Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes

Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels com...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal Vol. 32; no. 2; pp. 204 - 218
Main Authors: Labokha, Aksana A, Gradmann, Sabine, Frey, Steffen, Hülsmann, Bastian B, Urlaub, Henning, Baldus, Marc, Görlich, Dirk
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 23.01.2013
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Subjects:
ISSN:0261-4189, 1460-2075, 1460-2075
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability. The phenylalanine‐glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O‐linked glycosylation.
AbstractList Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability.
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability. The phenylalanine‐glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O‐linked glycosylation.
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability. The phenylalanine-glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O-linked glycosylation.
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability.Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability.
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ⩾30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability. The phenylalanine‐glycine (FG) domains of vertebrate nucleoporins assemble into hydrogels with different sieving characteristics for macromolecules. Nup98 forms the tightest filter, which is relieved by O‐linked glycosylation.
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules 30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98-derived hydrogel. It fully blocks entry of GFP-sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β-type NTRs at its surface. O-GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid-state NMR spectroscopy revealed that the O-GlcNAc-modified Nup98 gel lacks amyloid-like β-structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC-like permeability.
Author Hülsmann, Bastian B
Baldus, Marc
Görlich, Dirk
Frey, Steffen
Gradmann, Sabine
Urlaub, Henning
Labokha, Aksana A
Author_xml – sequence: 1
  givenname: Aksana A
  surname: Labokha
  fullname: Labokha, Aksana A
  organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
– sequence: 2
  givenname: Sabine
  surname: Gradmann
  fullname: Gradmann, Sabine
  organization: Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
– sequence: 3
  givenname: Steffen
  surname: Frey
  fullname: Frey, Steffen
  organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
– sequence: 4
  givenname: Bastian B
  surname: Hülsmann
  fullname: Hülsmann, Bastian B
  organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
– sequence: 5
  givenname: Henning
  surname: Urlaub
  fullname: Urlaub, Henning
  organization: Bioanalytische Massenspektrometrie, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
– sequence: 6
  givenname: Marc
  surname: Baldus
  fullname: Baldus, Marc
  organization: Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
– sequence: 7
  givenname: Dirk
  surname: Görlich
  fullname: Görlich, Dirk
  email: goerlich@mpibpc.mpg.de
  organization: Abteilung Zelluläre Logistik, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23202855$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFLUsUiU03mfqVxNkg0dIOoCmIl8rOcpzrqYckHuyk7fx7HNJWpVKFvLAsn-_c63u8h3Y61wFCLwmeE8zEIbSVW88pJnTOMH2CZoTnOKW4yHbQDNOcpJyIchfthbDGGGeiIM_QLmUUU5FlM3T-bRt6aFVvdaI61WyDDYkzSaW8t-BT43xru1VyukgutrV3K2hCYrxrk5_Quc0Qkm7QDSifbJyHRLt208A1hOfoqVFNgBc3-z76cXry_fh9uvy8-HD8dpnqnGCaGihrhgnXtcHASVnyWkBOSsIKA4XOha4p4aZSTJe0UiUzvKw45SYuLhRm--jN5LsZqhZqDV3vVSM33rbKb6VTVv5709kLuXKXkmUZY4WIBgc3Bt79HiD0srVBQ9OoDtwQJKEFExiXvIjS1w-kazf4OLRRJTKSlYyyqHp1v6O7Vm5nHgV8EmjvQvBgpLZ9DMCNDdpGEizHaOXfaOUYrYzRRmz-ALt1fhQoJuDKNrD9j1qenB19HA8TeTiRIULdCvy9hz5WK50IG3_T9V0t5X_JvGBFJs8_LeSXI3pG3n0Vcsn-AFDU12A
CODEN EMJODG
CitedBy_id crossref_primary_10_1038_s41557_022_00946_9
crossref_primary_10_1002_1873_3468_14739
crossref_primary_10_1016_j_bpj_2017_08_062
crossref_primary_10_1002_pro_4010
crossref_primary_10_1155_2017_1308692
crossref_primary_10_1016_j_jmb_2021_167220
crossref_primary_10_3390_v13112242
crossref_primary_10_1038_s41580_025_00881_w
crossref_primary_10_1083_jcb_202105163
crossref_primary_10_1371_journal_pone_0143745
crossref_primary_10_1016_j_semcdb_2017_05_007
crossref_primary_10_1021_jacs_1c05550
crossref_primary_10_1016_j_bpj_2024_03_027
crossref_primary_10_1038_s41567_024_02438_8
crossref_primary_10_1111_febs_15205
crossref_primary_10_1002_pro_4093
crossref_primary_10_3389_fcell_2021_708702
crossref_primary_10_3390_ijms23052578
crossref_primary_10_1016_j_tibs_2015_11_001
crossref_primary_10_15252_embj_2022112987
crossref_primary_10_1093_nar_gkv705
crossref_primary_10_3390_ijms24108571
crossref_primary_10_1073_pnas_2502687122
crossref_primary_10_1534_g3_115_023002
crossref_primary_10_1016_j_bpj_2014_02_021
crossref_primary_10_1016_j_neuron_2018_07_039
crossref_primary_10_1038_mtm_2015_47
crossref_primary_10_1016_j_cell_2013_02_042
crossref_primary_10_1016_j_jmb_2016_01_002
crossref_primary_10_3390_biomedicines9101451
crossref_primary_10_1371_journal_pone_0081741
crossref_primary_10_1016_j_bpj_2017_08_058
crossref_primary_10_1093_bib_bbaa271
crossref_primary_10_1111_tra_12209
crossref_primary_10_1042_BST20240507
crossref_primary_10_15252_embj_201593517
crossref_primary_10_1021_jacs_8b08041
crossref_primary_10_1016_j_bpj_2013_11_013
crossref_primary_10_1093_jb_mvab072
crossref_primary_10_7554_eLife_14119
crossref_primary_10_1002_anie_202007283
crossref_primary_10_1038_emboj_2012_338
crossref_primary_10_1016_j_bpj_2013_09_006
crossref_primary_10_1016_j_tcsw_2020_100046
crossref_primary_10_1016_j_semcdb_2017_05_021
crossref_primary_10_1038_s41467_020_17145_0
crossref_primary_10_1038_s41594_023_00925_9
crossref_primary_10_1073_pnas_2015621118
crossref_primary_10_1042_BST20220494
crossref_primary_10_1128_mmbr_00048_22
crossref_primary_10_1038_s41467_024_48194_4
crossref_primary_10_1016_j_bpj_2019_02_028
crossref_primary_10_1016_j_devcel_2020_09_003
crossref_primary_10_1002_tcr_202000175
crossref_primary_10_1039_D4SC05063K
crossref_primary_10_3390_v16111682
crossref_primary_10_1007_s10858_014_9822_6
crossref_primary_10_1111_tra_12150
crossref_primary_10_1007_s00216_021_03731_8
crossref_primary_10_1016_j_celrep_2023_112884
crossref_primary_10_1091_mbc_e13_12_0745
crossref_primary_10_3390_biom7040070
crossref_primary_10_1242_jcs_083246
crossref_primary_10_1002_ange_202007283
crossref_primary_10_1039_C9SC02356A
crossref_primary_10_1002_adma_201500752
crossref_primary_10_1083_jcb_201501101
crossref_primary_10_1002_ange_201403694
crossref_primary_10_1007_s12195_016_0440_0
crossref_primary_10_1016_j_physrep_2021_03_003
crossref_primary_10_3390_cells11142189
crossref_primary_10_1007_s00412_023_00787_6
crossref_primary_10_1073_pnas_2104897118
crossref_primary_10_1016_j_ijbiomac_2021_01_218
crossref_primary_10_3390_cells4030452
crossref_primary_10_1002_anie_201403694
crossref_primary_10_1016_j_abb_2017_05_008
crossref_primary_10_1016_j_cub_2014_01_008
crossref_primary_10_1016_j_cell_2016_11_055
crossref_primary_10_1038_s41586_023_06969_7
crossref_primary_10_1089_ars_2017_7347
crossref_primary_10_1073_pnas_1522663113
crossref_primary_10_1038_s44318_024_00081_w
crossref_primary_10_1242_jcs_113233
crossref_primary_10_15252_embj_2021109952
crossref_primary_10_1016_j_bbamcr_2021_119205
crossref_primary_10_1038_s41586_023_06966_w
crossref_primary_10_1002_pro_2674
crossref_primary_10_1016_j_semcdb_2017_04_006
crossref_primary_10_1016_j_bbamcr_2014_08_003
crossref_primary_10_1038_s41467_019_12740_2
crossref_primary_10_3389_fphys_2020_00239
crossref_primary_10_1038_s41467_022_33697_9
crossref_primary_10_1083_jcb_202010141
crossref_primary_10_1261_rna_057612_116
crossref_primary_10_1016_j_eml_2018_04_006
crossref_primary_10_1038_s41467_022_28821_8
crossref_primary_10_1007_s12195_016_0443_x
crossref_primary_10_1002_anie_202009139
crossref_primary_10_1039_C7ME00006E
crossref_primary_10_1091_mbc_e13_05_0256
crossref_primary_10_1016_j_tibs_2015_08_010
crossref_primary_10_1042_BST20160171
crossref_primary_10_1242_dev_204585
crossref_primary_10_1038_s41467_021_24292_5
crossref_primary_10_3389_fncel_2021_664151
crossref_primary_10_1242_jcs_238121
crossref_primary_10_1016_j_cell_2016_01_034
crossref_primary_10_1016_j_mad_2014_01_003
crossref_primary_10_1038_s41467_023_36331_4
crossref_primary_10_1038_s41929_017_0002_4
crossref_primary_10_1038_s41557_022_01035_7
crossref_primary_10_1038_s41598_017_05959_w
crossref_primary_10_4049_jimmunol_1502031
crossref_primary_10_1016_j_semcdb_2019_05_020
crossref_primary_10_1038_s41467_022_31098_6
crossref_primary_10_1038_s42003_024_07102_8
crossref_primary_10_7554_eLife_10027
crossref_primary_10_1016_j_cell_2016_05_004
crossref_primary_10_3390_v5102410
crossref_primary_10_1242_jcs_184184
crossref_primary_10_7554_eLife_04251
crossref_primary_10_1091_mbc_E22_01_0027
crossref_primary_10_1039_C6IB00153J
crossref_primary_10_1042_BST20170139
crossref_primary_10_1021_jacs_1c04194
crossref_primary_10_1073_pnas_2212874120
crossref_primary_10_3390_ijms150814492
crossref_primary_10_1002_ange_202009139
crossref_primary_10_1016_j_neuron_2021_06_023
crossref_primary_10_1016_j_tcb_2023_08_005
crossref_primary_10_1038_s41467_019_12402_3
crossref_primary_10_3389_fcell_2023_1245939
crossref_primary_10_1039_C8CC01346B
Cites_doi 10.1083/jcb.200411005
10.1083/jcb.128.5.721
10.1073/pnas.0910163107
10.1083/jcb.131.6.1699
10.1016/S0960-9822(99)80044-X
10.1016/j.cell.2007.01.044
10.1016/j.tcb.2003.10.007
10.1016/j.bpj.2011.08.025
10.1021/bm300412q
10.1083/jcb.104.2.189
10.1093/emboj/17.22.6587
10.1083/jcb.104.5.1157
10.1006/jmra.1996.0137
10.1006/jmbi.1996.0411
10.1038/81992
10.1091/mbc.6.11.1591
10.1016/S0006-3495(04)74262-9
10.1038/ncb1097
10.1126/science.1132516
10.1016/S0021-9258(18)48017-9
10.1016/S1097-2765(02)00589-0
10.1016/S0960-9822(95)00079-0
10.1083/jcb.137.5.989
10.1038/emboj.2009.200
10.1073/pnas.91.4.1519
10.1093/emboj/16.4.807
10.1091/mbc.E04-03-0165
10.1016/j.cplett.2008.05.058
10.1074/mcp.M200048-MCP200
10.1093/emboj/cdg113
10.1038/emboj.2011.287
10.1038/emboj.2009.199
10.1038/nsmb.1561
10.1073/pnas.041617698
10.1016/j.cell.2007.06.024
10.1128/jb.179.23.7219-7225.1997
10.1091/mbc.E05-07-0642
10.1091/mbc.E02-09-0582
10.1006/jmbi.2000.4193
10.1073/pnas.0403675101
10.1093/emboj/16.21.6535
10.1083/JCB.145.2.237
10.1093/emboj/20.6.1320
10.1007/s00018-003-3070-3
10.1074/mcp.M000035-MCP201
10.1002/j.1460-2075.1996.tb00943.x
10.1083/jcb.200108007
10.1177/16.11.673
10.1016/j.jmb.2003.08.050
10.1016/0092-8674(95)90181-7
10.1242/jcs.108.9.2963
10.1006/jmbi.1999.3166
10.4161/pri.20199
10.1016/0014-5793(95)00699-A
10.1023/A:1011278317489
10.1016/S0021-9258(19)42646-X
10.1083/jcb.200202088
10.1016/S0960-9822(99)80046-3
10.1074/jbc.273.52.35170
10.1074/jbc.275.15.10983
10.1002/j.1460-2075.1988.tb03331.x
10.1021/ja0530164
10.1074/jbc.M512585200
10.1038/nbt1037
10.1016/S0021-9258(19)39838-2
10.1074/jbc.M010420200
10.1128/MCB.24.6.2373-2384.2004
10.1016/j.cell.2012.07.019
10.1016/j.ymeth.2006.06.011
10.1128/MCB.00342-06
10.1038/nsmb.1931
10.1016/0092-8674(93)90047-T
10.1006/jmre.1999.1896
10.1083/jcb.130.2.265
10.1016/j.molcel.2004.10.032
10.1083/jcb.114.1.169
10.1016/j.str.2009.07.014
10.1016/j.devcel.2009.10.007
ContentType Journal Article
Copyright European Molecular Biology Organization 2013
Copyright © 2013 European Molecular Biology Organization
Copyright Nature Publishing Group Jan 23, 2013
Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization
Copyright_xml – notice: European Molecular Biology Organization 2013
– notice: Copyright © 2013 European Molecular Biology Organization
– notice: Copyright Nature Publishing Group Jan 23, 2013
– notice: Copyright © 2013, European Molecular Biology Organization 2013 European Molecular Biology Organization
DBID BSCLL
C6C
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PCBAR
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/emboj.2012.302
DatabaseName Istex
SpringerOpen Free (Free internet resource, activated by CARLI)
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
DocumentTitleAlternate Systematic analysis of barrier-forming FG hydrogels
EISSN 1460-2075
EndPage 218
ExternalDocumentID PMC3553378
2886575551
23202855
10_1038_emboj_2012_302
EMBJ2012302
ark_67375_WNG_QB2M1DR8_L
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
29G
2WC
33P
36B
39C
4.4
53G
5VS
70F
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAIHA
AAJSJ
AAMMB
AANHP
AANLZ
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AENEX
AEUYN
AEUYR
AFBPY
AFFHD
AFFNX
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
AIURR
AJAOE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BSCLL
BTFSW
BVXVI
C6C
CCPQU
CS3
D1J
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HYE
KQ8
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PCBAR
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RHI
RNS
ROL
RPM
SV3
TN5
TR2
UKHRP
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
YSK
ZCA
ZZTAW
~KM
24P
3V.
88A
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
ALIPV
M0L
RHF
WYJ
ABJNI
AAYXX
C1A
CITATION
COF
FEDTE
HVGLF
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c6102-fe9d3014cdf0e41994d8e619137fe7c68cd214fba3c92ba93f49b424f4f448a03
IEDL.DBID 8C1
ISICitedReferencesCount 167
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316464500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0261-4189
1460-2075
IngestDate Tue Nov 04 01:57:47 EST 2025
Sun Sep 28 00:41:27 EDT 2025
Mon Oct 06 17:56:46 EDT 2025
Thu Apr 03 07:04:06 EDT 2025
Tue Nov 18 21:03:50 EST 2025
Sat Nov 29 03:24:47 EST 2025
Wed Jan 22 16:35:11 EST 2025
Fri Feb 21 02:36:41 EST 2025
Tue Nov 11 03:33:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nuclear pore complex
importin
O‐glycosylation
exportin
FG hydrogel
Language English
License Attribution-NonCommercial-ShareAlike
http://doi.wiley.com/10.1002/tdm_license_1.1
This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial Share Alike 3.0 Unported License, which allows readers to alter, transform, or build upon the article and then distribute the resulting work under the same or similar license to this one. The work must be attributed back to the original author and commercial use is not permitted without specific permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6102-fe9d3014cdf0e41994d8e619137fe7c68cd214fba3c92ba93f49b424f4f448a03
Notes Supplementary InformationReview Process File
ark:/67375/WNG-QB2M1DR8-L
ArticleID:EMBJ2012302
istex:D91509F9D94954E7713FCAC9EB0B497026E26196
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2012.302
PMID 23202855
PQID 1285159323
PQPubID 35985
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3553378
proquest_miscellaneous_1273800947
proquest_journals_1285159323
pubmed_primary_23202855
crossref_citationtrail_10_1038_emboj_2012_302
crossref_primary_10_1038_emboj_2012_302
wiley_primary_10_1038_emboj_2012_302_EMBJ2012302
springer_journals_10_1038_emboj_2012_302
istex_primary_ark_67375_WNG_QB2M1DR8_L
PublicationCentury 2000
PublicationDate January 23, 2013
PublicationDateYYYYMMDD 2013-01-23
PublicationDate_xml – month: 01
  year: 2013
  text: January 23, 2013
  day: 23
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
– name: New York
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2013
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60: 1659-1688
Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116-3122
Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16: 673-677
Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168: 233-243
Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145: 237-254
Hurt EC (1988) A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J 7: 4323-4434
Görlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22: 1088-1100
Weirich CS, Erzberger JP, Berger JM, Weis K (2004) The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell 16: 749-760
Iovine MK, Watkins JL, Wente SR (1995) The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol 131: 1699-1713
Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20: 1320-1330
Powers MA, Macaulay C, Masiarz FR, Forbes DJ (1995) Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 128: 721-736
Petri M, Frey S, Menzel A, Görlich D, Techert S (2012) Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel. Biomacromolecules 13: 1882-1889
Rüdiger S, Mayer MP, Schneider-Mergener J, Bukau B (2000) Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. J Mol Biol 304: 245-251
Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276: 9838-9845
Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16: 6535-6547
Morrison J, Yang JC, Stewart M, Neuhaus D (2003) Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats. J Mol Biol 333: 587-603
Hetzer MW, Wente SR (2009) Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 17: 606-616
Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24: 2373-2384
Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17: 1367-1376
Görlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15: 5584-5594
Onischenko EA, Gubanova NV, Kiseleva EV, Hallberg E (2005) Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol Biol Cell 16: 5152-5162
Guan T, Muller S, Klier G, Pante N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6: 1591-1603
Griffis ER, Xu S, Powers MA (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14: 600-610
Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7: 1133-1138
Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142: 97-101
Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13: 622-628
Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Görlich D, Stewart M (1999) Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 293: 579-593
Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17: 6587-6598
Scholz I, Huber M, Manolikas T, Meier BH, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460: 278-283
Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104: 1157-1164
Ribbeck K, Kutay U, Paraskeva E, Görlich D (1999) The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 9: 47-50
Hutten S, Kehlenbach RH (2006) Nup214 is required for CRM1-dependent nuclear protein export in vivo. Mol Cell Biol 26: 6772-6785
Englmeier L, Olivo JC, Mattaj IW (1999) Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 9: 30-41
Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA (2002) The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Mol Cell 10: 347-358
Mohr D, Frey S, Fischer T, Güttler T, Görlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28: 2541-2553
von Moeller H, Basquin C, Conti E (2009) The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol 16: 247-254
Hanover JA, Cohen CK, Willingham MC, Park MK (1987) O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 262: 9887-9894
Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64: 547-552
Bullock TL, Clarkson WD, Kent HM, Stewart M (1996) The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol 260: 422-431
Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M (2002) The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 158: 63-77
Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B (1997) Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Cell Biol 137: 989-1000
Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci USA 98: 2375-2380
Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16: 807-816
Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83: 683-692
Halfmann R, Wright J, Alberti S, Lindquist S, Rexach M (2012) Prion formation by a yeast GLFG nucleoporin. Prion 6: 391-399
Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 101: 12887-12892
Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M (2006) Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. J Biol Chem 281: 19378-19386
Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127: 12965-12974
Frey S, Görlich D (2009) FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 28: 2554-2567
Frey S, Richter RP, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314: 815-817
Güttler T, Görlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30: 3457-3474
Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129: 83-96
Ader C, Frey S, Maas W, Schmidt HB, Görlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285
Chi NC, Adam EJ, Adam SA (1995) Sequence and characterization of cytoplasmic nuclear protein import factor p97. J Cell Biol 130: 265-274
Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114: 169-183
Fauchere JL, Pliska V (1983) Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 18: 369-375
Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15: 4261-4277
Wells L, Vosseller
Krull, Thyberg, Bjorkroth, Rackwitz, Cordes (CR47) 2004; 15
Mohr, Frey, Fischer, Güttler, Görlich (CR51) 2009; 28
Onischenko, Gubanova, Kiseleva, Hallberg (CR54) 2005; 16
Chi, Adam, Adam (CR11) 1995; 130
Fornerod, van Deursen, van Baal, Reynolds, Davis, Murti, Fransen, Grosveld (CR18) 1997; 16
Shaka, Barker, Freeman (CR67) 1985; 64
Griffis, Xu, Powers (CR28) 2003; 14
Sukegawa, Blobel (CR70) 1993; 72
Rüdiger, Mayer, Schneider‐Mergener, Bukau (CR64) 2000; 304
Hodel, Hodel, Griffis, Hennig, Ratner, Xu, Powers (CR37) 2002; 10
Fung, Khitrin, Ermolaev (CR23) 2000; 142
Güttler, Görlich (CR31) 2011; 30
Yang, Gelles, Musser (CR78) 2004; 101
Eanes, Glenner (CR13) 1968; 16
Ribbeck, Kutay, Paraskeva, Görlich (CR61) 1999; 9
Andronesi, Becker, Seidel, Heise, Young, Baldus (CR2) 2005; 127
Frey, Görlich (CR20) 2007; 130
Petri, Frey, Menzel, Görlich, Techert (CR56) 2012; 13
Rexach, Blobel (CR59) 1995; 83
Luca, Filippov, van Boom, Oschkinat, de Groot, Baldus (CR79) 2001; 20
Wells, Vosseller, Cole, Cronshaw, Matunis, Hart (CR76) 2002; 1
Kustanovich, Rabin (CR80) 2004; 86
Strawn, Shen, Shulga, Goldfarb, Wente (CR69) 2004; 6
Patel, Belmont, Sante, Rexach (CR55) 2007; 129
Pritchard, Fornerod, Kasper, van Deursen (CR58) 1999; 145
Scholz, Huber, Manolikas, Meier, Ernst (CR65) 2008; 460
Finlay, Meier, Bradley, Horecka, Forbes (CR16) 1991; 114
Görlich, Pante, Kutay, Aebi, Bischoff (CR26) 1996; 15
Kubitscheck, Grunwald, Hoekstra, Rohleder, Kues, Siebrasse, Peters (CR48) 2005; 168
Fauchere, Pliska (CR15) 1983; 18
Haltiwanger, Holt, Hart (CR34) 1990; 265
Frey, Görlich (CR19) 2009; 28
Hülsmann, Labokha, Görlich (CR39) 2012; 150
Halfmann, Wright, Alberti, Lindquist, Rexach (CR33) 2012; 6
Brohawn, Partridge, Whittle, Schwartz (CR9) 2009; 17
Imamoto, Shimamoto, Kose, Takao, Tachibana, Matsubae, Sekimoto, Shimonishi, Yoneda (CR42) 1995; 368
Hetzer, Wente (CR36) 2009; 17
Holt, Snow, Senior, Haltiwanger, Gerace, Hart (CR38) 1987; 104
Bastos, Ribas de Pouplana, Enarson, Bodoor, Burke (CR5) 1997; 137
Hutten, Kehlenbach (CR41) 2006; 26
Görlich, Kostka, Kraft, Dingwall, Laskey, Hartmann, Prehn (CR25) 1995; 5
Yamada, Phillips, Patel, Goldfien, Calestagne‐Morelli, Huang, Reza, Acheson, Krishnan, Newsam, Gopinathan, Lau, Colvin, Uversky, Rexach (CR77) 2010; 9
Wall, Socolich, Ranganathan (CR73) 2000; 7
Lubas, Hanover (CR49) 2000; 275
Balbirnie, Grothe, Eisenberg (CR3) 2001; 98
Morrison, Yang, Stewart, Neuhaus (CR52) 2003; 333
Ader, Frey, Maas, Schmidt, Görlich, Baldus (CR1) 2010; 107
Shaner, Campbell, Steinbach, Giepmans, Palmer, Tsien (CR68) 2004; 22
Iovine, Watkins, Wente (CR43) 1995; 131
Powers, Macaulay, Masiarz, Forbes (CR57) 1995; 128
Izaurralde, Kutay, von Kobbe, Mattaj, Görlich (CR44) 1997; 16
Ribbeck, Lipowsky, Kent, Stewart, Görlich (CR62) 1998; 17
Vasu, Shah, Orjalo, Park, Fischer, Forbes (CR71) 2001; 155
Bullock, Clarkson, Kent, Stewart (CR10) 1996; 260
Bayliss, Ribbeck, Akin, Kent, Feldherr, Görlich, Stewart (CR6) 1999; 293
Nagata, Burger (CR53) 1974; 249
Englmeier, Olivo, Mattaj (CR14) 1999; 9
Grote, Kubitscheck, Reichelt, Peters (CR29) 1995; 108
Kraemer, Wozniak, Blobel, Radu (CR46) 1994; 91
Schwoebel, Talcott, Cushman, Moore (CR66) 1998; 273
Cushman, Palzkill, Moore (CR12) 2006; 39
von Moeller, Basquin, Conti (CR72) 2009; 16
Güttler, Madl, Neumann, Deichsel, Corsini, Monecke, Ficner, Sattler, Görlich (CR32) 2010; 17
Weirich, Erzberger, Berger, Weis (CR75) 2004; 16
Hurt (CR40) 1988; 7
Finlay, Newmeyer, Price, Forbes (CR17) 1987; 104
Frey, Richter, Görlich (CR21) 2006; 314
Fried, Kutay (CR22) 2003; 60
Walther, Pickersgill, Cordes, Goldberg, Allen, Mattaj, Fornerod (CR74) 2002; 158
Guan, Muller, Klier, Pante, Blevitt, Haner, Paschal, Aebi, Gerace (CR30) 1995; 6
Ribbeck, Görlich (CR60) 2001; 20
Bernad, Engelsma, Sanderson, Pickersgill, Fornerod (CR7) 2006; 281
Gao, Wells, Comer, Parker, Hart (CR24) 2001; 276
Bernad, van der Velde, Fornerod, Pickersgill (CR8) 2004; 24
Görlich, Seewald, Ribbeck (CR27) 2003; 22
Milles, Lemke (CR50) 2011; 101
Rout, Aitchison, Magnasco, Chait (CR63) 2003; 13
Hanover, Cohen, Willingham, Park (CR35) 1987; 262
Kanemori, Nishihara, Yanagi, Yura (CR45) 1997; 179
Baldus, Meier (CR4) 1996; 121
1987; 262
2004; 22
1991; 114
2010; 107
1987; 104
2010; 17
1999; 293
2006; 39
2002; 158
2002; 10
2004; 24
2000; 7
2003; 13
1996; 260
2003; 14
2004; 6
1995; 131
1983; 18
2012; 13
1985; 64
1995; 130
1990; 265
2008; 460
1998; 273
1998; 17
1968; 16
1993; 72
2007; 130
2006; 26
1995; 128
1997; 16
1995; 368
2006; 281
2009; 16
2010; 9
2001; 98
2009; 17
1997; 179
2004; 101
1997; 137
2004; 86
2007; 129
1974; 249
2002; 1
2011; 30
1996; 121
2000; 275
1999; 145
2006; 314
2003; 333
1996; 15
1995; 6
1995; 5
2001; 20
1999; 9
2009; 28
2001; 276
2012; 150
2001; 155
1995; 83
2004; 16
2005; 168
2000; 304
2004; 15
2005; 127
1995; 108
1988; 7
2000; 142
2003; 60
2012; 6
1994; 91
2005; 16
2011; 101
2003; 22
emboj2012302-b8
emboj2012302-b9
emboj2012302-b6
emboj2012302-b7
emboj2012302-b28
emboj2012302-b27
emboj2012302-b25
emboj2012302-b69
emboj2012302-b24
emboj2012302-b68
emboj2012302-b23
emboj2012302-b22
emboj2012302-b66
emboj2012302-b21
emboj2012302-b65
emboj2012302-b20
emboj2012302-b64
emboj2012302-b63
emboj2012302-b62
emboj2012302-b61
emboj2012302-b60
Grote M (emboj2012302-b29) 1995; 108
Guan T (emboj2012302-b30) 1995; 6
emboj2012302-b39
emboj2012302-b38
emboj2012302-b37
emboj2012302-b36
emboj2012302-b79
emboj2012302-b78
emboj2012302-b33
emboj2012302-b77
emboj2012302-b32
emboj2012302-b76
emboj2012302-b31
emboj2012302-b75
emboj2012302-b74
emboj2012302-b73
emboj2012302-b72
emboj2012302-b71
emboj2012302-b70
emboj2012302-b1
Haltiwanger RS (emboj2012302-b34) 1990; 265
emboj2012302-b4
emboj2012302-b5
emboj2012302-b2
emboj2012302-b3
emboj2012302-b49
emboj2012302-b48
emboj2012302-b47
emboj2012302-b46
emboj2012302-b44
emboj2012302-b43
emboj2012302-b42
emboj2012302-b41
Shaka AJ (emboj2012302-b67) 1985; 64
emboj2012302-b80
Nagata Y (emboj2012302-b53) 1974; 249
Hanover JA (emboj2012302-b35) 1987; 262
Kanemori M (emboj2012302-b45) 1997; 179
emboj2012302-b19
emboj2012302-b18
emboj2012302-b17
emboj2012302-b16
emboj2012302-b59
emboj2012302-b14
emboj2012302-b58
emboj2012302-b13
emboj2012302-b57
emboj2012302-b12
emboj2012302-b56
emboj2012302-b11
emboj2012302-b55
emboj2012302-b10
emboj2012302-b54
Fauchere JL (emboj2012302-b15) 1983; 18
emboj2012302-b52
emboj2012302-b51
emboj2012302-b50
Hurt EC (emboj2012302-b40) 1988; 7
Görlich D (emboj2012302-b26) 1996; 15
2050741 - J Cell Biol. 1991 Jul;114(1):169-83
9049309 - EMBO J. 1997 Feb 17;16(4):807-16
14624840 - Trends Cell Biol. 2003 Dec;13(12):622-8
23241951 - EMBO J. 2013 Jan 23;32(2):173-5
8108440 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1519-23
7876300 - J Cell Biol. 1995 Mar;128(5):721-36
14504656 - Cell Mol Life Sci. 2003 Aug;60(8):1659-88
14556747 - J Mol Biol. 2003 Oct 24;333(3):587-603
16159291 - J Am Chem Soc. 2005 Sep 21;127(37):12965-74
15229283 - Mol Biol Cell. 2004 Sep;15(9):4261-77
3571327 - J Cell Biol. 1987 May;104(5):1157-64
11250898 - EMBO J. 2001 Mar 15;20(6):1320-30
10753899 - J Biol Chem. 2000 Apr 14;275(15):10983-8
7635189 - FEBS Lett. 1995 Jul 24;368(3):415-9
15558047 - Nat Biotechnol. 2004 Dec;22(12):1567-72
15657394 - J Cell Biol. 2005 Jan 17;168(2):233-43
16120647 - Mol Biol Cell. 2005 Nov;16(11):5152-62
16943420 - Mol Cell Biol. 2006 Sep;26(18):6772-85
17693259 - Cell. 2007 Aug 10;130(3):512-23
11226247 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2375-80
12105182 - J Cell Biol. 2002 Jul 8;158(1):63-77
12438562 - Mol Cell Proteomics. 2002 Oct;1(10):791-804
15574330 - Mol Cell. 2004 Dec 3;16(5):749-60
4830237 - J Biol Chem. 1974 May 25;249(10):3116-22
16908185 - Methods. 2006 Aug;39(4):329-41
8757804 - J Mol Biol. 1996 Jul 19;260(3):422-31
8589458 - Mol Biol Cell. 1995 Nov;6(11):1591-603
15041643 - Biophys J. 2004 Apr;86(4):2008-16
22901806 - Cell. 2012 Aug 17;150(4):738-51
10543952 - J Mol Biol. 1999 Oct 29;293(3):579-93
9889126 - Curr Biol. 1999 Jan 14;9(1):47-50
16675447 - J Biol Chem. 2006 Jul 14;281(28):19378-86
2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8
10617439 - J Magn Reson. 2000 Jan;142(1):97-101
15306682 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12887-92
21961597 - Biophys J. 2011 Oct 5;101(7):1710-9
3072197 - EMBO J. 1988 Dec 20;7(13):4323-34
3110163 - J Biol Chem. 1987 Jul 15;262(20):9887-94
12606574 - EMBO J. 2003 Mar 3;22(5):1088-100
17418788 - Cell. 2007 Apr 6;129(1):83-96
11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45
19219046 - Nat Struct Mol Biol. 2009 Mar;16(3):247-54
7627554 - Curr Biol. 1995 Apr 1;5(4):383-92
19680228 - EMBO J. 2009 Sep 2;28(17):2541-53
9857054 - J Biol Chem. 1998 Dec 25;273(52):35170-5
11684705 - J Cell Biol. 2001 Oct 29;155(3):339-54
5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7
3805121 - J Cell Biol. 1987 Feb;104(2):189-200
12191480 - Mol Cell. 2002 Aug;10(2):347-58
8896452 - EMBO J. 1996 Oct 15;15(20):5584-94
20304795 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6281-5
20972448 - Nat Struct Mol Biol. 2010 Nov;17(11):1367-76
11090270 - J Mol Biol. 2000 Dec 1;304(3):245-51
21878989 - EMBO J. 2011 Aug 31;30(17):3457-74
9351834 - EMBO J. 1997 Nov 3;16(21):6535-47
9822603 - EMBO J. 1998 Nov 16;17(22):6587-98
8537436 - J Cell Sci. 1995 Sep;108 ( Pt 9):2963-72
9166401 - J Cell Biol. 1997 Jun 2;137(5):989-1000
14993277 - Mol Cell Biol. 2004 Mar;24(6):2373-84
8521485 - Cell. 1995 Dec 1;83(5):683-92
9889120 - Curr Biol. 1999 Jan 14;9(1):30-41
7615630 - J Cell Biol. 1995 Jul;130(2):265-74
11563556 - J Biomol NMR. 2001 Aug;20(4):325-31
12589057 - Mol Biol Cell. 2003 Feb;14(2):600-10
8422679 - Cell. 1993 Jan 15;72(1):29-38
19748337 - Structure. 2009 Sep 9;17(9):1156-68
19922866 - Dev Cell. 2009 Nov;17(5):606-16
19680227 - EMBO J. 2009 Sep 2;28(17):2554-67
9393683 - J Bacteriol. 1997 Dec;179(23):7219-25
20368288 - Mol Cell Proteomics. 2010 Oct;9(10):2205-24
8557738 - J Cell Biol. 1995 Dec;131(6 Pt 2):1699-713
17082456 - Science. 2006 Nov 3;314(5800):815-7
11101896 - Nat Struct Biol. 2000 Dec;7(12):1133-8
15039779 - Nat Cell Biol. 2004 Mar;6(3):197-206
22571273 - Biomacromolecules. 2012 Jun 11;13(6):1882-9
22561191 - Prion. 2012 Sep-Oct;6(4):391-9
10209021 - J Cell Biol. 1999 Apr 19;145(2):237-54
References_xml – reference: Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Görlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16: 6535-6547
– reference: Strawn LA, Shen T, Shulga N, Goldfarb DS, Wente SR (2004) Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6: 197-206
– reference: Imamoto N, Shimamoto T, Kose S, Takao T, Tachibana T, Matsubae M, Sekimoto T, Shimonishi Y, Yoneda Y (1995) The nuclear pore-targeting complex binds to nuclear pores after association with a karyophile. FEBS Lett 368: 415-419
– reference: Haltiwanger RS, Holt GD, Hart GW (1990) Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J Biol Chem 265: 2563-2568
– reference: Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13: 622-628
– reference: Milles S, Lemke EA (2011) Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153. Biophys J 101: 1710-1719
– reference: Scholz I, Huber M, Manolikas T, Meier BH, Ernst M (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460: 278-283
– reference: Güttler T, Görlich D (2011) Ran-dependent nuclear export mediators: a structural perspective. EMBO J 30: 3457-3474
– reference: Güttler T, Madl T, Neumann P, Deichsel D, Corsini L, Monecke T, Ficner R, Sattler M, Görlich D (2010) NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol 17: 1367-1376
– reference: Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142: 97-101
– reference: Halfmann R, Wright J, Alberti S, Lindquist S, Rexach M (2012) Prion formation by a yeast GLFG nucleoporin. Prion 6: 391-399
– reference: Balbirnie M, Grothe R, Eisenberg DS (2001) An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc Natl Acad Sci USA 98: 2375-2380
– reference: Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW (1987) Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104: 1157-1164
– reference: Krull S, Thyberg J, Bjorkroth B, Rackwitz HR, Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15: 4261-4277
– reference: Vasu S, Shah S, Orjalo A, Park M, Fischer WH, Forbes DJ (2001) Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export. J Cell Biol 155: 339-354
– reference: Iovine MK, Watkins JL, Wente SR (1995) The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol 131: 1699-1713
– reference: Rexach M, Blobel G (1995) Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83: 683-692
– reference: Sukegawa J, Blobel G (1993) A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72: 29-38
– reference: Nagata Y, Burger MM (1974) Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding. J Biol Chem 249: 3116-3122
– reference: Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9: 2205-2224
– reference: Pritchard CE, Fornerod M, Kasper LH, van Deursen JM (1999) RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J Cell Biol 145: 237-254
– reference: Chi NC, Adam EJ, Adam SA (1995) Sequence and characterization of cytoplasmic nuclear protein import factor p97. J Cell Biol 130: 265-274
– reference: Schwoebel ED, Talcott B, Cushman I, Moore MS (1998) Ran-dependent signal-mediated nuclear import does not require GTP hydrolysis by Ran. J Biol Chem 273: 35170-35175
– reference: Rüdiger S, Mayer MP, Schneider-Mergener J, Bukau B (2000) Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. J Mol Biol 304: 245-251
– reference: Ribbeck K, Lipowsky G, Kent HM, Stewart M, Görlich D (1998) NTF2 mediates nuclear import of Ran. EMBO J 17: 6587-6598
– reference: Wall MA, Socolich M, Ranganathan R (2000) The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat Struct Biol 7: 1133-1138
– reference: Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20: 1320-1330
– reference: Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B (1997) Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Cell Biol 137: 989-1000
– reference: Weirich CS, Erzberger JP, Berger JM, Weis K (2004) The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell 16: 749-760
– reference: Hanover JA, Cohen CK, Willingham MC, Park MK (1987) O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J Biol Chem 262: 9887-9894
– reference: Hutten S, Kehlenbach RH (2006) Nup214 is required for CRM1-dependent nuclear protein export in vivo. Mol Cell Biol 26: 6772-6785
– reference: Brohawn SG, Partridge JR, Whittle JR, Schwartz TU (2009) The nuclear pore complex has entered the atomic age. Structure 17: 1156-1168
– reference: Shaner N, Campbell R, Steinbach P, Giepmans B, Palmer A, Tsien R (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567-1572
– reference: Ader C, Frey S, Maas W, Schmidt HB, Görlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci USA 107: 6281-6285
– reference: Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64: 547-552
– reference: Ribbeck K, Kutay U, Paraskeva E, Görlich D (1999) The translocation of transportin-cargo complexes through nuclear pores is independent of both Ran and energy. Curr Biol 9: 47-50
– reference: Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24: 2373-2384
– reference: Hodel AE, Hodel MR, Griffis ER, Hennig KA, Ratner GA, Xu S, Powers MA (2002) The three-dimensional structure of the autoproteolytic, nuclear pore-targeting domain of the human nucleoporin Nup98. Mol Cell 10: 347-358
– reference: Hülsmann BB, Labokha AA, Görlich D (2012) The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model. Cell 150: 738-751
– reference: Patel SS, Belmont BJ, Sante JM, Rexach MF (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129: 83-96
– reference: Frey S, Görlich D (2009) FG/FxFG as well as GLFG repeats form a selective permeability barrier with self-healing properties. EMBO J 28: 2554-2567
– reference: von Moeller H, Basquin C, Conti E (2009) The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat Struct Mol Biol 16: 247-254
– reference: Kraemer D, Wozniak RW, Blobel G, Radu A (1994) The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci USA 91: 1519-1523
– reference: Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M (2002) The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 158: 63-77
– reference: Bullock TL, Clarkson WD, Kent HM, Stewart M (1996) The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2). J Mol Biol 260: 422-431
– reference: Mohr D, Frey S, Fischer T, Güttler T, Görlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28: 2541-2553
– reference: Grote M, Kubitscheck U, Reichelt R, Peters R (1995) Mapping of nucleoporins to the center of the nuclear pore complex by post-embedding immunogold electron microscopy. J Cell Sci 108: 2963-2972
– reference: Guan T, Muller S, Klier G, Pante N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6: 1591-1603
– reference: Görlich D, Kostka S, Kraft R, Dingwall C, Laskey RA, Hartmann E, Prehn S (1995) Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr Biol 5: 383-392
– reference: Hetzer MW, Wente SR (2009) Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 17: 606-616
– reference: Cushman I, Palzkill T, Moore MS (2006) Using peptide arrays to define nuclear carrier binding sites on nucleoporins. Methods 39: 329-341
– reference: Morrison J, Yang JC, Stewart M, Neuhaus D (2003) Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats. J Mol Biol 333: 587-603
– reference: Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Görlich D, Stewart M (1999) Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 293: 579-593
– reference: Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168: 233-243
– reference: Powers MA, Macaulay C, Masiarz FR, Forbes DJ (1995) Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 128: 721-736
– reference: Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127: 12965-12974
– reference: Kanemori M, Nishihara K, Yanagi H, Yura T (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 179: 7219-7225
– reference: Frey S, Richter RP, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314: 815-817
– reference: Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130: 512-523
– reference: Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60: 1659-1688
– reference: Hurt EC (1988) A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J 7: 4323-4434
– reference: Baldus M, Meier BH (1996) Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through-bond connectivity. J Magn Reson A 121: 65-69
– reference: Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16: 807-816
– reference: Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16: 673-677
– reference: Gao Y, Wells L, Comer FI, Parker GJ, Hart GW (2001) Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem 276: 9838-9845
– reference: Petri M, Frey S, Menzel A, Görlich D, Techert S (2012) Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel. Biomacromolecules 13: 1882-1889
– reference: Luca S, Filippov DV, van Boom JH, Oschkinat H, de Groot HJM, Baldus M (2001) Secondary chemical shifts in immobilized peptides and membrane proteins: a qualitative basis for structure refinement under magic angle spinning. J Biomol. NMR 20: 325-331
– reference: Fauchere JL, Pliska V (1983) Hydrophobic parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 18: 369-375
– reference: Englmeier L, Olivo JC, Mattaj IW (1999) Receptor-mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis. Curr Biol 9: 30-41
– reference: Onischenko EA, Gubanova NV, Kiseleva EV, Hallberg E (2005) Cdk1 and okadaic acid-sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos. Mol Biol Cell 16: 5152-5162
– reference: Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1: 791-804
– reference: Griffis ER, Xu S, Powers MA (2003) Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes. Mol Biol Cell 14: 600-610
– reference: Lubas WA, Hanover JA (2000) Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J Biol Chem 275: 10983-10988
– reference: Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 101: 12887-12892
– reference: Kustanovich T, Rabin Y (2004) Metastable network model of protein transport through nuclear pores. Biophys J 86: 2008-2016
– reference: Görlich D, Pante N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15: 5584-5594
– reference: Görlich D, Seewald MJ, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22: 1088-1100
– reference: Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114: 169-183
– reference: Finlay DR, Newmeyer DD, Price TM, Forbes DJ (1987) Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104: 189-200
– reference: Bernad R, Engelsma D, Sanderson H, Pickersgill H, Fornerod M (2006) Nup214-Nup88 nucleoporin subcomplex is required for CRM1-mediated 60 S preribosomal nuclear export. J Biol Chem 281: 19378-19386
– volume: 7
  start-page: 4323
  year: 1988
  end-page: 4434
  ident: CR40
  article-title: A novel nucleoskeletal‐like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae
  publication-title: EMBO J
– volume: 293
  start-page: 579
  year: 1999
  end-page: 593
  ident: CR6
  article-title: Interaction between NTF2 and xFxFG‐containing nucleoporins is required to mediate nuclear import of RanGDP
  publication-title: J Mol Biol
– volume: 16
  start-page: 6535
  year: 1997
  end-page: 6547
  ident: CR44
  article-title: The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus
  publication-title: EMBO J
– volume: 16
  start-page: 749
  year: 2004
  end-page: 760
  ident: CR75
  article-title: The N‐terminal domain of Nup159 forms a beta‐propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore
  publication-title: Mol Cell
– volume: 368
  start-page: 415
  year: 1995
  end-page: 419
  ident: CR42
  article-title: The nuclear pore‐targeting complex binds to nuclear pores after association with a karyophile
  publication-title: FEBS Lett
– volume: 22
  start-page: 1567
  year: 2004
  end-page: 1572
  ident: CR68
  article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein
  publication-title: Nat Biotechnol
– volume: 16
  start-page: 807
  year: 1997
  end-page: 816
  ident: CR18
  article-title: The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88
  publication-title: EMBO J
– volume: 30
  start-page: 3457
  year: 2011
  end-page: 3474
  ident: CR31
  article-title: Ran‐dependent nuclear export mediators: a structural perspective
  publication-title: EMBO J
– volume: 130
  start-page: 512
  year: 2007
  end-page: 523
  ident: CR20
  article-title: A saturated FG‐repeat hydrogel can reproduce the permeability properties of nuclear pore complexes
  publication-title: Cell
– volume: 16
  start-page: 247
  year: 2009
  end-page: 254
  ident: CR72
  article-title: The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner
  publication-title: Nat Struct Mol Biol
– volume: 72
  start-page: 29
  year: 1993
  end-page: 38
  ident: CR70
  article-title: A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm
  publication-title: Cell
– volume: 9
  start-page: 30
  year: 1999
  end-page: 41
  ident: CR14
  article-title: Receptor‐mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis
  publication-title: Curr Biol
– volume: 17
  start-page: 606
  year: 2009
  end-page: 616
  ident: CR36
  article-title: Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes
  publication-title: Dev Cell
– volume: 129
  start-page: 83
  year: 2007
  end-page: 96
  ident: CR55
  article-title: Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex
  publication-title: Cell
– volume: 260
  start-page: 422
  year: 1996
  end-page: 431
  ident: CR10
  article-title: The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2)
  publication-title: J Mol Biol
– volume: 104
  start-page: 1157
  year: 1987
  end-page: 1164
  ident: CR38
  article-title: Nuclear pore complex glycoproteins contain cytoplasmically disposed O‐linked N‐acetylglucosamine
  publication-title: J Cell Biol
– volume: 304
  start-page: 245
  year: 2000
  end-page: 251
  ident: CR64
  article-title: Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch
  publication-title: J Mol Biol
– volume: 150
  start-page: 738
  year: 2012
  end-page: 751
  ident: CR39
  article-title: The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model
  publication-title: Cell
– volume: 6
  start-page: 1591
  year: 1995
  end-page: 1603
  ident: CR30
  article-title: Structural analysis of the p62 complex, an assembly of O‐linked glycoproteins that localizes near the central gated channel of the nuclear pore complex
  publication-title: Mol Biol Cell
– volume: 7
  start-page: 1133
  year: 2000
  end-page: 1138
  ident: CR73
  article-title: The structural basis for red fluorescence in the tetrameric GFP homolog DsRed
  publication-title: Nat Struct Biol
– volume: 333
  start-page: 587
  year: 2003
  end-page: 603
  ident: CR52
  article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats
  publication-title: J Mol Biol
– volume: 262
  start-page: 9887
  year: 1987
  end-page: 9894
  ident: CR35
  article-title: O‐linked N‐acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins
  publication-title: J Biol Chem
– volume: 9
  start-page: 47
  year: 1999
  end-page: 50
  ident: CR61
  article-title: The translocation of transportin‐cargo complexes through nuclear pores is independent of both Ran and energy
  publication-title: Curr Biol
– volume: 5
  start-page: 383
  year: 1995
  end-page: 392
  ident: CR25
  article-title: Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope
  publication-title: Curr Biol
– volume: 22
  start-page: 1088
  year: 2003
  end-page: 1100
  ident: CR27
  article-title: Characterization of Ran‐driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation
  publication-title: EMBO J
– volume: 131
  start-page: 1699
  year: 1995
  end-page: 1713
  ident: CR43
  article-title: The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor
  publication-title: J Cell Biol
– volume: 17
  start-page: 6587
  year: 1998
  end-page: 6598
  ident: CR62
  article-title: NTF2 mediates nuclear import of Ran
  publication-title: EMBO J
– volume: 142
  start-page: 97
  year: 2000
  end-page: 101
  ident: CR23
  article-title: An improved broadband decoupling sequence for liquid crystals and solids
  publication-title: J Magn Reson
– volume: 16
  start-page: 5152
  year: 2005
  end-page: 5162
  ident: CR54
  article-title: Cdk1 and okadaic acid‐sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos
  publication-title: Mol Biol Cell
– volume: 18
  start-page: 369
  year: 1983
  end-page: 375
  ident: CR15
  article-title: Hydrophobic parameters pi of amino‐acid side chains from the partitioning of N‐acetyl‐amino‐acid amides
  publication-title: Eur J Med Chem
– volume: 108
  start-page: 2963
  year: 1995
  end-page: 2972
  ident: CR29
  article-title: Mapping of nucleoporins to the center of the nuclear pore complex by post‐embedding immunogold electron microscopy
  publication-title: J Cell Sci
– volume: 28
  start-page: 2541
  year: 2009
  end-page: 2553
  ident: CR51
  article-title: Characterisation of the passive permeability barrier of nuclear pore complexes
  publication-title: EMBO J
– volume: 314
  start-page: 815
  year: 2006
  end-page: 817
  ident: CR21
  article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties
  publication-title: Science
– volume: 137
  start-page: 989
  year: 1997
  end-page: 1000
  ident: CR5
  article-title: Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex
  publication-title: J Cell Biol
– volume: 24
  start-page: 2373
  year: 2004
  end-page: 2384
  ident: CR8
  article-title: Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1‐mediated nuclear protein export
  publication-title: Mol Cell Biol
– volume: 17
  start-page: 1367
  year: 2010
  end-page: 1376
  ident: CR32
  article-title: NES consensus redefined by structures of PKI‐type and Rev‐type nuclear export signals bound to CRM1
  publication-title: Nat Struct Mol Biol
– volume: 249
  start-page: 3116
  year: 1974
  end-page: 3122
  ident: CR53
  article-title: Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding
  publication-title: J Biol Chem
– volume: 265
  start-page: 2563
  year: 1990
  end-page: 2568
  ident: CR34
  article-title: Enzymatic addition of O‐GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho‐N‐acetylglucosamine:peptide beta‐N‐acetylglucosaminyltransferase
  publication-title: J Biol Chem
– volume: 83
  start-page: 683
  year: 1995
  end-page: 692
  ident: CR59
  article-title: Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins
  publication-title: Cell
– volume: 158
  start-page: 63
  year: 2002
  end-page: 77
  ident: CR74
  article-title: The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import
  publication-title: J Cell Biol
– volume: 114
  start-page: 169
  year: 1991
  end-page: 183
  ident: CR16
  article-title: A complex of nuclear pore proteins required for pore function
  publication-title: J Cell Biol
– volume: 64
  start-page: 547
  year: 1985
  end-page: 552
  ident: CR67
  article-title: Computer‐optimized decoupling scheme for wideband applications and low‐level operation
  publication-title: J Magn Reson
– volume: 101
  start-page: 12887
  year: 2004
  end-page: 12892
  ident: CR78
  article-title: Imaging of single‐molecule translocation through nuclear pore complexes
  publication-title: Proc Natl Acad Sci USA
– volume: 91
  start-page: 1519
  year: 1994
  end-page: 1523
  ident: CR46
  article-title: The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm
  publication-title: Proc Natl Acad Sci USA
– volume: 104
  start-page: 189
  year: 1987
  end-page: 200
  ident: CR17
  article-title: Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores
  publication-title: J Cell Biol
– volume: 10
  start-page: 347
  year: 2002
  end-page: 358
  ident: CR37
  article-title: The three‐dimensional structure of the autoproteolytic, nuclear pore‐targeting domain of the human nucleoporin Nup98
  publication-title: Mol Cell
– volume: 145
  start-page: 237
  year: 1999
  end-page: 254
  ident: CR58
  article-title: RAE1 is a shuttling mRNA export factor that binds to a GLEBS‐like NUP98 motif at the nuclear pore complex through multiple domains
  publication-title: J Cell Biol
– volume: 1
  start-page: 791
  year: 2002
  end-page: 804
  ident: CR76
  article-title: Mapping sites of O‐GlcNAc modification using affinity tags for serine and threonine post‐translational modifications
  publication-title: Mol Cell Proteomics
– volume: 155
  start-page: 339
  year: 2001
  end-page: 354
  ident: CR71
  article-title: Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export
  publication-title: J Cell Biol
– volume: 98
  start-page: 2375
  year: 2001
  end-page: 2380
  ident: CR3
  article-title: An amyloid‐forming peptide from the yeast prion Sup35 reveals a dehydrated beta‐sheet structure for amyloid
  publication-title: Proc Natl Acad Sci USA
– volume: 281
  start-page: 19378
  year: 2006
  end-page: 19386
  ident: CR7
  article-title: Nup214‐Nup88 nucleoporin subcomplex is required for CRM1‐mediated 60 S preribosomal nuclear export
  publication-title: J Biol Chem
– volume: 121
  start-page: 65
  year: 1996
  end-page: 69
  ident: CR4
  article-title: Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through‐bond connectivity
  publication-title: J Magn Reson A
– volume: 275
  start-page: 10983
  year: 2000
  end-page: 10988
  ident: CR49
  article-title: Functional expression of O‐linked GlcNAc transferase. Domain structure and substrate specificity
  publication-title: J Biol Chem
– volume: 39
  start-page: 329
  year: 2006
  end-page: 341
  ident: CR12
  article-title: Using peptide arrays to define nuclear carrier binding sites on nucleoporins
  publication-title: Methods
– volume: 17
  start-page: 1156
  year: 2009
  end-page: 1168
  ident: CR9
  article-title: The nuclear pore complex has entered the atomic age
  publication-title: Structure
– volume: 13
  start-page: 1882
  year: 2012
  end-page: 1889
  ident: CR56
  article-title: Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel
  publication-title: Biomacromolecules
– volume: 26
  start-page: 6772
  year: 2006
  end-page: 6785
  ident: CR41
  article-title: Nup214 is required for CRM1‐dependent nuclear protein export in vivo
  publication-title: Mol Cell Biol
– volume: 60
  start-page: 1659
  year: 2003
  end-page: 1688
  ident: CR22
  article-title: Nucleocytoplasmic transport: taking an inventory
  publication-title: Cell Mol Life Sci
– volume: 6
  start-page: 391
  year: 2012
  end-page: 399
  ident: CR33
  article-title: Prion formation by a yeast GLFG nucleoporin
  publication-title: Prion
– volume: 130
  start-page: 265
  year: 1995
  end-page: 274
  ident: CR11
  article-title: Sequence and characterization of cytoplasmic nuclear protein import factor p97
  publication-title: J Cell Biol
– volume: 107
  start-page: 6281
  year: 2010
  end-page: 6285
  ident: CR1
  article-title: Amyloid‐like interactions within nucleoporin FG hydrogels
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 2554
  year: 2009
  end-page: 2567
  ident: CR19
  article-title: FG/FxFG as well as GLFG repeats form a selective permeability barrier with self‐healing properties
  publication-title: EMBO J
– volume: 20
  start-page: 325
  year: 2001
  end-page: 331
  ident: CR79
  article-title: Secondary chemical shifts in immobilized peptides and membrane proteins: a qualitative basis for structure refinement under magic angle spinning
  publication-title: J Biomol. NMR
– volume: 20
  start-page: 1320
  year: 2001
  end-page: 1330
  ident: CR60
  article-title: Kinetic analysis of translocation through nuclear pore complexes
  publication-title: EMBO J
– volume: 127
  start-page: 12965
  year: 2005
  end-page: 12974
  ident: CR2
  article-title: Determination of membrane protein structure and dynamics by magic‐angle‐spinning solid‐state NMR spectroscopy
  publication-title: J Am Chem Soc
– volume: 86
  start-page: 2008
  year: 2004
  end-page: 2016
  ident: CR80
  article-title: Metastable network model of protein transport through nuclear pores
  publication-title: Biophys J
– volume: 6
  start-page: 197
  year: 2004
  end-page: 206
  ident: CR69
  article-title: Minimal nuclear pore complexes define FG repeat domains essential for transport
  publication-title: Nat Cell Biol
– volume: 179
  start-page: 7219
  year: 1997
  end-page: 7225
  ident: CR45
  article-title: Synergistic roles of HslVU and other ATP‐dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli
  publication-title: J Bacteriol
– volume: 15
  start-page: 4261
  year: 2004
  end-page: 4277
  ident: CR47
  article-title: Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket
  publication-title: Mol Biol Cell
– volume: 128
  start-page: 721
  year: 1995
  end-page: 736
  ident: CR57
  article-title: Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication
  publication-title: J Cell Biol
– volume: 460
  start-page: 278
  year: 2008
  end-page: 283
  ident: CR65
  article-title: MIRROR recoupling and its application to spin diffusion under fast magic‐angle spinning
  publication-title: Chem Phys Lett
– volume: 13
  start-page: 622
  year: 2003
  end-page: 628
  ident: CR63
  article-title: Virtual gating and nuclear transport: the hole picture
  publication-title: Trends Cell Biol
– volume: 9
  start-page: 2205
  year: 2010
  end-page: 2224
  ident: CR77
  article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins
  publication-title: Mol Cell Proteomics
– volume: 273
  start-page: 35170
  year: 1998
  end-page: 35175
  ident: CR66
  article-title: Ran‐dependent signal‐mediated nuclear import does not require GTP hydrolysis by Ran
  publication-title: J Biol Chem
– volume: 15
  start-page: 5584
  year: 1996
  end-page: 5594
  ident: CR26
  article-title: Identification of different roles for RanGDP and RanGTP in nuclear protein import
  publication-title: EMBO J
– volume: 168
  start-page: 233
  year: 2005
  end-page: 243
  ident: CR48
  article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex
  publication-title: J Cell Biol
– volume: 276
  start-page: 9838
  year: 2001
  end-page: 9845
  ident: CR24
  article-title: Dynamic O‐glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta‐N‐acetylglucosaminidase from human brain
  publication-title: J Biol Chem
– volume: 16
  start-page: 673
  year: 1968
  end-page: 677
  ident: CR13
  article-title: X‐ray diffraction studies on amyloid filaments
  publication-title: J Histochem Cytochem
– volume: 101
  start-page: 1710
  year: 2011
  end-page: 1719
  ident: CR50
  article-title: Single molecule study of the intrinsically disordered FG‐repeat nucleoporin 153
  publication-title: Biophys J
– volume: 14
  start-page: 600
  year: 2003
  end-page: 610
  ident: CR28
  article-title: Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes
  publication-title: Mol Biol Cell
– volume: 333
  start-page: 587
  year: 2003
  end-page: 603
  article-title: Solution NMR study of the interaction between NTF2 and nucleoporin FxFG repeats
  publication-title: J Mol Biol
– volume: 7
  start-page: 1133
  year: 2000
  end-page: 1138
  article-title: The structural basis for red fluorescence in the tetrameric GFP homolog DsRed
  publication-title: Nat Struct Biol
– volume: 276
  start-page: 9838
  year: 2001
  end-page: 9845
  article-title: Dynamic O‐glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta‐N‐acetylglucosaminidase from human brain
  publication-title: J Biol Chem
– volume: 158
  start-page: 63
  year: 2002
  end-page: 77
  article-title: The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import
  publication-title: J Cell Biol
– volume: 16
  start-page: 749
  year: 2004
  end-page: 760
  article-title: The N‐terminal domain of Nup159 forms a beta‐propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore
  publication-title: Mol Cell
– volume: 107
  start-page: 6281
  year: 2010
  end-page: 6285
  article-title: Amyloid‐like interactions within nucleoporin FG hydrogels
  publication-title: Proc Natl Acad Sci USA
– volume: 18
  start-page: 369
  year: 1983
  end-page: 375
  article-title: Hydrophobic parameters pi of amino‐acid side chains from the partitioning of N‐acetyl‐amino‐acid amides
  publication-title: Eur J Med Chem
– volume: 83
  start-page: 683
  year: 1995
  end-page: 692
  article-title: Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins
  publication-title: Cell
– volume: 9
  start-page: 47
  year: 1999
  end-page: 50
  article-title: The translocation of transportin‐cargo complexes through nuclear pores is independent of both Ran and energy
  publication-title: Curr Biol
– volume: 368
  start-page: 415
  year: 1995
  end-page: 419
  article-title: The nuclear pore‐targeting complex binds to nuclear pores after association with a karyophile
  publication-title: FEBS Lett
– volume: 26
  start-page: 6772
  year: 2006
  end-page: 6785
  article-title: Nup214 is required for CRM1‐dependent nuclear protein export in vivo
  publication-title: Mol Cell Biol
– volume: 72
  start-page: 29
  year: 1993
  end-page: 38
  article-title: A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm
  publication-title: Cell
– volume: 60
  start-page: 1659
  year: 2003
  end-page: 1688
  article-title: Nucleocytoplasmic transport: taking an inventory
  publication-title: Cell Mol Life Sci
– volume: 108
  start-page: 2963
  year: 1995
  end-page: 2972
  article-title: Mapping of nucleoporins to the center of the nuclear pore complex by post‐embedding immunogold electron microscopy
  publication-title: J Cell Sci
– volume: 14
  start-page: 600
  year: 2003
  end-page: 610
  article-title: Nup98 localizes to both nuclear and cytoplasmic sides of the nuclear pore and binds to two distinct nucleoporin subcomplexes
  publication-title: Mol Biol Cell
– volume: 6
  start-page: 391
  year: 2012
  end-page: 399
  article-title: Prion formation by a yeast GLFG nucleoporin
  publication-title: Prion
– volume: 98
  start-page: 2375
  year: 2001
  end-page: 2380
  article-title: An amyloid‐forming peptide from the yeast prion Sup35 reveals a dehydrated beta‐sheet structure for amyloid
  publication-title: Proc Natl Acad Sci USA
– volume: 22
  start-page: 1567
  year: 2004
  end-page: 1572
  article-title: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein
  publication-title: Nat Biotechnol
– volume: 64
  start-page: 547
  year: 1985
  end-page: 552
  article-title: Computer‐optimized decoupling scheme for wideband applications and low‐level operation
  publication-title: J Magn Reson
– volume: 155
  start-page: 339
  year: 2001
  end-page: 354
  article-title: Novel vertebrate nucleoporins Nup133 and Nup160 play a role in mRNA export
  publication-title: J Cell Biol
– volume: 127
  start-page: 12965
  year: 2005
  end-page: 12974
  article-title: Determination of membrane protein structure and dynamics by magic‐angle‐spinning solid‐state NMR spectroscopy
  publication-title: J Am Chem Soc
– volume: 7
  start-page: 4323
  year: 1988
  end-page: 4434
  article-title: A novel nucleoskeletal‐like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae
  publication-title: EMBO J
– volume: 104
  start-page: 1157
  year: 1987
  end-page: 1164
  article-title: Nuclear pore complex glycoproteins contain cytoplasmically disposed O‐linked N‐acetylglucosamine
  publication-title: J Cell Biol
– volume: 293
  start-page: 579
  year: 1999
  end-page: 593
  article-title: Interaction between NTF2 and xFxFG‐containing nucleoporins is required to mediate nuclear import of RanGDP
  publication-title: J Mol Biol
– volume: 16
  start-page: 807
  year: 1997
  end-page: 816
  article-title: The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88
  publication-title: EMBO J
– volume: 13
  start-page: 1882
  year: 2012
  end-page: 1889
  article-title: Structural characterization of nanoscale meshworks within a nucleoporin FG hydrogel
  publication-title: Biomacromolecules
– volume: 142
  start-page: 97
  year: 2000
  end-page: 101
  article-title: An improved broadband decoupling sequence for liquid crystals and solids
  publication-title: J Magn Reson
– volume: 39
  start-page: 329
  year: 2006
  end-page: 341
  article-title: Using peptide arrays to define nuclear carrier binding sites on nucleoporins
  publication-title: Methods
– volume: 104
  start-page: 189
  year: 1987
  end-page: 200
  article-title: Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores
  publication-title: J Cell Biol
– volume: 273
  start-page: 35170
  year: 1998
  end-page: 35175
  article-title: Ran‐dependent signal‐mediated nuclear import does not require GTP hydrolysis by Ran
  publication-title: J Biol Chem
– volume: 16
  start-page: 673
  year: 1968
  end-page: 677
  article-title: X‐ray diffraction studies on amyloid filaments
  publication-title: J Histochem Cytochem
– volume: 262
  start-page: 9887
  year: 1987
  end-page: 9894
  article-title: O‐linked N‐acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins
  publication-title: J Biol Chem
– volume: 128
  start-page: 721
  year: 1995
  end-page: 736
  article-title: Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication
  publication-title: J Cell Biol
– volume: 17
  start-page: 606
  year: 2009
  end-page: 616
  article-title: Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes
  publication-title: Dev Cell
– volume: 10
  start-page: 347
  year: 2002
  end-page: 358
  article-title: The three‐dimensional structure of the autoproteolytic, nuclear pore‐targeting domain of the human nucleoporin Nup98
  publication-title: Mol Cell
– volume: 121
  start-page: 65
  year: 1996
  end-page: 69
  article-title: Total correlation spectroscopy in the solid state. The use of scalar couplings to determine the through‐bond connectivity
  publication-title: J Magn Reson A
– volume: 17
  start-page: 1156
  year: 2009
  end-page: 1168
  article-title: The nuclear pore complex has entered the atomic age
  publication-title: Structure
– volume: 16
  start-page: 5152
  year: 2005
  end-page: 5162
  article-title: Cdk1 and okadaic acid‐sensitive phosphatases control assembly of nuclear pore complexes in Drosophila embryos
  publication-title: Mol Biol Cell
– volume: 86
  start-page: 2008
  year: 2004
  end-page: 2016
  article-title: Metastable network model of protein transport through nuclear pores
  publication-title: Biophys J
– volume: 22
  start-page: 1088
  year: 2003
  end-page: 1100
  article-title: Characterization of Ran‐driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation
  publication-title: EMBO J
– volume: 17
  start-page: 1367
  year: 2010
  end-page: 1376
  article-title: NES consensus redefined by structures of PKI‐type and Rev‐type nuclear export signals bound to CRM1
  publication-title: Nat Struct Mol Biol
– volume: 101
  start-page: 12887
  year: 2004
  end-page: 12892
  article-title: Imaging of single‐molecule translocation through nuclear pore complexes
  publication-title: Proc Natl Acad Sci USA
– volume: 260
  start-page: 422
  year: 1996
  end-page: 431
  article-title: The 1.6 angstroms resolution crystal structure of nuclear transport factor 2 (NTF2)
  publication-title: J Mol Biol
– volume: 28
  start-page: 2554
  year: 2009
  end-page: 2567
  article-title: FG/FxFG as well as GLFG repeats form a selective permeability barrier with self‐healing properties
  publication-title: EMBO J
– volume: 17
  start-page: 6587
  year: 1998
  end-page: 6598
  article-title: NTF2 mediates nuclear import of Ran
  publication-title: EMBO J
– volume: 150
  start-page: 738
  year: 2012
  end-page: 751
  article-title: The permeability of reconstituted nuclear pores provides direct evidence for the selective phase model
  publication-title: Cell
– volume: 130
  start-page: 512
  year: 2007
  end-page: 523
  article-title: A saturated FG‐repeat hydrogel can reproduce the permeability properties of nuclear pore complexes
  publication-title: Cell
– volume: 145
  start-page: 237
  year: 1999
  end-page: 254
  article-title: RAE1 is a shuttling mRNA export factor that binds to a GLEBS‐like NUP98 motif at the nuclear pore complex through multiple domains
  publication-title: J Cell Biol
– volume: 15
  start-page: 5584
  year: 1996
  end-page: 5594
  article-title: Identification of different roles for RanGDP and RanGTP in nuclear protein import
  publication-title: EMBO J
– volume: 91
  start-page: 1519
  year: 1994
  end-page: 1523
  article-title: The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm
  publication-title: Proc Natl Acad Sci USA
– volume: 20
  start-page: 325
  year: 2001
  end-page: 331
  article-title: Secondary chemical shifts in immobilized peptides and membrane proteins: a qualitative basis for structure refinement under magic angle spinning
  publication-title: J Biomol. NMR
– volume: 168
  start-page: 233
  year: 2005
  end-page: 243
  article-title: Nuclear transport of single molecules: dwell times at the nuclear pore complex
  publication-title: J Cell Biol
– volume: 6
  start-page: 1591
  year: 1995
  end-page: 1603
  article-title: Structural analysis of the p62 complex, an assembly of O‐linked glycoproteins that localizes near the central gated channel of the nuclear pore complex
  publication-title: Mol Biol Cell
– volume: 16
  start-page: 6535
  year: 1997
  end-page: 6547
  article-title: The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus
  publication-title: EMBO J
– volume: 5
  start-page: 383
  year: 1995
  end-page: 392
  article-title: Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope
  publication-title: Curr Biol
– volume: 28
  start-page: 2541
  year: 2009
  end-page: 2553
  article-title: Characterisation of the passive permeability barrier of nuclear pore complexes
  publication-title: EMBO J
– volume: 131
  start-page: 1699
  year: 1995
  end-page: 1713
  article-title: The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor
  publication-title: J Cell Biol
– volume: 9
  start-page: 2205
  year: 2010
  end-page: 2224
  article-title: A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins
  publication-title: Mol Cell Proteomics
– volume: 137
  start-page: 989
  year: 1997
  end-page: 1000
  article-title: Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex
  publication-title: J Cell Biol
– volume: 275
  start-page: 10983
  year: 2000
  end-page: 10988
  article-title: Functional expression of O‐linked GlcNAc transferase. Domain structure and substrate specificity
  publication-title: J Biol Chem
– volume: 9
  start-page: 30
  year: 1999
  end-page: 41
  article-title: Receptor‐mediated substrate translocation through the nuclear pore complex without nucleotide triphosphate hydrolysis
  publication-title: Curr Biol
– volume: 24
  start-page: 2373
  year: 2004
  end-page: 2384
  article-title: Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1‐mediated nuclear protein export
  publication-title: Mol Cell Biol
– volume: 314
  start-page: 815
  year: 2006
  end-page: 817
  article-title: FG‐rich repeats of nuclear pore proteins form a three‐dimensional meshwork with hydrogel‐like properties
  publication-title: Science
– volume: 101
  start-page: 1710
  year: 2011
  end-page: 1719
  article-title: Single molecule study of the intrinsically disordered FG‐repeat nucleoporin 153
  publication-title: Biophys J
– volume: 13
  start-page: 622
  year: 2003
  end-page: 628
  article-title: Virtual gating and nuclear transport: the hole picture
  publication-title: Trends Cell Biol
– volume: 249
  start-page: 3116
  year: 1974
  end-page: 3122
  article-title: Wheat germ agglutinin. Molecular characteristics and specificity for sugar binding
  publication-title: J Biol Chem
– volume: 265
  start-page: 2563
  year: 1990
  end-page: 2568
  article-title: Enzymatic addition of O‐GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho‐N‐acetylglucosamine:peptide beta‐N‐acetylglucosaminyltransferase
  publication-title: J Biol Chem
– volume: 15
  start-page: 4261
  year: 2004
  end-page: 4277
  article-title: Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket
  publication-title: Mol Biol Cell
– volume: 6
  start-page: 197
  year: 2004
  end-page: 206
  article-title: Minimal nuclear pore complexes define FG repeat domains essential for transport
  publication-title: Nat Cell Biol
– volume: 281
  start-page: 19378
  year: 2006
  end-page: 19386
  article-title: Nup214‐Nup88 nucleoporin subcomplex is required for CRM1‐mediated 60 S preribosomal nuclear export
  publication-title: J Biol Chem
– volume: 304
  start-page: 245
  year: 2000
  end-page: 251
  article-title: Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch
  publication-title: J Mol Biol
– volume: 30
  start-page: 3457
  year: 2011
  end-page: 3474
  article-title: Ran‐dependent nuclear export mediators: a structural perspective
  publication-title: EMBO J
– volume: 16
  start-page: 247
  year: 2009
  end-page: 254
  article-title: The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner
  publication-title: Nat Struct Mol Biol
– volume: 460
  start-page: 278
  year: 2008
  end-page: 283
  article-title: MIRROR recoupling and its application to spin diffusion under fast magic‐angle spinning
  publication-title: Chem Phys Lett
– volume: 179
  start-page: 7219
  year: 1997
  end-page: 7225
  article-title: Synergistic roles of HslVU and other ATP‐dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli
  publication-title: J Bacteriol
– volume: 129
  start-page: 83
  year: 2007
  end-page: 96
  article-title: Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex
  publication-title: Cell
– volume: 1
  start-page: 791
  year: 2002
  end-page: 804
  article-title: Mapping sites of O‐GlcNAc modification using affinity tags for serine and threonine post‐translational modifications
  publication-title: Mol Cell Proteomics
– volume: 114
  start-page: 169
  year: 1991
  end-page: 183
  article-title: A complex of nuclear pore proteins required for pore function
  publication-title: J Cell Biol
– volume: 20
  start-page: 1320
  year: 2001
  end-page: 1330
  article-title: Kinetic analysis of translocation through nuclear pore complexes
  publication-title: EMBO J
– volume: 130
  start-page: 265
  year: 1995
  end-page: 274
  article-title: Sequence and characterization of cytoplasmic nuclear protein import factor p97
  publication-title: J Cell Biol
– ident: emboj2012302-b48
  doi: 10.1083/jcb.200411005
– ident: emboj2012302-b57
  doi: 10.1083/jcb.128.5.721
– ident: emboj2012302-b1
  doi: 10.1073/pnas.0910163107
– ident: emboj2012302-b43
  doi: 10.1083/jcb.131.6.1699
– ident: emboj2012302-b14
  doi: 10.1016/S0960-9822(99)80044-X
– ident: emboj2012302-b55
  doi: 10.1016/j.cell.2007.01.044
– ident: emboj2012302-b63
  doi: 10.1016/j.tcb.2003.10.007
– ident: emboj2012302-b50
  doi: 10.1016/j.bpj.2011.08.025
– ident: emboj2012302-b56
  doi: 10.1021/bm300412q
– ident: emboj2012302-b17
  doi: 10.1083/jcb.104.2.189
– ident: emboj2012302-b62
  doi: 10.1093/emboj/17.22.6587
– ident: emboj2012302-b38
  doi: 10.1083/jcb.104.5.1157
– ident: emboj2012302-b4
  doi: 10.1006/jmra.1996.0137
– ident: emboj2012302-b10
  doi: 10.1006/jmbi.1996.0411
– ident: emboj2012302-b73
  doi: 10.1038/81992
– volume: 6
  start-page: 1591
  year: 1995
  ident: emboj2012302-b30
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.6.11.1591
– ident: emboj2012302-b80
  doi: 10.1016/S0006-3495(04)74262-9
– ident: emboj2012302-b69
  doi: 10.1038/ncb1097
– ident: emboj2012302-b21
  doi: 10.1126/science.1132516
– volume: 262
  start-page: 9887
  year: 1987
  ident: emboj2012302-b35
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)48017-9
– ident: emboj2012302-b37
  doi: 10.1016/S1097-2765(02)00589-0
– ident: emboj2012302-b25
  doi: 10.1016/S0960-9822(95)00079-0
– ident: emboj2012302-b5
  doi: 10.1083/jcb.137.5.989
– ident: emboj2012302-b51
  doi: 10.1038/emboj.2009.200
– ident: emboj2012302-b46
  doi: 10.1073/pnas.91.4.1519
– ident: emboj2012302-b18
  doi: 10.1093/emboj/16.4.807
– ident: emboj2012302-b47
  doi: 10.1091/mbc.E04-03-0165
– ident: emboj2012302-b65
  doi: 10.1016/j.cplett.2008.05.058
– ident: emboj2012302-b76
  doi: 10.1074/mcp.M200048-MCP200
– ident: emboj2012302-b27
  doi: 10.1093/emboj/cdg113
– ident: emboj2012302-b31
  doi: 10.1038/emboj.2011.287
– ident: emboj2012302-b19
  doi: 10.1038/emboj.2009.199
– ident: emboj2012302-b72
  doi: 10.1038/nsmb.1561
– ident: emboj2012302-b3
  doi: 10.1073/pnas.041617698
– ident: emboj2012302-b20
  doi: 10.1016/j.cell.2007.06.024
– volume: 179
  start-page: 7219
  year: 1997
  ident: emboj2012302-b45
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.23.7219-7225.1997
– ident: emboj2012302-b54
  doi: 10.1091/mbc.E05-07-0642
– ident: emboj2012302-b28
  doi: 10.1091/mbc.E02-09-0582
– ident: emboj2012302-b64
  doi: 10.1006/jmbi.2000.4193
– ident: emboj2012302-b78
  doi: 10.1073/pnas.0403675101
– ident: emboj2012302-b44
  doi: 10.1093/emboj/16.21.6535
– ident: emboj2012302-b58
  doi: 10.1083/JCB.145.2.237
– ident: emboj2012302-b60
  doi: 10.1093/emboj/20.6.1320
– ident: emboj2012302-b22
  doi: 10.1007/s00018-003-3070-3
– ident: emboj2012302-b77
  doi: 10.1074/mcp.M000035-MCP201
– volume: 15
  start-page: 5584
  year: 1996
  ident: emboj2012302-b26
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb00943.x
– ident: emboj2012302-b71
  doi: 10.1083/jcb.200108007
– ident: emboj2012302-b13
  doi: 10.1177/16.11.673
– volume: 64
  start-page: 547
  year: 1985
  ident: emboj2012302-b67
  publication-title: J Magn Reson
– ident: emboj2012302-b52
  doi: 10.1016/j.jmb.2003.08.050
– volume: 18
  start-page: 369
  year: 1983
  ident: emboj2012302-b15
  publication-title: Eur J Med Chem
– ident: emboj2012302-b59
  doi: 10.1016/0092-8674(95)90181-7
– volume: 108
  start-page: 2963
  year: 1995
  ident: emboj2012302-b29
  publication-title: J Cell Sci
  doi: 10.1242/jcs.108.9.2963
– ident: emboj2012302-b6
  doi: 10.1006/jmbi.1999.3166
– ident: emboj2012302-b33
  doi: 10.4161/pri.20199
– ident: emboj2012302-b42
  doi: 10.1016/0014-5793(95)00699-A
– ident: emboj2012302-b79
  doi: 10.1023/A:1011278317489
– volume: 249
  start-page: 3116
  year: 1974
  ident: emboj2012302-b53
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)42646-X
– ident: emboj2012302-b74
  doi: 10.1083/jcb.200202088
– ident: emboj2012302-b61
  doi: 10.1016/S0960-9822(99)80046-3
– ident: emboj2012302-b66
  doi: 10.1074/jbc.273.52.35170
– ident: emboj2012302-b49
  doi: 10.1074/jbc.275.15.10983
– volume: 7
  start-page: 4323
  year: 1988
  ident: emboj2012302-b40
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1988.tb03331.x
– ident: emboj2012302-b2
  doi: 10.1021/ja0530164
– ident: emboj2012302-b7
  doi: 10.1074/jbc.M512585200
– ident: emboj2012302-b68
  doi: 10.1038/nbt1037
– volume: 265
  start-page: 2563
  year: 1990
  ident: emboj2012302-b34
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)39838-2
– ident: emboj2012302-b24
  doi: 10.1074/jbc.M010420200
– ident: emboj2012302-b8
  doi: 10.1128/MCB.24.6.2373-2384.2004
– ident: emboj2012302-b39
  doi: 10.1016/j.cell.2012.07.019
– ident: emboj2012302-b12
  doi: 10.1016/j.ymeth.2006.06.011
– ident: emboj2012302-b41
  doi: 10.1128/MCB.00342-06
– ident: emboj2012302-b32
  doi: 10.1038/nsmb.1931
– ident: emboj2012302-b70
  doi: 10.1016/0092-8674(93)90047-T
– ident: emboj2012302-b23
  doi: 10.1006/jmre.1999.1896
– ident: emboj2012302-b11
  doi: 10.1083/jcb.130.2.265
– ident: emboj2012302-b75
  doi: 10.1016/j.molcel.2004.10.032
– ident: emboj2012302-b16
  doi: 10.1083/jcb.114.1.169
– ident: emboj2012302-b9
  doi: 10.1016/j.str.2009.07.014
– ident: emboj2012302-b36
  doi: 10.1016/j.devcel.2009.10.007
– reference: 7635189 - FEBS Lett. 1995 Jul 24;368(3):415-9
– reference: 17418788 - Cell. 2007 Apr 6;129(1):83-96
– reference: 12438562 - Mol Cell Proteomics. 2002 Oct;1(10):791-804
– reference: 22561191 - Prion. 2012 Sep-Oct;6(4):391-9
– reference: 11250898 - EMBO J. 2001 Mar 15;20(6):1320-30
– reference: 2050741 - J Cell Biol. 1991 Jul;114(1):169-83
– reference: 15657394 - J Cell Biol. 2005 Jan 17;168(2):233-43
– reference: 8537436 - J Cell Sci. 1995 Sep;108 ( Pt 9):2963-72
– reference: 19922866 - Dev Cell. 2009 Nov;17(5):606-16
– reference: 11090270 - J Mol Biol. 2000 Dec 1;304(3):245-51
– reference: 10753899 - J Biol Chem. 2000 Apr 14;275(15):10983-8
– reference: 11101896 - Nat Struct Biol. 2000 Dec;7(12):1133-8
– reference: 8422679 - Cell. 1993 Jan 15;72(1):29-38
– reference: 3110163 - J Biol Chem. 1987 Jul 15;262(20):9887-94
– reference: 3571327 - J Cell Biol. 1987 May;104(5):1157-64
– reference: 9857054 - J Biol Chem. 1998 Dec 25;273(52):35170-5
– reference: 11563556 - J Biomol NMR. 2001 Aug;20(4):325-31
– reference: 8557738 - J Cell Biol. 1995 Dec;131(6 Pt 2):1699-713
– reference: 22901806 - Cell. 2012 Aug 17;150(4):738-51
– reference: 10543952 - J Mol Biol. 1999 Oct 29;293(3):579-93
– reference: 19680228 - EMBO J. 2009 Sep 2;28(17):2541-53
– reference: 3805121 - J Cell Biol. 1987 Feb;104(2):189-200
– reference: 7876300 - J Cell Biol. 1995 Mar;128(5):721-36
– reference: 11226247 - Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2375-80
– reference: 7627554 - Curr Biol. 1995 Apr 1;5(4):383-92
– reference: 15574330 - Mol Cell. 2004 Dec 3;16(5):749-60
– reference: 20972448 - Nat Struct Mol Biol. 2010 Nov;17(11):1367-76
– reference: 10617439 - J Magn Reson. 2000 Jan;142(1):97-101
– reference: 16159291 - J Am Chem Soc. 2005 Sep 21;127(37):12965-74
– reference: 8521485 - Cell. 1995 Dec 1;83(5):683-92
– reference: 16120647 - Mol Biol Cell. 2005 Nov;16(11):5152-62
– reference: 8108440 - Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1519-23
– reference: 10209021 - J Cell Biol. 1999 Apr 19;145(2):237-54
– reference: 5723775 - J Histochem Cytochem. 1968 Nov;16(11):673-7
– reference: 14504656 - Cell Mol Life Sci. 2003 Aug;60(8):1659-88
– reference: 3072197 - EMBO J. 1988 Dec 20;7(13):4323-34
– reference: 12589057 - Mol Biol Cell. 2003 Feb;14(2):600-10
– reference: 9393683 - J Bacteriol. 1997 Dec;179(23):7219-25
– reference: 8757804 - J Mol Biol. 1996 Jul 19;260(3):422-31
– reference: 9822603 - EMBO J. 1998 Nov 16;17(22):6587-98
– reference: 12105182 - J Cell Biol. 2002 Jul 8;158(1):63-77
– reference: 2137449 - J Biol Chem. 1990 Feb 15;265(5):2563-8
– reference: 17693259 - Cell. 2007 Aug 10;130(3):512-23
– reference: 9351834 - EMBO J. 1997 Nov 3;16(21):6535-47
– reference: 14624840 - Trends Cell Biol. 2003 Dec;13(12):622-8
– reference: 8589458 - Mol Biol Cell. 1995 Nov;6(11):1591-603
– reference: 21961597 - Biophys J. 2011 Oct 5;101(7):1710-9
– reference: 15041643 - Biophys J. 2004 Apr;86(4):2008-16
– reference: 17082456 - Science. 2006 Nov 3;314(5800):815-7
– reference: 9889126 - Curr Biol. 1999 Jan 14;9(1):47-50
– reference: 15558047 - Nat Biotechnol. 2004 Dec;22(12):1567-72
– reference: 12606574 - EMBO J. 2003 Mar 3;22(5):1088-100
– reference: 15039779 - Nat Cell Biol. 2004 Mar;6(3):197-206
– reference: 16943420 - Mol Cell Biol. 2006 Sep;26(18):6772-85
– reference: 8896452 - EMBO J. 1996 Oct 15;15(20):5584-94
– reference: 16908185 - Methods. 2006 Aug;39(4):329-41
– reference: 15229283 - Mol Biol Cell. 2004 Sep;15(9):4261-77
– reference: 12191480 - Mol Cell. 2002 Aug;10(2):347-58
– reference: 22571273 - Biomacromolecules. 2012 Jun 11;13(6):1882-9
– reference: 11148210 - J Biol Chem. 2001 Mar 30;276(13):9838-45
– reference: 15306682 - Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12887-92
– reference: 16675447 - J Biol Chem. 2006 Jul 14;281(28):19378-86
– reference: 19680227 - EMBO J. 2009 Sep 2;28(17):2554-67
– reference: 19748337 - Structure. 2009 Sep 9;17(9):1156-68
– reference: 14993277 - Mol Cell Biol. 2004 Mar;24(6):2373-84
– reference: 21878989 - EMBO J. 2011 Aug 31;30(17):3457-74
– reference: 19219046 - Nat Struct Mol Biol. 2009 Mar;16(3):247-54
– reference: 9049309 - EMBO J. 1997 Feb 17;16(4):807-16
– reference: 9166401 - J Cell Biol. 1997 Jun 2;137(5):989-1000
– reference: 7615630 - J Cell Biol. 1995 Jul;130(2):265-74
– reference: 11684705 - J Cell Biol. 2001 Oct 29;155(3):339-54
– reference: 20368288 - Mol Cell Proteomics. 2010 Oct;9(10):2205-24
– reference: 20304795 - Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6281-5
– reference: 4830237 - J Biol Chem. 1974 May 25;249(10):3116-22
– reference: 23241951 - EMBO J. 2013 Jan 23;32(2):173-5
– reference: 14556747 - J Mol Biol. 2003 Oct 24;333(3):587-603
– reference: 9889120 - Curr Biol. 1999 Jan 14;9(1):30-41
SSID ssj0005871
Score 2.4940743
Snippet Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs)...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 204
SubjectTerms Active Transport, Cell Nucleus
Amino Acid Sequence
Animals
beta Karyopherins - analysis
beta Karyopherins - metabolism
Cell Nucleus - chemistry
Cell Nucleus - metabolism
Cell Nucleus - ultrastructure
Cells
EMBO20
EMBO31
exportin
FG hydrogel
Glycine - chemistry
Glycine - metabolism
Hydrogels
Hydrogels - analysis
Hydrogels - chemistry
Hydrogels - metabolism
importin
Membrane Microdomains - chemistry
Membrane Microdomains - metabolism
Membrane Microdomains - physiology
Molecular Sequence Data
Neurons
Nuclear Pore - chemistry
Nuclear Pore - metabolism
Nuclear Pore - physiology
nuclear pore complex
Nuclear Pore Complex Proteins - analysis
Nuclear Pore Complex Proteins - chemistry
Nuclear Pore Complex Proteins - metabolism
O-glycosylation
Permeability
Phenylalanine - chemistry
Phenylalanine - metabolism
Repetitive Sequences, Amino Acid
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - metabolism
Spectroscopy
Translocation
Xenopus - metabolism
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwELZQC4ILS9kCBRkJAZdAYjvPzpGWviLUPpVNPE6W46ULkFRJH2pv_AR-I78Ej7PQCCqEUC6JPFHs8Uxmxh5_g9BDo5QyiZnEOnM8ZtSSWLlExJOCMaUTRgsdQFy3-Gwm5vN859Qp_hYfYlhwA80I_2tQcFU03TFxSFy3X4rqAHKzyFMKaJLLaUoFFG8gbOdXkocIIVdYZWGpyHvYRiqejd8fmaVl4PDxn3zO31Mnh_3TsXcbzNP0yv8P7Cq63Lmm-HkrS9fQOVuuoAttscqTFXRxva8Ndx19fDsAQGPVwZrgyuFC1VAB78e37-AL-w7j6SbeOzF1tettMIazLHhuy-pw0eASkJRVjX0AYHHIbLfHtrmB3k833q2_jLsiDbH2nheJnc0NhGXauMQyQBo2wvqoLKXcWa4nQhuSMlcoqnNSqJw6lheMMOcvJlRCb6KlsirtbYRdkrrUZSZlljFmXa4K7g2ozq1gxEzyCMX9HEndIZhDIY3PMuykUyED6ySwTnrWRejxQH_YYnecSfkoTPlApupPkPHGM_lhtilfr5Ht9MUbIbcitNrLhOyUvZHexINXSAmN0IOh2c8I7L2o0lYLoOFeOn0szSN0qxWh4WMEatiLLIsQHwnXQAAQ4OOWcn8vQIF7b5FSLiL0pBfDU906Y6hJEL6_cERubK-9ggd_f-ffX7mLLrU4v7BWtYqWjuqFvYfO669H-019P-joTwLMP_o
  priority: 102
  providerName: Wiley-Blackwell
Title Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes
URI https://api.istex.fr/ark:/67375/WNG-QB2M1DR8-L/fulltext.pdf
https://link.springer.com/article/10.1038/emboj.2012.302
https://onlinelibrary.wiley.com/doi/abs/10.1038%2Femboj.2012.302
https://www.ncbi.nlm.nih.gov/pubmed/23202855
https://www.proquest.com/docview/1285159323
https://www.proquest.com/docview/1273800947
https://pubmed.ncbi.nlm.nih.gov/PMC3553378
Volume 32
WOSCitedRecordID wos000316464500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: M7P
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: PCBAR
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: 7X7
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Research Library
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: M2O
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: BENPR
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20131211
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: 8C1
  dateStart: 20000104
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 20231231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1460-2075
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005871
  issn: 0261-4189
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYCoIXLuMWGJWREPASlthO7Twh2rUD1JZSmNq3yHFsNi5JSVe0_Xt83CSsgsEDiuTcjpQ459jn2D75PoSeZFLKLMg6vooM9xnVxJcmEH4nZUyqgNFUORDXIR-PxXweT6oJt2WVVln3ia6jzgoFc-R7th8F10sJfbn47gNrFKyuVhQaW6gVkoBBwxS9cykewg243BwLC0VcgzZSsae_pcVnyOwiL2g1pVI7pRZ839M_RZy_J042q6ebsa1zToMb_1utm-h6FZbiV2s7uoUu6XwHXVkTVZ7toKu9mhfuNpp9aMCfsawgTXBhcCpLYL_zIQq2L4sHB_joLCuLT9b7YviLBc91XixWS5wDhrIssQ39NXY57fpUL--gw0H_Y--1X9Ez-MrGXMQ3Os5gQKYyE2gGGMOZ0HY8FlJuNFcdoTISMpNKqmKSypgaFqeMMGM3JmRA76LtvMj1fYRNEJrQRFnINGNMm1im3LpOFWvBSNaJPeTX-klUhV0OFBpfE7eGTkXi9JmAPhOrTw89a-QXa9SOCyWfOnU3YrL8ArluPEpm44PkfZeMwv2pSIYe2q0VmFTNfJn80p6HHje3rT5g1UXmuliBDKcCEji5h-6tzad5GAH2ehFFHuIbhtUIAPj35p38-MiBgNs4kVIuPPS8NsFzr3VBVQNnov_4Ikl_1H0LJ_b4wd8r_RBdI44dJPQJ3UXbJ-VKP0KX1Y-T42XZRluETWzJ59yVou1aZxu1uv3xZGr3-9PB4dBeHZF3UHKQnr0Z_wSi7ESG
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwEN4pLUy58CgvQwExw-tiaktKJB8Yhj7SliYZCmWam5BliZaHHZwGmj_Fb0RSbJcMFE49MLkk4x07kj6tvpXW3wI8zKSUWZS1Q9UyLKRE41CaiIftlFKpIkpS5UVcu6zf54NB8noOftTvwri0ytonekedFcrtka9YP-qWXoLJi-HX0FWNcqerdQmNKSx29OS7DdlGz7fX7fg-wrizsbe2FVZVBUJlqQIOjU4yF0eozESaOmncjGsbRsSEGc1Um6sMx9SkkqgEpzIhhiYpxdTYD-UyIva-52DB-nHmUsjYgJ2klHAf4Pk9HRrzpBaJJHxFf0mLjy6TDD8j1RZOvQguuPE8_hPD_T1RszmtneXSfjHsXP7fuvEKXKpoN3o5nSdXYU7nS3BhWohzsgSLa3Xdu2uw_7YRt0aykmxBhUGpLF11v9CxfNs5qLOJDiZZWXyw7AK5t3TQQOfFcDxCudOIliWyoY1GPmdfH-vRdXh3Ji28AfN5ketbgEwUm9i0sphqSqk2iUyZpQYq0ZzirJ0EENZ4EKrSZnclQj4LnyNAuPD4EQ4_wuIngCeN_XCqSnKq5WMPr8ZMlp9cLh9rif3-pthdxb14_Q0X3QCWa8CIyo2NxAlaAnjQXLbj4U6VZK6LsbNhhLsEVRbAzSlcm4dZum75a6sVAJsBcmPgxM1nr-SHB17k3PJgQhgP4GkN-V_-1ilNjfyU-EePiI3e6iv3w36__fdG34fFrb1eV3S3-zt34CL2lVDiEJNlmD8qx_ounFffjg5H5T3vBxC8P-sZ8xMLwJh7
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwEB6hLtcLR7kCBYyEgJdAYns3ziPtdsuxXZVCxfJkOT5oOZJVtovaN34Cv5FfgsebDaygQkgoL4k8SZzxTGbGHn8DcN8opUxierHuuizmzNJYuUTEvYJzpRPOCh1AXIfZaCTG43ynySbEvTBzfIh2wg01I_yvUcHtxLhmnzhmrtvPRfUBk7PoY4Zwkh2OlWRWoNPfHewNf-Z5iBB1hYkWnop8gdzIxJPlJyxZpg4y-ehPbufv2ZPtEuqygxss1ODif_i2S3ChcU_J07k8XYZTtlyFM_OClcercG5jUR_uCrx73YJAE9VAm5DKkULVWAXv-9dv6A_7HpPBFtk_NnX13tthgvtZyNiW1WQ2JSWiKaua-CDAkpDdbo_s9CrsDTbfbDyLm0INsfbeF42dzQ2GZtq4xHJEGzbC-sgsZZmzme4JbWjKXaGYzmmhcuZ4XnDKnT-4UAm7BitlVdobQFySutR1Tcot59y6XBWZN6I6t4JT08sjiBeDJHWDYo7FND7JsJrOhAysk8g66VkXwcOWfjLH7ziR8kEY85ZM1R8x6y3ryrejLflqnW6n_V0hhxGsLYRCNgo_ld7Mo2fIKIvgXtvsRwTXX1RpqxnSZExgKmcWwfW5DLUvo1jHXnS7EWRL0tUSIAz4ckt5sB_gwL3HyFgmIni0kMNfunXCpyZB-v7CEbm5vf4CL_z5zX-_5S6c3ekP5PD56OUtOE9DGZE0pmwNVg7rmb0Np_WXw4NpfafR2B8Ed0Tr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+analysis+of+barrier-forming+FG+hydrogels+from+Xenopus+nuclear+pore+complexes&rft.jtitle=The+EMBO+journal&rft.au=Labokha%2C+Aksana+A&rft.au=Gradmann%2C+Sabine&rft.au=Frey%2C+Steffen&rft.au=H%C3%BClsmann%2C+Bastian+B&rft.date=2013-01-23&rft.issn=1460-2075&rft.eissn=1460-2075&rft.volume=32&rft.issue=2&rft.spage=204&rft_id=info:doi/10.1038%2Femboj.2012.302&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon