| EISSN | 1460-2075 |
| EndPage | 218 |
| ExternalDocumentID | PMC3553378 2886575551 23202855 10_1038_emboj_2012_302 EMBJ2012302 ark_67375_WNG_QB2M1DR8_L |
| Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 29G 2WC 33P 36B 39C 4.4 53G 5VS 70F 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAIHA AAJSJ AAMMB AANHP AANLZ AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AENEX AEUYN AEUYR AFBPY AFFHD AFFNX AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY AIURR AJAOE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BSCLL BTFSW BVXVI C6C CCPQU CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HYE KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PCBAR PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RHI RNS ROL RPM SV3 TN5 TR2 UKHRP WBKPD WH7 WIH WIK WIN WOHZO WXSBR YSK ZCA ZZTAW ~KM 24P 3V. 88A AAHHS ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE ALIPV M0L RHF WYJ ABJNI AAYXX C1A CITATION COF FEDTE HVGLF O8X CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c6102-fe9d3014cdf0e41994d8e619137fe7c68cd214fba3c92ba93f49b424f4f448a03 |
| IEDL.DBID | 8C1 |
| ISICitedReferencesCount | 167 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316464500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0261-4189 1460-2075 |
| IngestDate | Tue Nov 04 01:57:47 EST 2025 Sun Sep 28 00:41:27 EDT 2025 Mon Oct 06 17:56:46 EDT 2025 Thu Apr 03 07:04:06 EDT 2025 Tue Nov 18 21:03:50 EST 2025 Sat Nov 29 03:24:47 EST 2025 Wed Jan 22 16:35:11 EST 2025 Fri Feb 21 02:36:41 EST 2025 Tue Nov 11 03:33:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | nuclear pore complex importin O‐glycosylation exportin FG hydrogel |
| Language | English |
| License | Attribution-NonCommercial-ShareAlike http://doi.wiley.com/10.1002/tdm_license_1.1 This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c6102-fe9d3014cdf0e41994d8e619137fe7c68cd214fba3c92ba93f49b424f4f448a03 |
| Notes | Supplementary InformationReview Process File ark:/67375/WNG-QB2M1DR8-L ArticleID:EMBJ2012302 istex:D91509F9D94954E7713FCAC9EB0B497026E26196 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2012.302 |
| PMID | 23202855 |
| PQID | 1285159323 |
| PQPubID | 35985 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3553378 proquest_miscellaneous_1273800947 proquest_journals_1285159323 pubmed_primary_23202855 crossref_citationtrail_10_1038_emboj_2012_302 crossref_primary_10_1038_emboj_2012_302 wiley_primary_10_1038_emboj_2012_302_EMBJ2012302 springer_journals_10_1038_emboj_2012_302 istex_primary_ark_67375_WNG_QB2M1DR8_L |
| PublicationCentury | 2000 |
| PublicationDate | January 23, 2013 |
| PublicationDateYYYYMMDD | 2013-01-23 |
| PublicationDate_xml | – month: 01 year: 2013 text: January 23, 2013 day: 23 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: London – name: England – name: New York |
| PublicationTitle | The EMBO journal |
| PublicationTitleAbbrev | EMBO J |
| PublicationTitleAlternate | EMBO J |
| PublicationYear | 2013 |
| Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
| References | Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60: 1659-1688 Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116-3122 Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16: 673-677 Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168: 233-243 Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145: 237-254 Hurt EC (1988) A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J 7: 4323-4434 Görlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22: 1088-1100 Weirich CS, Erzberger JP, Berger JM, Weis K (2004) The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell 16: 749-760 Iovine MK, Watkins JL, Wente SR (1995) The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol 131: 1699-1713 Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20: 1320-1330 Powers MA, Macaulay C, Masiarz FR, Forbes DJ (1995) Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 128: 721-736 Petri M, Frey S, Menzel A, Görlich D, Techert S (2012) Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel. Biomacromolecules 13: 1882-1889 Rüdiger S, Mayer MP, Schneider-Mergener J, Bukau B (2000) Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. J Mol Biol 304: 245-251 Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276: 9838-9845 Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16: 6535-6547 Morrison J, Yang JC, Stewart M, Neuhaus D (2003) Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats. J Mol Biol 333: 587-603 Hetzer MW, Wente SR (2009) Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 17: 606-616 Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24: 2373-2384 Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17: 1367-1376 Görlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15: 5584-5594 Onischenko EA, Gubanova NV, Kiseleva EV, Hallberg E (2005) Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol Biol Cell 16: 5152-5162 Guan T, Muller S, Klier G, Pante N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6: 1591-1603 Griffis ER, Xu S, Powers MA (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14: 600-610 Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7: 1133-1138 Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142: 97-101 Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13: 622-628 Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Görlich D, Stewart M (1999) Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 293: 579-593 Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17: 6587-6598 Scholz I, Huber M, Manolikas T, Meier BH, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460: 278-283 Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104: 1157-1164 Ribbeck K, Kutay U, Paraskeva E, Görlich D (1999) The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 9: 47-50 Hutten S, Kehlenbach RH (2006) Nup214 is required for CRM1-dependent nuclear protein export in vivo. Mol Cell Biol 26: 6772-6785 Englmeier L, Olivo JC, Mattaj IW (1999) Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 9: 30-41 Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA (2002) The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Mol Cell 10: 347-358 Mohr D, Frey S, Fischer T, Güttler T, Görlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28: 2541-2553 von Moeller H, Basquin C, Conti E (2009) The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol 16: 247-254 Hanover JA, Cohen CK, Willingham MC, Park MK (1987) O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 262: 9887-9894 Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64: 547-552 Bullock TL, Clarkson WD, Kent HM, Stewart M (1996) The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol 260: 422-431 Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M (2002) The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 158: 63-77 Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B (1997) Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Cell Biol 137: 989-1000 Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci USA 98: 2375-2380 Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16: 807-816 Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83: 683-692 Halfmann R, Wright J, Alberti S, Lindquist S, Rexach M (2012) Prion formation by a yeast GLFG nucleoporin. Prion 6: 391-399 Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 101: 12887-12892 Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M (2006) Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. J Biol Chem 281: 19378-19386 Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127: 12965-12974 Frey S, Görlich D (2009) FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 28: 2554-2567 Frey S, Richter RP, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314: 815-817 Güttler T, Görlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30: 3457-3474 Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129: 83-96 Ader C, Frey S, Maas W, Schmidt HB, Görlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285 Chi NC, Adam EJ, Adam SA (1995) Sequence and characterization of cytoplasmic nuclear protein import factor p97. J Cell Biol 130: 265-274 Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114: 169-183 Fauchere JL, Pliska V (1983) Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 18: 369-375 Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15: 4261-4277 Wells L, Vosseller Krull, Thyberg, Bjorkroth, Rackwitz, Cordes (CR47) 2004; 15 Mohr, Frey, Fischer, Güttler, Görlich (CR51) 2009; 28 Onischenko, Gubanova, Kiseleva, Hallberg (CR54) 2005; 16 Chi, Adam, Adam (CR11) 1995; 130 Fornerod, van Deursen, van Baal, Reynolds, Davis, Murti, Fransen, Grosveld (CR18) 1997; 16 Shaka, Barker, Freeman (CR67) 1985; 64 Griffis, Xu, Powers (CR28) 2003; 14 Sukegawa, Blobel (CR70) 1993; 72 Rüdiger, Mayer, Schneider‐Mergener, Bukau (CR64) 2000; 304 Hodel, Hodel, Griffis, Hennig, Ratner, Xu, Powers (CR37) 2002; 10 Fung, Khitrin, Ermolaev (CR23) 2000; 142 Güttler, Görlich (CR31) 2011; 30 Yang, Gelles, Musser (CR78) 2004; 101 Eanes, Glenner (CR13) 1968; 16 Ribbeck, Kutay, Paraskeva, Görlich (CR61) 1999; 9 Andronesi, Becker, Seidel, Heise, Young, Baldus (CR2) 2005; 127 Frey, Görlich (CR20) 2007; 130 Petri, Frey, Menzel, Görlich, Techert (CR56) 2012; 13 Rexach, Blobel (CR59) 1995; 83 Luca, Filippov, van Boom, Oschkinat, de Groot, Baldus (CR79) 2001; 20 Wells, Vosseller, Cole, Cronshaw, Matunis, Hart (CR76) 2002; 1 Kustanovich, Rabin (CR80) 2004; 86 Strawn, Shen, Shulga, Goldfarb, Wente (CR69) 2004; 6 Patel, Belmont, Sante, Rexach (CR55) 2007; 129 Pritchard, Fornerod, Kasper, van Deursen (CR58) 1999; 145 Scholz, Huber, Manolikas, Meier, Ernst (CR65) 2008; 460 Finlay, Meier, Bradley, Horecka, Forbes (CR16) 1991; 114 Görlich, Pante, Kutay, Aebi, Bischoff (CR26) 1996; 15 Kubitscheck, Grunwald, Hoekstra, Rohleder, Kues, Siebrasse, Peters (CR48) 2005; 168 Fauchere, Pliska (CR15) 1983; 18 Haltiwanger, Holt, Hart (CR34) 1990; 265 Frey, Görlich (CR19) 2009; 28 Hülsmann, Labokha, Görlich (CR39) 2012; 150 Halfmann, Wright, Alberti, Lindquist, Rexach (CR33) 2012; 6 Brohawn, Partridge, Whittle, Schwartz (CR9) 2009; 17 Imamoto, Shimamoto, Kose, Takao, Tachibana, Matsubae, Sekimoto, Shimonishi, Yoneda (CR42) 1995; 368 Hetzer, Wente (CR36) 2009; 17 Holt, Snow, Senior, Haltiwanger, Gerace, Hart (CR38) 1987; 104 Bastos, Ribas de Pouplana, Enarson, Bodoor, Burke (CR5) 1997; 137 Hutten, Kehlenbach (CR41) 2006; 26 Görlich, Kostka, Kraft, Dingwall, Laskey, Hartmann, Prehn (CR25) 1995; 5 Yamada, Phillips, Patel, Goldfien, Calestagne‐Morelli, Huang, Reza, Acheson, Krishnan, Newsam, Gopinathan, Lau, Colvin, Uversky, Rexach (CR77) 2010; 9 Wall, Socolich, Ranganathan (CR73) 2000; 7 Lubas, Hanover (CR49) 2000; 275 Balbirnie, Grothe, Eisenberg (CR3) 2001; 98 Morrison, Yang, Stewart, Neuhaus (CR52) 2003; 333 Ader, Frey, Maas, Schmidt, Görlich, Baldus (CR1) 2010; 107 Shaner, Campbell, Steinbach, Giepmans, Palmer, Tsien (CR68) 2004; 22 Iovine, Watkins, Wente (CR43) 1995; 131 Powers, Macaulay, Masiarz, Forbes (CR57) 1995; 128 Izaurralde, Kutay, von Kobbe, Mattaj, Görlich (CR44) 1997; 16 Ribbeck, Lipowsky, Kent, Stewart, Görlich (CR62) 1998; 17 Vasu, Shah, Orjalo, Park, Fischer, Forbes (CR71) 2001; 155 Bullock, Clarkson, Kent, Stewart (CR10) 1996; 260 Bayliss, Ribbeck, Akin, Kent, Feldherr, Görlich, Stewart (CR6) 1999; 293 Nagata, Burger (CR53) 1974; 249 Englmeier, Olivo, Mattaj (CR14) 1999; 9 Grote, Kubitscheck, Reichelt, Peters (CR29) 1995; 108 Kraemer, Wozniak, Blobel, Radu (CR46) 1994; 91 Schwoebel, Talcott, Cushman, Moore (CR66) 1998; 273 Cushman, Palzkill, Moore (CR12) 2006; 39 von Moeller, Basquin, Conti (CR72) 2009; 16 Güttler, Madl, Neumann, Deichsel, Corsini, Monecke, Ficner, Sattler, Görlich (CR32) 2010; 17 Weirich, Erzberger, Berger, Weis (CR75) 2004; 16 Hurt (CR40) 1988; 7 Finlay, Newmeyer, Price, Forbes (CR17) 1987; 104 Frey, Richter, Görlich (CR21) 2006; 314 Fried, Kutay (CR22) 2003; 60 Walther, Pickersgill, Cordes, Goldberg, Allen, Mattaj, Fornerod (CR74) 2002; 158 Guan, Muller, Klier, Pante, Blevitt, Haner, Paschal, Aebi, Gerace (CR30) 1995; 6 Ribbeck, Görlich (CR60) 2001; 20 Bernad, Engelsma, Sanderson, Pickersgill, Fornerod (CR7) 2006; 281 Gao, Wells, Comer, Parker, Hart (CR24) 2001; 276 Bernad, van der Velde, Fornerod, Pickersgill (CR8) 2004; 24 Görlich, Seewald, Ribbeck (CR27) 2003; 22 Milles, Lemke (CR50) 2011; 101 Rout, Aitchison, Magnasco, Chait (CR63) 2003; 13 Hanover, Cohen, Willingham, Park (CR35) 1987; 262 Kanemori, Nishihara, Yanagi, Yura (CR45) 1997; 179 Baldus, Meier (CR4) 1996; 121 1987; 262 2004; 22 1991; 114 2010; 107 1987; 104 2010; 17 1999; 293 2006; 39 2002; 158 2002; 10 2004; 24 2000; 7 2003; 13 1996; 260 2003; 14 2004; 6 1995; 131 1983; 18 2012; 13 1985; 64 1995; 130 1990; 265 2008; 460 1998; 273 1998; 17 1968; 16 1993; 72 2007; 130 2006; 26 1995; 128 1997; 16 1995; 368 2006; 281 2009; 16 2010; 9 2001; 98 2009; 17 1997; 179 2004; 101 1997; 137 2004; 86 2007; 129 1974; 249 2002; 1 2011; 30 1996; 121 2000; 275 1999; 145 2006; 314 2003; 333 1996; 15 1995; 6 1995; 5 2001; 20 1999; 9 2009; 28 2001; 276 2012; 150 2001; 155 1995; 83 2004; 16 2005; 168 2000; 304 2004; 15 2005; 127 1995; 108 1988; 7 2000; 142 2003; 60 2012; 6 1994; 91 2005; 16 2011; 101 2003; 22 emboj2012302-b8 emboj2012302-b9 emboj2012302-b6 emboj2012302-b7 emboj2012302-b28 emboj2012302-b27 emboj2012302-b25 emboj2012302-b69 emboj2012302-b24 emboj2012302-b68 emboj2012302-b23 emboj2012302-b22 emboj2012302-b66 emboj2012302-b21 emboj2012302-b65 emboj2012302-b20 emboj2012302-b64 emboj2012302-b63 emboj2012302-b62 emboj2012302-b61 emboj2012302-b60 Grote M (emboj2012302-b29) 1995; 108 Guan T (emboj2012302-b30) 1995; 6 emboj2012302-b39 emboj2012302-b38 emboj2012302-b37 emboj2012302-b36 emboj2012302-b79 emboj2012302-b78 emboj2012302-b33 emboj2012302-b77 emboj2012302-b32 emboj2012302-b76 emboj2012302-b31 emboj2012302-b75 emboj2012302-b74 emboj2012302-b73 emboj2012302-b72 emboj2012302-b71 emboj2012302-b70 emboj2012302-b1 Haltiwanger RS (emboj2012302-b34) 1990; 265 emboj2012302-b4 emboj2012302-b5 emboj2012302-b2 emboj2012302-b3 emboj2012302-b49 emboj2012302-b48 emboj2012302-b47 emboj2012302-b46 emboj2012302-b44 emboj2012302-b43 emboj2012302-b42 emboj2012302-b41 Shaka AJ (emboj2012302-b67) 1985; 64 emboj2012302-b80 Nagata Y (emboj2012302-b53) 1974; 249 Hanover JA (emboj2012302-b35) 1987; 262 Kanemori M (emboj2012302-b45) 1997; 179 emboj2012302-b19 emboj2012302-b18 emboj2012302-b17 emboj2012302-b16 emboj2012302-b59 emboj2012302-b14 emboj2012302-b58 emboj2012302-b13 emboj2012302-b57 emboj2012302-b12 emboj2012302-b56 emboj2012302-b11 emboj2012302-b55 emboj2012302-b10 emboj2012302-b54 Fauchere JL (emboj2012302-b15) 1983; 18 emboj2012302-b52 emboj2012302-b51 emboj2012302-b50 Hurt EC (emboj2012302-b40) 1988; 7 Görlich D (emboj2012302-b26) 1996; 15 2050741 - J Cell Biol. 1991 Jul;114(1):169-83 9049309 - EMBO J. 1997 Feb 17;16(4):807-16 14624840 - Trends Cell Biol. 2003 Dec;13(12):622-8 23241951 - EMBO J. 2013 Jan 23;32(2):173-5 8108440 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1519-23 7876300 - J Cell Biol. 1995 Mar;128(5):721-36 14504656 - Cell Mol Life Sci. 2003 Aug;60(8):1659-88 14556747 - J Mol Biol. 2003 Oct 24;333(3):587-603 16159291 - J Am Chem Soc. 2005 Sep 21;127(37):12965-74 15229283 - Mol Biol Cell. 2004 Sep;15(9):4261-77 3571327 - J Cell Biol. 1987 May;104(5):1157-64 11250898 - EMBO J. 2001 Mar 15;20(6):1320-30 10753899 - J Biol Chem. 2000 Apr 14;275(15):10983-8 7635189 - FEBS Lett. 1995 Jul 24;368(3):415-9 15558047 - Nat Biotechnol. 2004 Dec;22(12):1567-72 15657394 - J Cell Biol. 2005 Jan 17;168(2):233-43 16120647 - Mol Biol Cell. 2005 Nov;16(11):5152-62 16943420 - Mol Cell Biol. 2006 Sep;26(18):6772-85 17693259 - Cell. 2007 Aug 10;130(3):512-23 11226247 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2375-80 12105182 - J Cell Biol. 2002 Jul 8;158(1):63-77 12438562 - Mol Cell Proteomics. 2002 Oct;1(10):791-804 15574330 - Mol Cell. 2004 Dec 3;16(5):749-60 4830237 - J Biol Chem. 1974 May 25;249(10):3116-22 16908185 - Methods. 2006 Aug;39(4):329-41 8757804 - J Mol Biol. 1996 Jul 19;260(3):422-31 8589458 - Mol Biol Cell. 1995 Nov;6(11):1591-603 15041643 - Biophys J. 2004 Apr;86(4):2008-16 22901806 - Cell. 2012 Aug 17;150(4):738-51 10543952 - J Mol Biol. 1999 Oct 29;293(3):579-93 9889126 - Curr Biol. 1999 Jan 14;9(1):47-50 16675447 - J Biol Chem. 2006 Jul 14;281(28):19378-86 2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8 10617439 - J Magn Reson. 2000 Jan;142(1):97-101 15306682 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12887-92 21961597 - Biophys J. 2011 Oct 5;101(7):1710-9 3072197 - EMBO J. 1988 Dec 20;7(13):4323-34 3110163 - J Biol Chem. 1987 Jul 15;262(20):9887-94 12606574 - EMBO J. 2003 Mar 3;22(5):1088-100 17418788 - Cell. 2007 Apr 6;129(1):83-96 11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45 19219046 - Nat Struct Mol Biol. 2009 Mar;16(3):247-54 7627554 - Curr Biol. 1995 Apr 1;5(4):383-92 19680228 - EMBO J. 2009 Sep 2;28(17):2541-53 9857054 - J Biol Chem. 1998 Dec 25;273(52):35170-5 11684705 - J Cell Biol. 2001 Oct 29;155(3):339-54 5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7 3805121 - J Cell Biol. 1987 Feb;104(2):189-200 12191480 - Mol Cell. 2002 Aug;10(2):347-58 8896452 - EMBO J. 1996 Oct 15;15(20):5584-94 20304795 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6281-5 20972448 - Nat Struct Mol Biol. 2010 Nov;17(11):1367-76 11090270 - J Mol Biol. 2000 Dec 1;304(3):245-51 21878989 - EMBO J. 2011 Aug 31;30(17):3457-74 9351834 - EMBO J. 1997 Nov 3;16(21):6535-47 9822603 - EMBO J. 1998 Nov 16;17(22):6587-98 8537436 - J Cell Sci. 1995 Sep;108 ( Pt 9):2963-72 9166401 - J Cell Biol. 1997 Jun 2;137(5):989-1000 14993277 - Mol Cell Biol. 2004 Mar;24(6):2373-84 8521485 - Cell. 1995 Dec 1;83(5):683-92 9889120 - Curr Biol. 1999 Jan 14;9(1):30-41 7615630 - J Cell Biol. 1995 Jul;130(2):265-74 11563556 - J Biomol NMR. 2001 Aug;20(4):325-31 12589057 - Mol Biol Cell. 2003 Feb;14(2):600-10 8422679 - Cell. 1993 Jan 15;72(1):29-38 19748337 - Structure. 2009 Sep 9;17(9):1156-68 19922866 - Dev Cell. 2009 Nov;17(5):606-16 19680227 - EMBO J. 2009 Sep 2;28(17):2554-67 9393683 - J Bacteriol. 1997 Dec;179(23):7219-25 20368288 - Mol Cell Proteomics. 2010 Oct;9(10):2205-24 8557738 - J Cell Biol. 1995 Dec;131(6 Pt 2):1699-713 17082456 - Science. 2006 Nov 3;314(5800):815-7 11101896 - Nat Struct Biol. 2000 Dec;7(12):1133-8 15039779 - Nat Cell Biol. 2004 Mar;6(3):197-206 22571273 - Biomacromolecules. 2012 Jun 11;13(6):1882-9 22561191 - Prion. 2012 Sep-Oct;6(4):391-9 10209021 - J Cell Biol. 1999 Apr 19;145(2):237-54 |
| References_xml | – reference: Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16: 6535-6547 – reference: Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR (2004) Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6: 197-206 – reference: Imamoto N, Shimamoto T, Kose S, Takao T, Tachibana T, Matsubae M, Sekimoto T, Shimonishi Y, Yoneda Y (1995) The nuclear pore-targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett 368: 415-419 – reference: Haltiwanger RS, Holt GD, Hart GW (1990) Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J Biol Chem 265: 2563-2568 – reference: Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13: 622-628 – reference: Milles S, Lemke EA (2011) Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153. Biophys J 101: 1710-1719 – reference: Scholz I, Huber M, Manolikas T, Meier BH, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460: 278-283 – reference: Güttler T, Görlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30: 3457-3474 – reference: Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17: 1367-1376 – reference: Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142: 97-101 – reference: Halfmann R, Wright J, Alberti S, Lindquist S, Rexach M (2012) Prion formation by a yeast GLFG nucleoporin. Prion 6: 391-399 – reference: Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci USA 98: 2375-2380 – reference: Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104: 1157-1164 – reference: Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15: 4261-4277 – reference: Vasu S, Shah S, Orjalo A, Park M, Fischer WH, Forbes DJ (2001) Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export. J Cell Biol 155: 339-354 – reference: Iovine MK, Watkins JL, Wente SR (1995) The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol 131: 1699-1713 – reference: Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83: 683-692 – reference: Sukegawa J, Blobel G (1993) A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72: 29-38 – reference: Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116-3122 – reference: Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9: 2205-2224 – reference: Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145: 237-254 – reference: Chi NC, Adam EJ, Adam SA (1995) Sequence and characterization of cytoplasmic nuclear protein import factor p97. J Cell Biol 130: 265-274 – reference: Schwoebel ED, Talcott B, Cushman I, Moore MS (1998) Ran-dependent signal-mediated nuclear import does not require GTP hydrolysis by Ran. J Biol Chem 273: 35170-35175 – reference: Rüdiger S, Mayer MP, Schneider-Mergener J, Bukau B (2000) Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. J Mol Biol 304: 245-251 – reference: Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17: 6587-6598 – reference: Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7: 1133-1138 – reference: Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20: 1320-1330 – reference: Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B (1997) Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Cell Biol 137: 989-1000 – reference: Weirich CS, Erzberger JP, Berger JM, Weis K (2004) The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell 16: 749-760 – reference: Hanover JA, Cohen CK, Willingham MC, Park MK (1987) O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 262: 9887-9894 – reference: Hutten S, Kehlenbach RH (2006) Nup214 is required for CRM1-dependent nuclear protein export in vivo. Mol Cell Biol 26: 6772-6785 – reference: Brohawn SG, Partridge JR, Whittle JR, Schwartz TU (2009) The nuclear pore complex has entered the atomic age. Structure 17: 1156-1168 – reference: Shaner N, Campbell R, Steinbach P, Giepmans B, Palmer A, Tsien R (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567-1572 – reference: Ader C, Frey S, Maas W, Schmidt HB, Görlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285 – reference: Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64: 547-552 – reference: Ribbeck K, Kutay U, Paraskeva E, Görlich D (1999) The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 9: 47-50 – reference: Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24: 2373-2384 – reference: Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA (2002) The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Mol Cell 10: 347-358 – reference: Hülsmann BB, Labokha AA, Görlich D (2012) The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150: 738-751 – reference: Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129: 83-96 – reference: Frey S, Görlich D (2009) FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 28: 2554-2567 – reference: von Moeller H, Basquin C, Conti E (2009) The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol 16: 247-254 – reference: Kraemer D, Wozniak RW, Blobel G, Radu A (1994) The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci USA 91: 1519-1523 – reference: Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M (2002) The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 158: 63-77 – reference: Bullock TL, Clarkson WD, Kent HM, Stewart M (1996) The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol 260: 422-431 – reference: Mohr D, Frey S, Fischer T, Güttler T, Görlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28: 2541-2553 – reference: Grote M, Kubitscheck U, Reichelt R, Peters R (1995) Mapping of nucleoporins to the center of the nuclear pore complex by post-embedding immunogold electron microscopy. J Cell Sci 108: 2963-2972 – reference: Guan T, Muller S, Klier G, Pante N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6: 1591-1603 – reference: Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S (1995) Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5: 383-392 – reference: Hetzer MW, Wente SR (2009) Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 17: 606-616 – reference: Cushman I, Palzkill T, Moore MS (2006) Using peptide arrays to define nuclear carrier binding sites on nucleoporins. Methods 39: 329-341 – reference: Morrison J, Yang JC, Stewart M, Neuhaus D (2003) Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats. J Mol Biol 333: 587-603 – reference: Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Görlich D, Stewart M (1999) Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 293: 579-593 – reference: Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168: 233-243 – reference: Powers MA, Macaulay C, Masiarz FR, Forbes DJ (1995) Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 128: 721-736 – reference: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127: 12965-12974 – reference: Kanemori M, Nishihara K, Yanagi H, Yura T (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 179: 7219-7225 – reference: Frey S, Richter RP, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314: 815-817 – reference: Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130: 512-523 – reference: Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60: 1659-1688 – reference: Hurt EC (1988) A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J 7: 4323-4434 – reference: Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson A 121: 65-69 – reference: Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16: 807-816 – reference: Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16: 673-677 – reference: Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276: 9838-9845 – reference: Petri M, Frey S, Menzel A, Görlich D, Techert S (2012) Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel. Biomacromolecules 13: 1882-1889 – reference: Luca S, Filippov DV, van Boom JH, Oschkinat H, de Groot HJM, Baldus M (2001) Secondary chemical shifts in immobilized peptides and membrane proteins: a qualitative basis for structure refinement under magic angle spinning. J Biomol. NMR 20: 325-331 – reference: Fauchere JL, Pliska V (1983) Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 18: 369-375 – reference: Englmeier L, Olivo JC, Mattaj IW (1999) Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 9: 30-41 – reference: Onischenko EA, Gubanova NV, Kiseleva EV, Hallberg E (2005) Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol Biol Cell 16: 5152-5162 – reference: Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1: 791-804 – reference: Griffis ER, Xu S, Powers MA (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14: 600-610 – reference: Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275: 10983-10988 – reference: Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 101: 12887-12892 – reference: Kustanovich T, Rabin Y (2004) Metastable network model of protein transport through nuclear pores. Biophys J 86: 2008-2016 – reference: Görlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15: 5584-5594 – reference: Görlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22: 1088-1100 – reference: Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114: 169-183 – reference: Finlay DR, Newmeyer DD, Price TM, Forbes DJ (1987) Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104: 189-200 – reference: Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M (2006) Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. J Biol Chem 281: 19378-19386 – volume: 7 start-page: 4323 year: 1988 end-page: 4434 ident: CR40 article-title: A novel nucleoskeletal‐like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae publication-title: EMBO J – volume: 293 start-page: 579 year: 1999 end-page: 593 ident: CR6 article-title: Interaction between NTF2 and xFxFG‐containing nucleoporins is required to mediate nuclear import of RanGDP publication-title: J Mol Biol – volume: 16 start-page: 6535 year: 1997 end-page: 6547 ident: CR44 article-title: The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus publication-title: EMBO J – volume: 16 start-page: 749 year: 2004 end-page: 760 ident: CR75 article-title: The N‐terminal domain of Nup159 forms a beta‐propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore publication-title: Mol Cell – volume: 368 start-page: 415 year: 1995 end-page: 419 ident: CR42 article-title: The nuclear pore‐targeting complex binds to nuclear pores after association with a karyophile publication-title: FEBS Lett – volume: 22 start-page: 1567 year: 2004 end-page: 1572 ident: CR68 article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein publication-title: Nat Biotechnol – volume: 16 start-page: 807 year: 1997 end-page: 816 ident: CR18 article-title: The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88 publication-title: EMBO J – volume: 30 start-page: 3457 year: 2011 end-page: 3474 ident: CR31 article-title: Ran‐dependent nuclear export mediators: a structural perspective publication-title: EMBO J – volume: 130 start-page: 512 year: 2007 end-page: 523 ident: CR20 article-title: A saturated FG‐repeat hydrogel can reproduce the permeability properties of nuclear pore complexes publication-title: Cell – volume: 16 start-page: 247 year: 2009 end-page: 254 ident: CR72 article-title: The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner publication-title: Nat Struct Mol Biol – volume: 72 start-page: 29 year: 1993 end-page: 38 ident: CR70 article-title: A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm publication-title: Cell – volume: 9 start-page: 30 year: 1999 end-page: 41 ident: CR14 article-title: Receptor‐mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis publication-title: Curr Biol – volume: 17 start-page: 606 year: 2009 end-page: 616 ident: CR36 article-title: Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes publication-title: Dev Cell – volume: 129 start-page: 83 year: 2007 end-page: 96 ident: CR55 article-title: Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex publication-title: Cell – volume: 260 start-page: 422 year: 1996 end-page: 431 ident: CR10 article-title: The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2) publication-title: J Mol Biol – volume: 104 start-page: 1157 year: 1987 end-page: 1164 ident: CR38 article-title: Nuclear pore complex glycoproteins contain cytoplasmically disposed O‐linked N‐acetylglucosamine publication-title: J Cell Biol – volume: 304 start-page: 245 year: 2000 end-page: 251 ident: CR64 article-title: Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch publication-title: J Mol Biol – volume: 150 start-page: 738 year: 2012 end-page: 751 ident: CR39 article-title: The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model publication-title: Cell – volume: 6 start-page: 1591 year: 1995 end-page: 1603 ident: CR30 article-title: Structural analysis of the p62 complex, an assembly of O‐linked glycoproteins that localizes near the central gated channel of the nuclear pore complex publication-title: Mol Biol Cell – volume: 7 start-page: 1133 year: 2000 end-page: 1138 ident: CR73 article-title: The structural basis for red fluorescence in the tetrameric GFP homolog DsRed publication-title: Nat Struct Biol – volume: 333 start-page: 587 year: 2003 end-page: 603 ident: CR52 article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats publication-title: J Mol Biol – volume: 262 start-page: 9887 year: 1987 end-page: 9894 ident: CR35 article-title: O‐linked N‐acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins publication-title: J Biol Chem – volume: 9 start-page: 47 year: 1999 end-page: 50 ident: CR61 article-title: The translocation of transportin‐cargo complexes through nuclear pores is independent of both Ran and energy publication-title: Curr Biol – volume: 5 start-page: 383 year: 1995 end-page: 392 ident: CR25 article-title: Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope publication-title: Curr Biol – volume: 22 start-page: 1088 year: 2003 end-page: 1100 ident: CR27 article-title: Characterization of Ran‐driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation publication-title: EMBO J – volume: 131 start-page: 1699 year: 1995 end-page: 1713 ident: CR43 article-title: The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor publication-title: J Cell Biol – volume: 17 start-page: 6587 year: 1998 end-page: 6598 ident: CR62 article-title: NTF2 mediates nuclear import of Ran publication-title: EMBO J – volume: 142 start-page: 97 year: 2000 end-page: 101 ident: CR23 article-title: An improved broadband decoupling sequence for liquid crystals and solids publication-title: J Magn Reson – volume: 16 start-page: 5152 year: 2005 end-page: 5162 ident: CR54 article-title: Cdk1 and okadaic acid‐sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos publication-title: Mol Biol Cell – volume: 18 start-page: 369 year: 1983 end-page: 375 ident: CR15 article-title: Hydrophobic parameters pi of amino‐acid side chains from the partitioning of N‐acetyl‐amino‐acid amides publication-title: Eur J Med Chem – volume: 108 start-page: 2963 year: 1995 end-page: 2972 ident: CR29 article-title: Mapping of nucleoporins to the center of the nuclear pore complex by post‐embedding immunogold electron microscopy publication-title: J Cell Sci – volume: 28 start-page: 2541 year: 2009 end-page: 2553 ident: CR51 article-title: Characterisation of the passive permeability barrier of nuclear pore complexes publication-title: EMBO J – volume: 314 start-page: 815 year: 2006 end-page: 817 ident: CR21 article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties publication-title: Science – volume: 137 start-page: 989 year: 1997 end-page: 1000 ident: CR5 article-title: Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex publication-title: J Cell Biol – volume: 24 start-page: 2373 year: 2004 end-page: 2384 ident: CR8 article-title: Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1‐mediated nuclear protein export publication-title: Mol Cell Biol – volume: 17 start-page: 1367 year: 2010 end-page: 1376 ident: CR32 article-title: NES consensus redefined by structures of PKI‐type and Rev‐type nuclear export signals bound to CRM1 publication-title: Nat Struct Mol Biol – volume: 249 start-page: 3116 year: 1974 end-page: 3122 ident: CR53 article-title: Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding publication-title: J Biol Chem – volume: 265 start-page: 2563 year: 1990 end-page: 2568 ident: CR34 article-title: Enzymatic addition of O‐GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho‐N‐acetylglucosamine:peptide beta‐N‐acetylglucosaminyltransferase publication-title: J Biol Chem – volume: 83 start-page: 683 year: 1995 end-page: 692 ident: CR59 article-title: Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins publication-title: Cell – volume: 158 start-page: 63 year: 2002 end-page: 77 ident: CR74 article-title: The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import publication-title: J Cell Biol – volume: 114 start-page: 169 year: 1991 end-page: 183 ident: CR16 article-title: A complex of nuclear pore proteins required for pore function publication-title: J Cell Biol – volume: 64 start-page: 547 year: 1985 end-page: 552 ident: CR67 article-title: Computer‐optimized decoupling scheme for wideband applications and low‐level operation publication-title: J Magn Reson – volume: 101 start-page: 12887 year: 2004 end-page: 12892 ident: CR78 article-title: Imaging of single‐molecule translocation through nuclear pore complexes publication-title: Proc Natl Acad Sci USA – volume: 91 start-page: 1519 year: 1994 end-page: 1523 ident: CR46 article-title: The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm publication-title: Proc Natl Acad Sci USA – volume: 104 start-page: 189 year: 1987 end-page: 200 ident: CR17 article-title: Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores publication-title: J Cell Biol – volume: 10 start-page: 347 year: 2002 end-page: 358 ident: CR37 article-title: The three‐dimensional structure of the autoproteolytic, nuclear pore‐targeting domain of the human nucleoporin Nup98 publication-title: Mol Cell – volume: 145 start-page: 237 year: 1999 end-page: 254 ident: CR58 article-title: RAE1 is a shuttling mRNA export factor that binds to a GLEBS‐like NUP98 motif at the nuclear pore complex through multiple domains publication-title: J Cell Biol – volume: 1 start-page: 791 year: 2002 end-page: 804 ident: CR76 article-title: Mapping sites of O‐GlcNAc modification using affinity tags for serine and threonine post‐translational modifications publication-title: Mol Cell Proteomics – volume: 155 start-page: 339 year: 2001 end-page: 354 ident: CR71 article-title: Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export publication-title: J Cell Biol – volume: 98 start-page: 2375 year: 2001 end-page: 2380 ident: CR3 article-title: An amyloid‐forming peptide from the yeast prion Sup35 reveals a dehydrated beta‐sheet structure for amyloid publication-title: Proc Natl Acad Sci USA – volume: 281 start-page: 19378 year: 2006 end-page: 19386 ident: CR7 article-title: Nup214‐Nup88 nucleoporin subcomplex is required for CRM1‐mediated 60 S preribosomal nuclear export publication-title: J Biol Chem – volume: 121 start-page: 65 year: 1996 end-page: 69 ident: CR4 article-title: Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through‐bond connectivity publication-title: J Magn Reson A – volume: 275 start-page: 10983 year: 2000 end-page: 10988 ident: CR49 article-title: Functional expression of O‐linked GlcNAc transferase. Domain structure and substrate specificity publication-title: J Biol Chem – volume: 39 start-page: 329 year: 2006 end-page: 341 ident: CR12 article-title: Using peptide arrays to define nuclear carrier binding sites on nucleoporins publication-title: Methods – volume: 17 start-page: 1156 year: 2009 end-page: 1168 ident: CR9 article-title: The nuclear pore complex has entered the atomic age publication-title: Structure – volume: 13 start-page: 1882 year: 2012 end-page: 1889 ident: CR56 article-title: Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel publication-title: Biomacromolecules – volume: 26 start-page: 6772 year: 2006 end-page: 6785 ident: CR41 article-title: Nup214 is required for CRM1‐dependent nuclear protein export in vivo publication-title: Mol Cell Biol – volume: 60 start-page: 1659 year: 2003 end-page: 1688 ident: CR22 article-title: Nucleocytoplasmic transport: taking an inventory publication-title: Cell Mol Life Sci – volume: 6 start-page: 391 year: 2012 end-page: 399 ident: CR33 article-title: Prion formation by a yeast GLFG nucleoporin publication-title: Prion – volume: 130 start-page: 265 year: 1995 end-page: 274 ident: CR11 article-title: Sequence and characterization of cytoplasmic nuclear protein import factor p97 publication-title: J Cell Biol – volume: 107 start-page: 6281 year: 2010 end-page: 6285 ident: CR1 article-title: Amyloid‐like interactions within nucleoporin FG hydrogels publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 2554 year: 2009 end-page: 2567 ident: CR19 article-title: FG/FxFG as well as GLFG repeats form a selective permeability barrier with self‐healing properties publication-title: EMBO J – volume: 20 start-page: 325 year: 2001 end-page: 331 ident: CR79 article-title: Secondary chemical shifts in immobilized peptides and membrane proteins: a qualitative basis for structure refinement under magic angle spinning publication-title: J Biomol. NMR – volume: 20 start-page: 1320 year: 2001 end-page: 1330 ident: CR60 article-title: Kinetic analysis of translocation through nuclear pore complexes publication-title: EMBO J – volume: 127 start-page: 12965 year: 2005 end-page: 12974 ident: CR2 article-title: Determination of membrane protein structure and dynamics by magic‐angle‐spinning solid‐state NMR spectroscopy publication-title: J Am Chem Soc – volume: 86 start-page: 2008 year: 2004 end-page: 2016 ident: CR80 article-title: Metastable network model of protein transport through nuclear pores publication-title: Biophys J – volume: 6 start-page: 197 year: 2004 end-page: 206 ident: CR69 article-title: Minimal nuclear pore complexes define FG repeat domains essential for transport publication-title: Nat Cell Biol – volume: 179 start-page: 7219 year: 1997 end-page: 7225 ident: CR45 article-title: Synergistic roles of HslVU and other ATP‐dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli publication-title: J Bacteriol – volume: 15 start-page: 4261 year: 2004 end-page: 4277 ident: CR47 article-title: Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket publication-title: Mol Biol Cell – volume: 128 start-page: 721 year: 1995 end-page: 736 ident: CR57 article-title: Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication publication-title: J Cell Biol – volume: 460 start-page: 278 year: 2008 end-page: 283 ident: CR65 article-title: MIRROR recoupling and its application to spin diffusion under fast magic‐angle spinning publication-title: Chem Phys Lett – volume: 13 start-page: 622 year: 2003 end-page: 628 ident: CR63 article-title: Virtual gating and nuclear transport: the hole picture publication-title: Trends Cell Biol – volume: 9 start-page: 2205 year: 2010 end-page: 2224 ident: CR77 article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins publication-title: Mol Cell Proteomics – volume: 273 start-page: 35170 year: 1998 end-page: 35175 ident: CR66 article-title: Ran‐dependent signal‐mediated nuclear import does not require GTP hydrolysis by Ran publication-title: J Biol Chem – volume: 15 start-page: 5584 year: 1996 end-page: 5594 ident: CR26 article-title: Identification of different roles for RanGDP and RanGTP in nuclear protein import publication-title: EMBO J – volume: 168 start-page: 233 year: 2005 end-page: 243 ident: CR48 article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex publication-title: J Cell Biol – volume: 276 start-page: 9838 year: 2001 end-page: 9845 ident: CR24 article-title: Dynamic O‐glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta‐N‐acetylglucosaminidase from human brain publication-title: J Biol Chem – volume: 16 start-page: 673 year: 1968 end-page: 677 ident: CR13 article-title: X‐ray diffraction studies on amyloid filaments publication-title: J Histochem Cytochem – volume: 101 start-page: 1710 year: 2011 end-page: 1719 ident: CR50 article-title: Single molecule study of the intrinsically disordered FG‐repeat nucleoporin 153 publication-title: Biophys J – volume: 14 start-page: 600 year: 2003 end-page: 610 ident: CR28 article-title: Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes publication-title: Mol Biol Cell – volume: 333 start-page: 587 year: 2003 end-page: 603 article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats publication-title: J Mol Biol – volume: 7 start-page: 1133 year: 2000 end-page: 1138 article-title: The structural basis for red fluorescence in the tetrameric GFP homolog DsRed publication-title: Nat Struct Biol – volume: 276 start-page: 9838 year: 2001 end-page: 9845 article-title: Dynamic O‐glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta‐N‐acetylglucosaminidase from human brain publication-title: J Biol Chem – volume: 158 start-page: 63 year: 2002 end-page: 77 article-title: The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import publication-title: J Cell Biol – volume: 16 start-page: 749 year: 2004 end-page: 760 article-title: The N‐terminal domain of Nup159 forms a beta‐propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore publication-title: Mol Cell – volume: 107 start-page: 6281 year: 2010 end-page: 6285 article-title: Amyloid‐like interactions within nucleoporin FG hydrogels publication-title: Proc Natl Acad Sci USA – volume: 18 start-page: 369 year: 1983 end-page: 375 article-title: Hydrophobic parameters pi of amino‐acid side chains from the partitioning of N‐acetyl‐amino‐acid amides publication-title: Eur J Med Chem – volume: 83 start-page: 683 year: 1995 end-page: 692 article-title: Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins publication-title: Cell – volume: 9 start-page: 47 year: 1999 end-page: 50 article-title: The translocation of transportin‐cargo complexes through nuclear pores is independent of both Ran and energy publication-title: Curr Biol – volume: 368 start-page: 415 year: 1995 end-page: 419 article-title: The nuclear pore‐targeting complex binds to nuclear pores after association with a karyophile publication-title: FEBS Lett – volume: 26 start-page: 6772 year: 2006 end-page: 6785 article-title: Nup214 is required for CRM1‐dependent nuclear protein export in vivo publication-title: Mol Cell Biol – volume: 72 start-page: 29 year: 1993 end-page: 38 article-title: A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm publication-title: Cell – volume: 60 start-page: 1659 year: 2003 end-page: 1688 article-title: Nucleocytoplasmic transport: taking an inventory publication-title: Cell Mol Life Sci – volume: 108 start-page: 2963 year: 1995 end-page: 2972 article-title: Mapping of nucleoporins to the center of the nuclear pore complex by post‐embedding immunogold electron microscopy publication-title: J Cell Sci – volume: 14 start-page: 600 year: 2003 end-page: 610 article-title: Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes publication-title: Mol Biol Cell – volume: 6 start-page: 391 year: 2012 end-page: 399 article-title: Prion formation by a yeast GLFG nucleoporin publication-title: Prion – volume: 98 start-page: 2375 year: 2001 end-page: 2380 article-title: An amyloid‐forming peptide from the yeast prion Sup35 reveals a dehydrated beta‐sheet structure for amyloid publication-title: Proc Natl Acad Sci USA – volume: 22 start-page: 1567 year: 2004 end-page: 1572 article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein publication-title: Nat Biotechnol – volume: 64 start-page: 547 year: 1985 end-page: 552 article-title: Computer‐optimized decoupling scheme for wideband applications and low‐level operation publication-title: J Magn Reson – volume: 155 start-page: 339 year: 2001 end-page: 354 article-title: Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export publication-title: J Cell Biol – volume: 127 start-page: 12965 year: 2005 end-page: 12974 article-title: Determination of membrane protein structure and dynamics by magic‐angle‐spinning solid‐state NMR spectroscopy publication-title: J Am Chem Soc – volume: 7 start-page: 4323 year: 1988 end-page: 4434 article-title: A novel nucleoskeletal‐like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae publication-title: EMBO J – volume: 104 start-page: 1157 year: 1987 end-page: 1164 article-title: Nuclear pore complex glycoproteins contain cytoplasmically disposed O‐linked N‐acetylglucosamine publication-title: J Cell Biol – volume: 293 start-page: 579 year: 1999 end-page: 593 article-title: Interaction between NTF2 and xFxFG‐containing nucleoporins is required to mediate nuclear import of RanGDP publication-title: J Mol Biol – volume: 16 start-page: 807 year: 1997 end-page: 816 article-title: The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88 publication-title: EMBO J – volume: 13 start-page: 1882 year: 2012 end-page: 1889 article-title: Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel publication-title: Biomacromolecules – volume: 142 start-page: 97 year: 2000 end-page: 101 article-title: An improved broadband decoupling sequence for liquid crystals and solids publication-title: J Magn Reson – volume: 39 start-page: 329 year: 2006 end-page: 341 article-title: Using peptide arrays to define nuclear carrier binding sites on nucleoporins publication-title: Methods – volume: 104 start-page: 189 year: 1987 end-page: 200 article-title: Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores publication-title: J Cell Biol – volume: 273 start-page: 35170 year: 1998 end-page: 35175 article-title: Ran‐dependent signal‐mediated nuclear import does not require GTP hydrolysis by Ran publication-title: J Biol Chem – volume: 16 start-page: 673 year: 1968 end-page: 677 article-title: X‐ray diffraction studies on amyloid filaments publication-title: J Histochem Cytochem – volume: 262 start-page: 9887 year: 1987 end-page: 9894 article-title: O‐linked N‐acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins publication-title: J Biol Chem – volume: 128 start-page: 721 year: 1995 end-page: 736 article-title: Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication publication-title: J Cell Biol – volume: 17 start-page: 606 year: 2009 end-page: 616 article-title: Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes publication-title: Dev Cell – volume: 10 start-page: 347 year: 2002 end-page: 358 article-title: The three‐dimensional structure of the autoproteolytic, nuclear pore‐targeting domain of the human nucleoporin Nup98 publication-title: Mol Cell – volume: 121 start-page: 65 year: 1996 end-page: 69 article-title: Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through‐bond connectivity publication-title: J Magn Reson A – volume: 17 start-page: 1156 year: 2009 end-page: 1168 article-title: The nuclear pore complex has entered the atomic age publication-title: Structure – volume: 16 start-page: 5152 year: 2005 end-page: 5162 article-title: Cdk1 and okadaic acid‐sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos publication-title: Mol Biol Cell – volume: 86 start-page: 2008 year: 2004 end-page: 2016 article-title: Metastable network model of protein transport through nuclear pores publication-title: Biophys J – volume: 22 start-page: 1088 year: 2003 end-page: 1100 article-title: Characterization of Ran‐driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation publication-title: EMBO J – volume: 17 start-page: 1367 year: 2010 end-page: 1376 article-title: NES consensus redefined by structures of PKI‐type and Rev‐type nuclear export signals bound to CRM1 publication-title: Nat Struct Mol Biol – volume: 101 start-page: 12887 year: 2004 end-page: 12892 article-title: Imaging of single‐molecule translocation through nuclear pore complexes publication-title: Proc Natl Acad Sci USA – volume: 260 start-page: 422 year: 1996 end-page: 431 article-title: The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2) publication-title: J Mol Biol – volume: 28 start-page: 2554 year: 2009 end-page: 2567 article-title: FG/FxFG as well as GLFG repeats form a selective permeability barrier with self‐healing properties publication-title: EMBO J – volume: 17 start-page: 6587 year: 1998 end-page: 6598 article-title: NTF2 mediates nuclear import of Ran publication-title: EMBO J – volume: 150 start-page: 738 year: 2012 end-page: 751 article-title: The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model publication-title: Cell – volume: 130 start-page: 512 year: 2007 end-page: 523 article-title: A saturated FG‐repeat hydrogel can reproduce the permeability properties of nuclear pore complexes publication-title: Cell – volume: 145 start-page: 237 year: 1999 end-page: 254 article-title: RAE1 is a shuttling mRNA export factor that binds to a GLEBS‐like NUP98 motif at the nuclear pore complex through multiple domains publication-title: J Cell Biol – volume: 15 start-page: 5584 year: 1996 end-page: 5594 article-title: Identification of different roles for RanGDP and RanGTP in nuclear protein import publication-title: EMBO J – volume: 91 start-page: 1519 year: 1994 end-page: 1523 article-title: The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm publication-title: Proc Natl Acad Sci USA – volume: 20 start-page: 325 year: 2001 end-page: 331 article-title: Secondary chemical shifts in immobilized peptides and membrane proteins: a qualitative basis for structure refinement under magic angle spinning publication-title: J Biomol. NMR – volume: 168 start-page: 233 year: 2005 end-page: 243 article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex publication-title: J Cell Biol – volume: 6 start-page: 1591 year: 1995 end-page: 1603 article-title: Structural analysis of the p62 complex, an assembly of O‐linked glycoproteins that localizes near the central gated channel of the nuclear pore complex publication-title: Mol Biol Cell – volume: 16 start-page: 6535 year: 1997 end-page: 6547 article-title: The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus publication-title: EMBO J – volume: 5 start-page: 383 year: 1995 end-page: 392 article-title: Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope publication-title: Curr Biol – volume: 28 start-page: 2541 year: 2009 end-page: 2553 article-title: Characterisation of the passive permeability barrier of nuclear pore complexes publication-title: EMBO J – volume: 131 start-page: 1699 year: 1995 end-page: 1713 article-title: The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor publication-title: J Cell Biol – volume: 9 start-page: 2205 year: 2010 end-page: 2224 article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins publication-title: Mol Cell Proteomics – volume: 137 start-page: 989 year: 1997 end-page: 1000 article-title: Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex publication-title: J Cell Biol – volume: 275 start-page: 10983 year: 2000 end-page: 10988 article-title: Functional expression of O‐linked GlcNAc transferase. Domain structure and substrate specificity publication-title: J Biol Chem – volume: 9 start-page: 30 year: 1999 end-page: 41 article-title: Receptor‐mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis publication-title: Curr Biol – volume: 24 start-page: 2373 year: 2004 end-page: 2384 article-title: Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1‐mediated nuclear protein export publication-title: Mol Cell Biol – volume: 314 start-page: 815 year: 2006 end-page: 817 article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties publication-title: Science – volume: 101 start-page: 1710 year: 2011 end-page: 1719 article-title: Single molecule study of the intrinsically disordered FG‐repeat nucleoporin 153 publication-title: Biophys J – volume: 13 start-page: 622 year: 2003 end-page: 628 article-title: Virtual gating and nuclear transport: the hole picture publication-title: Trends Cell Biol – volume: 249 start-page: 3116 year: 1974 end-page: 3122 article-title: Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding publication-title: J Biol Chem – volume: 265 start-page: 2563 year: 1990 end-page: 2568 article-title: Enzymatic addition of O‐GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho‐N‐acetylglucosamine:peptide beta‐N‐acetylglucosaminyltransferase publication-title: J Biol Chem – volume: 15 start-page: 4261 year: 2004 end-page: 4277 article-title: Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket publication-title: Mol Biol Cell – volume: 6 start-page: 197 year: 2004 end-page: 206 article-title: Minimal nuclear pore complexes define FG repeat domains essential for transport publication-title: Nat Cell Biol – volume: 281 start-page: 19378 year: 2006 end-page: 19386 article-title: Nup214‐Nup88 nucleoporin subcomplex is required for CRM1‐mediated 60 S preribosomal nuclear export publication-title: J Biol Chem – volume: 304 start-page: 245 year: 2000 end-page: 251 article-title: Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch publication-title: J Mol Biol – volume: 30 start-page: 3457 year: 2011 end-page: 3474 article-title: Ran‐dependent nuclear export mediators: a structural perspective publication-title: EMBO J – volume: 16 start-page: 247 year: 2009 end-page: 254 article-title: The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner publication-title: Nat Struct Mol Biol – volume: 460 start-page: 278 year: 2008 end-page: 283 article-title: MIRROR recoupling and its application to spin diffusion under fast magic‐angle spinning publication-title: Chem Phys Lett – volume: 179 start-page: 7219 year: 1997 end-page: 7225 article-title: Synergistic roles of HslVU and other ATP‐dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli publication-title: J Bacteriol – volume: 129 start-page: 83 year: 2007 end-page: 96 article-title: Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex publication-title: Cell – volume: 1 start-page: 791 year: 2002 end-page: 804 article-title: Mapping sites of O‐GlcNAc modification using affinity tags for serine and threonine post‐translational modifications publication-title: Mol Cell Proteomics – volume: 114 start-page: 169 year: 1991 end-page: 183 article-title: A complex of nuclear pore proteins required for pore function publication-title: J Cell Biol – volume: 20 start-page: 1320 year: 2001 end-page: 1330 article-title: Kinetic analysis of translocation through nuclear pore complexes publication-title: EMBO J – volume: 130 start-page: 265 year: 1995 end-page: 274 article-title: Sequence and characterization of cytoplasmic nuclear protein import factor p97 publication-title: J Cell Biol – ident: emboj2012302-b48 doi: 10.1083/jcb.200411005 – ident: emboj2012302-b57 doi: 10.1083/jcb.128.5.721 – ident: emboj2012302-b1 doi: 10.1073/pnas.0910163107 – ident: emboj2012302-b43 doi: 10.1083/jcb.131.6.1699 – ident: emboj2012302-b14 doi: 10.1016/S0960-9822(99)80044-X – ident: emboj2012302-b55 doi: 10.1016/j.cell.2007.01.044 – ident: emboj2012302-b63 doi: 10.1016/j.tcb.2003.10.007 – ident: emboj2012302-b50 doi: 10.1016/j.bpj.2011.08.025 – ident: emboj2012302-b56 doi: 10.1021/bm300412q – ident: emboj2012302-b17 doi: 10.1083/jcb.104.2.189 – ident: emboj2012302-b62 doi: 10.1093/emboj/17.22.6587 – ident: emboj2012302-b38 doi: 10.1083/jcb.104.5.1157 – ident: emboj2012302-b4 doi: 10.1006/jmra.1996.0137 – ident: emboj2012302-b10 doi: 10.1006/jmbi.1996.0411 – ident: emboj2012302-b73 doi: 10.1038/81992 – volume: 6 start-page: 1591 year: 1995 ident: emboj2012302-b30 publication-title: Mol Biol Cell doi: 10.1091/mbc.6.11.1591 – ident: emboj2012302-b80 doi: 10.1016/S0006-3495(04)74262-9 – ident: emboj2012302-b69 doi: 10.1038/ncb1097 – ident: emboj2012302-b21 doi: 10.1126/science.1132516 – volume: 262 start-page: 9887 year: 1987 ident: emboj2012302-b35 publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)48017-9 – ident: emboj2012302-b37 doi: 10.1016/S1097-2765(02)00589-0 – ident: emboj2012302-b25 doi: 10.1016/S0960-9822(95)00079-0 – ident: emboj2012302-b5 doi: 10.1083/jcb.137.5.989 – ident: emboj2012302-b51 doi: 10.1038/emboj.2009.200 – ident: emboj2012302-b46 doi: 10.1073/pnas.91.4.1519 – ident: emboj2012302-b18 doi: 10.1093/emboj/16.4.807 – ident: emboj2012302-b47 doi: 10.1091/mbc.E04-03-0165 – ident: emboj2012302-b65 doi: 10.1016/j.cplett.2008.05.058 – ident: emboj2012302-b76 doi: 10.1074/mcp.M200048-MCP200 – ident: emboj2012302-b27 doi: 10.1093/emboj/cdg113 – ident: emboj2012302-b31 doi: 10.1038/emboj.2011.287 – ident: emboj2012302-b19 doi: 10.1038/emboj.2009.199 – ident: emboj2012302-b72 doi: 10.1038/nsmb.1561 – ident: emboj2012302-b3 doi: 10.1073/pnas.041617698 – ident: emboj2012302-b20 doi: 10.1016/j.cell.2007.06.024 – volume: 179 start-page: 7219 year: 1997 ident: emboj2012302-b45 publication-title: J Bacteriol doi: 10.1128/jb.179.23.7219-7225.1997 – ident: emboj2012302-b54 doi: 10.1091/mbc.E05-07-0642 – ident: emboj2012302-b28 doi: 10.1091/mbc.E02-09-0582 – ident: emboj2012302-b64 doi: 10.1006/jmbi.2000.4193 – ident: emboj2012302-b78 doi: 10.1073/pnas.0403675101 – ident: emboj2012302-b44 doi: 10.1093/emboj/16.21.6535 – ident: emboj2012302-b58 doi: 10.1083/JCB.145.2.237 – ident: emboj2012302-b60 doi: 10.1093/emboj/20.6.1320 – ident: emboj2012302-b22 doi: 10.1007/s00018-003-3070-3 – ident: emboj2012302-b77 doi: 10.1074/mcp.M000035-MCP201 – volume: 15 start-page: 5584 year: 1996 ident: emboj2012302-b26 publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00943.x – ident: emboj2012302-b71 doi: 10.1083/jcb.200108007 – ident: emboj2012302-b13 doi: 10.1177/16.11.673 – volume: 64 start-page: 547 year: 1985 ident: emboj2012302-b67 publication-title: J Magn Reson – ident: emboj2012302-b52 doi: 10.1016/j.jmb.2003.08.050 – volume: 18 start-page: 369 year: 1983 ident: emboj2012302-b15 publication-title: Eur J Med Chem – ident: emboj2012302-b59 doi: 10.1016/0092-8674(95)90181-7 – volume: 108 start-page: 2963 year: 1995 ident: emboj2012302-b29 publication-title: J Cell Sci doi: 10.1242/jcs.108.9.2963 – ident: emboj2012302-b6 doi: 10.1006/jmbi.1999.3166 – ident: emboj2012302-b33 doi: 10.4161/pri.20199 – ident: emboj2012302-b42 doi: 10.1016/0014-5793(95)00699-A – ident: emboj2012302-b79 doi: 10.1023/A:1011278317489 – volume: 249 start-page: 3116 year: 1974 ident: emboj2012302-b53 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)42646-X – ident: emboj2012302-b74 doi: 10.1083/jcb.200202088 – ident: emboj2012302-b61 doi: 10.1016/S0960-9822(99)80046-3 – ident: emboj2012302-b66 doi: 10.1074/jbc.273.52.35170 – ident: emboj2012302-b49 doi: 10.1074/jbc.275.15.10983 – volume: 7 start-page: 4323 year: 1988 ident: emboj2012302-b40 publication-title: EMBO J doi: 10.1002/j.1460-2075.1988.tb03331.x – ident: emboj2012302-b2 doi: 10.1021/ja0530164 – ident: emboj2012302-b7 doi: 10.1074/jbc.M512585200 – ident: emboj2012302-b68 doi: 10.1038/nbt1037 – volume: 265 start-page: 2563 year: 1990 ident: emboj2012302-b34 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)39838-2 – ident: emboj2012302-b24 doi: 10.1074/jbc.M010420200 – ident: emboj2012302-b8 doi: 10.1128/MCB.24.6.2373-2384.2004 – ident: emboj2012302-b39 doi: 10.1016/j.cell.2012.07.019 – ident: emboj2012302-b12 doi: 10.1016/j.ymeth.2006.06.011 – ident: emboj2012302-b41 doi: 10.1128/MCB.00342-06 – ident: emboj2012302-b32 doi: 10.1038/nsmb.1931 – ident: emboj2012302-b70 doi: 10.1016/0092-8674(93)90047-T – ident: emboj2012302-b23 doi: 10.1006/jmre.1999.1896 – ident: emboj2012302-b11 doi: 10.1083/jcb.130.2.265 – ident: emboj2012302-b75 doi: 10.1016/j.molcel.2004.10.032 – ident: emboj2012302-b16 doi: 10.1083/jcb.114.1.169 – ident: emboj2012302-b9 doi: 10.1016/j.str.2009.07.014 – ident: emboj2012302-b36 doi: 10.1016/j.devcel.2009.10.007 – reference: 7635189 - FEBS Lett. 1995 Jul 24;368(3):415-9 – reference: 17418788 - Cell. 2007 Apr 6;129(1):83-96 – reference: 12438562 - Mol Cell Proteomics. 2002 Oct;1(10):791-804 – reference: 22561191 - Prion. 2012 Sep-Oct;6(4):391-9 – reference: 11250898 - EMBO J. 2001 Mar 15;20(6):1320-30 – reference: 2050741 - J Cell Biol. 1991 Jul;114(1):169-83 – reference: 15657394 - J Cell Biol. 2005 Jan 17;168(2):233-43 – reference: 8537436 - J Cell Sci. 1995 Sep;108 ( Pt 9):2963-72 – reference: 19922866 - Dev Cell. 2009 Nov;17(5):606-16 – reference: 11090270 - J Mol Biol. 2000 Dec 1;304(3):245-51 – reference: 10753899 - J Biol Chem. 2000 Apr 14;275(15):10983-8 – reference: 11101896 - Nat Struct Biol. 2000 Dec;7(12):1133-8 – reference: 8422679 - Cell. 1993 Jan 15;72(1):29-38 – reference: 3110163 - J Biol Chem. 1987 Jul 15;262(20):9887-94 – reference: 3571327 - J Cell Biol. 1987 May;104(5):1157-64 – reference: 9857054 - J Biol Chem. 1998 Dec 25;273(52):35170-5 – reference: 11563556 - J Biomol NMR. 2001 Aug;20(4):325-31 – reference: 8557738 - J Cell Biol. 1995 Dec;131(6 Pt 2):1699-713 – reference: 22901806 - Cell. 2012 Aug 17;150(4):738-51 – reference: 10543952 - J Mol Biol. 1999 Oct 29;293(3):579-93 – reference: 19680228 - EMBO J. 2009 Sep 2;28(17):2541-53 – reference: 3805121 - J Cell Biol. 1987 Feb;104(2):189-200 – reference: 7876300 - J Cell Biol. 1995 Mar;128(5):721-36 – reference: 11226247 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2375-80 – reference: 7627554 - Curr Biol. 1995 Apr 1;5(4):383-92 – reference: 15574330 - Mol Cell. 2004 Dec 3;16(5):749-60 – reference: 20972448 - Nat Struct Mol Biol. 2010 Nov;17(11):1367-76 – reference: 10617439 - J Magn Reson. 2000 Jan;142(1):97-101 – reference: 16159291 - J Am Chem Soc. 2005 Sep 21;127(37):12965-74 – reference: 8521485 - Cell. 1995 Dec 1;83(5):683-92 – reference: 16120647 - Mol Biol Cell. 2005 Nov;16(11):5152-62 – reference: 8108440 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1519-23 – reference: 10209021 - J Cell Biol. 1999 Apr 19;145(2):237-54 – reference: 5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7 – reference: 14504656 - Cell Mol Life Sci. 2003 Aug;60(8):1659-88 – reference: 3072197 - EMBO J. 1988 Dec 20;7(13):4323-34 – reference: 12589057 - Mol Biol Cell. 2003 Feb;14(2):600-10 – reference: 9393683 - J Bacteriol. 1997 Dec;179(23):7219-25 – reference: 8757804 - J Mol Biol. 1996 Jul 19;260(3):422-31 – reference: 9822603 - EMBO J. 1998 Nov 16;17(22):6587-98 – reference: 12105182 - J Cell Biol. 2002 Jul 8;158(1):63-77 – reference: 2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8 – reference: 17693259 - Cell. 2007 Aug 10;130(3):512-23 – reference: 9351834 - EMBO J. 1997 Nov 3;16(21):6535-47 – reference: 14624840 - Trends Cell Biol. 2003 Dec;13(12):622-8 – reference: 8589458 - Mol Biol Cell. 1995 Nov;6(11):1591-603 – reference: 21961597 - Biophys J. 2011 Oct 5;101(7):1710-9 – reference: 15041643 - Biophys J. 2004 Apr;86(4):2008-16 – reference: 17082456 - Science. 2006 Nov 3;314(5800):815-7 – reference: 9889126 - Curr Biol. 1999 Jan 14;9(1):47-50 – reference: 15558047 - Nat Biotechnol. 2004 Dec;22(12):1567-72 – reference: 12606574 - EMBO J. 2003 Mar 3;22(5):1088-100 – reference: 15039779 - Nat Cell Biol. 2004 Mar;6(3):197-206 – reference: 16943420 - Mol Cell Biol. 2006 Sep;26(18):6772-85 – reference: 8896452 - EMBO J. 1996 Oct 15;15(20):5584-94 – reference: 16908185 - Methods. 2006 Aug;39(4):329-41 – reference: 15229283 - Mol Biol Cell. 2004 Sep;15(9):4261-77 – reference: 12191480 - Mol Cell. 2002 Aug;10(2):347-58 – reference: 22571273 - Biomacromolecules. 2012 Jun 11;13(6):1882-9 – reference: 11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45 – reference: 15306682 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12887-92 – reference: 16675447 - J Biol Chem. 2006 Jul 14;281(28):19378-86 – reference: 19680227 - EMBO J. 2009 Sep 2;28(17):2554-67 – reference: 19748337 - Structure. 2009 Sep 9;17(9):1156-68 – reference: 14993277 - Mol Cell Biol. 2004 Mar;24(6):2373-84 – reference: 21878989 - EMBO J. 2011 Aug 31;30(17):3457-74 – reference: 19219046 - Nat Struct Mol Biol. 2009 Mar;16(3):247-54 – reference: 9049309 - EMBO J. 1997 Feb 17;16(4):807-16 – reference: 9166401 - J Cell Biol. 1997 Jun 2;137(5):989-1000 – reference: 7615630 - J Cell Biol. 1995 Jul;130(2):265-74 – reference: 11684705 - J Cell Biol. 2001 Oct 29;155(3):339-54 – reference: 20368288 - Mol Cell Proteomics. 2010 Oct;9(10):2205-24 – reference: 20304795 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6281-5 – reference: 4830237 - J Biol Chem. 1974 May 25;249(10):3116-22 – reference: 23241951 - EMBO J. 2013 Jan 23;32(2):173-5 – reference: 14556747 - J Mol Biol. 2003 Oct 24;333(3):587-603 – reference: 9889120 - Curr Biol. 1999 Jan 14;9(1):30-41 |
| SSID | ssj0005871 |
| Score | 2.4940743 |
| Snippet | Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs)... |
| SourceID | pubmedcentral proquest pubmed crossref wiley springer istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 204 |
| SubjectTerms | Active Transport, Cell Nucleus Amino Acid Sequence Animals beta Karyopherins - analysis beta Karyopherins - metabolism Cell Nucleus - chemistry Cell Nucleus - metabolism Cell Nucleus - ultrastructure Cells EMBO20 EMBO31 exportin FG hydrogel Glycine - chemistry Glycine - metabolism Hydrogels Hydrogels - analysis Hydrogels - chemistry Hydrogels - metabolism importin Membrane Microdomains - chemistry Membrane Microdomains - metabolism Membrane Microdomains - physiology Molecular Sequence Data Neurons Nuclear Pore - chemistry Nuclear Pore - metabolism Nuclear Pore - physiology nuclear pore complex Nuclear Pore Complex Proteins - analysis Nuclear Pore Complex Proteins - chemistry Nuclear Pore Complex Proteins - metabolism O-glycosylation Permeability Phenylalanine - chemistry Phenylalanine - metabolism Repetitive Sequences, Amino Acid Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - metabolism Spectroscopy Translocation Xenopus - metabolism |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELZQC4ILS9kCBRkJAZdAYjvPzpGWviLUPpVNPE6W46ULkFRJH2pv_AR-I78Ej7PQCCqEUC6JPFHs8Uxmxh5_g9BDo5QyiZnEOnM8ZtSSWLlExJOCMaUTRgsdQFy3-Gwm5vN859Qp_hYfYlhwA80I_2tQcFU03TFxSFy3X4rqAHKzyFMKaJLLaUoFFG8gbOdXkocIIVdYZWGpyHvYRiqejd8fmaVl4PDxn3zO31Mnh_3TsXcbzNP0yv8P7Cq63Lmm-HkrS9fQOVuuoAttscqTFXRxva8Ndx19fDsAQGPVwZrgyuFC1VAB78e37-AL-w7j6SbeOzF1tettMIazLHhuy-pw0eASkJRVjX0AYHHIbLfHtrmB3k833q2_jLsiDbH2nheJnc0NhGXauMQyQBo2wvqoLKXcWa4nQhuSMlcoqnNSqJw6lheMMOcvJlRCb6KlsirtbYRdkrrUZSZlljFmXa4K7g2ozq1gxEzyCMX9HEndIZhDIY3PMuykUyED6ySwTnrWRejxQH_YYnecSfkoTPlApupPkPHGM_lhtilfr5Ht9MUbIbcitNrLhOyUvZHexINXSAmN0IOh2c8I7L2o0lYLoOFeOn0szSN0qxWh4WMEatiLLIsQHwnXQAAQ4OOWcn8vQIF7b5FSLiL0pBfDU906Y6hJEL6_cERubK-9ggd_f-ffX7mLLrU4v7BWtYqWjuqFvYfO669H-019P-joTwLMP_o priority: 102 providerName: Wiley-Blackwell |
| Title | Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes |
| URI | https://api.istex.fr/ark:/67375/WNG-QB2M1DR8-L/fulltext.pdf https://link.springer.com/article/10.1038/emboj.2012.302 https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2012.302 https://www.ncbi.nlm.nih.gov/pubmed/23202855 https://www.proquest.com/docview/1285159323 https://www.proquest.com/docview/1273800947 https://pubmed.ncbi.nlm.nih.gov/PMC3553378 |
| Volume | 32 |
| WOSCitedRecordID | wos000316464500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: M7P dateStart: 20000104 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: PCBAR dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: 7X7 dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Research Library customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: M2O dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: BENPR dateStart: 20000104 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1460-2075 dateEnd: 20131211 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: 8C1 dateStart: 20000104 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library customDbUrl: eissn: 1460-2075 dateEnd: 20231231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1460-2075 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005871 issn: 0261-4189 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYCoIXLuMWGJWREPASlthO7Twh2rUD1JZSmNq3yHFsNi5JSVe0_Xt83CSsgsEDiuTcjpQ459jn2D75PoSeZFLKLMg6vooM9xnVxJcmEH4nZUyqgNFUORDXIR-PxXweT6oJt2WVVln3ia6jzgoFc-R7th8F10sJfbn47gNrFKyuVhQaW6gVkoBBwxS9cykewg243BwLC0VcgzZSsae_pcVnyOwiL2g1pVI7pRZ839M_RZy_J042q6ebsa1zToMb_1utm-h6FZbiV2s7uoUu6XwHXVkTVZ7toKu9mhfuNpp9aMCfsawgTXBhcCpLYL_zIQq2L4sHB_joLCuLT9b7YviLBc91XixWS5wDhrIssQ39NXY57fpUL--gw0H_Y--1X9Ez-MrGXMQ3Os5gQKYyE2gGGMOZ0HY8FlJuNFcdoTISMpNKqmKSypgaFqeMMGM3JmRA76LtvMj1fYRNEJrQRFnINGNMm1im3LpOFWvBSNaJPeTX-klUhV0OFBpfE7eGTkXi9JmAPhOrTw89a-QXa9SOCyWfOnU3YrL8ArluPEpm44PkfZeMwv2pSIYe2q0VmFTNfJn80p6HHje3rT5g1UXmuliBDKcCEji5h-6tzad5GAH2ehFFHuIbhtUIAPj35p38-MiBgNs4kVIuPPS8NsFzr3VBVQNnov_4Ikl_1H0LJ_b4wd8r_RBdI44dJPQJ3UXbJ-VKP0KX1Y-T42XZRluETWzJ59yVou1aZxu1uv3xZGr3-9PB4dBeHZF3UHKQnr0Z_wSi7ESG |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pLUy58CgvQwExw-tiaktKJB8Yhj7SliYZCmWam5BliZaHHZwGmj_Fb0RSbJcMFE49MLkk4x07kj6tvpXW3wI8zKSUWZS1Q9UyLKRE41CaiIftlFKpIkpS5UVcu6zf54NB8noOftTvwri0ytonekedFcrtka9YP-qWXoLJi-HX0FWNcqerdQmNKSx29OS7DdlGz7fX7fg-wrizsbe2FVZVBUJlqQIOjU4yF0eozESaOmncjGsbRsSEGc1Um6sMx9SkkqgEpzIhhiYpxdTYD-UyIva-52DB-nHmUsjYgJ2klHAf4Pk9HRrzpBaJJHxFf0mLjy6TDD8j1RZOvQguuPE8_hPD_T1RszmtneXSfjHsXP7fuvEKXKpoN3o5nSdXYU7nS3BhWohzsgSLa3Xdu2uw_7YRt0aykmxBhUGpLF11v9CxfNs5qLOJDiZZWXyw7AK5t3TQQOfFcDxCudOIliWyoY1GPmdfH-vRdXh3Ji28AfN5ketbgEwUm9i0sphqSqk2iUyZpQYq0ZzirJ0EENZ4EKrSZnclQj4LnyNAuPD4EQ4_wuIngCeN_XCqSnKq5WMPr8ZMlp9cLh9rif3-pthdxb14_Q0X3QCWa8CIyo2NxAlaAnjQXLbj4U6VZK6LsbNhhLsEVRbAzSlcm4dZum75a6sVAJsBcmPgxM1nr-SHB17k3PJgQhgP4GkN-V_-1ilNjfyU-EePiI3e6iv3w36__fdG34fFrb1eV3S3-zt34CL2lVDiEJNlmD8qx_ounFffjg5H5T3vBxC8P-sZ8xMLwJh7 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB6hLtcLR7kCBYyEgJdAYns3ziPtdsuxXZVCxfJkOT5oOZJVtovaN34Cv5FfgsebDaygQkgoL4k8SZzxTGbGHn8DcN8opUxierHuuizmzNJYuUTEvYJzpRPOCh1AXIfZaCTG43ynySbEvTBzfIh2wg01I_yvUcHtxLhmnzhmrtvPRfUBk7PoY4Zwkh2OlWRWoNPfHewNf-Z5iBB1hYkWnop8gdzIxJPlJyxZpg4y-ehPbufv2ZPtEuqygxss1ODif_i2S3ChcU_J07k8XYZTtlyFM_OClcercG5jUR_uCrx73YJAE9VAm5DKkULVWAXv-9dv6A_7HpPBFtk_NnX13tthgvtZyNiW1WQ2JSWiKaua-CDAkpDdbo_s9CrsDTbfbDyLm0INsfbeF42dzQ2GZtq4xHJEGzbC-sgsZZmzme4JbWjKXaGYzmmhcuZ4XnDKnT-4UAm7BitlVdobQFySutR1Tcot59y6XBWZN6I6t4JT08sjiBeDJHWDYo7FND7JsJrOhAysk8g66VkXwcOWfjLH7ziR8kEY85ZM1R8x6y3ryrejLflqnW6n_V0hhxGsLYRCNgo_ld7Mo2fIKIvgXtvsRwTXX1RpqxnSZExgKmcWwfW5DLUvo1jHXnS7EWRL0tUSIAz4ckt5sB_gwL3HyFgmIni0kMNfunXCpyZB-v7CEbm5vf4CL_z5zX-_5S6c3ekP5PD56OUtOE9DGZE0pmwNVg7rmb0Np_WXw4NpfafR2B8Ed0Tr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+analysis+of+barrier-forming+FG+hydrogels+from+Xenopus+nuclear+pore+complexes&rft.jtitle=The+EMBO+journal&rft.au=Labokha%2C+Aksana+A&rft.au=Gradmann%2C+Sabine&rft.au=Frey%2C+Steffen&rft.au=H%C3%BClsmann%2C+Bastian+B&rft.date=2013-01-23&rft.issn=1460-2075&rft.eissn=1460-2075&rft.volume=32&rft.issue=2&rft.spage=204&rft_id=info:doi/10.1038%2Femboj.2012.302&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |